JP2014099760A - Ultrasonic vibrator and method of manufacturing the same - Google Patents

Ultrasonic vibrator and method of manufacturing the same Download PDF

Info

Publication number
JP2014099760A
JP2014099760A JP2012250474A JP2012250474A JP2014099760A JP 2014099760 A JP2014099760 A JP 2014099760A JP 2012250474 A JP2012250474 A JP 2012250474A JP 2012250474 A JP2012250474 A JP 2012250474A JP 2014099760 A JP2014099760 A JP 2014099760A
Authority
JP
Japan
Prior art keywords
layer
acoustic matching
piezoelectric elements
organic
matching layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012250474A
Other languages
Japanese (ja)
Inventor
Atsushi Osawa
敦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012250474A priority Critical patent/JP2014099760A/en
Priority to PCT/JP2013/077615 priority patent/WO2014077061A1/en
Publication of JP2014099760A publication Critical patent/JP2014099760A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • B06B1/064Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface with multiple active layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements

Abstract

PROBLEM TO BE SOLVED: To provide a high-density ultrasonic vibrator provided with a plurality of organic piezoelectric elements and a plurality of inorganic piezoelectric elements.SOLUTION: A surface on that side of a printed board 8 having a signal electrode layer 62 previously formed on its surface at a fine pitch P on which the signal electrode layer 62 is formed is bonded to one surface of an organic piezoelectric layer 61, and a ground electrode layer 63 is formed on the other surface of the organic piezoelectric layer 61, thereby arranging and forming a plurality of organic piezoelectric elements 6 extending at the fine pitch P by the signal electrode layer 62, the organic piezoelectric layer 61, and the ground electrode layer 63. The plurality of organic piezoelectric elements 6, a plurality of inorganic piezoelectric elements 3 arranged and formed on a backing material 2, and an acoustic matching layer 4 are joined together.

Description

この発明は、超音波振動子およびその製造方法に係り、特に、複数の無機圧電素子と複数の有機圧電素子とが互いに積層形成された超音波振動子およびその製造方法に関する。   The present invention relates to an ultrasonic transducer and a method for manufacturing the same, and more particularly to an ultrasonic transducer in which a plurality of inorganic piezoelectric elements and a plurality of organic piezoelectric elements are stacked on each other and a method for manufacturing the same.

従来から、医療分野において、超音波画像を利用した超音波診断装置が実用化されている。一般に、この種の超音波診断装置は、超音波振動子から被検体内に向けて超音波ビームを送信し、被検体からの超音波エコーを超音波振動子で受信して、その受信信号を電気的に処理することにより超音波画像が生成される。   Conventionally, in the medical field, an ultrasonic diagnostic apparatus using an ultrasonic image has been put into practical use. In general, this type of ultrasonic diagnostic apparatus transmits an ultrasonic beam from an ultrasonic transducer into a subject, receives an ultrasonic echo from the subject with the ultrasonic transducer, and receives the received signal. An ultrasonic image is generated by electrical processing.

近年、より正確な診断を行うために、被検体の非線形性により超音波波形が歪むことで発生する高調波成分を受信して映像化するハーモニックイメージングが主流となっている。また、近年、超音波を用いた新たな診断方法として、レーザーを生体に照射し、断熱膨張で発生する微弱で広帯域な弾性波を受信して映像化する、光音響イメージングが脚光を浴びつつある。
このハーモニックイメージングや光音響イメージングに適した超音波振動子として、例えば、特許文献1〜3および非特許文献1に開示されているように、ポリフッ化ビニリデン(PVDF)等の有機圧電体を用いた複数の有機圧電素子からなる超音波振動子や、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O)等の無機圧電体を用いた複数の無機圧電素子と上述の有機圧電体を用いた複数の有機圧電素子とを積層形成した超音波振動子が提案されている。
In recent years, in order to perform more accurate diagnosis, harmonic imaging that receives and visualizes harmonic components generated by distortion of an ultrasonic waveform due to nonlinearity of a subject has become mainstream. In recent years, photoacoustic imaging, which is a new diagnostic method using ultrasonic waves, is focused on photo-irradiation by irradiating a living body with laser and receiving weak and broadband elastic waves generated by adiabatic expansion. .
As an ultrasonic transducer suitable for this harmonic imaging and photoacoustic imaging, for example, as disclosed in Patent Documents 1 to 3 and Non-Patent Document 1, an organic piezoelectric body such as polyvinylidene fluoride (PVDF) is used. An ultrasonic vibrator composed of a plurality of organic piezoelectric elements, a plurality of inorganic piezoelectric elements using an inorganic piezoelectric material such as lead zirconate titanate (Pb (Zr, Ti) O 3 ), and the above-described organic piezoelectric material were used. An ultrasonic vibrator in which a plurality of organic piezoelectric elements are laminated is proposed.

複数の無機圧電素子と複数の有機圧電素子とを積層形成した上述の超音波振動子によれば、無機圧電素子により高出力の超音波ビームを送信し、有機圧電素子により高調波の信号を高感度に受信することができる。また、無機圧電素子により通常の超音波の受信信号を取得すると共に、有機圧電素子により光音響イメージングの広帯域な信号を高感度に受信することができる。   According to the above-described ultrasonic vibrator in which a plurality of inorganic piezoelectric elements and a plurality of organic piezoelectric elements are stacked, a high-power ultrasonic beam is transmitted by the inorganic piezoelectric elements, and a harmonic signal is increased by the organic piezoelectric elements. Can be received with sensitivity. In addition, a normal ultrasonic reception signal can be acquired by the inorganic piezoelectric element, and a wide-band signal of photoacoustic imaging can be received with high sensitivity by the organic piezoelectric element.

特許4992995号公報Japanese Patent No. 4929995 特開2011−72701号公報JP2011-72701A 特開2009−267528号公報JP 2009-267528 A

高分子圧電膜を用いたフレキシブルアレイ探触子に関する研究Study on flexible array probe using piezoelectric polymer film

近年、従来の超音波振動子と比較して、超音波振動子の高密度化に伴うアレイサイズの微小化が求められている。しかしながら、有機圧電素子に使用される有機圧電体は、一般に耐熱性が低く、例えば80℃を超える温度で脱分極してしまうという性質を有している。このため、信号線を引き出すためにそれぞれの有機圧電素子に半田処理を施すと、有機圧電体が熱により損傷してしまうおそれがある。
また、有機圧電体に熱を加えないように接着導電材を用いて引き出し電極を形成しようとすると、例えば有機圧電体として使用されるポリフッ化ビニリデンはフッ素系樹脂であるために、銀ペースト等の接着導電材を用いても接着性能が低く、ダイシング等の処理を行う際に、接着導電材が剥離するおそれがあった。
In recent years, as compared with conventional ultrasonic transducers, there is a demand for miniaturization of the array size accompanying the increase in the density of ultrasonic transducers. However, an organic piezoelectric body used for an organic piezoelectric element generally has low heat resistance and has a property of depolarizing at a temperature exceeding 80 ° C., for example. For this reason, if each organic piezoelectric element is subjected to soldering in order to draw out the signal line, the organic piezoelectric body may be damaged by heat.
In addition, when an extraction electrode is formed using an adhesive conductive material so that heat is not applied to the organic piezoelectric material, for example, polyvinylidene fluoride used as the organic piezoelectric material is a fluorine-based resin. Even if the adhesive conductive material is used, the adhesive performance is low, and the adhesive conductive material may be peeled off when processing such as dicing is performed.

この発明は、このような問題点を解消するためになされたもので、複数の有機圧電素子および複数の無機圧電素子を備える高密度の超音波振動子を提供することを目的とする。
また、この発明は、このような超音波振動子を得ることができる超音波振動子の製造方法を提供することも目的としている。
The present invention has been made to solve such problems, and an object thereof is to provide a high-density ultrasonic transducer including a plurality of organic piezoelectric elements and a plurality of inorganic piezoelectric elements.
Another object of the present invention is to provide a method for manufacturing an ultrasonic transducer capable of obtaining such an ultrasonic transducer.

この発明に係る超音波振動子は、バッキング材と、バッキング材の表面上にアレイ状に配列された複数の無機圧電素子と、複数の無機圧電素子の上に配列され且つ複数の無機圧電素子にわたって延在する音響整合層と、音響整合層の上にアレイ状に配列された複数の有機圧電素子と、を備え、複数の有機圧電素子は、複数の有機圧電素子にわたって延在する1つの有機圧電体層と、有機圧電体層の一方の面上に形成され且つ複数の有機圧電素子にわたって延在する1つの接地電極層と、有機圧電体層の他方の面上に配置され且つ互いに分離された複数の信号電極層とを含み、複数の信号電極層は、予め1つのプリント基板上に形成されたものであることを特徴とする。   An ultrasonic transducer according to the present invention includes a backing material, a plurality of inorganic piezoelectric elements arranged in an array on the surface of the backing material, and a plurality of inorganic piezoelectric elements arranged over the plurality of inorganic piezoelectric elements. An acoustic matching layer that extends, and a plurality of organic piezoelectric elements arranged in an array on the acoustic matching layer, wherein the plurality of organic piezoelectric elements extend over the plurality of organic piezoelectric elements. A body layer, one ground electrode layer formed on one surface of the organic piezoelectric layer and extending over the plurality of organic piezoelectric elements, and disposed on the other surface of the organic piezoelectric layer and separated from each other A plurality of signal electrode layers, wherein the plurality of signal electrode layers are formed in advance on one printed circuit board.

また、音響整合層は、それぞれ音響インピーダンスの異なる複数の無機圧電素子の上に配置された第1の音響整合層と、第1の音響整合層の上に配置された第2の音響整合層とからなることが好ましい。   The acoustic matching layer includes a first acoustic matching layer disposed on the plurality of inorganic piezoelectric elements having different acoustic impedances, and a second acoustic matching layer disposed on the first acoustic matching layer. Preferably it consists of.

また、音響整合層から無機圧電素子までの各層を等間隔で平行に分離するように設けられた複数の分離溝を備え、分離溝にはウレタン樹脂またはエポキシ樹脂が充填されることが好ましい。   In addition, it is preferable that a plurality of separation grooves provided so as to separate the layers from the acoustic matching layer to the inorganic piezoelectric element at equal intervals in parallel are provided, and the separation grooves are filled with urethane resin or epoxy resin.

また、有機圧電体層は、ポリフッ化ビニリデンからなることが好ましく、また、有機高分子樹脂と無機圧電素子との複合体である高分子複合圧電体から形成されてもよい。   The organic piezoelectric layer is preferably made of polyvinylidene fluoride, and may be formed of a polymer composite piezoelectric material that is a composite of an organic polymer resin and an inorganic piezoelectric element.

また、プリント基板は、ポリイミド、ウレタン、エポキシ樹脂およびアクリル樹脂のいずれかからなり、音響整合層を兼ねることができる。   The printed circuit board is made of any one of polyimide, urethane, epoxy resin, and acrylic resin, and can also serve as an acoustic matching layer.

なお、プリント基板の上に音響レンズを更に備えてもよい。   An acoustic lens may be further provided on the printed circuit board.

また、本発明は、バッキング材の表面上に複数の無機圧電素子をアレイ状に形成し、無機圧電素子にわたって延在する音響整合層を複数の無機圧電素子の上にそれぞれ形成し、予め1つのプリント基板上にアレイ状に形成された複数の信号電極層をプリント基板とともに有機圧電体層の一方の面に接着し、有機圧電体層の他方の面にわたって延在する1つの接地電極層を有機圧電体層の他方の面に接着することで、複数の信号電極層、有機圧電体層および接地電極層により複数の有機圧電素子を配列形成し、複数の無機圧電素子と複数の有機圧電素子との配置が対応するように有機圧電素子の接地電極層と音響整合層とを接着することを特徴とする超音波振動子の製造方法を提供する。   In the present invention, a plurality of inorganic piezoelectric elements are formed in an array on the surface of the backing material, and an acoustic matching layer extending over the inorganic piezoelectric elements is formed on each of the plurality of inorganic piezoelectric elements. A plurality of signal electrode layers formed in an array on a printed circuit board are adhered to one surface of the organic piezoelectric layer together with the printed circuit board, and one ground electrode layer extending over the other surface of the organic piezoelectric layer is organically bonded. By bonding to the other surface of the piezoelectric layer, a plurality of organic piezoelectric elements are arrayed by a plurality of signal electrode layers, an organic piezoelectric layer, and a ground electrode layer, and a plurality of inorganic piezoelectric elements, a plurality of organic piezoelectric elements, A method for manufacturing an ultrasonic transducer is provided, in which a ground electrode layer and an acoustic matching layer of an organic piezoelectric element are bonded so that the arrangement of

また、上述の超音波振動子の製造方法において、音響整合層から無機圧電素子までの各層を等間隔で平行に分離するように設けられた複数の分離溝に、ウレタン樹脂またはエポキシ樹脂を充填することが好ましい。   Further, in the above-described method of manufacturing an ultrasonic transducer, urethane resin or epoxy resin is filled into a plurality of separation grooves provided so as to separate each layer from the acoustic matching layer to the inorganic piezoelectric element in parallel at equal intervals. It is preferable.

この発明によれば、ピッチの微小な複数の有機圧電素子のそれぞれの信号電極からの引き出し配線を、有機圧電体に熱を加えることなく形成することができるため、複数の有機圧電素子および複数の無機圧素子を備える高密度の超音波振動子を提供することができる。   According to the present invention, since the lead-out wiring from the respective signal electrodes of the plurality of organic piezoelectric elements having a small pitch can be formed without applying heat to the organic piezoelectric body, the plurality of organic piezoelectric elements and the plurality of organic piezoelectric elements can be formed. A high-density ultrasonic transducer provided with an inorganic pressure element can be provided.

この発明の実施の形態に係る超音波振動子の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the ultrasonic transducer | vibrator which concerns on embodiment of this invention. 実施の形態に係る超音波振動子の製造工程を示す断面図のうち、バッキング材と無機圧電素子とを接合する工程を示す断面図である。It is sectional drawing which shows the process of joining a backing material and an inorganic piezoelectric element among sectional drawings which show the manufacturing process of the ultrasonic transducer | vibrator which concerns on embodiment. 無機圧電素子の上に音響整合層の接合する工程を示す断面図である。It is sectional drawing which shows the process of joining an acoustic matching layer on an inorganic piezoelectric element. 音響整合層から無機圧電素子までの積層構造を微小ピッチPでダイシングする工程を示す断面図である。It is sectional drawing which shows the process of dicing the laminated structure from an acoustic matching layer to an inorganic piezoelectric element with the micro pitch P. ダイシングによってできた溝に充填剤を充填する工程を示す断面図である。It is sectional drawing which shows the process of filling the groove | channel formed by dicing with a filler. 有機圧電体層の一方の面に予め信号電極がアレイ状の形成されたプリント基板を接着し、有機圧電体層の他方の面に一面に広がる接地電極を接着する工程を示す断面図である。It is sectional drawing which shows the process of adhere | attaching the printed circuit board in which the signal electrode was previously formed in the array form at one surface of the organic piezoelectric material layer, and adhere | attaching the ground electrode which spreads to the other surface of the organic piezoelectric material layer. 有機圧電体素子と音響整合層とを位置合わせしつつ接着する工程を示す断面図である。It is sectional drawing which shows the process of adhering, aligning an organic piezoelectric element and an acoustic matching layer.

以下、この発明の実施の形態を添付図面に基づいて説明する。
図1に、この発明の実施の形態に係る超音波振動子1の構成を示す。
バッキング材2の表面上に複数の無機圧電素子3が微小ピッチPで配列形成されている。複数の無機圧電素子3は、互いに分離された複数の無機圧電体31を有し、それぞれの無機圧電体の一方の面に信号電極層32が接合され、他方の面に接地電極層33が接合されている。すなわち、それぞれの無機圧電素子3は、専用の無機圧電体31と信号電極層32と接地電極層33から形成されている。
このような複数の無機圧電素子3の上に音響整合層4が接合されている。音響整合層4は、複数の断片に分断され、複数の無機圧電素子3と同じ微小ピッチPで配列されている。また、音響整合層4は、無機圧電素子3の上に直接接合される第1の音響整合層41と第1の音響整合層41の上に重ねて接合される第2の音響整合層42とから構成される。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a configuration of an ultrasonic transducer 1 according to an embodiment of the present invention.
A plurality of inorganic piezoelectric elements 3 are arranged at a minute pitch P on the surface of the backing material 2. The plurality of inorganic piezoelectric elements 3 have a plurality of inorganic piezoelectric bodies 31 separated from each other, the signal electrode layer 32 is bonded to one surface of each inorganic piezoelectric body, and the ground electrode layer 33 is bonded to the other surface. Has been. That is, each inorganic piezoelectric element 3 is formed of a dedicated inorganic piezoelectric material 31, signal electrode layer 32, and ground electrode layer 33.
The acoustic matching layer 4 is bonded on the plurality of inorganic piezoelectric elements 3. The acoustic matching layer 4 is divided into a plurality of pieces and arranged at the same fine pitch P as the plurality of inorganic piezoelectric elements 3. The acoustic matching layer 4 includes a first acoustic matching layer 41 that is directly bonded on the inorganic piezoelectric element 3 and a second acoustic matching layer 42 that is bonded to the first acoustic matching layer 41 in an overlapping manner. Consists of

また、音響整合層4(第2の音響整合層42)の上には、有機圧電素子6が接合される。有機圧電素子6は、有機圧電体層61と、有機圧電体層61の一方の面にアレイ状に配列された信号電極層62と、有機圧電体層61の他方の面に音響整合層4と直接接合するように形成された接地電極層63とによって構成される。
有機圧電体層61は、複数の有機圧電素子6にわたって延在し、また、接地電極層63も有機圧電体層61とともに複数の有機圧電素子6にわたって延在する。
信号電極層62は、無機圧電素子3および音響整合層4と同じく微小ピッチPで有機圧電体層61上に配列されており、それぞれの有機圧電素子6は、延在する有機圧電体層61の一部と、1つの信号電極層62と、接地電極層63とによって形成される。
よって、有機圧電素子6も無機圧電素子3および音響整合層4と同じ微小ピッチPで配列されることとなる。
The organic piezoelectric element 6 is bonded on the acoustic matching layer 4 (second acoustic matching layer 42). The organic piezoelectric element 6 includes an organic piezoelectric layer 61, a signal electrode layer 62 arranged in an array on one surface of the organic piezoelectric layer 61, and an acoustic matching layer 4 on the other surface of the organic piezoelectric layer 61. The ground electrode layer 63 is formed so as to be directly bonded.
The organic piezoelectric layer 61 extends over the plurality of organic piezoelectric elements 6, and the ground electrode layer 63 also extends with the organic piezoelectric layer 61 over the plurality of organic piezoelectric elements 6.
The signal electrode layer 62 is arranged on the organic piezoelectric layer 61 at a fine pitch P as in the case of the inorganic piezoelectric element 3 and the acoustic matching layer 4, and each organic piezoelectric element 6 includes the extending organic piezoelectric layer 61. A part, one signal electrode layer 62 and a ground electrode layer 63 are formed.
Therefore, the organic piezoelectric elements 6 are also arranged at the same minute pitch P as the inorganic piezoelectric elements 3 and the acoustic matching layer 4.

複数の無機圧電素子3および音響整合層4の各層において同じ微小ピッチPで分離された複数の断片は、それぞれの層の間で位置を合わせて積層方向に整列し、それぞれの列の間には充填剤が充填されることにより、複数の無機圧電素子3および音響整合層4を構成する複数の断片を互いに分離する分離部5が形成されている。すなわち、分離部5は、それぞれの音響整合層4(第2の音響整合層42)の表面上からバッキング材2の表面上まで各層を貫通するように、積層方向に向かってそれぞれ同じ微小ピッチPで平行に延びている。   A plurality of pieces separated at the same minute pitch P in each of the plurality of inorganic piezoelectric elements 3 and the acoustic matching layer 4 are aligned in the stacking direction with the alignment between the respective layers, and between the respective columns. By being filled with the filler, a separation portion 5 is formed that separates a plurality of pieces constituting the plurality of inorganic piezoelectric elements 3 and the acoustic matching layer 4 from each other. That is, the separation portions 5 have the same minute pitch P in the stacking direction so as to penetrate each layer from the surface of each acoustic matching layer 4 (second acoustic matching layer 42) to the surface of the backing material 2. It extends in parallel.

信号電極層62は、プリント基板8上に形成され、信号電極層62がプリント基板8とともに接着剤7によって有機圧電体層61と隙間なく接着されることで、有機圧電体層61上に配列される。
プリント基板8は、信号電極層62および有機圧電体層61の保護層としての役割を果たし、ポリイミド、ウレタン、エポキシ樹脂またはアクリル樹脂などによって形成される。なお、保護層としては、耐熱性、耐薬品性、耐水性があり、音響整合層も兼ねるポリイミドが最も好ましい。
The signal electrode layer 62 is formed on the printed circuit board 8, and the signal electrode layer 62 is arranged on the organic piezoelectric material layer 61 by being bonded to the organic piezoelectric material layer 61 together with the printed circuit board 8 by the adhesive 7 without a gap. The
The printed circuit board 8 serves as a protective layer for the signal electrode layer 62 and the organic piezoelectric layer 61, and is formed of polyimide, urethane, epoxy resin, acrylic resin, or the like. The protective layer is most preferably polyimide that has heat resistance, chemical resistance, and water resistance and also serves as an acoustic matching layer.

無機圧電素子3の無機圧電体31は、Pb系のペロブスカイト構造酸化物から形成されている。例えば、チタン酸ジルコン酸鉛(Pb(Zr、Ti)O)に代表されるPb系の圧電セラミック、または、マグネシウムニオブ酸・チタン酸鉛固溶体(PMN−PT)および亜鉛ニオブ酸・チタン酸鉛固溶体(PZN−PT)に代表されるリラクサ系の圧電単結晶から形成することができる。
一方、有機圧電素子6の有機圧電体層61は、フッ化ビニリデン(VDF)系材料から形成されている。例えば、ポリフッ化ビニリデン(PVDF)またはポリフッ化ビニリデン三フッ化エチレン共重合体(P(VDF−TrFE))等の高分子圧電素子から形成することができる。また、有機圧電素子6は、有機高分子樹脂と無機圧電体との複合体である高分子複合圧電体から形成されてもよい。なお、高分子複合圧電体とは、有機高分子樹脂中に強誘電体材料からなる圧電体粒子が均一に分散されることで構成される複合体がポーリングされてなるものである。なお、有機高分子樹脂としては、例えば、シアノエチル化ポリビニルアルコール(シアノエチル化PVAともいう。)が挙げられる。また、圧電体粒子は、ペロブスカイト型結晶構造を有するセラミックス粒子からなり、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO)、またはチタン酸バリウムとビスマスフェライト(BiFe)の固溶体(BFBT)により構成される。
The inorganic piezoelectric body 31 of the inorganic piezoelectric element 3 is made of a Pb-based perovskite structure oxide. For example, Pb-based piezoelectric ceramic represented by lead zirconate titanate (Pb (Zr, Ti) O 3 ), or magnesium niobate / lead titanate solid solution (PMN-PT) and zinc niobate / lead titanate It can be formed from a relaxor-type piezoelectric single crystal typified by a solid solution (PZN-PT).
On the other hand, the organic piezoelectric layer 61 of the organic piezoelectric element 6 is made of a vinylidene fluoride (VDF) material. For example, it can be formed from a polymer piezoelectric element such as polyvinylidene fluoride (PVDF) or polyvinylidene fluoride trifluoride ethylene copolymer (P (VDF-TrFE)). The organic piezoelectric element 6 may be formed of a polymer composite piezoelectric material that is a composite of an organic polymer resin and an inorganic piezoelectric material. The polymer composite piezoelectric material is formed by poling a composite formed by uniformly dispersing piezoelectric particles made of a ferroelectric material in an organic polymer resin. Examples of the organic polymer resin include cyanoethylated polyvinyl alcohol (also referred to as cyanoethylated PVA). The piezoelectric particles are made of ceramic particles having a perovskite crystal structure. For example, lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT), barium titanate (BaTiO 3 ), or titanium. It is composed of a solid solution (BFBT) of barium acid and bismuth ferrite (BiFe 3 ).

バッキング材2は、複数の無機圧電素子3を支持すると共に後方へ放出された超音波を吸収するもので、フェライトゴム等のゴム材から形成されてもよく、また、ガラスエポキシ、塩素化ポリエチレン複合樹脂などから形成されてもよい。
音響整合層4は、複数の無機圧電素子3からの超音波ビームを効率よく被検体内に入射させるためのもので、無機圧電素子3の音響インピーダンスと生体の音響インピーダンスの中間的な音響インピーダンスを有する材料から形成される。
無機圧電素子3の音響インピーダンスは25〜30Mraylであり、音響整合層4を構成する第1の音響整合層41の音響インピーダンスは6〜10Mraylであり、第1の音響整合層に重畳する第2の音響整合層42の音響インピーダンスは4〜6Mraylである。第1の音響整合層41および第2の音響整合層42は、共に、エポキシにアルミナ粉末を混合することで構成され、音響インピーダンスが調整される。
The backing material 2 supports a plurality of inorganic piezoelectric elements 3 and absorbs ultrasonic waves emitted backward. The backing material 2 may be formed of a rubber material such as ferrite rubber. You may form from resin etc.
The acoustic matching layer 4 is for making the ultrasonic beam from the plurality of inorganic piezoelectric elements 3 efficiently enter the subject, and has an acoustic impedance intermediate between the acoustic impedance of the inorganic piezoelectric element 3 and the acoustic impedance of the living body. Formed from a material having
The acoustic impedance of the inorganic piezoelectric element 3 is 25 to 30 Mrayl, the acoustic impedance of the first acoustic matching layer 41 constituting the acoustic matching layer 4 is 6 to 10 Mrayl, and the second impedance superimposed on the first acoustic matching layer The acoustic impedance of the acoustic matching layer 42 is 4 to 6 Mrayl. Both the first acoustic matching layer 41 and the second acoustic matching layer 42 are configured by mixing alumina powder in epoxy, and the acoustic impedance is adjusted.

また、有機圧電素子6およびプリント基板8の音響インピーダンスも複数の無機圧電素子3からの超音波ビームを効率よく被検体内に入射させるために調整されている。有機圧電素子6の音響インピーダンスは3〜4Mraylに設定されており、プリント基板8の音響インピーダンスは2.5〜3Mraylに設定されている。
第1の音響整合層41および第2の音響整合層42、有機圧電素子6、ならびにプリント基板8のそれぞれの音響インピーダンスを段階的に調整することにより複数の無機圧電素子3からの超音波ビームを効率よく被検体内に入射させることができる。
なお、分離部5に充填される充填剤は、ウレタンまたはエポキシ樹脂が用いられる。
The acoustic impedances of the organic piezoelectric element 6 and the printed circuit board 8 are also adjusted so that the ultrasonic beams from the plurality of inorganic piezoelectric elements 3 are efficiently incident on the subject. The acoustic impedance of the organic piezoelectric element 6 is set to 3 to 4 Mrayl, and the acoustic impedance of the printed circuit board 8 is set to 2.5 to 3 Mrayl.
By adjusting the acoustic impedance of each of the first acoustic matching layer 41 and the second acoustic matching layer 42, the organic piezoelectric element 6, and the printed board 8 in a stepwise manner, ultrasonic beams from the plurality of inorganic piezoelectric elements 3 are changed. It is possible to efficiently enter the subject.
In addition, urethane or an epoxy resin is used for the filler with which the separation part 5 is filled.

次にこの実施の形態の動作について説明する。
動作時には、例えば、複数の無機圧電素子3が超音波の送信専用の振動子として、複数の有機圧電素子6が超音波の受信専用の振動子として使用される。
複数の無機圧電素子3の信号電極層32と接地電極層33の間にそれぞれパルス状または連続波の電圧を印加すると、それぞれの無機圧電素子3の無機圧電体31が伸縮してパルス状または連続波の超音波が発生する。これらの超音波は、第1の音響整合層41、第2の音響整合層42、有機圧電素子6およびプリント基板8を介して被検体内に入射し、互いに合成され、超音波ビームを形成して被検体内を伝搬する。
Next, the operation of this embodiment will be described.
In operation, for example, the plurality of inorganic piezoelectric elements 3 are used as transducers dedicated to ultrasonic transmission, and the plurality of organic piezoelectric elements 6 are used as transducers dedicated to ultrasonic reception.
When a pulsed or continuous wave voltage is applied between the signal electrode layer 32 and the ground electrode layer 33 of the plurality of inorganic piezoelectric elements 3, the inorganic piezoelectric body 31 of each inorganic piezoelectric element 3 expands and contracts to be pulsed or continuous. Wave ultrasound is generated. These ultrasonic waves enter the subject through the first acoustic matching layer 41, the second acoustic matching layer 42, the organic piezoelectric element 6 and the printed circuit board 8, and are combined with each other to form an ultrasonic beam. To propagate through the subject.

続いて、被検体内を伝搬して反射された超音波エコーが、プリント基板8を介してそれぞれの有機圧電素子6に入射されると、有機圧電体層61が超音波の高調波成分に高感度に応答して伸縮し、信号電極層62と接地電極層63との間に電気信号が発生して、受信信号として出力される。
このようにして、複数の有機圧電素子6から出力された受信信号に基づいて高調波画像を生成することができる。ここで、複数の無機圧電素子3と複数の有機圧電素子6は、積層方向に互いに位置合わせして同じ微小ピッチPで配列形成されているため、超音波ビームの送信位置と同じ配列位置で被検体からの超音波エコーを受信することができ、高精度に高調波画像を生成することができる。
Subsequently, when the ultrasonic echoes propagated and reflected in the subject are incident on the respective organic piezoelectric elements 6 via the printed circuit board 8, the organic piezoelectric layer 61 is increased in the harmonic components of the ultrasonic waves. The signal expands and contracts in response to the sensitivity, and an electric signal is generated between the signal electrode layer 62 and the ground electrode layer 63 and is output as a received signal.
In this way, a harmonic image can be generated based on the reception signals output from the plurality of organic piezoelectric elements 6. Here, since the plurality of inorganic piezoelectric elements 3 and the plurality of organic piezoelectric elements 6 are aligned with each other in the stacking direction and arranged at the same minute pitch P, they are covered at the same arrangement position as the transmission position of the ultrasonic beam. An ultrasonic echo from the specimen can be received, and a harmonic image can be generated with high accuracy.

また、複数の無機圧電素子3を超音波の送受信兼用の振動子として使用することもできる。この場合、プリント基板8を介して有機圧電素子6で受信された超音波エコーが、さらに第2の音響整合層42および第1の音響整合層41を介してそれぞれの無機圧電素子3に入射し、無機圧電体31が主に超音波の基本波成分に応答して伸縮し、信号電極層32と接地電極層33との間に電気信号を発生する。
このようにして複数の無機圧電素子3から得られた基本波成分に対応する受信信号と、有機圧電素子6から得られた高調波成分に対応する受信信号とに基づいて、基本波成分と高調波成分とを複合したコンパウンド画像を生成することができる。
A plurality of inorganic piezoelectric elements 3 can also be used as transducers for transmitting and receiving ultrasonic waves. In this case, ultrasonic echoes received by the organic piezoelectric element 6 via the printed circuit board 8 are further incident on the respective inorganic piezoelectric elements 3 via the second acoustic matching layer 42 and the first acoustic matching layer 41. The inorganic piezoelectric body 31 mainly expands and contracts in response to the fundamental wave component of the ultrasonic wave, and generates an electric signal between the signal electrode layer 32 and the ground electrode layer 33.
Based on the reception signal corresponding to the fundamental wave component obtained from the plurality of inorganic piezoelectric elements 3 in this manner and the reception signal corresponding to the harmonic wave component obtained from the organic piezoelectric element 6, the fundamental wave component and the harmonics are obtained. A compound image combining the wave component can be generated.

この場合も、複数の無機圧電素子3と複数の有機圧電素子6が、積層方向に互いに位置合わせして同じ微小ピッチPで配列形成されているため、超音波エコーの基本波成分と高調波成分とを同じ配列位置で受信することができ、基本波成分と高調波成分を高精度に複合したコンパウンド画像を生成することができる。   Also in this case, since the plurality of inorganic piezoelectric elements 3 and the plurality of organic piezoelectric elements 6 are aligned with each other in the stacking direction and arranged at the same minute pitch P, the fundamental wave component and the harmonic component of the ultrasonic echo Can be received at the same array position, and a compound image in which the fundamental component and the harmonic component are combined with high accuracy can be generated.

このような超音波振動子1は、次のようにして製造することができる。
まず、図2に示されるように、バッキング材2の表面全域にわたって延びる無機圧電素子層9を接着剤等によりバッキング材2の表面上に接合する。この無機圧電素子層9は、バッキング材2の全面にわたって延びる無機圧電体層91の両面に、全面にわたってそれぞれ導電層92および93が形成されたものである。
Such an ultrasonic transducer 1 can be manufactured as follows.
First, as shown in FIG. 2, the inorganic piezoelectric element layer 9 extending over the entire surface of the backing material 2 is bonded onto the surface of the backing material 2 with an adhesive or the like. In this inorganic piezoelectric element layer 9, conductive layers 92 and 93 are respectively formed on both surfaces of an inorganic piezoelectric layer 91 extending over the entire surface of the backing material 2.

次に、図3に示されるように、無機圧電素子層9に、無機圧電素子層9の全域にわたって延びる音響整合層10を接合する。また、音響整合層10は、第1の音響整合層101および第2の音響整合層102からなる。よって、第1の音響整合層101を、例えば80℃〜100℃の温度で導電層93の上に接合し、また、第1の音響整合層101の全域にわたって延びる第2の音響整合層102を、例えば80℃〜100℃の温度で第1の音響整合層101の上に接合する。   Next, as shown in FIG. 3, an acoustic matching layer 10 extending over the entire area of the inorganic piezoelectric element layer 9 is bonded to the inorganic piezoelectric element layer 9. The acoustic matching layer 10 includes a first acoustic matching layer 101 and a second acoustic matching layer 102. Therefore, the first acoustic matching layer 101 is bonded onto the conductive layer 93 at a temperature of, for example, 80 ° C. to 100 ° C., and the second acoustic matching layer 102 extending over the entire area of the first acoustic matching layer 101 is provided. For example, bonding is performed on the first acoustic matching layer 101 at a temperature of 80 ° C. to 100 ° C.

続いて、図4に示すように、第2の音響整合層102、第1の音響整合層101および無機圧電素子層9の各層を微小ピッチPでダイシングすることにより、各層を複数の断片に分離する。この時、ダイシングは、第2の音響整合層102から無機圧電素子層9までの各層を完全に分断するように行われるため、分断された各層のそれぞれの断片は積層方向に位置を合わせて整列される。これにより、バッキング材2の表面上には微小ピッチPで配列された複数の無機圧電素子3が形成され、それぞれの無機圧電素子3の上には第1の音響整合層41および第2の音響整合層42の各断片が位置を合わせて順次重なるように形成される。また、各層の複数の断片が微小ピッチPで積層方向に整列されたそれぞれの列の間には、ダイシングにより各層を積層方向に貫通した平板状の複数の溝11が形成される。
このように、第2の音響整合層102から無機圧電素子層9までの各層を微小ピッチPでダイシングすることにより、各層が簡便に複数の断片に分離されると共に分離された各層のそれぞれの断片を断層方向に位置合わせすることができる。
Subsequently, as shown in FIG. 4, each layer of the second acoustic matching layer 102, the first acoustic matching layer 101, and the inorganic piezoelectric element layer 9 is diced at a fine pitch P, so that each layer is separated into a plurality of pieces. To do. At this time, since the dicing is performed so as to completely divide each layer from the second acoustic matching layer 102 to the inorganic piezoelectric element layer 9, each piece of each divided layer is aligned and aligned in the stacking direction. Is done. As a result, a plurality of inorganic piezoelectric elements 3 arranged at a minute pitch P are formed on the surface of the backing material 2, and the first acoustic matching layer 41 and the second acoustic elements 3 are formed on each inorganic piezoelectric element 3. Each piece of the matching layer 42 is formed so as to sequentially overlap each other at the same position. Further, between each row in which a plurality of pieces of each layer are aligned in the stacking direction at a minute pitch P, a plurality of flat grooves 11 penetrating each layer in the stacking direction are formed by dicing.
In this way, each layer from the second acoustic matching layer 102 to the inorganic piezoelectric element layer 9 is diced at a minute pitch P, whereby each layer is easily separated into a plurality of pieces and each piece of each separated layer is separated. Can be aligned in the fault direction.

次に、図5に示されるように、ダイシングにより形成された複数の溝11の内部に充填剤を充填する。充填剤を充填することで、各層の複数の断片の位置および姿勢を固定する分離部5を形成することができる。   Next, as shown in FIG. 5, a filler is filled in the plurality of grooves 11 formed by dicing. By filling the filler, it is possible to form the separation unit 5 that fixes the position and posture of the plurality of pieces of each layer.

また、図6に示されるように、プリント基板8は、その表面上に信号電極層62が微小ピッチPで予め形成されている。そして、プリント基板8の信号電極層62が形成された側の面は、信号電極層62とともに有機圧電体層61の一方の面に接着剤7によって隙間なく接着される。また、有機圧電体層61の他方の面には、その表面の全面にわたって導電層である接地電極層63が形成される。なお、接地電極層63は、有機圧電体層61の表面に導電層が積層されることで形成されてもよく、また、膜状の導電層が接着されることで形成されてもよい。そして、信号電極層62、有機圧電体層61および接地電極層63により、微小ピッチPで延在する複数の有機圧電素子6が形成される。   As shown in FIG. 6, the printed circuit board 8 has signal electrode layers 62 formed in advance at a minute pitch P on the surface thereof. The surface of the printed circuit board 8 on which the signal electrode layer 62 is formed is bonded to the one surface of the organic piezoelectric layer 61 together with the signal electrode layer 62 by the adhesive 7 without a gap. A ground electrode layer 63 that is a conductive layer is formed on the other surface of the organic piezoelectric layer 61 over the entire surface. The ground electrode layer 63 may be formed by laminating a conductive layer on the surface of the organic piezoelectric layer 61, or may be formed by adhering a film-like conductive layer. The signal electrode layer 62, the organic piezoelectric layer 61, and the ground electrode layer 63 form a plurality of organic piezoelectric elements 6 that extend at a minute pitch P.

次に、図7に示されるように、複数の第2の音響整合層42の上に、プリント基板8を備える複数の有機圧電素子6を、例えば80℃程度の温度で接着させる。複数の有機圧電素子6は、複数の第2の音響整合層42の全体にわたって延びるだけの大きさを有し、複数の第2の音響整合層42および分離部5と接地電極層63とが直接接着される。また、プリント基板8が接着された側の表面に微小ピッチPで配置された信号電極層62は、複数の音響整合層4および複数の無機圧電素子3と位置合わせされて配置され、これにより、複数の有機圧電素子6と複数の音響整合層4および複数の無機圧電素子3との位置合わせがなされる。
複数の無機圧電素子3と複数の有機圧電素子6が互いに位置合わせされて配列されるため、高精度な高調波画像およびコンパウンド画像を生成することができる。
Next, as shown in FIG. 7, the plurality of organic piezoelectric elements 6 including the printed circuit board 8 are bonded onto the plurality of second acoustic matching layers 42 at a temperature of about 80 ° C., for example. The plurality of organic piezoelectric elements 6 have a size that extends over the entirety of the plurality of second acoustic matching layers 42, and the plurality of second acoustic matching layers 42, the separation unit 5, and the ground electrode layer 63 are directly connected to each other. Glued. In addition, the signal electrode layer 62 arranged at a minute pitch P on the surface on which the printed board 8 is bonded is arranged in alignment with the plurality of acoustic matching layers 4 and the plurality of inorganic piezoelectric elements 3, thereby The plurality of organic piezoelectric elements 6 are aligned with the plurality of acoustic matching layers 4 and the plurality of inorganic piezoelectric elements 3.
Since the plurality of inorganic piezoelectric elements 3 and the plurality of organic piezoelectric elements 6 are aligned and aligned with each other, high-accuracy harmonic images and compound images can be generated.

また、プリント基板8および有機圧電体層61は、第1の音響整合層41および第2の音響整合層42と共に、複数の無機圧電素子3から送信される超音波を音響整合するため音響整合層を兼ねる。   In addition, the printed circuit board 8 and the organic piezoelectric layer 61, together with the first acoustic matching layer 41 and the second acoustic matching layer 42, acoustically match the ultrasonic waves transmitted from the plurality of inorganic piezoelectric elements 3. Doubles as

このようにして、複数の第2の音響整合層42の上に、接地電極層63および信号電極層62をそれぞれの表面に備えた有機圧電体層61を接合することで、図1に示した超音波振動子1が製造される。   In this way, the organic piezoelectric layer 61 provided with the ground electrode layer 63 and the signal electrode layer 62 on the respective surfaces is bonded onto the plurality of second acoustic matching layers 42 as shown in FIG. The ultrasonic transducer 1 is manufactured.

有機圧電体層61は、上述のとおり熱に弱く、半田処理等の熱により損傷する可能性があるが、本発明に係る超音波振動子の製造方法では、アレイ状の信号電極62は、プリント基板8に直接形成され、また、有機圧電体層61とプリント基板8、および有機圧電素子6と第2の音響整合層42の接合に接着剤が使用されるため、有機圧電層61が直接高温に曝されることがない。
また、有機圧電素子6から下側に積層された各層、すなわち、信号電極層32、無機圧電体31、接地電極層33、第1の音響整合層41および第2の音響整合層42を順次接着するまでの間は、有機圧電体層61が存在しないため、これらの層を互いに高温で接着して高い接着力で積層させることができる。
The organic piezoelectric layer 61 is vulnerable to heat as described above, and may be damaged by heat such as soldering. However, in the method of manufacturing an ultrasonic transducer according to the present invention, the arrayed signal electrodes 62 are printed Since the adhesive is used for bonding the organic piezoelectric layer 61 and the printed circuit board 8 and the organic piezoelectric element 6 and the second acoustic matching layer 42 directly on the substrate 8, the organic piezoelectric layer 61 is directly heated to a high temperature. Is not exposed to.
Further, the layers laminated on the lower side from the organic piezoelectric element 6, that is, the signal electrode layer 32, the inorganic piezoelectric body 31, the ground electrode layer 33, the first acoustic matching layer 41, and the second acoustic matching layer 42 are sequentially bonded. In the meantime, since the organic piezoelectric layer 61 does not exist, these layers can be bonded to each other at a high temperature and laminated with a high adhesive force.

また、超音波振動子1のプリント基板8上に音響レンズを接地し、屈折を利用して超音波ビームを絞り、エレベーション方向の分解能を向上させてもよい。音響レンズはシリコンゴム等によって形成される。   Alternatively, an acoustic lens may be grounded on the printed circuit board 8 of the ultrasonic transducer 1 and the ultrasonic beam may be narrowed using refraction to improve the resolution in the elevation direction. The acoustic lens is made of silicon rubber or the like.

以上、本発明に係る超音波振動子およびその製造方法について詳細に説明したが、本発明は、上記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよい。   As described above, the ultrasonic transducer and the manufacturing method thereof according to the present invention have been described in detail. However, the present invention is not limited to the above embodiment, and various improvements can be made without departing from the gist of the present invention. And changes may be made.

1 超音波振動子、 2 バッキング材、 3 無機圧電素子、 4 音響整合層、 5 充填剤、 6 有機圧電素子、 7 接着剤、 8 プリント基板、 9 無機圧電素子層、 10 音響整合層、 11 溝、 31 無機圧電体、 32 信号電極層、 33 接地電極層、 41 第1の音響整合層、 42 第2の音響整合層、 61 有機圧電体層、 62 信号電極層、 63 接地電極層、 92、93 導電層、 101 第1の音響整合層、 102 第2の音響整合層、 P 微小ピッチ。   DESCRIPTION OF SYMBOLS 1 Ultrasonic vibrator, 2 Backing material, 3 Inorganic piezoelectric element, 4 Acoustic matching layer, 5 Filler, 6 Organic piezoelectric element, 7 Adhesive, 8 Printed circuit board, 9 Inorganic piezoelectric element layer, 10 Acoustic matching layer, 11 Groove 31 Inorganic piezoelectric material, 32 Signal electrode layer, 33 Ground electrode layer, 41 First acoustic matching layer, 42 Second acoustic matching layer, 61 Organic piezoelectric material layer, 62 Signal electrode layer, 63 Ground electrode layer, 92 93 conductive layer, 101 first acoustic matching layer, 102 second acoustic matching layer, P minute pitch.

Claims (13)

バッキング材と、
前記バッキング材の表面上にアレイ状に配列された複数の無機圧電素子と、
前記複数の無機圧電素子の上に配列され且つ前記複数の無機圧電素子にわたって延在する音響整合層と、
前記音響整合層の上にアレイ状に配列された複数の有機圧電素子と、
を備え、
前記複数の有機圧電素子は、
前記複数の有機圧電素子にわたって延在する1つの有機圧電体層と、
前記有機圧電体層の一方の面上に形成され且つ前記複数の有機圧電素子にわたって延在する1つの接地電極層と、
前記有機圧電体層の他方の面上に配置され且つ互いに分離された複数の信号電極層と
を含み、前記複数の信号電極層は、予め1つのプリント基板上に形成されたものであることを特徴とする超音波振動子。
Backing material,
A plurality of inorganic piezoelectric elements arranged in an array on the surface of the backing material;
An acoustic matching layer arranged on the plurality of inorganic piezoelectric elements and extending over the plurality of inorganic piezoelectric elements;
A plurality of organic piezoelectric elements arranged in an array on the acoustic matching layer;
With
The plurality of organic piezoelectric elements are:
One organic piezoelectric layer extending over the plurality of organic piezoelectric elements;
One ground electrode layer formed on one surface of the organic piezoelectric layer and extending over the plurality of organic piezoelectric elements;
A plurality of signal electrode layers disposed on the other surface of the organic piezoelectric layer and separated from each other, wherein the plurality of signal electrode layers are formed on a single printed circuit board in advance. A characteristic ultrasonic transducer.
前記音響整合層は、それぞれ音響インピーダンスの異なる前記複数の無機圧電素子の上に配置された第1の音響整合層と、前記第1の音響整合層の上に配置された第2の音響整合層とからなることを特徴とする請求項1に記載の超音波振動子。   The acoustic matching layer includes a first acoustic matching layer disposed on the plurality of inorganic piezoelectric elements having different acoustic impedances, and a second acoustic matching layer disposed on the first acoustic matching layer. The ultrasonic transducer according to claim 1, comprising: 前記音響整合層から前記無機圧電素子までの各層を等間隔で平行に分離するように設けられた複数の分離溝を備え、
前記分離溝にはウレタン樹脂またはエポキシ樹脂が充填されることを特徴とする請求項1または2に記載の超音波振動子。
A plurality of separation grooves provided so as to separate the layers from the acoustic matching layer to the inorganic piezoelectric element in parallel at equal intervals;
The ultrasonic transducer according to claim 1, wherein the separation groove is filled with urethane resin or epoxy resin.
前記有機圧電体層は、ポリフッ化ビニリデンからなることを特徴とする請求項1〜3のいずれかに記載の超音波振動子。   The ultrasonic vibrator according to claim 1, wherein the organic piezoelectric layer is made of polyvinylidene fluoride. 前記有機圧電体層は、有機高分子樹脂と無機圧電素子との複合体である高分子複合圧電体からなることを特徴とする請求項1〜3のいずれかに記載の超音波振動子。   The ultrasonic transducer according to claim 1, wherein the organic piezoelectric layer is made of a polymer composite piezoelectric material that is a composite of an organic polymer resin and an inorganic piezoelectric element. 前記プリント基板は、ポリイミド、ウレタン、エポキシ樹脂およびアクリル樹脂のいずれかからなり、音響整合層を兼ねることを特徴とする請求項1〜5のいずれかに記載の超音波振動子。   The ultrasonic transducer according to claim 1, wherein the printed board is made of any one of polyimide, urethane, epoxy resin, and acrylic resin, and also serves as an acoustic matching layer. 前記プリント基板の上に音響レンズを更に備えることを特徴とする請求項1〜6のいずれかに記載の超音波振動子。   The ultrasonic transducer according to claim 1, further comprising an acoustic lens on the printed circuit board. バッキング材の表面上に複数の無機圧電素子をアレイ状に形成し、
前記無機圧電素子にわたって延在する音響整合層を前記複数の無機圧電素子の上にそれぞれ形成し、
予め1つのプリント基板上にアレイ状に形成された複数の信号電極層を前記プリント基板とともに有機圧電体層の一方の面に接着し、前記有機圧電体層の他方の面にわたって延在する1つの接地電極層を前記有機圧電体層の前記他方の面に接着することで、前記複数の信号電極層、前記有機圧電体層および前記接地電極層により複数の有機圧電素子を配列形成し、
前記複数の無機圧電素子と前記複数の有機圧電素子との配置が対応するように前記有機圧電素子の前記接地電極層と前記音響整合層とを接着することを特徴とする超音波振動子の製造方法。
A plurality of inorganic piezoelectric elements are formed in an array on the surface of the backing material,
An acoustic matching layer extending over the inorganic piezoelectric elements is formed on the plurality of inorganic piezoelectric elements, respectively.
A plurality of signal electrode layers previously formed in an array on one printed circuit board are bonded to one surface of the organic piezoelectric layer together with the printed circuit board, and one extending over the other surface of the organic piezoelectric layer By bonding a ground electrode layer to the other surface of the organic piezoelectric layer, a plurality of organic piezoelectric elements are arrayed by the plurality of signal electrode layers, the organic piezoelectric layer, and the ground electrode layer,
The ultrasonic transducer is manufactured by bonding the ground electrode layer and the acoustic matching layer of the organic piezoelectric element so that the arrangement of the plurality of inorganic piezoelectric elements and the plurality of organic piezoelectric elements corresponds to each other. Method.
前記音響整合層は、前記複数の無機圧電素子の上に配置された第1の音響整合層と、前記第1の音響整合層の上に配置された第2の音響整合層とからなることを特徴とする請求項8に記載の超音波振動子の製造方法。   The acoustic matching layer includes a first acoustic matching layer disposed on the plurality of inorganic piezoelectric elements and a second acoustic matching layer disposed on the first acoustic matching layer. The method for manufacturing an ultrasonic transducer according to claim 8, wherein the ultrasonic transducer is manufactured. 前記音響整合層から前記無機圧電素子までの各層を等間隔で平行に分離するように設けられた複数の分離溝に、ウレタン樹脂またはエポキシ樹脂を充填することを特徴とする請求項8または9に記載の超音波振動子の製造方法。   The urethane resin or the epoxy resin is filled in a plurality of separation grooves provided so as to separate the layers from the acoustic matching layer to the inorganic piezoelectric element in parallel at equal intervals. A method for manufacturing the ultrasonic transducer according to claim. 前記有機圧電体層は、ポリフッ化ビニリデンからなることを特徴とする請求項8〜10のいずれかに記載の超音波振動子の製造方法。   The method of manufacturing an ultrasonic transducer according to claim 8, wherein the organic piezoelectric layer is made of polyvinylidene fluoride. 前記有機圧電体層は、有機高分子樹脂と無機圧電素子との複合体である高分子複合圧電体からなることを特徴とする請求項8〜10のいずれかに記載の超音波振動子の製造方法。   11. The ultrasonic vibrator according to claim 8, wherein the organic piezoelectric layer is made of a polymer composite piezoelectric material that is a composite of an organic polymer resin and an inorganic piezoelectric element. Method. 前記プリント基板は、ポリイミド、ウレタン、エポキシ樹脂およびアクリル樹脂のいずれかからなり、音響整合層を兼ねることを特徴とする請求項8〜12のいずれかに記載の超音波振動子の製造方法。   The method for manufacturing an ultrasonic vibrator according to any one of claims 8 to 12, wherein the printed board is made of any one of polyimide, urethane, epoxy resin, and acrylic resin, and also serves as an acoustic matching layer.
JP2012250474A 2012-11-14 2012-11-14 Ultrasonic vibrator and method of manufacturing the same Pending JP2014099760A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012250474A JP2014099760A (en) 2012-11-14 2012-11-14 Ultrasonic vibrator and method of manufacturing the same
PCT/JP2013/077615 WO2014077061A1 (en) 2012-11-14 2013-10-10 Ultrasonic vibrator and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012250474A JP2014099760A (en) 2012-11-14 2012-11-14 Ultrasonic vibrator and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014099760A true JP2014099760A (en) 2014-05-29

Family

ID=50730982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250474A Pending JP2014099760A (en) 2012-11-14 2012-11-14 Ultrasonic vibrator and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2014099760A (en)
WO (1) WO2014077061A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110721891B (en) * 2019-10-29 2021-11-05 深圳市索诺瑞科技有限公司 Ultrasonic transducer processing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0683516B2 (en) * 1984-10-27 1994-10-19 テルモ株式会社 Ultrasonic probe and method of manufacturing the same
JPH05277102A (en) * 1992-03-31 1993-10-26 Matsushita Electric Ind Co Ltd Ultrasonic probe
JP3455431B2 (en) * 1998-06-30 2003-10-14 株式会社東芝 Ultrasonic probe
JP4543258B2 (en) * 2005-03-03 2010-09-15 本多電子株式会社 Array-type ultrasonic probe
US8531178B2 (en) * 2007-11-26 2013-09-10 Konica Minolta Medical & Graphic, Inc. Ultrasound probe, method for manufacturing the same, and ultrasound diagnostic apparatus
JP2010087965A (en) * 2008-10-01 2010-04-15 Konica Minolta Medical & Graphic Inc Method of manufacturing array type ultrasonic vibrator

Also Published As

Publication number Publication date
WO2014077061A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US10013969B2 (en) Acoustic lens for micromachined ultrasound transducers
US20200061671A1 (en) Ultrasound transducer and method for making the same
JP5881582B2 (en) Manufacturing method of ultrasonic probe
US8030824B2 (en) Wide bandwidth matrix transducer with polyethylene third matching layer
US7530151B2 (en) Vibrator array, manufacturing method thereof, and ultrasonic probe
JP5282309B2 (en) Ultrasonic probe, manufacturing method thereof, and ultrasonic diagnostic apparatus
US9839411B2 (en) Ultrasound diagnostic apparatus probe having laminated piezoelectric layers oriented at different angles
WO2014077061A1 (en) Ultrasonic vibrator and manufacturing method therefor
KR101491801B1 (en) Ultrasonic transducer and method of manufacturing the same
KR20150073056A (en) Ultrasonic diagnostic instrument and manufacturing method thereof
KR101326308B1 (en) Ultrasound Probe
JP6029731B2 (en) Ultrasonic probe
JP2011067485A (en) Ultrasonic transducer and probe
JP5530994B2 (en) Ultrasonic probe and manufacturing method thereof
WO2014112498A1 (en) Acoustic wave probe and production method therefor
KR20130087478A (en) Ultrasound probe
JP5480863B2 (en) Ultrasonic probe and manufacturing method thereof
JP2011062224A (en) Ultrasonic transducer and ultrasonic probe
US11756520B2 (en) 2D ultrasound transducer array and methods of making the same
JP6047074B2 (en) Ultrasonic probe and manufacturing method thereof
JP2010051546A (en) Ultrasonic transducer and ultrasonic diagnostic apparatus using the same