JP2014099679A - Distributed radio communication base station system, signal processing device, radio device, and distributed radio communication base station system operation method - Google Patents

Distributed radio communication base station system, signal processing device, radio device, and distributed radio communication base station system operation method Download PDF

Info

Publication number
JP2014099679A
JP2014099679A JP2012248980A JP2012248980A JP2014099679A JP 2014099679 A JP2014099679 A JP 2014099679A JP 2012248980 A JP2012248980 A JP 2012248980A JP 2012248980 A JP2012248980 A JP 2012248980A JP 2014099679 A JP2014099679 A JP 2014099679A
Authority
JP
Japan
Prior art keywords
signal
radio
base station
communication base
station system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012248980A
Other languages
Japanese (ja)
Other versions
JP5913059B2 (en
Inventor
Naotake Shibata
直剛 柴田
Shigeru Kuwano
茂 桑野
Jun Terada
純 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012248980A priority Critical patent/JP5913059B2/en
Publication of JP2014099679A publication Critical patent/JP2014099679A/en
Application granted granted Critical
Publication of JP5913059B2 publication Critical patent/JP5913059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To reduce the number of required quantization bits although in the prior art, the number of quantization bits increased because a quantization step is set in conformity with a radio signal with a small amplitude value and a dynamic range is set in conformity with a radio signal with a large amplitude value.SOLUTION: A distributed radio communication base station system of the invention divides a radio signal into multiple radio signals, matches required quantization steps and dynamic ranges by adjusting the amplitude of the divided radio signals such that all of it will be the same, or determines a required quantization step and a dynamic range per divided radio signal, and thereby reduces the number of required quantization bits.

Description

セルラーシステムにおいて、セル構成の自由度を向上するため、基地局の機能を信号処理部(BBU:Base Band Unit)とRF部(RRU:Remote Radio Unit)に分割して物理的に離れた構成とする事が検討されている。この時BBU−RRU間において無線信号はRoF(Radio over Fiber)技術により光ファイバを通して伝送される。RoF技術はアナログRoF技術とデジタルRoF技術に大別できるが、近年は伝送品質に優れたデジタルRoF技術の検討が盛んであり、CPRI(Common Public Radio Interface)等の標準団体の下、使用策定が進められている(例えば、非特許文献1参照。)。   In a cellular system, in order to improve the degree of freedom of cell configuration, a base station function is physically separated by dividing it into a signal processing unit (BBU: Base Band Unit) and an RF unit (RRU: Remote Radio Unit). It is considered to do. At this time, the radio signal is transmitted through the optical fiber between the BBU and the RRU by the RoF (Radio over Fiber) technique. RoF technology can be broadly divided into analog RoF technology and digital RoF technology, but in recent years, digital RoF technology with excellent transmission quality has been actively studied, and the use formulation under the standard organizations such as CPRI (Common Public Radio Interface) (For example, refer nonpatent literature 1).

また、一つのBBUが複数のRRUを収容する事もできる。これにより、各RRUに必要なBBUを一つに集約する事ができ、運用/設置コストの削減が可能となる。このような形態の一例として、図15に示すよう、BBU110−RRU120間をPON(Passive Optical Network)で接続する形態が提案されている。この方式では、OLT(Optical Line Terminal)140−光スプリッタ間の帯域は一定であるが、光スプリッタ−ONU(Optical Network Unit)150間の帯域はONU150の所要帯域に合わせて変更する事ができる。PONの信号多重方法としては、TDM、WDM及びFDM等が採用できる。本発明の適用領域は図15に限定されるものではなく、BBU110が1つ以上のRRU120を収容する場合に適用できる。   One BBU can also accommodate a plurality of RRUs. As a result, the BBUs required for each RRU can be consolidated into one, and the operation / installation cost can be reduced. As an example of such a configuration, a configuration has been proposed in which the BBU 110 and the RRU 120 are connected by a PON (Passive Optical Network) as shown in FIG. In this system, the band between the OLT (Optical Line Terminal) 140 and the optical splitter is constant, but the band between the optical splitter and the ONU (Optical Network Unit) 150 can be changed according to the required band of the ONU 150. As a PON signal multiplexing method, TDM, WDM, FDM, or the like can be adopted. The application range of the present invention is not limited to FIG. 15, and can be applied when the BBU 110 accommodates one or more RRUs 120.

本発明は、信号処理部(BBU:Base Band Unit)とRF部(RRU:Remote Radio Unit)間の所要帯域削減技術に関する。   The present invention relates to a required bandwidth reduction technique between a signal processing unit (BBU: Base Band Unit) and an RF unit (RRU: Remote Radio Unit).

以後、BBU110−RRU120間のデジタルRoF伝送技術を関連技術と呼ぶ。また、BBU110で作成した無線信号のI軸Q軸ごとのデジタル信号(IQデータ)を光信号に変換してRRU120へ伝送し、RRU120で受信した光信号を無線信号に変換して、端末へと送信するリンクを下りリンクと呼ぶ。一方、端末が送信した無線変調信号をRRU120で受信し、受信した無線信号を光信号に変換してBBU110へ伝送し、BBU110で受信した光信号をIQデータに変換して信号の復調を行うリンクを上りリンクと呼ぶ。   Hereinafter, the digital RoF transmission technology between the BBU 110 and the RRU 120 is referred to as a related technology. Also, a digital signal (IQ data) for each of the I axis and Q axis of the radio signal created by the BBU 110 is converted into an optical signal and transmitted to the RRU 120, and the optical signal received by the RRU 120 is converted into a radio signal to be transmitted to the terminal. The link to transmit is called a downlink. On the other hand, the radio modulation signal transmitted by the terminal is received by the RRU 120, the received radio signal is converted into an optical signal and transmitted to the BBU 110, and the optical signal received by the BBU 110 is converted into IQ data to demodulate the signal. Is called uplink.

本発明に関連するRRU120の装置構成例を図16に示す。
RRU120は上りリンクの信号処理のため、無線信号の送/受信を行うアンテナ11と、送信/受信を切り替える送受切替部12と、受信した無線信号の信号電力を信号処理ができるレベルまで増幅する増幅器21と、無線信号をダウンコンバートするダウンコンバート部22と、ダウンコンバートされたアナログ信号をIQデータに変換するA/D変換部23と、IQデータに対してフィルタリング処理を行うベースバンドフィルタ部(上り)24と、IQデータと制御信号を多重するフレーム変換部25と、電気信号を光信号に変換して送信するE/O変換部26を有する。送受切替部12は、FDD(Frequency Division Duplex)と、TDD(Time Division Duplex)のどちらにも対応できる。
FIG. 16 shows a device configuration example of the RRU 120 related to the present invention.
For uplink signal processing, the RRU 120 includes an antenna 11 that transmits / receives a radio signal, a transmission / reception switching unit 12 that switches between transmission / reception, and an amplifier that amplifies the signal power of the received radio signal to a level that allows signal processing. 21, a down-conversion unit 22 that down-converts the radio signal, an A / D conversion unit 23 that converts the down-converted analog signal into IQ data, and a baseband filter unit (uplink) that performs a filtering process on the IQ data ) 24, a frame conversion unit 25 that multiplexes IQ data and a control signal, and an E / O conversion unit 26 that converts an electrical signal into an optical signal and transmits the optical signal. The transmission / reception switching unit 12 is compatible with both FDD (Frequency Division Duplex) and TDD (Time Division Duplex).

またRRU120は下りリンクの信号処理のため、BBU110から受信した光信号を電気信号に変換するO/E変換部31と、受信信号から制御信号及びIQデータを取り出すフレーム変換部32と、IQデータに対してフィルタリング処理を行うベースバンドフィルタ部(下り)33と、IQデータをアナログ信号に変換するD/A変換部34と、アナログ信号をアップコンバートするアップコンバート部35と、電力を決められた送信電力まで増幅する増幅器36と、送受切替部12とアンテナ11を有する。   Further, the RRU 120 performs downlink signal processing, an O / E converter 31 that converts an optical signal received from the BBU 110 into an electric signal, a frame converter 32 that extracts a control signal and IQ data from the received signal, and an IQ data A baseband filter unit (downlink) 33 that performs filtering processing on the D / A conversion unit 34 that converts IQ data into an analog signal, an up-conversion unit 35 that up-converts the analog signal, and a transmission whose power is determined It has an amplifier 36 that amplifies power, a transmission / reception switching unit 12, and an antenna 11.

本発明に関連するBBU110の装置構成例を図17に示す。
BBU110は上りリンクの信号処理のため、光信号を電気信号に変換するO/E変換部41と、受信信号から制御信号及びIQデータを取り出すフレーム変換部42と、IQデータに対して復調を行う変復調部43を有する。
FIG. 17 shows a device configuration example of the BBU 110 related to the present invention.
For uplink signal processing, the BBU 110 demodulates the IQ data, an O / E conversion unit 41 that converts an optical signal into an electrical signal, a frame conversion unit 42 that extracts a control signal and IQ data from a received signal, and the IQ data. A modem unit 43 is included.

またBBU110は下りリンクの信号処理のため、無線変調信号のIQデータを出力する変復調部43と、IQデータと制御信号を多重するフレーム変換部51と、電気信号を光信号に変換して送信するE/O変換部52と、同期用信号などを用いて制御信号を作成する制御信号作成部50を有する。   Further, for downlink signal processing, the BBU 110 converts a modulation / demodulation unit 43 that outputs IQ data of a radio modulation signal, a frame conversion unit 51 that multiplexes IQ data and a control signal, and converts an electrical signal into an optical signal for transmission. It has an E / O converter 52 and a control signal generator 50 that generates a control signal using a synchronization signal or the like.

またLTE(Long Term Evolution)やWiMAX(Worldwide Interoperability for Microwave Access)等のセルラーシステムにおいて、端末がユーザデータを送受信するためには、端末固有の通信チャネル(無線帯域)が必要である。この無線帯域の割当は基地局により行われる。LTEシステムを例に取ると、図18に示すよう、基地局は最小1ms周期でスケジューリングを行い各端末へ無線帯域割当を行う。図18において、白色部分が未使用リソースブロックを示し、網掛け部分が割当リソースブロックを示す。   In a cellular system such as LTE (Long Term Evolution) and WiMAX (Worldwide Interoperability for Microwave Access), a terminal needs a communication channel (wireless band) unique to the terminal. This allocation of the radio band is performed by the base station. Taking the LTE system as an example, as shown in FIG. 18, the base station performs scheduling with a minimum period of 1 ms and allocates a radio band to each terminal. In FIG. 18, a white part indicates an unused resource block, and a shaded part indicates an allocated resource block.

無線帯域割当はリソースブロック(RB:Resource Block)単位で行われ、1RBは180kHz、0.5msである。システム帯域幅が20MHzの場合には、周波数軸上に110個のRBが存在する。また1RBの中には、通常のサイクリックプレフィックスを想定すると、7シンボル(サイクリックプレフィックスを入れて1シンボル71.4μs)が挿入されている。   Radio band allocation is performed in resource block (RB) units, and 1 RB is 180 kHz and 0.5 ms. When the system bandwidth is 20 MHz, 110 RBs exist on the frequency axis. In addition, 7 symbols (1 symbol including a cyclic prefix, 71.4 μs) are inserted into 1 RB assuming a normal cyclic prefix.

ここで無線信号の送信/受信電力は、無線帯域ごとに異なる場合がある。例えばLTEシステムでは、端末の上りリンクにおける送信電力制御としてFractional送信電力制御が採用されており、基地局に近い(基地局−端末間の伝搬ロスが小さい)端末ほど高い電力で信号を送信する。このためRRUは、電力の異なる複数の無線信号の足し合わせを受信する。   Here, the transmission / reception power of the radio signal may be different for each radio band. For example, in the LTE system, fractional transmission power control is adopted as transmission power control in the uplink of a terminal, and a signal is transmitted at a higher power as the terminal is closer to the base station (the propagation loss between the base station and the terminal is smaller). For this reason, the RRU receives an addition of a plurality of radio signals having different powers.

CPRI,“CPRI Specification V4.2,” Sep.,2010,http://www.cpri.info/spec.htmlCPRI, “CPRI Specification V4.2,” Sep. 2010, http: // www. cpri. info / spec. html

図19に示すよう、デジタルRoF伝送ではサンプリング周波数と量子化ビット数に比例した情報量を伝送する必要がある。ここで図20に示すよう、RRUは上りリンクにおいて電力の異なる複数の無線信号の足し合わせを受信する。関連技術で無線信号を量子化する際は、振幅値の大きい無線信号に合わせてダイナミックレンジを増大し、振幅値の小さい無線信号に合わせて量子化ステップを細かく設定する必要があるため、所要量子化ビット数の増大につながる。このため、BBU−RRU間の所要帯域の増大につながる。   As shown in FIG. 19, in digital RoF transmission, it is necessary to transmit an information amount proportional to the sampling frequency and the number of quantization bits. Here, as shown in FIG. 20, the RRU receives an addition of a plurality of radio signals having different powers in the uplink. When quantizing wireless signals with related technologies, it is necessary to increase the dynamic range according to the wireless signal with a large amplitude value, and to set the quantization step finely according to the wireless signal with a small amplitude value. Leads to an increase in the number of bits. For this reason, it leads to the increase of the required band between BBU-RRU.

本発明は、端末ごとの無線信号の振幅を等しく調整する事により、この各端末の無線信号の量子化に必要なダイナミックレンジ及び量子化ステップサイズを揃え又は端末の無線信号ごとに所要量子化ステップ及びダイナミックレンジを決定する事で所要量子化ビット数を削減することを目的とする。   In the present invention, by adjusting the amplitude of the radio signal for each terminal equally, the dynamic range and the quantization step size necessary for the quantization of the radio signal of each terminal are made uniform or the required quantization step for each radio signal of the terminal. The purpose is to reduce the number of required quantization bits by determining the dynamic range.

上記目的を達成するために、本願発明の分散型無線通信基地局システムは、無線信号を複数の無線信号に分割し、分割された無線信号の振幅が全て等しくなるよう調整して所要量子化ステップ及びダイナミックレンジを合わせるか、分割された無線信号ごとに所要量子化ステップ及びダイナミックレンジを決定する事で、所要量子化ビット数を減少する。   To achieve the above object, the distributed radio communication base station system of the present invention divides a radio signal into a plurality of radio signals, and adjusts the divided radio signals so that the amplitudes of all the radio signals are equal to each other. The required quantization bit number is reduced by matching the dynamic range or determining the required quantization step and dynamic range for each divided radio signal.

具体的には、分散型無線通信基地局システムは、複数の無線端末と無線信号を送受信する基地局の機能が信号処理装置(BBU:Base Band Unit)と無線装置(RRU:Remote Radio Unit)に分割されている分散型無線通信基地局システムであって、
前記BBUと前記RRUとを接続し、前記BBUと前記RRUとの間を光信号でRoF(Radio over Fiber)伝送する光ファイバと、
前記光ファイバでRoF伝送するデジタル信号の量子化ビット数を、各無線端末の前記無線信号の振幅値に応じて所定値から変更する量子化ビット数変更機能と、
前記光ファイバから前記光信号を受信した際に量子化ビット数を前記所定値に復元する量子化ビット数復元機能と、
を備える。
Specifically, in the distributed radio communication base station system, the function of a base station that transmits and receives radio signals to and from a plurality of radio terminals is assigned to a signal processing device (BBU: Base Band Unit) and a radio device (RRU: Remote Radio Unit). A distributed wireless communication base station system that is divided,
An optical fiber that connects the BBU and the RRU and transmits RoF (Radio over Fiber) as an optical signal between the BBU and the RRU;
A quantization bit number changing function for changing a quantization bit number of a digital signal to be RoF transmitted by the optical fiber from a predetermined value according to an amplitude value of the wireless signal of each wireless terminal;
A quantization bit number restoration function for restoring the number of quantization bits to the predetermined value when the optical signal is received from the optical fiber;
Is provided.

また、本発明の分散型無線通信基地局システムの動作方法は、
複数の無線端末と無線信号を送受信する基地局の機能がBBUとRRUに分割されている分散型無線通信基地局システムの動作方法であって、
前記BBUと前記RRUとを光ファイバで接続し、前記BBUと前記RRUとの間を光信号でRoF伝送し、
前記光ファイバでRoF伝送するデジタル信号の量子化ビット数を前記無線信号の振幅値に応じて所定値から変更する量子化ビット数変更手順と、
前記光ファイバから前記光信号を受信した際に量子化ビット数を前記所定値に復元する量子化ビット数復元手順と、
を行う。
The operation method of the distributed radio communication base station system of the present invention is as follows:
An operation method of a distributed radio communication base station system in which a function of a base station that transmits and receives radio signals to and from a plurality of radio terminals is divided into BBU and RRU,
The BBU and the RRU are connected by an optical fiber, and RoF transmission is performed between the BBU and the RRU as an optical signal.
A quantization bit number changing procedure for changing a quantization bit number of a digital signal to be RoF transmitted by the optical fiber from a predetermined value according to an amplitude value of the radio signal;
A quantization bit number restoration procedure for restoring the number of quantization bits to the predetermined value when the optical signal is received from the optical fiber;
I do.

また、光ファイバは、一つの前記BBUと複数の前記RRUを接続するPON(Passive Optical Network)システムである。   The optical fiber is a PON (Passive Optical Network) system that connects one BBU and a plurality of RRUs.

また、本発明に係る信号処理装置及び無線装置は、前記分散型無線通信基地局システムが備えるBBU及びRRUである。   Moreover, the signal processing apparatus and radio apparatus which concern on this invention are BBU and RRU with which the said distributed radio | wireless communication base station system is provided.

本発明に係る分散型無線通信基地局システムの前記量子化ビット数変更機能は、各無線端末の最大振幅が一定になるように増幅して加算することで、前記デジタル信号の量子化ビット数を削減することができる。   The quantization bit number changing function of the distributed wireless communication base station system according to the present invention amplifies and adds the maximum amplitude of each wireless terminal so that the number of quantization bits of the digital signal is increased. Can be reduced.

本発明に係る分散型無線通信基地局システムの前記量子化ビット数変更機能は、各無線端末の無線信号の最大振幅に応じて個別にダイナミックレンジ及び量子化ステップを設定することで、前記光信号の量子化ビット数を削減することができる。   The quantization bit number changing function of the distributed radio communication base station system according to the present invention sets the dynamic range and the quantization step individually according to the maximum amplitude of the radio signal of each radio terminal, so that the optical signal The number of quantization bits can be reduced.

本発明に係る分散型無線通信基地局システムの前記量子化ビット数変更機能は、前記光ファイバでRoF伝送するデジタル信号のサンプリング周波数を、前記無線信号の割当状況に応じて所定値から変更することができる。   The quantization bit number changing function of the distributed wireless communication base station system according to the present invention changes a sampling frequency of a digital signal to be RoF-transmitted by the optical fiber from a predetermined value according to an assignment state of the wireless signal. Can do.

なお、上記各発明は、可能な限り組み合わせることができる。   The above inventions can be combined as much as possible.

本発明によれば、端末ごとの無線信号の振幅を等しく調整する事によりこの各端末の無線信号の量子化に必要なダイナミックレンジ及び量子化ステップサイズを揃えるか、端末の無線信号ごとに所要量子化ステップ及びダイナミックレンジを決定する事で、所要量子化ビット数を削減することができる。   According to the present invention, the dynamic range and quantization step size required for the quantization of the radio signal of each terminal are adjusted by adjusting the amplitude of the radio signal of each terminal equally, or the required quantum for each radio signal of the terminal. The required number of quantization bits can be reduced by determining the quantization step and the dynamic range.

実施形態1に係る無線装置を説明する図である。1 is a diagram illustrating a wireless device according to Embodiment 1. FIG. 実施形態1に係る信号処理装置を説明する図である。It is a figure explaining the signal processing apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る振幅変換部を説明する図である。It is a figure explaining the amplitude conversion part which concerns on Embodiment 1. FIG. 実施形態1に係る信号処理装置における振幅復元部を説明する図である。It is a figure explaining the amplitude decompression | restoration part in the signal processing apparatus which concerns on Embodiment 1. FIG. 実施形態1に係る無線装置における振幅復元部を説明する図である。FIG. 3 is a diagram illustrating an amplitude restoration unit in the wireless device according to the first embodiment. 実施形態1に係る振幅変換部の動作の一例を示す。An example of operation | movement of the amplitude conversion part which concerns on Embodiment 1 is shown. 実施形態2に係る無線装置を説明する図である。6 is a diagram illustrating a wireless device according to a second embodiment. FIG. 実施形態2に係る信号処理装置を説明する図である。It is a figure explaining the signal processing apparatus which concerns on Embodiment 2. FIG. 実施形態2に係る無線信号分割部を説明する図である。It is a figure explaining the radio | wireless signal division part which concerns on Embodiment 2. FIG. 実施形態2に係る無線信号合成部を説明する図である。It is a figure explaining the radio | wireless signal synthetic | combination part which concerns on Embodiment 2. FIG. 実施形態2に係る無線信号分割部の動作の一例を示す。An example of operation | movement of the radio | wireless signal division part which concerns on Embodiment 2 is shown. 実施形態3に係る無線装置を説明する図である。6 is a diagram illustrating a wireless device according to a third embodiment. FIG. 実施形態3に係る無線信号分割部を説明する図である。It is a figure explaining the radio | wireless signal division part which concerns on Embodiment 3. FIG. 実施形態3に係る無線信号合成部を説明する図である。It is a figure explaining the radio | wireless signal synthetic | combination part which concerns on Embodiment 3. FIG. 本発明に関連する無線装置と信号処理装置の構成を説明する図である。It is a figure explaining the structure of the radio | wireless apparatus and signal processing apparatus relevant to this invention. 本発明に関連する無線装置を説明する図である。It is a figure explaining the radio | wireless apparatus relevant to this invention. 本発明に関連する信号処理装置を説明する図である。It is a figure explaining the signal processing apparatus relevant to this invention. LTEシステムの無線帯域割当手法を説明する図である。It is a figure explaining the radio | wireless band allocation method of a LTE system. 本発明に関連する分散型無線通信基地局システムの動作を説明する図である。It is a figure explaining operation | movement of the distributed radio | wireless communication base station system relevant to this invention. 本発明に関連する関連技術の課題を説明する図である。It is a figure explaining the subject of the related technology relevant to this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
本発明適用時のRRU120の装置構成例を図1に示す。RRU120は上りリンクの信号処理のために、無線信号の送/受信を行うアンテナ11と、送信/受信を切り替える送受切替部12と、受信した無線信号の信号電力を信号処理で扱える電力まで増幅する増幅器21と、無線信号をダウンコンバートするダウンコンバート部22と、ダウンコンバートされたアナログ信号をデジタル信号のIQデータに変換するA/D変換部23と、IQデータの振幅を調整する振幅変換部236と、振幅変換部236の出力に対して量子化ビット数を変換する量子化ビット数変換部237と、IQデータと制御信号と振幅情報を多重するフレーム変換部25と、電気信号を光信号に変換して送信するE/O変換部26を有する。
(Embodiment 1)
An example of the configuration of the RRU 120 when the present invention is applied is shown in FIG. For uplink signal processing, the RRU 120 amplifies the antenna 11 that transmits / receives a radio signal, the transmission / reception switching unit 12 that switches between transmission / reception, and the signal power of the received radio signal to a power that can be handled by the signal processing. An amplifier 21, a down-conversion unit 22 that down-converts a radio signal, an A / D conversion unit 23 that converts the down-converted analog signal into IQ data of a digital signal, and an amplitude conversion unit 236 that adjusts the amplitude of the IQ data A quantization bit number conversion unit 237 that converts the number of quantization bits with respect to the output of the amplitude conversion unit 236, a frame conversion unit 25 that multiplexes IQ data, a control signal, and amplitude information, and an electrical signal as an optical signal. It has an E / O conversion unit 26 for converting and transmitting.

またRRU120は下りリンクの信号処理のために、BBU110から受信した光信号を電気信号に変換するO/E変換部31と、受信信号から制御信号及びIQデータを取り出すフレーム変換部32と、制御信号から無線帯域割当情報を取り出す無線帯域割当情報(下り)抽出部231と、無線帯域割当情報(上り)抽出部232と、制御信号からIQデータの振幅情報を取り出す振幅情報(下り)抽出部235と、IQデータの量子化ビット数を元の値に戻す量子化ビット数復元部233と、量子化ビット数復元部233の出力するIQデータの振幅を元の値に戻す振幅復元部234と、IQデータをアナログ信号に変換するD/A変換部34と、アナログ信号をアップコンバートするアップコンバート部35と、無線信号の電力を増幅する増幅器36を有する。   In addition, the RRU 120 has an O / E converter 31 that converts an optical signal received from the BBU 110 into an electrical signal, a frame converter 32 that extracts a control signal and IQ data from the received signal, and a control signal for downlink signal processing. A radio band allocation information (downlink) extraction unit 231 that extracts radio band allocation information from the radio band allocation information (uplink) extraction unit 232, an amplitude information (downlink) extraction unit 235 that extracts amplitude information of IQ data from the control signal, , A quantization bit number restoration unit 233 that returns the quantization bit number of IQ data to the original value, an amplitude restoration unit 234 that restores the amplitude of the IQ data output from the quantization bit number restoration unit 233, and IQ A D / A converter 34 that converts data into an analog signal, an up-converter 35 that up-converts the analog signal, and amplifies the power of the radio signal Having that amplifier 36.

本発明適用時のBBU110の装置構成例を図2に示す。BBU110は上りリンクの信号処理のために、光信号を電気信号に変換するO/E変換部41と、受信信号から制御信号及び振幅情報及びIQデータを取り出すフレーム変換部42と、IQデータの量子化ビット数を元の値に戻す量子化ビット数復元部243と、量子化ビット数復元部243の出力するIQデータの振幅を元の値に戻す振幅復元部244と、IQデータに対して復調を行う変復調部43を有する。   An example of the apparatus configuration of the BBU 110 when the present invention is applied is shown in FIG. For uplink signal processing, the BBU 110 includes an O / E conversion unit 41 that converts an optical signal into an electrical signal, a frame conversion unit 42 that extracts a control signal, amplitude information, and IQ data from a received signal, and a quantum of IQ data. Quantization bit number restoration unit 243 for returning the number of quantization bits to the original value, amplitude restoration unit 244 for returning the amplitude of the IQ data output from the quantization bit number restoration unit 243 to the original value, and demodulation for the IQ data A modulation / demodulation unit 43 is provided.

またBBU110は下りリンクの信号処理のために、変調信号のIQデータを出力する変復調部43と、IQデータの振幅を調整する振幅変換部241と、振幅変換部241の出力に対して量子化ビット数を変換する量子化ビット数変換部242と、IQデータと制御信号と振幅情報と無線帯域割当情報を多重するフレーム変換部51と、電気信号を光信号に変換して送信するE/O変換部52を有する。   Further, for downlink signal processing, the BBU 110 includes a modulation / demodulation unit 43 that outputs IQ data of a modulation signal, an amplitude conversion unit 241 that adjusts the amplitude of the IQ data, and a quantization bit for the output of the amplitude conversion unit 241. Quantization bit number conversion unit 242 that converts numbers, frame conversion unit 51 that multiplexes IQ data, control signals, amplitude information, and radio band allocation information, and E / O conversion that converts electrical signals into optical signals and transmits them Part 52.

図3に振幅変換部236及び241の構成例を示す。無線帯域割当情報により、各端末にどの無線帯域が割り当てられているかがわかる。振幅変換部236及び241は、この無線帯域割当情報を基に、無線信号を端末ごとの無線信号に分割するようなフィルタ係数をフィルタ係数決定部252で算出し、各フィルタ251のフィルタ係数を変更する。振幅検出部253は、各分割された無線信号の最大振幅を検出する。ゲイン決定部254は、振幅検出部253で検出した最大振幅に応じて、各分割された無線信号に対するゲインを決定する。この時のゲインは、各分割された無線信号の最大振幅が等しくなるように決定される。ゲイン決定部254で決定されたゲインにより増幅された各分割された無線信号は、足し合わされて出力される。   FIG. 3 shows a configuration example of the amplitude converters 236 and 241. The wireless band allocation information indicates which wireless band is allocated to each terminal. Based on the radio band allocation information, the amplitude converters 236 and 241 calculate filter coefficients that divide the radio signal into radio signals for each terminal by the filter coefficient determination unit 252 and change the filter coefficient of each filter 251. To do. The amplitude detector 253 detects the maximum amplitude of each divided radio signal. The gain determination unit 254 determines a gain for each divided radio signal according to the maximum amplitude detected by the amplitude detection unit 253. The gain at this time is determined so that the maximum amplitudes of the divided radio signals are equal. The divided radio signals amplified by the gain determined by the gain determination unit 254 are added and output.

ここで、振幅変換部236、241は、振幅情報をフレーム変換部25、51に出力する。振幅情報は、振幅検出部253で計算された各無線信号の振幅値を多重したものである。フレーム変換部25、51は、当該振幅情報とIQデータと制御信号と無線帯域割当情報を多重する。また、基地局−端末間のチャネル品質情報及び端末の送信電力情報を基に、基地局が各分割された無線信号の振幅を計算して、この値を振幅情報としてBBU110からRRU120へ伝送して使用しても良い。この際、振幅情報に誤差が含まれる事も考え、振幅情報をある程度大きめに見積もっても良い。   Here, the amplitude converters 236 and 241 output the amplitude information to the frame converters 25 and 51. The amplitude information is obtained by multiplexing the amplitude value of each radio signal calculated by the amplitude detector 253. The frame conversion units 25 and 51 multiplex the amplitude information, IQ data, control signal, and radio band allocation information. Also, based on the channel quality information between the base station and the terminal and the transmission power information of the terminal, the base station calculates the amplitude of each divided radio signal and transmits this value from the BBU 110 to the RRU 120 as amplitude information. May be used. At this time, considering that the amplitude information includes an error, the amplitude information may be estimated to be somewhat large.

図4に振幅復元部234、244の構成例を示す。振幅復元部234、244は、無線帯域割当情報を基に、無線信号を端末ごとの無線信号に分割するようなフィルタ係数をフィルタ係数決定部263で算出し、各フィルタ264のフィルタ係数を変更する。ゲイン決定部262は、入力された振幅情報を基に、各分割された無線信号の振幅を元に戻すためのゲインを決定する。ゲイン決定部262で決定されたゲインにより増幅された各分割された無線信号は、足し合わされて出力される。データ分離部261は、フレーム変換部32、42からの振幅情報を各分割された無線信号の振幅情報に分離して出力する。   FIG. 4 shows a configuration example of the amplitude restoration units 234 and 244. Based on the radio band allocation information, the amplitude restoration units 234 and 244 calculate a filter coefficient that divides the radio signal into radio signals for each terminal by the filter coefficient determination unit 263, and changes the filter coefficient of each filter 264. . The gain determination unit 262 determines a gain for returning the amplitude of each divided radio signal based on the input amplitude information. The divided radio signals amplified by the gain determined by the gain determination unit 262 are added together and output. The data separator 261 separates the amplitude information from the frame converters 32 and 42 into the amplitude information of the divided radio signals and outputs the separated information.

なお、フレーム変換部25、51は、振幅情報に代えて各無線信号のゲインを多重してもよい。この場合、振幅復元部234、244のデータ分離部261、263は、各分割された無線信号のゲインを各ゲイン決定部262に出力する。   Note that the frame converters 25 and 51 may multiplex the gain of each radio signal instead of the amplitude information. In this case, the data separation units 261 and 263 of the amplitude restoration units 234 and 244 output the gain of each divided radio signal to each gain determination unit 262.

図5に、振幅復元部234及び244の構成例を示す。図4と異なり、無線信号を分割するフィルタリングの機能と、各分割された無線信号の振幅を元に戻すための増幅の機能を合わせ持つフィルタ係数をフィルタ係数決定部263で決定し、フィルタ264でフィルタリング処理を行う。   FIG. 5 shows a configuration example of the amplitude restoration units 234 and 244. Unlike FIG. 4, a filter coefficient determining unit 263 determines a filter coefficient having a filtering function for dividing a radio signal and an amplification function for restoring the amplitude of each divided radio signal. Perform filtering processing.

本発明適用時は、A/D変換部23及び変復調部43でIQデータを出力する際の量子化ビット数を十分大きめに設定しておく。その後量子化ビット数変換部237において、量子化ビット数を削減する。A/D変換部23や変調部の出力するIQデータが固定小数点であり、量子化ビット変換部が固定小数点を浮動小数点に変換する動作をし、量子化ビット復元部294が浮動小数点を固定小数点に戻す動作をするとしても良い。無線信号を複数の無線信号に分割する無線信号分割部272及び273は、無線信号を時間軸上で分割しても良いしFFT処理等を用いて周波数軸上で分割しても良い。また本発明に係る動作は、I成分/Q成分ごとに行っても良い。   When the present invention is applied, the number of quantization bits when IQ data is output by the A / D conversion unit 23 and the modem unit 43 is set to be sufficiently large. Thereafter, the quantization bit number conversion unit 237 reduces the number of quantization bits. IQ data output from the A / D conversion unit 23 and the modulation unit is a fixed point, the quantization bit conversion unit operates to convert the fixed point to a floating point, and the quantization bit restoration unit 294 converts the floating point to a fixed point. It is also possible to perform the operation of returning to. The radio signal division units 272 and 273 that divide the radio signal into a plurality of radio signals may divide the radio signal on the time axis, or may divide the radio signal on the frequency axis using FFT processing or the like. The operation according to the present invention may be performed for each I component / Q component.

図6は、振幅変換部236及び241の動作例を示す。振幅変換部236及び241は、無線信号を複数の無線信号に分割し、分割された無線信号の振幅が等しくなるように増幅を行い、各分割された無線信号を足し合わせて、量子化ビット数を削減する。以上説明したように、端末ごとの無線信号の振幅が等しくなり、これら無線信号の量子化に必要なダイナミックレンジ及び量子化ステップサイズが揃うため、関連技術のように振幅値の小さい無線信号に合わせて量子化ステップを設定し、かつ振幅値の大きい無線信号に合わせてダイナミックレンジを設定する場合と比べ、所要量子化ビット数が減少し、BBU110−RRU120間の所要帯域を削減できる。また分割の単位は、端末ごとの信号に分割するだけでなく、振幅値の近しい無線信号を一つのグループとしてまとめ、当該グループごとに信号を分割しても良い。   FIG. 6 shows an operation example of the amplitude converters 236 and 241. Amplitude converters 236 and 241 divide the radio signal into a plurality of radio signals, perform amplification so that the amplitudes of the divided radio signals are equal, add the divided radio signals, and add the number of quantization bits To reduce. As described above, the amplitude of the radio signal for each terminal is equal, and the dynamic range and quantization step size required for the quantization of these radio signals are the same. Compared with the case where the quantization step is set and the dynamic range is set in accordance with the radio signal having a large amplitude value, the required number of quantization bits is reduced, and the required bandwidth between the BBU 110 and the RRU 120 can be reduced. Further, the unit of division is not limited to dividing the signal for each terminal, but radio signals having similar amplitude values may be grouped into one group, and the signal may be divided for each group.

サンプリング周波数をS、復調に必要な量子化ビット数をNdemod、ダイナミックレンジを拡げるために必要な量子化ビット数をNとすると、関連方式を用いた際RoF区間で送られる情報量はS(Ndemod+N)に比例する。一方提案方式では、関連方式と比べダイナミックレンジを拡げるための量子化ビット数が必要なく、k個の無線信号の振幅を揃えて信号を加算するため電力がdBで計算すると約k1/2倍になるため、Sdemod1/2に比例した情報量がRoF区間で伝送される。したがって、無線端末がNdemod+N>Ndemod1/2となる端末数の時に、提案方式により送信情報量が削減される。 The sampling frequency S a, N demod quantization bit number necessary for demodulation and the number of quantization bits required to extend the dynamic range and N D, the amount of information sent by the RoF section when using the related method It is proportional to S a (N demod + N D ). On the other hand, in the proposed method, the number of quantization bits for expanding the dynamic range is not required as compared with the related method, and the power is calculated in dB to equalize the amplitudes of k radio signals and add up to about k 1/2 times. Therefore, the amount of information proportional to S a N demod k 1/2 is transmitted in the RoF section. Therefore, the wireless terminal is at the N demod + N D> N demod k 1/2 to become the number of terminals, the amount of transmission information is reduced by the proposed scheme.

(実施形態2)
実施形態1では、無線信号を複数の無線信号に分割し、各分割された無線信号を加算して伝送する。実施形態2では、無線信号を複数の無線信号に分割し、各分割された無線信号を個別に伝送する。
(Embodiment 2)
In the first embodiment, a wireless signal is divided into a plurality of wireless signals, and the divided wireless signals are added and transmitted. In Embodiment 2, a radio signal is divided into a plurality of radio signals, and each divided radio signal is transmitted individually.

本発明適用時のRRU120の装置構成例を図7に示す。RRU120は上りリンクの信号処理のために、無線信号の送/受信を行うアンテナ11と、送信/受信を切り替える送受切替部12と、受信した無線信号の信号電力を信号処理で扱える電力まで増幅する増幅器21と、無線信号をダウンコンバートするダウンコンバート部22と、ダウンコンバートされたアナログ信号をIQデータに変換するA/D変換部23と、IQデータを複数の無線信号に分割する無線信号分割部272と、IQデータと制御信号を多重するフレーム変換部25と、電気信号を光信号に変換して送信するE/O変換部26を有する。   FIG. 7 shows a device configuration example of the RRU 120 when the present invention is applied. For uplink signal processing, the RRU 120 amplifies the antenna 11 that transmits / receives a radio signal, the transmission / reception switching unit 12 that switches between transmission / reception, and the signal power of the received radio signal to a power that can be handled by the signal processing. An amplifier 21, a down-conversion unit 22 that down-converts a radio signal, an A / D conversion unit 23 that converts the down-converted analog signal into IQ data, and a radio signal division unit that divides the IQ data into a plurality of radio signals 272, a frame conversion unit 25 that multiplexes IQ data and a control signal, and an E / O conversion unit 26 that converts an electrical signal into an optical signal and transmits the optical signal.

またRRU120は下りリンクの信号処理のために、BBU110から受信した光信号を電気信号に変換するO/E変換部31と、受信信号から制御信号及びIQデータを取り出すフレーム変換部32と、制御信号から無線帯域割当情報を取り出す無線帯域割当情報(上り)抽出部232と、複数の無線信号に分割されているIQデータを合成して一つの無線信号に戻す無線信号合成部271と、IQデータに対してフィルタリング処理を行うベースバンドフィルタ部(下り)33と、IQデータをアナログ信号に変換するD/A変換部34と、アナログ信号をアップコンバートするアップコンバート部35と、無線信号の電力を増幅する増幅器36を有する。   In addition, the RRU 120 has an O / E converter 31 that converts an optical signal received from the BBU 110 into an electrical signal, a frame converter 32 that extracts a control signal and IQ data from the received signal, and a control signal for downlink signal processing. A wireless band allocation information (uplink) extraction unit 232 that extracts the wireless band allocation information from the radio signal, a radio signal synthesis unit 271 that combines IQ data divided into a plurality of radio signals and returns it to one radio signal, and IQ data A baseband filter unit (downstream) 33 that performs filtering processing on the D / A converter 34 that converts IQ data into an analog signal, an up-converter 35 that up-converts the analog signal, and amplifies the power of the radio signal An amplifier 36.

本発明適用時のBBU110の装置構成例を図8に示す。BBU110は上りリンクの信号処理のために、光信号を電気信号に変換するO/E変換部41と、受信信号から制御信号及びIQデータを取り出すフレーム変換部42と、複数の無線信号に分割されたIQデータを合成して一つの無線信号に戻す無線信号合成部274と、IQデータに対して復調を行う変復調部43を有する。   FIG. 8 shows a device configuration example of the BBU 110 when the present invention is applied. The BBU 110 is divided into an O / E converter 41 that converts an optical signal into an electrical signal, a frame converter 42 that extracts a control signal and IQ data from a received signal, and a plurality of radio signals for uplink signal processing. A wireless signal combining unit 274 that combines the IQ data into a single wireless signal, and a modulation / demodulation unit 43 that demodulates the IQ data.

またBBU110は下りリンクの信号処理のために、変調信号のIQデータを出力する変復調部43と、IQデータを複数の無線信号に分割する無線信号分割部273と、IQデータと制御信号と無線帯域割当情報を多重するフレーム変換部51と、電気信号を光信号に変換して送信するE/O変換部52を有する。   Further, for downlink signal processing, the BBU 110 includes a modulation / demodulation unit 43 that outputs IQ data of a modulation signal, a radio signal division unit 273 that divides IQ data into a plurality of radio signals, IQ data, a control signal, and a radio band. It has a frame conversion unit 51 that multiplexes the allocation information, and an E / O conversion unit 52 that converts the electrical signal into an optical signal and transmits it.

図9及び図10に、時間軸上で無線信号を分割/合成する際の、無線信号分割部272、273及び無線信号合成部271及び274の構成例を示す。無線帯域割当情報により、各端末にどの無線帯域が割り当てられているかがわかる。   9 and 10 show configuration examples of the radio signal dividing units 272 and 273 and the radio signal combining units 271 and 274 when the radio signal is divided / synthesized on the time axis. The wireless band allocation information indicates which wireless band is allocated to each terminal.

図9における無線信号分割部272及び273は、この無線帯域割当情報を基に、無線信号を端末ごとの無線信号に分割するようなフィルタ係数をフィルタ係数決定部281で算出し、各フィルタのフィルタ係数を変更する。また量子化ビット変換部283は、分割された無線信号ごとに量子化のダイナミックレンジ及び量子化ステップを設定し、設定したこのパラメータにしたがって入力された信号を変換する。そしてこれらの量子化ビット変換部283が出力した信号をデータ多重部284で多重して出力する。   The radio signal dividing units 272 and 273 in FIG. 9 calculate a filter coefficient that divides the radio signal into radio signals for each terminal based on the radio band allocation information, and the filter coefficient determining unit 281 calculates the filter coefficient of each filter. Change the coefficient. Also, the quantization bit conversion unit 283 sets a quantization dynamic range and a quantization step for each divided radio signal, and converts the input signal according to the set parameters. The signals output from the quantized bit conversion unit 283 are multiplexed by the data multiplexing unit 284 and output.

図10における無線信号合成部271及び274は、入力された信号を分離して出力する。量子化ビット復元部286は、入力された信号のダイナミックレンジ及び量子化ステップを元々の値に変換し、無線信号分割部272及び273の量子化ビット変換部283に入力される前の信号に戻す。そして加算器287が量子化ビット復元部286の出力を全て加算して出力する。   The radio signal synthesis units 271 and 274 in FIG. 10 separate and output the input signals. The quantized bit restoration unit 286 converts the dynamic range and quantization step of the input signal to the original values, and restores the signal before being input to the quantization bit conversion unit 283 of the wireless signal dividing units 272 and 273. . The adder 287 adds all the outputs of the quantized bit restoration unit 286 and outputs the result.

本願発明適用時は、A/D変換部23や変複調部43の出力するIQデータが固定小数点であり、量子化ビット変換部283が固定小数点を浮動小数点に変換する動作をし、量子化ビット復元部286が浮動小数点を固定小数点に戻す動作をするとしても良い。無線信号を複数の無線信号に分割する無線信号分割部272及び273は、無線信号を時間軸上で分割しても良いしFFT処理等を用いて周波数軸上で分割しても良い。また本発明に係る動作は、I成分/Q成分ごとに行う事もできる。   When the present invention is applied, the IQ data output from the A / D conversion unit 23 and the modulation / demodulation unit 43 is a fixed point, and the quantization bit conversion unit 283 performs an operation of converting the fixed point to a floating point. The bit restoration unit 286 may perform an operation of returning the floating point to a fixed point. The radio signal division units 272 and 273 that divide the radio signal into a plurality of radio signals may divide the radio signal on the time axis, or may divide the radio signal on the frequency axis using FFT processing or the like. The operation according to the present invention can also be performed for each I component / Q component.

図11は、無線信号分割部272及び273の動作例を示す。無線信号分割部272及び273は無線信号を時間軸上で端末の無線信号ごとに分割し、分割された無線信号のそれぞれに対してダイナミックレンジ及び量子化ステップを設定する。例えば、各分割された無線信号の振幅値(電力)より大きくダイナミックレンジを設定し、量子化誤差が信号品質にほとんど影響を与えないよう量子化ステップサイズを決定する。この信号品質に与える影響の許容値を、各分割された無線信号で統一しておけば、各分割された無線信号に対して同じ量子化ビット数が用いられることとなる。   FIG. 11 shows an operation example of the radio signal division units 272 and 273. The radio signal division units 272 and 273 divide the radio signal for each radio signal of the terminal on the time axis, and set a dynamic range and a quantization step for each of the divided radio signals. For example, the dynamic range is set larger than the amplitude value (power) of each divided radio signal, and the quantization step size is determined so that the quantization error hardly affects the signal quality. If the allowable value of the influence on the signal quality is unified for each divided radio signal, the same number of quantization bits is used for each divided radio signal.

サンプリング周波数をS、復調に必要な量子化ビット数をNdemod、ダイナミックレンジを拡げるために必要な量子化ビット数をNとすると、関連方式を用いた際RoF区間で送られる情報量はS(Ndemod+N)に比例する。一方提案方式では、関連方式と比べダイナミックレンジを拡げるための量子化ビット数が必要なく、データを端末数kごとに分割して伝送する必要があるため、Sdemodkに比例した情報量がRoF区間で伝送される。したがって、無線端末が、Ndemod+N>Ndemodkとなる端末数の時に、提案方式により送信情報量が削減される。 The sampling frequency S a, N demod quantization bit number necessary for demodulation and the number of quantization bits required to extend the dynamic range and N D, the amount of information sent by the RoF section when using the related method It is proportional to S a (N demod + N D ). On the other hand, in the proposed scheme, the number of quantization bits for expanding the dynamic range is not required compared to the related scheme, and the data needs to be divided and transmitted for each number of terminals k. Therefore, the amount of information proportional to S a N demod k Are transmitted in the RoF section. Therefore, the wireless terminal, when the number of terminals becomes N demod + N D> N demod k, the amount of transmission information is reduced by the proposed scheme.

加算器287は、フィルタ296からの出力信号を加算する。以上説明したように、各無線信号ごとにダイナミックレンジ及び量子化ステップを決定できるため、関連技術のように振幅値の小さい無線信号に合わせて量子化ステップを設定し、かつ振幅値の大きい無線信号に合わせてダイナミックレンジを設定する場合と比べ、所要量子化ビット数が減少し、BBU110−RRU120間の所要帯域を削減できる。   The adder 287 adds the output signals from the filter 296. As described above, since the dynamic range and the quantization step can be determined for each wireless signal, the quantization step is set according to the wireless signal having a small amplitude value as in the related art, and the wireless signal having a large amplitude value is used. Compared with the case where the dynamic range is set according to the above, the required number of quantization bits is reduced, and the required bandwidth between the BBU 110 and the RRU 120 can be reduced.

(実施形態3)
分割された無線信号ごとにサンプリング周波数を低減する事で、送信情報量を削減することができる。実施形態3では、この方式と実施形態2を併用する。
(Embodiment 3)
The amount of transmission information can be reduced by reducing the sampling frequency for each divided radio signal. In the third embodiment, this method and the second embodiment are used in combination.

図12は、実施形態3のRRU120の装置構成である。実施形態2のRRU120の装置構成との違いは、無線帯域割当情報(下り)抽出部231が追加されている点と、ベースバンドフィルタ部(下り)33の機能が無線信号合成部271に付加されており、ベースバンドフィルタ部(下り)33がない点である。
実施形態3のBBU110の装置構成は実施形態2のBBU110の装置構成と同じである。
FIG. 12 shows the apparatus configuration of the RRU 120 of the third embodiment. The difference from the apparatus configuration of the RRU 120 of the second embodiment is that a radio band allocation information (downlink) extraction unit 231 is added, and the function of the baseband filter unit (downlink) 33 is added to the radio signal synthesis unit 271. The baseband filter unit (downstream) 33 is not provided.
The device configuration of the BBU 110 of the third embodiment is the same as the device configuration of the BBU 110 of the second embodiment.

図13及び図14は、実施形態3の無線信号分割部272、273及び無線信号合成部271及び274の構成例である。図13における無線信号分割部272、273と実施形態2との違いは、サンプリング周波数決定部291とサンプリング周波数変換部292が追加されている点である。サンプリング周波数決定部291は、無線帯域割当情報を基に分割された無線信号ごとの所要サンプリング周波数を決定し、サンプリング周波数変換部292は分割された無線信号のサンプリング周波数をサンプリング周波数決定部291で求めた値に変換する。   FIGS. 13 and 14 are configuration examples of the wireless signal dividing units 272 and 273 and the wireless signal combining units 271 and 274 according to the third embodiment. The difference between the radio signal dividing units 272 and 273 and the second embodiment in FIG. 13 is that a sampling frequency determining unit 291 and a sampling frequency converting unit 292 are added. The sampling frequency determination unit 291 determines a required sampling frequency for each radio signal divided based on the radio band allocation information, and the sampling frequency conversion unit 292 obtains the sampling frequency of the divided radio signal by the sampling frequency determination unit 291. Converted to a new value.

図14における無線信号合成部271及び274と実施形態2との違いは、サンプリング周波数決定部293とサンプリング周波数復元部286、及びフィルタ係数決定部295とフィルタ296が追加されている点である。無線信号分割部272、273で各分割された無線信号のサンプリング周波数が変換されているため、無線信号合成部271及び274では、サンプリング周波数決定部293が無線帯域割当情報を基にサンプリング周波数をいくつに(何倍に)戻せば良いかを決定し、サンプリング周波数復元部286は各分割された無線信号のサンプリング周波数を元の値に戻す。また、サンプリング周波数を変換した事により、折り返し成分が発生するため、無線信号合成部271及び274のフィルタ係数決定部295では、所望信号成分を取り出し折り返し成分の電力を抑圧するようなフィルタ係数を算出し、該フィルタ係数に基づいてフィルタ296が各分割された無線信号に対してフィルタリング処理を行う。   The difference between the wireless signal synthesis units 271 and 274 and the second embodiment in FIG. 14 is that a sampling frequency determination unit 293, a sampling frequency restoration unit 286, a filter coefficient determination unit 295, and a filter 296 are added. Since the sampling frequency of each radio signal divided by the radio signal dividing units 272 and 273 is converted, the sampling frequency determining unit 293 determines the sampling frequency based on the radio band allocation information in the radio signal synthesizing units 271 and 274. The sampling frequency restoration unit 286 returns the sampling frequency of each divided radio signal to the original value. Since the aliasing component is generated by converting the sampling frequency, the filter coefficient determination unit 295 of the wireless signal synthesis units 271 and 274 calculates a filter coefficient that extracts the desired signal component and suppresses the power of the aliasing component. Then, based on the filter coefficient, the filter 296 performs a filtering process on each divided radio signal.

BBU110及びRRU120において決定するサンプリング周波数fは任意である。割り当てられる無線帯域の範囲に応じて決定しても良いし、折り返し信号成分と所望信号成分が重ならない範囲でサンプリング周波数を決定しても良いし、例えば、折り返し信号成分と所望信号成分の周波数間隔がfth以上離れているよう、サンプリング周波数を決定しても良い。ここで、折り返し信号成分と所望信号成分が周波数間隔f離れて存在すると仮定する。フィルタ296には通過域/遷移域/阻止域が存在するが、フィルタリング処理で所望信号成分を取り出す際、遷移域の周波数帯域幅がft以下であれば、折り返し信号成分の電力を阻止域で抑圧できる。遷移域の周波数帯域幅がf以上であれば、フィルタリング処理で取り出した所望信号成分に、折り返し信号成分の電力が抑圧されずに含まれてしまう。したがってfthを、フィルタ296のfを考慮して、所望信号成分に劣化がないよう決定しても良い。 The sampling frequency f s determined in the BBU 110 and the RRU 120 is arbitrary. The sampling frequency may be determined within a range where the aliasing signal component and the desired signal component do not overlap, for example, the frequency interval between the aliasing signal component and the desired signal component. The sampling frequency may be determined so that is separated by f th or more. Here, it is assumed that the desired signal component and aliasing signal components exist apart frequency interval f t. The filter 296 is present passband / transition zone / stopband but when retrieving desired signal components in the filtering process, the frequency band width of the transition zone is less than or equal to f t, the power of the aliasing signal components in the stopband Can be suppressed. If the frequency bandwidth of the transition region is f t or more, the desired signal component extracted by the filtering process, the power of the aliasing signal component will be included without being suppressed. Therefore, f th may be determined in consideration of f t of the filter 296 so that the desired signal component does not deteriorate.

本発明は情報通信産業に適用することができる。   The present invention can be applied to the information communication industry.

11:アンテナ
12:送受切替部
21、36:増幅器
22:ダウンコンバート部
23:A/D変換部
24:ベースバンドフィルタ部(上り)
25、32、42、51:フレーム変換部
26、52:E/O変換部
31、41:O/E変換部
33:ベースバンドフィルタ部(下り)
34:D/A変換部
43:変復調部
50:制御信号作成部
110:BBU
120:RRU
130:PONシステム
140:OLT
150:ONU
231:無線帯域割当情報(下り)抽出部
232:無線帯域割当情報(上り)抽出部
233、243、286、294:量子化ビット数復元部
234、244:振幅復元部
235:振幅情報(下り)抽出部
236、241:振幅変換部
237、242、283:量子化ビット数変換部
251、264、282、296:フィルタ
252、263、281、295:フィルタ係数決定部
253:振幅検出部
254、262:ゲイン決定部
255、284:データ多重部
256、265、287:加算器
261、285:データ分離部
271、274:無線信号合成部
272、273:無線信号分割部
292:サンプリング周波数変換部
291、293:サンプリング周波数決定部
11: Antenna 12: Transmission / reception switching unit 21, 36: Amplifier 22: Down-conversion unit 23: A / D conversion unit 24: Baseband filter unit (upstream)
25, 32, 42, 51: Frame conversion unit 26, 52: E / O conversion unit 31, 41: O / E conversion unit 33: Baseband filter unit (downlink)
34: D / A converter 43: Modulator / demodulator 50: Control signal generator 110: BBU
120: RRU
130: PON system 140: OLT
150: ONU
231: Radio band allocation information (downlink) extraction unit 232: Radio band allocation information (uplink) extraction units 233, 243, 286, 294: Quantization bit number restoration units 234, 244: Amplitude restoration unit 235: Amplitude information (downlink) Extraction units 236, 241: amplitude conversion units 237, 242, 283: quantization bit number conversion units 251, 264, 282, 296: filters 252, 263, 281, 295: filter coefficient determination unit 253: amplitude detection units 254, 262 : Gain determination units 255, 284: Data multiplexing units 256, 265, 287: Adders 261, 285: Data separation units 271, 274: Radio signal synthesis units 272, 273: Radio signal division unit 292: Sampling frequency conversion unit 291, 293: Sampling frequency determination unit

Claims (8)

複数の無線端末と無線信号を送受信する基地局の機能が信号処理装置(BBU:Base Band Unit)と無線装置(RRU:Remote Radio Unit)に分割されている分散型無線通信基地局システムであって、
前記BBUと前記RRUとを接続し、前記BBUと前記RRUとの間を光信号でRoF(Radio over Fiber)伝送する光ファイバと、
前記光ファイバでRoF伝送するデジタル信号の量子化ビット数を、各無線端末の前記無線信号の振幅値に応じて所定値から変更する量子化ビット数変更機能と、
前記光ファイバから前記光信号を受信した際に量子化ビット数を前記所定値に復元する量子化ビット数復元機能と、
を備えることを特徴とする分散型無線通信基地局システム。
A distributed radio communication base station system in which the function of a base station that transmits and receives radio signals to and from a plurality of radio terminals is divided into a signal processing device (BBU: Base Band Unit) and a radio device (RRU: Remote Radio Unit). ,
An optical fiber that connects the BBU and the RRU and transmits RoF (Radio over Fiber) as an optical signal between the BBU and the RRU;
A quantization bit number changing function for changing a quantization bit number of a digital signal to be RoF transmitted by the optical fiber from a predetermined value according to an amplitude value of the wireless signal of each wireless terminal;
A quantization bit number restoration function for restoring the number of quantization bits to the predetermined value when the optical signal is received from the optical fiber;
A distributed wireless communication base station system comprising:
前記量子化ビット数変更機能は、各無線端末の最大振幅が一定になるように増幅して加算することで、前記デジタル信号の量子化ビット数を削減することを特徴とする請求項1に記載の分散型無線通信基地局システム。   The said quantization bit number change function reduces the quantization bit number of the said digital signal by amplifying and adding so that the maximum amplitude of each radio | wireless terminal may become fixed. Distributed wireless communication base station system. 前記量子化ビット数変更機能は、各無線端末の無線信号の最大振幅に応じて個別にダイナミックレンジ及び量子化ステップを設定することで、前記光信号の量子化ビット数を削減することを特徴とする請求項1に記載の分散型無線通信基地局システム。   The quantization bit number changing function reduces the number of quantization bits of the optical signal by individually setting a dynamic range and a quantization step according to the maximum amplitude of the wireless signal of each wireless terminal. The distributed wireless communication base station system according to claim 1. 前記量子化ビット数変更機能は、前記光ファイバでRoF伝送するデジタル信号のサンプリング周波数を、前記無線信号の割当状況に応じて所定値から変更することを特徴とする請求項3に記載の分散型無線通信基地局システム。   4. The distributed type according to claim 3, wherein the quantization bit number changing function changes a sampling frequency of a digital signal to be RoF-transmitted through the optical fiber from a predetermined value according to an allocation state of the radio signal. Wireless communication base station system. 前記光ファイバは、一つの前記BBUと複数の前記RRUを接続するPON(Passive Optical Network)システムであることを特徴とする請求項1から4のいずれかに記載の分散型無線通信基地局システム。   5. The distributed wireless communication base station system according to claim 1, wherein the optical fiber is a PON (Passive Optical Network) system that connects one BBU and a plurality of RRUs. 6. 請求項1から5のいずれかに記載の分散型無線通信基地局システムが備える信号処理装置。   The signal processing apparatus with which the distributed radio | wireless communication base station system in any one of Claim 1 to 5 is provided. 請求項1から5のいずれかに記載の分散型無線通信基地局システムが備える無線装置。   A wireless device provided in the distributed wireless communication base station system according to claim 1. 複数の無線端末と無線信号を送受信する基地局の機能がBBUとRRUに分割されている分散型無線通信基地局システムの動作方法であって、
前記BBUと前記RRUとを光ファイバで接続し、前記BBUと前記RRUとの間を光信号でRoF伝送し、
前記光ファイバでRoF伝送するデジタル信号の量子化ビット数を前記無線信号の振幅値に応じて所定値から変更する量子化ビット数変更手順と、
前記光ファイバから前記光信号を受信した際に量子化ビット数を前記所定値に復元する量子化ビット数復元手順と、
を行うことを特徴とする分散型無線通信基地局システムの動作方法。
An operation method of a distributed radio communication base station system in which a function of a base station that transmits and receives radio signals to and from a plurality of radio terminals is divided into BBU and RRU,
The BBU and the RRU are connected by an optical fiber, and RoF transmission is performed between the BBU and the RRU as an optical signal.
A quantization bit number changing procedure for changing a quantization bit number of a digital signal to be RoF transmitted by the optical fiber from a predetermined value according to an amplitude value of the radio signal;
A quantization bit number restoration procedure for restoring the number of quantization bits to the predetermined value when the optical signal is received from the optical fiber;
A method for operating a distributed radio communication base station system, characterized in that:
JP2012248980A 2012-11-13 2012-11-13 Distributed wireless communication base station system, signal processing device, wireless device, and operation method of distributed wireless communication base station system Expired - Fee Related JP5913059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248980A JP5913059B2 (en) 2012-11-13 2012-11-13 Distributed wireless communication base station system, signal processing device, wireless device, and operation method of distributed wireless communication base station system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248980A JP5913059B2 (en) 2012-11-13 2012-11-13 Distributed wireless communication base station system, signal processing device, wireless device, and operation method of distributed wireless communication base station system

Publications (2)

Publication Number Publication Date
JP2014099679A true JP2014099679A (en) 2014-05-29
JP5913059B2 JP5913059B2 (en) 2016-04-27

Family

ID=50941371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248980A Expired - Fee Related JP5913059B2 (en) 2012-11-13 2012-11-13 Distributed wireless communication base station system, signal processing device, wireless device, and operation method of distributed wireless communication base station system

Country Status (1)

Country Link
JP (1) JP5913059B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067813A1 (en) * 2014-10-30 2016-05-06 株式会社日立国際電気 Communication device and communication system
WO2017035806A1 (en) * 2015-09-02 2017-03-09 华为技术有限公司 Method for transmitting data, forward transmission device and cascaded networking
EP3285416A4 (en) * 2015-05-19 2019-01-02 Nippon Telegraph And Telephone Corporation Optical communication system and optical communication method
EP3285417A4 (en) * 2015-05-19 2019-01-09 Nippon Telegraph And Telephone Corporation Optical communication system and optical communication method
JP2020520189A (en) * 2017-02-21 2020-07-02 中興通訊股▲ふん▼有限公司Zte Corporation Base station, RF remote unit and its motherboard, RF daughter card and automatic channel construction method
JP2021177369A (en) * 2019-06-12 2021-11-11 シャンハイ カンブリコン インフォメーション テクノロジー カンパニー リミテッドShanghai Cambricon Information Technology Co., Ltd. Neural network quantization parameter determination method and related products

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009984B2 (en) * 2013-04-01 2016-10-19 日本電信電話株式会社 Distributed wireless communication base station system and communication method of distributed wireless communication base station system
JP6009983B2 (en) * 2013-04-01 2016-10-19 日本電信電話株式会社 Distributed wireless communication base station system and communication method of distributed wireless communication base station system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140066A (en) * 1994-11-07 1996-05-31 Hitachi Denshi Ltd Digital signal transmitter
JPH1032838A (en) * 1996-07-17 1998-02-03 Sony Corp Image encoder, image encoding method, image decoder and storage medium
JPH10234000A (en) * 1997-02-19 1998-09-02 Sony Corp Signal recording method and device, recording medium, signal reproducing method and device and signal recording and reproducing device
JPH1117634A (en) * 1997-06-23 1999-01-22 Hirakawa Hewtec Kk Voice multiplex transmission system
JP2002354534A (en) * 2000-06-19 2002-12-06 Rcs:Kk Base station dispersing system
JP2012525745A (en) * 2009-04-28 2012-10-22 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Techniques for quantization adaptation in coordinated signal communication
JP2012205218A (en) * 2011-03-28 2012-10-22 Fujitsu Ltd Communication device, mobile terminal and data communication method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08140066A (en) * 1994-11-07 1996-05-31 Hitachi Denshi Ltd Digital signal transmitter
JPH1032838A (en) * 1996-07-17 1998-02-03 Sony Corp Image encoder, image encoding method, image decoder and storage medium
JPH10234000A (en) * 1997-02-19 1998-09-02 Sony Corp Signal recording method and device, recording medium, signal reproducing method and device and signal recording and reproducing device
JPH1117634A (en) * 1997-06-23 1999-01-22 Hirakawa Hewtec Kk Voice multiplex transmission system
JP2002354534A (en) * 2000-06-19 2002-12-06 Rcs:Kk Base station dispersing system
JP2012525745A (en) * 2009-04-28 2012-10-22 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Techniques for quantization adaptation in coordinated signal communication
JP2012205218A (en) * 2011-03-28 2012-10-22 Fujitsu Ltd Communication device, mobile terminal and data communication method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067813A1 (en) * 2014-10-30 2016-05-06 株式会社日立国際電気 Communication device and communication system
JPWO2016067813A1 (en) * 2014-10-30 2017-07-27 株式会社日立国際電気 Communication apparatus and communication system
EP3285416A4 (en) * 2015-05-19 2019-01-02 Nippon Telegraph And Telephone Corporation Optical communication system and optical communication method
EP3285417A4 (en) * 2015-05-19 2019-01-09 Nippon Telegraph And Telephone Corporation Optical communication system and optical communication method
US10211921B2 (en) 2015-05-19 2019-02-19 Nippon Telegraph And Telephone Corporation Optical communication system and optical communication method
US10469167B2 (en) 2015-05-19 2019-11-05 Nippon Telegraph And Telephone Corporation Optical communication system and optical communication method
WO2017035806A1 (en) * 2015-09-02 2017-03-09 华为技术有限公司 Method for transmitting data, forward transmission device and cascaded networking
JP2020520189A (en) * 2017-02-21 2020-07-02 中興通訊股▲ふん▼有限公司Zte Corporation Base station, RF remote unit and its motherboard, RF daughter card and automatic channel construction method
JP2021177369A (en) * 2019-06-12 2021-11-11 シャンハイ カンブリコン インフォメーション テクノロジー カンパニー リミテッドShanghai Cambricon Information Technology Co., Ltd. Neural network quantization parameter determination method and related products
JP7166704B2 (en) 2019-06-12 2022-11-08 寒武紀(西安)集成電路有限公司 Determination of quantization parameters in neural networks and related products

Also Published As

Publication number Publication date
JP5913059B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5913059B2 (en) Distributed wireless communication base station system, signal processing device, wireless device, and operation method of distributed wireless communication base station system
JP5856310B2 (en) Distributed wireless communication base station system, signal processing device, wireless device, and operation method of distributed wireless communication base station system
EP3146686B1 (en) Signal aggregation for wireless fronthaul communication
US8989088B2 (en) OFDM signal processing in a base transceiver system
US9059778B2 (en) Frequency domain compression in a base transceiver system
KR100352852B1 (en) A transmitting device of receiving signal for optical bts
EP2611229B1 (en) Baseband signal transmission method and apparatus
EP2590375B1 (en) Uplink baseband signal compression method, decompression method, device, and system
JP5905813B2 (en) Distributed radio communication base station system, signal processing apparatus and signal processing method
JP6023103B2 (en) Distributed wireless communication base station system and communication method
JP5980654B2 (en) Distributed wireless communication base station system, signal processing device, wireless device, and operation method of distributed wireless communication base station system
WO2019045607A1 (en) Methods, intermediate radio units and radio heads of base station systems for transmission of antenna carriers
JP5878452B2 (en) Distributed wireless communication base station system, signal processing device, wireless device, and operation method of distributed wireless communication base station system
KR20160106996A (en) Remote Radio Unit for Communicating with Digital Unit through Radio Over Fiber in Mobile Communication Base Station
JP6009983B2 (en) Distributed wireless communication base station system and communication method of distributed wireless communication base station system
JP5965372B2 (en) Communication system and optical signal transmission method
JP6077914B2 (en) Base station system, base station communication method, and baseband unit
JP6189789B2 (en) Distributed wireless communication base station system and communication method
JP2015056736A (en) Communication system and optical signal transmission method
JP6009984B2 (en) Distributed wireless communication base station system and communication method of distributed wireless communication base station system
WO2016174110A1 (en) Methods and apparatus for multiplexing and demultiplexing signals
Shibata et al. Dynamic compression method using wireless resource allocation for digitized radio over TDM-PON system
JP2014090240A (en) Distributed type radio communication base station system, signal processing apparatus, radio apparatus, and operation method for distributed type radio communication base station
KR102101487B1 (en) Method and Apparatus for Providing In-Building Communication Service
JP6053128B2 (en) Distributed wireless communication base station system, signal processing device, wireless device, and operation method of distributed wireless communication base station system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5913059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees