JP2014099246A - Plasma processing apparatus and plasma processing method - Google Patents

Plasma processing apparatus and plasma processing method Download PDF

Info

Publication number
JP2014099246A
JP2014099246A JP2011043855A JP2011043855A JP2014099246A JP 2014099246 A JP2014099246 A JP 2014099246A JP 2011043855 A JP2011043855 A JP 2011043855A JP 2011043855 A JP2011043855 A JP 2011043855A JP 2014099246 A JP2014099246 A JP 2014099246A
Authority
JP
Japan
Prior art keywords
plasma
gas
atmospheric pressure
wire
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011043855A
Other languages
Japanese (ja)
Inventor
Shigeki Nakatsuka
茂樹 中塚
Masashi Matsumori
正史 松森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011043855A priority Critical patent/JP2014099246A/en
Priority to PCT/JP2012/001322 priority patent/WO2012117713A1/en
Publication of JP2014099246A publication Critical patent/JP2014099246A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
    • H02G1/1275Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by applying heat
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/12Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof
    • H02G1/1287Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for removing insulation or armouring from cables, e.g. from the end thereof by means of a solvent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Removal Of Insulation Or Armoring From Wires Or Cables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma processing apparatus capable of selectively removing a coating covering over an object to be processed at a high speed while controlling oxidation of the surface of the object to be processed.SOLUTION: A coating removal apparatus 1 comprises: atmospheric pressure plasma processing units 15A and 15B that apply a plasma of a mixed gas (Ar/O) containing Oas a reactive gas to a wire 2; and atmospheric pressure plasma processing units 16A and 16B that apply a plasma of a mixed gas (Ar/H) containing Has a reactive gas to the wire 2. The plasma of the mixed gas (Ar/O) containing Oas the reactive gas dissolves the coating 4. The plasma of the mixed gas (Ar/H) containing Has the reactive gas reduces the surface of the core material 3, 3 and oxide film is removed.

Description

本発明は、被処理材から被覆を除去するためのプラズマ処理装置及びプラズマ処理方法に関する。   The present invention relates to a plasma processing apparatus and a plasma processing method for removing a coating from a material to be processed.

線材のポリイミド被覆除去方法としては、刃物やリユータにより物理的に削り落とす方法が知られている。しかし、この方法は被覆除去に長時間を要し効率的でない。また、燃焼ガスや放電で炭化されることでポリイミド被覆を除去する方法も知られている(特許文献1参照)。しかし、この方法では、線材の芯材が銅等の場合に表面の酸化を生じやすい。被覆除去時に銅等の芯材の表面が酸化していると、はんだ接合時の不具合の原因となる。芯材表面の酸化を防止するには、被覆除去に十分な時間をかける必要があり、高速での被覆除去が困難となる。   As a method for removing a polyimide coating on a wire, a method of physically scraping off with a blade or a reuter is known. However, this method takes a long time to remove the coating and is not efficient. Also known is a method of removing the polyimide coating by carbonization with combustion gas or electric discharge (see Patent Document 1). However, this method tends to cause surface oxidation when the core material of the wire is copper or the like. If the surface of the core material such as copper is oxidized at the time of removing the coating, it causes a problem at the time of soldering. In order to prevent oxidation of the surface of the core material, it is necessary to take a sufficient time for removing the coating, which makes it difficult to remove the coating at a high speed.

特許文献2には、絶縁チャンバ内にガスを供給しつつ上下電極で高周波電力を供給して大気圧プラズマを発生させ、この大気圧プラズマに近接して被処理物を配置することで被覆を化学分解して除去する方法が記載されている。しかし、この方法では狭いチャンバ内に被処理物を配置する必要があり、被処理物の所望の箇所の被覆を選択的に除去することはできない。   In Patent Document 2, a gas is supplied into an insulating chamber, high-frequency power is supplied from upper and lower electrodes to generate atmospheric pressure plasma, and an object to be processed is placed in close proximity to the atmospheric pressure plasma to chemically coat the coating. A method for disassembly and removal is described. However, in this method, it is necessary to dispose the object to be processed in a narrow chamber, and it is not possible to selectively remove the coating on a desired part of the object to be processed.

線材を電子回路や部品に接合する際には、一般に、はんだ漕に線材を直接浸漬させて被覆を剥離している。しかし、被覆が除去された部分の線材のはんだ漕内への溶出や、被覆残渣による接合不良等の不具合がある。   When joining a wire to an electronic circuit or a component, generally, the wire is directly immersed in a soldering iron to peel off the coating. However, there are problems such as elution of the wire from the part where the coating has been removed into the soldering iron and poor bonding due to the coating residue.

特開2001−124931号公報JP 2001-124931 A 特開2007−59305号公報JP 2007-59305 A

本発明は、プラズマ処理により、被処理物を覆う被覆を被処理物表面の酸化を抑制しつつ選択的かつ高速で除去することを課題とする。   An object of the present invention is to selectively and rapidly remove a coating covering a workpiece by plasma treatment while suppressing oxidation of the surface of the workpiece.

本発明の第1の態様は、有機材料からなる被覆を有する被処理物を保持する保持部と、第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを吹き出す誘導結合型プラズマ発生部と、第2の不活性ガスとO2ガスの混合ガス領域と前記一次プラズマとが衝突されることによりプラズマ化した混合ガスから成る第1の二次プラズマを発生するプラズマ展開部とを有し、前記第1の二次プラズマを前記被処理物に照射する第1の大気圧プラズマ照射部と、前記被処理物を保持する保持部と、前記第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを吹き出す誘導結合型プラズマ発生部と、前記第2の不活性ガスとH2ガスの混合ガス領域と前記一次プラズマとが衝突されることによりプラズマ化した混合ガスから成る第2の二次プラズマを発生するプラズマ展開部とを有し、前記第2の二次プラズマを前記被処理物に照射する第2の大気圧プラズマ照射部とを備えるプラズマ処理装置を提供する。 According to a first aspect of the present invention, a holding unit that holds an object to be processed having a coating made of an organic material, an inductively coupled plasma generating unit that blows out a primary plasma made of an inductively coupled plasma of a first inert gas, A plasma expanding section for generating a first secondary plasma composed of a mixed gas formed into a plasma by colliding the mixed gas region of the second inert gas and O 2 gas and the primary plasma, A first atmospheric pressure plasma irradiation unit for irradiating the object to be processed with the first secondary plasma, a holding part for holding the object to be processed, and an inductively coupled plasma of the first inert gas. An inductively coupled plasma generating section for blowing out primary plasma; and a second secondary comprising a mixed gas that is converted into plasma by colliding the mixed gas region of the second inert gas and H 2 gas with the primary plasma. The And a plasma expansion unit which generates a Zuma, to provide a plasma processing apparatus and a second atmospheric pressure plasma irradiation unit that irradiates the second secondary plasma in the processing object.

第1の大気圧プラズマ照射部では誘導結合プラズマ発生部からの一次プラズマ(Arプラズマ)がプラズマ展開部中の第2の不活性ガスと反応性ガス(ArガスとO2ガス)の混合ガス領域に導入され、混合ガス中の第2の不活性ガス(Arガス)を励起して拡大した第1の二次プラズマ(Arプラズマ)とする。そして、この第1の二次プラズマ(Arプラズマ)が反応性ガスを構成する元素(酸素)を活性化する。活性化された酸素は保持部に保持され被処理物表面に被覆で化学反応を行い、被覆を分解除去する。 In the first atmospheric pressure plasma irradiation part, the primary plasma (Ar plasma) from the inductively coupled plasma generation part is a mixed gas region of the second inert gas and the reactive gas (Ar gas and O 2 gas) in the plasma development part. The first secondary plasma (Ar plasma) expanded by exciting the second inert gas (Ar gas) in the mixed gas. The first secondary plasma (Ar plasma) activates an element (oxygen) constituting the reactive gas. The activated oxygen is held in the holding unit, and a chemical reaction is performed on the surface of the object to be processed by the coating to decompose and remove the coating.

第2の大気圧プラズマ照射部では誘導結合プラズマ発生部からの一次プラズマ(Arプラズマ)がプラズマ展開部中の第2の不活性ガスと反応性ガス(ArガスとH2ガス)の混合ガス領域に導入され、混合ガス中の第2の不活性ガス(Arガス)を励起して拡大した第1の二次プラズマ(Arプラズマ)とする。そして、この第1の二次プラズマ(Arプラズマ)が反応性ガスを構成する元素(水素)を活性化する。活性化された水素は第1の大気圧プラズマ処理部での被覆除去時に酸化した被処理物表面で化学反応を行い、酸化膜を還元除去する。 In the second atmospheric pressure plasma irradiation part, the primary plasma (Ar plasma) from the inductively coupled plasma generating part is a mixed gas region of the second inert gas and the reactive gas (Ar gas and H 2 gas) in the plasma developing part. The first secondary plasma (Ar plasma) expanded by exciting the second inert gas (Ar gas) in the mixed gas. The first secondary plasma (Ar plasma) activates the element (hydrogen) constituting the reactive gas. The activated hydrogen undergoes a chemical reaction on the surface of the object to be oxidized when the coating is removed in the first atmospheric pressure plasma processing unit, and the oxide film is reduced and removed.

好ましくは、前記第1及び第2の大気圧プラズマ照射部毎に、前記大気圧プラズマ照射部との間に配置されて前記二次プラズマの前記被処理物に対する照射領域を制限するマスクと、前記被処理物に対して前記大気圧プラズマ照射部及び前記マスクとは反対側に配置された接地電極とを備える。   Preferably, for each of the first and second atmospheric pressure plasma irradiation units, a mask disposed between the atmospheric pressure plasma irradiation unit and limiting an irradiation region of the secondary plasma to the object to be processed; A ground electrode disposed on a side opposite to the atmospheric pressure plasma irradiation unit and the mask with respect to the object to be processed;

さらに好ましくは、前記被処理物は線材であり、前記保持部に保持される線材に対して張力を付与する張力付与部をさらに備える。   More preferably, the object to be processed is a wire, and further includes a tension applying unit that applies tension to the wire held by the holding unit.

本発明の第2の態様は、第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを発生させ、発生した一次プラズマを第2の不活性ガスとO2ガスの混合ガスに衝突させることによりプラズマ化した混合ガスから成る第1の二次プラズマを発生させ、前記第1の二次プラズマを有機材料からなる被覆を有する被処理物に照射し、前記第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを発生させ、発生した一次プラズマを前記第2の不活性ガスとH2ガスの混合ガスに衝突させることによりプラズマ化した混合ガスから成る第2の二次プラズマを発生させ、前記第2の二次プラズマを前記被処理物の前記第1の二次プラズマが照射された領域に照射する、プラズマ処理方法を提供する。 According to a second aspect of the present invention, a primary plasma composed of inductively coupled plasma of a first inert gas is generated, and the generated primary plasma collides with a mixed gas of the second inert gas and O 2 gas. Generating a first secondary plasma made of a mixed gas that has been made into plasma by irradiating the workpiece having a coating made of an organic material with the first secondary plasma, and inductively coupling the first inert gas A primary plasma composed of a type plasma is generated, and the generated secondary plasma collides with the mixed gas of the second inert gas and H 2 gas, thereby generating a second secondary plasma composed of a plasma mixture. A plasma processing method is provided in which the second secondary plasma is irradiated onto a region of the workpiece that has been irradiated with the first secondary plasma.

本発明のプラズマ処理装置及びプラズマ処理方法によれば、不活性ガスとO2ガスの混合ガスをプラズマ化した第1の二次プラズマを被処理物のうちマスクで規定された部分の被覆に対して接地電極とは反対側から照射し、その後に不活性ガスとH2ガスの混合ガスをプラズマ化した第2の二次プラズマを照射するので、被処理物表面の酸化を抑制しつつ被覆を選択的かつ高速で除去することができる。 According to the plasma processing apparatus and the plasma processing method of the present invention, the first secondary plasma obtained by converting the mixed gas of the inert gas and the O 2 gas into plasma is applied to the portion of the object to be processed that is defined by the mask. Irradiation from the opposite side of the ground electrode, followed by irradiation with a second secondary plasma that is a plasma of a mixed gas of inert gas and H 2 gas. It can be removed selectively and at high speed.

本発明の実施形態に係る被覆除去装置の模式図。The schematic diagram of the coating | coated removal apparatus which concerns on embodiment of this invention. 大気圧プラズマ照射部の模式図。The schematic diagram of an atmospheric pressure plasma irradiation part. 混合器周辺の模式的な断面図。A typical sectional view around a mixer. 冷却部の模式的な斜視図。The typical perspective view of a cooling unit. 大気圧プラズマ照射部の保持部及びマスクの模式的な一部断面図。The typical partial cross section figure of the holding | maintenance part and mask of an atmospheric pressure plasma irradiation part. 線材の斜視図。The perspective view of a wire.

図1は本発明の実施形態に係る被覆除去装置(プラズマ処理装置)1を示す。この被覆除去装置1はプラズマ処理により被処理物の表面に被覆を除去するものである。本実施形態において、被覆除去の対象となる被処理物は図6に模式的に示す線材2である。この線材2は、本実施形態で銅製である2本の芯材3,3と、これらの芯材3,3を覆うポリイミド樹脂からなる被覆4を備える。芯材3,3の直径は例えば0.03mm以上0.1以下mm程度である。また、被覆4の厚みは例えば15μ以上30μm以下である。芯材3,3の材質は銅に限定されず、例えばニッケル等の他の金属でもよい。また、被覆4の材質はポリイミド等のイミド系樹脂に限定されず、他の有機材料でもよい。本実施形態では2本の芯材3,3を並設して配置し、その外周を被覆4で覆っているが、芯材は2本に限定されず1本あるいは3本以上の複数本であってもよい。また、本実施形態では芯材3自体は単体の線材であるが、芯材は複数の芯線で構成されるものでもよい。   FIG. 1 shows a coating removal apparatus (plasma processing apparatus) 1 according to an embodiment of the present invention. This coating removal apparatus 1 removes coating on the surface of an object to be processed by plasma processing. In the present embodiment, the workpiece to be covered is the wire 2 schematically shown in FIG. The wire 2 includes two core members 3 and 3 made of copper in the present embodiment and a coating 4 made of a polyimide resin that covers the core members 3 and 3. The diameter of the core materials 3 and 3 is about 0.03 mm or more and 0.1 or less mm, for example. Moreover, the thickness of the coating | cover 4 is 15 micrometers or more and 30 micrometers or less, for example. The material of the core materials 3 and 3 is not limited to copper, and may be other metals such as nickel. The material of the coating 4 is not limited to imide resins such as polyimide, and other organic materials may be used. In the present embodiment, the two core members 3 and 3 are arranged side by side and the outer periphery thereof is covered with the coating 4. There may be. Further, in the present embodiment, the core material 3 itself is a single wire, but the core material may be composed of a plurality of core wires.

線材2は供給部11から巻き出され、被覆が除去された後に回収部12に巻き取られる。供給部11は、被覆除去処理前の線材2を巻き付けたドラム11aと、このドラム11aを線材2を巻き出す方向に回転駆動する駆動機構11bを備える。回収部12は被覆除去済みの線材を巻き付けるためのドラム12aと、このドラム12aを線材2を巻き取る方向に回転駆動する駆動機構12bを備える。   The wire 2 is unwound from the supply unit 11 and is wound around the collection unit 12 after the coating is removed. The supply unit 11 includes a drum 11a around which the wire 2 before the coating removal process is wound, and a drive mechanism 11b that rotationally drives the drum 11a in a direction in which the wire 2 is unwound. The recovery unit 12 includes a drum 12a for winding the wire rod after removal of the coating, and a drive mechanism 12b that rotationally drives the drum 12a in the direction of winding the wire rod 2.

供給部11に対して線材2の送り方向下流側に隣接する位置と、回収部12に対して線材2の送り方向上流側に隣接する位置には、線材2に張力を付与するための張力付与部13A,13Bが設けられている。これらの張力付与部13A,13Bは、それぞれ固定の支持軸13aに回転自在に支持された一対の固定ローラ13b,13bと、鉛直方向に延びるガイドレール13c上を移動自在な可動の支軸13dに回転自在に支持された可動ローラ13eを備える。可動ローラ13eは一対の固定ローラ13b,13b間に配置されている。固定ローラ13b,13bと可動ローラ13eに巻掛けられた線材2には、可動ローラ13eが昇降することで張力が付与される。線材2に適切な張力を付与できる限り、張力付与部13A,13Bの具体的な構成は特定に限定されない。   Applying tension to apply tension to the wire 2 at a position adjacent to the supply unit 11 on the downstream side in the feed direction of the wire 2 and on a position adjacent to the recovery unit 12 on the upstream side in the feed direction of the wire 2 Portions 13A and 13B are provided. These tension applying portions 13A and 13B are respectively a pair of fixed rollers 13b and 13b rotatably supported by a fixed support shaft 13a, and a movable support shaft 13d movable on a guide rail 13c extending in the vertical direction. A movable roller 13e is provided that is rotatably supported. The movable roller 13e is disposed between the pair of fixed rollers 13b and 13b. Tension is applied to the wire 2 wound around the fixed rollers 13b and 13b and the movable roller 13e as the movable roller 13e moves up and down. As long as an appropriate tension can be applied to the wire 2, the specific configuration of the tension applying portions 13 </ b> A and 13 </ b> B is not limited to a specific one.

供給部11側の張力付与部13Aから回収部12側の張力付与部13Bに到る線材2の経路には、冷却部14A、大気圧プラズマ照射部15A,15B、大気圧プラズマ照射部16A,16B、及び冷却部14Bが順に設けられている。   In the path of the wire 2 from the tension applying unit 13A on the supply unit 11 side to the tension applying unit 13B on the recovery unit 12 side, the cooling unit 14A, the atmospheric pressure plasma irradiation units 15A and 15B, and the atmospheric pressure plasma irradiation units 16A and 16B. , And a cooling unit 14B are sequentially provided.

図4を併せて参照すると、冷却部14A,Bは台座14aの上に、例えばペルチエ素子で冷却される冷却部材14bを備える。冷却部材14bには貫通孔14cが形成れており、線材2は冷却部材14bからの直接又は間接的な熱伝達により冷却される。線材2を適切に冷却できる限り冷却部14の具体的な構成は特に限定されない。   Referring also to FIG. 4, the cooling units 14A and 14B include a cooling member 14b that is cooled by, for example, a Peltier element, on the pedestal 14a. A through hole 14c is formed in the cooling member 14b, and the wire 2 is cooled by direct or indirect heat transfer from the cooling member 14b. As long as the wire 2 can be appropriately cooled, the specific configuration of the cooling unit 14 is not particularly limited.

後述するように、大気圧プラズマ照射部15A,15Bでは線材2のマスク22の開口22aから露出する部分にプラズマが照射される。線材2のプラズマが照射された部分の熱は、線材2内に残る。大気圧プラズマ照射部15A,Bよりも線材2の送り方向上流側に配置された冷却部14Aは、大気圧プラズマ照射部15A,Bで線材2のプラズマが照射される部分からの熱が線材2の上流側へ伝わるのを抑制ないし低減する。その結果、大気圧プラズマ照射部15A,Bで線材2のプラズマが照射される部分から伝わる熱によって、プラズマが照射される部分よりも上流側の線材2において被覆4の炭化、被覆4の溶融ないし軟化による形状の不安定な部分の拡大を抑制できる。   As will be described later, in the atmospheric pressure plasma irradiation units 15A and 15B, plasma is irradiated to the portions exposed from the openings 22a of the mask 22 of the wire 2. The heat of the part irradiated with the plasma of the wire 2 remains in the wire 2. The cooling unit 14A disposed on the upstream side in the feed direction of the wire 2 with respect to the atmospheric pressure plasma irradiation units 15A and 15B receives heat from the portion irradiated with the plasma of the wire 2 in the atmospheric pressure plasma irradiation units 15A and 15B. To suppress or reduce the transmission to the upstream side. As a result, the coating 4 is carbonized and the coating 4 is melted or melted in the wire 2 upstream of the portion irradiated with plasma by heat transmitted from the portion irradiated with the plasma of the wire 2 in the atmospheric pressure plasma irradiation portions 15A and 15B. Expansion of an unstable portion due to softening can be suppressed.

後述するように、大気圧プラズマ照射部16A,16Bでは線材2のマスク22の開口22aから露出する部分にプラズマが照射される。線材2のプラズマが照射された部分の熱は、線材2内に残る。大気圧プラズマ照射部16A,16Bよりも線材2の送り方向下流側に配置された冷却部14Bは、大気圧プラズマ照射部16A,16Bで線材2のプラズマが照射される部分からの熱が線材2の下流側へ伝わるのを抑制ないし低減する。その結果、大気圧プラズマ照射部16A,16Bで線材2のプラズマが照射される部分から伝わる熱によって、プラズマが照射される部分よりも下流側の線材2において被覆4の炭化、被覆4の溶融ないし軟化による形状の不安定な部分の拡大を抑制できる。また、冷却部14Bは、後述するように大気圧プラズマ照射部16A,16Bでのプラズマの照射により線材2のうち芯材3の表面の酸化膜が還元除去された部分を冷却し、この部分の再酸化を防止している。なお、プラズマ照射による線材2の温度上昇を適切に抑制できるのであれば、上流側の冷却部14Aと下流側の冷却部14Bのうちのいずれか一方のみを設けてもよい。逆に、冷却部14A,14Bに加え、大気圧プラズマ照射部15A,15Bと大気圧プラズマ照射部16A,16Bとの間にさらに別の冷却部を設けてもよい。   As will be described later, in the atmospheric pressure plasma irradiation sections 16A and 16B, plasma is irradiated to the portions exposed from the openings 22a of the mask 22 of the wire 2. The heat of the part irradiated with the plasma of the wire 2 remains in the wire 2. The cooling unit 14B disposed downstream of the atmospheric pressure plasma irradiation units 16A and 16B in the feeding direction of the wire 2 receives heat from the portion irradiated with the plasma of the wire 2 by the atmospheric pressure plasma irradiation units 16A and 16B. The transmission to the downstream side is suppressed or reduced. As a result, the coating 4 is carbonized and the coating 4 is melted or melted in the wire 2 downstream of the portion irradiated with plasma by heat transmitted from the portion irradiated with the plasma of the wire 2 in the atmospheric pressure plasma irradiation sections 16A and 16B. Expansion of an unstable portion due to softening can be suppressed. Further, as will be described later, the cooling unit 14B cools the portion of the wire 2 from which the oxide film on the surface of the core material 3 has been reduced and removed by the plasma irradiation in the atmospheric pressure plasma irradiation units 16A and 16B. Prevents reoxidation. Note that only one of the upstream cooling unit 14A and the downstream cooling unit 14B may be provided as long as the temperature rise of the wire 2 due to plasma irradiation can be appropriately suppressed. Conversely, in addition to the cooling units 14A and 14B, another cooling unit may be provided between the atmospheric pressure plasma irradiation units 15A and 15B and the atmospheric pressure plasma irradiation units 16A and 16B.

大気圧プラズマ照射部15A,15Bは、前者が後述する二次プラズマ47を線材2の上側に対して上方から照射するのに対し、後者は二次プラズマ47を線材2の下側に対して下方から照射する点でのみことなる。言い換えれば、大気圧プラズマ照射部15A,15Bは、上下方向の配置姿勢が天地逆である点のみが異なる。同様に、大気圧プラズマ照射部16A,16Bは、上下方向の配置姿勢が天地逆である点のみが異なる。大気圧プラズマ照射部15A,15Bと大気圧プラズマ照射部16A,16Bは、前者が混合ガスとしてAr/O2を使用するのに対し、後者は混合ガスとしてAr/H2を使用する点が異なるがその他の構成は同様である。以下、大気圧プラズマ照射部15Aについて説明し、残りの3個の大気圧プラズマ照射部15B,16A,16Bについても必要に応じて言及する。 In the atmospheric pressure plasma irradiation units 15A and 15B, the former irradiates the secondary plasma 47 described later to the upper side of the wire 2 from above, while the latter lowers the secondary plasma 47 to the lower side of the wire 2. It differs only at the point of irradiation. In other words, the atmospheric pressure plasma irradiation units 15A and 15B are different only in that the arrangement posture in the vertical direction is upside down. Similarly, the atmospheric pressure plasma irradiation units 16A and 16B are different only in that the arrangement posture in the vertical direction is upside down. The atmospheric pressure plasma irradiation units 15A and 15B and the atmospheric pressure plasma irradiation units 16A and 16B differ in that the former uses Ar / O 2 as a mixed gas, whereas the latter uses Ar / H 2 as a mixed gas. However, other configurations are the same. Hereinafter, the atmospheric pressure plasma irradiation unit 15A will be described, and the remaining three atmospheric pressure plasma irradiation units 15B, 16A, and 16B will be referred to as necessary.

大気圧プラズマ照射部15Aは、プラズマ照射装置20、保持部21、及びマスク22を備える。   The atmospheric pressure plasma irradiation unit 15A includes a plasma irradiation device 20, a holding unit 21, and a mask 22.

図3及び図5を参照すると、保持部21は、底壁21aと、この底壁21aから上方に延びる互いに対向する一対の側壁21b,21bを備える。個々の側壁21b,21bの上端には線材2を通過させるための切欠21cが形成されている。底壁21aには接地電極23が配置されている。接地電極23と保持部21を通過する線材2との隙間は0.5mm以上1mm以下程度に設定される。側壁21b,21bの上端にマスク22が取り付けられている。マスク22は絶縁性と耐熱性を有し、例えばセラミック材料からなる。マスク22の中央には線材2のうちプラズマ照射装置20からのプラズマが照射される領域を規定するための開口22aが設けられている。開口22aの幅は例えば2mm以上5mm以下程度に設定される。保持部21、マスク22、及び接地電極23の具体的な構造は図示のものに限定されない。なお、プラズマ照射時に図示しないクランプ機構等で線材2を保持して位置決めしてもよい。   3 and 5, the holding portion 21 includes a bottom wall 21a and a pair of side walls 21b and 21b facing each other and extending upward from the bottom wall 21a. A cutout 21c for allowing the wire 2 to pass therethrough is formed at the upper ends of the individual side walls 21b, 21b. A ground electrode 23 is disposed on the bottom wall 21a. The gap between the ground electrode 23 and the wire 2 passing through the holding portion 21 is set to about 0.5 mm to 1 mm. A mask 22 is attached to the upper ends of the side walls 21b and 21b. The mask 22 has insulating properties and heat resistance, and is made of, for example, a ceramic material. In the center of the mask 22, an opening 22 a for defining a region of the wire 2 to be irradiated with plasma from the plasma irradiation apparatus 20 is provided. The width of the opening 22a is set to, for example, about 2 mm to 5 mm. The specific structures of the holding unit 21, the mask 22, and the ground electrode 23 are not limited to those illustrated. Note that the wire 2 may be held and positioned by a clamp mechanism (not shown) during plasma irradiation.

プラズマ照射装置20は保持部21の上方に配置され保持部21を通過する線材2のうちマスク22の開口22aを介して露出する部分にプラズマ(後述する二次プラズマ47)を照射する。   The plasma irradiation apparatus 20 irradiates plasma (secondary plasma 47 described later) to a portion of the wire 2 that is disposed above the holding unit 21 and is exposed through the opening 22a of the mask 22 in the wire 2 passing through the holding unit 21.

図2及び図3を参照して、大気圧プラズマ照射部15Aのプラズマ照射装置20を説明する。   With reference to FIG.2 and FIG.3, the plasma irradiation apparatus 20 of the atmospheric pressure plasma irradiation part 15A is demonstrated.

プラズマ照射装置20は、固定のプラズマヘッド31に収容され、断面円形の反応空間32を形成する誘電体からなる円筒状の放電管(誘導結合型プラズマ発生部)33を備える。放電管33の外側には波線形状で平板型のアンテナ34が設けられている。アンテナ34には整合回路35を介して高周波電源36が接続されている。放電管33の上端側には、不活性ガスであるArガスを放電管33に供給する第1ガス源17Aが接続されている。   The plasma irradiation apparatus 20 includes a cylindrical discharge tube (inductively coupled plasma generator) 33 made of a dielectric material that is accommodated in a fixed plasma head 31 and forms a reaction space 32 having a circular cross section. Outside the discharge tube 33, a flat-plate antenna 34 having a wavy shape is provided. A high frequency power source 36 is connected to the antenna 34 via a matching circuit 35. A first gas source 17 </ b> A that supplies Ar gas, which is an inert gas, to the discharge tube 33 is connected to the upper end side of the discharge tube 33.

プラズマヘッド31の下端側には混合器(プラズマ展開部)41が装着されている。混合器41は下端に開口(プラズマ噴出口42a)が形成された混合室42を備える。プラズマ噴出口42aが保持部21を通過する線材2の対象物2の上方に間隔をあけて位置している。この間隔は例えば0.5mm以上5mm以下に設定される。放電管33の下端は混合器41の混合室42内に進入している。また、混合室42の周壁部には、1個あるいは複数のガス供給口43が設けられている。これらのガス供給口43は、第2ガス源37Bに接続されている。第2ガス源37Bは、不活性ガスとしてのArガスと反応性ガスとしてのO2ガスとの混合ガス(Ar/O2ガス)を供給する。 A mixer (plasma developing section) 41 is attached to the lower end side of the plasma head 31. The mixer 41 includes a mixing chamber 42 having an opening (plasma jet outlet 42a) formed at the lower end. The plasma jet nozzles 42a are positioned above the object 2 of the wire 2 that passes through the holding portion 21 with a space therebetween. This interval is set to 0.5 mm or more and 5 mm or less, for example. The lower end of the discharge tube 33 enters the mixing chamber 42 of the mixer 41. Further, one or a plurality of gas supply ports 43 are provided in the peripheral wall portion of the mixing chamber 42. These gas supply ports 43 are connected to the second gas source 37B. The second gas source 37B supplies a mixed gas (Ar / O 2 gas) of Ar gas as an inert gas and O 2 gas as a reactive gas.

アンテナ34に対して整合回路35を介して高周波電源36から高周波電圧を印加され、それによって放電管33に高周波電界が印加される。放電管33の上端から反応空間32へ第1ガス源37Aが流量制御装置38Aを介してArガスを供給する。点火装置(図示せず)で高電圧を印加して点火することで、放電管33の下端から、Arガスがプラズマ化されたものであり、プラズマ密度が高く、高温の誘導結合型プラズマ(熱プラズマ)である一次プラズマ46が混合器41の混合室42へ吹き出される。   A high frequency voltage is applied to the antenna 34 from the high frequency power supply 36 via the matching circuit 35, and thereby a high frequency electric field is applied to the discharge tube 33. The first gas source 37A supplies Ar gas from the upper end of the discharge tube 33 to the reaction space 32 via the flow rate control device 38A. By igniting by applying a high voltage with an ignition device (not shown), Ar gas is converted into plasma from the lower end of the discharge tube 33, and the plasma density is high and high temperature inductively coupled plasma (heat Primary plasma 46, which is plasma, is blown out into the mixing chamber 42 of the mixer 41.

第2ガス源37Bから流量制御装置38Bを経てAr/O2ガスがガス供給口43を介して混合室42に供給される。放電管33からの一次プラズマ46(Arプラズマ)が混合室42中のAr/O2ガス領域に導入され、混合ガス中の特にArガスを励起して混合ガスの二次プラズマ47(Arプラズマ)を発生させる。二次プラズマ47は、混合室42の全領域に展開し、プラズマ噴出口42aから下方に吹き出して線材2に照射される。 Ar / O 2 gas is supplied from the second gas source 37B to the mixing chamber 42 via the gas supply port 43 via the flow rate control device 38B. The primary plasma 46 (Ar plasma) from the discharge tube 33 is introduced into the Ar / O 2 gas region in the mixing chamber 42, and in particular, the Ar gas in the mixed gas is excited to generate a secondary plasma 47 (Ar plasma) of the mixed gas. Is generated. The secondary plasma 47 develops in the entire region of the mixing chamber 42 and blows downward from the plasma outlet 42a to irradiate the wire 2.

前述のように大気圧プラズマ照射部15Bは大気圧プラズマ15Aを天地逆の姿勢としているので、プラズマ照射装置20は保持部21の下方に配置され保持部21を通過する線材2のうちマスク22の開口22aを介して露出する部分にプラズマ(後述する二次プラズマ47)を照射する。   As described above, since the atmospheric pressure plasma irradiation unit 15B has the atmospheric pressure plasma 15A in an upside down posture, the plasma irradiation device 20 is disposed below the holding unit 21 and is included in the mask 22 of the wire 2 passing through the holding unit 21. Plasma (secondary plasma 47, which will be described later) is irradiated to a portion exposed through the opening 22a.

大気圧プラズマ照射部16A,16Bのプラズマ照射装置20が備える第2ガス源37Bは、不活性ガスとしてのArガスと反応性ガスとしてのH2ガスとの混合ガス(Ar/H2ガス)を供給する。従って、放電管33からの一次プラズマ46(Arプラズマ)が混合室42中のAr/H2ガス領域に導入され、混合ガス中の特にArガスを励起して混合ガスの二次プラズマ47(Arプラズマ)を発生させる。二次プラズマ47は、混合室42の全領域に展開し、プラズマ噴出口42aから吹き出して線材2に照射される。 The second gas source 37B included in the plasma irradiation apparatus 20 of the atmospheric pressure plasma irradiation units 16A and 16B is a mixed gas (Ar / H 2 gas) of Ar gas as an inert gas and H 2 gas as a reactive gas. Supply. Accordingly, the primary plasma 46 (Ar plasma) from the discharge tube 33 is introduced into the Ar / H 2 gas region in the mixing chamber 42, and in particular, the Ar gas in the mixed gas is excited to excite the Ar gas in the mixed gas and the secondary plasma 47 (Ar Plasma). The secondary plasma 47 develops in the entire region of the mixing chamber 42, blows out from the plasma outlet 42a, and is applied to the wire 2.

図1及び図2に概念的に示す制御装置25は、大気圧プラズマ照射部15(特にプラズマ照射装置20)を含む、被覆除去装置1全体の動作を制御する。   The control device 25 conceptually shown in FIGS. 1 and 2 controls the operation of the entire coating removal apparatus 1 including the atmospheric pressure plasma irradiation unit 15 (particularly, the plasma irradiation device 20).

次に、本実施形態の被覆除去装置1の動作を説明する。   Next, operation | movement of the coating removal apparatus 1 of this embodiment is demonstrated.

供給部11から回収部12に向けて線材2が間欠的に送られる。線材2には張力付与部13A,13Bにより安定した張力が付与され、しかも冷却部14で冷却されることで線材2の温度上昇が抑制されている。   The wire 2 is intermittently sent from the supply unit 11 toward the collection unit 12. A stable tension is applied to the wire 2 by the tension applying sections 13A and 13B, and the temperature of the wire 2 is suppressed by being cooled by the cooling section 14.

大気圧プラズマ照射部15Aに到達した線材2にはプラズマ照射装置20により上方から二次プラズマ47が照射される。具体的に、線材2のうちマスク22の開口22aを介して露出している部分の上側に対して選択的に二次プラズマ47が照射される。二次プラズマ47(Arプラズマ)が反応性ガスを構成する酸素を活性化する。活性化された酸素は保持部21に保持された線材2の被覆4の上側で化学反応を行い、この部分の被覆4の上を分解除去する。   The wire 2 that has reached the atmospheric pressure plasma irradiation unit 15A is irradiated with the secondary plasma 47 from above by the plasma irradiation device 20. Specifically, the secondary plasma 47 is selectively irradiated to the upper side of the exposed portion of the wire 2 through the opening 22a of the mask 22. The secondary plasma 47 (Ar plasma) activates oxygen constituting the reactive gas. The activated oxygen undergoes a chemical reaction on the upper side of the coating 4 of the wire 2 held by the holding unit 21 and decomposes and removes the upper portion of the coating 4.

続いて、大気圧プラズマ照射部15Bに到達した線材2にはプラズマ照射装置20により下方から二次プラズマ47が照射される。二次プラズマ47で活性化された酸素は保持部21に保持された線材2の被覆4の下側で化学反応を行い、この部分の被覆4の下側を分解除去する。   Subsequently, the secondary plasma 47 is irradiated from below by the plasma irradiation device 20 onto the wire 2 that has reached the atmospheric pressure plasma irradiation unit 15B. The oxygen activated by the secondary plasma 47 undergoes a chemical reaction under the coating 4 of the wire 2 held by the holding unit 21 and decomposes and removes the lower side of this portion of the coating 4.

以上のように大気圧プラズマ照射部15A,15Bでの大気圧プラズマ照射によって被覆4が選択的に除去され、被覆4が除去された部分では芯材3,3が露出している。   As described above, the coating 4 is selectively removed by the atmospheric pressure plasma irradiation in the atmospheric pressure plasma irradiation units 15A and 15B, and the core materials 3 and 3 are exposed in the portion where the coating 4 is removed.

次に、大気圧プラズマ照射部16Aに到達した線材2にはプラズマ照射装置20により上方から二次プラズマ47が照射される。具体的に、線材2のうちマスク22の開口22aを介して露出している部分の上側に対して選択的に二次プラズマ47が照射される。二次プラズマ47(Arプラズマ)が反応性ガスを構成する水素を活性化する。活性化された水素は大気圧プラズマ照射部15Aでの被覆除去時に酸化した芯材3,3の表面のうち上側部分で化学反応を行い、この部分の酸化膜を還元除去する。   Next, the secondary plasma 47 is irradiated from above by the plasma irradiation device 20 on the wire 2 that has reached the atmospheric pressure plasma irradiation unit 16A. Specifically, the secondary plasma 47 is selectively irradiated to the upper side of the exposed portion of the wire 2 through the opening 22a of the mask 22. The secondary plasma 47 (Ar plasma) activates hydrogen constituting the reactive gas. The activated hydrogen undergoes a chemical reaction at the upper portion of the surfaces of the core materials 3 and 3 oxidized at the time of removing the coating in the atmospheric pressure plasma irradiation unit 15A, and the oxide film in this portion is reduced and removed.

続いて、大気圧プラズマ照射部16Bに到達した線材2にはプラズマ照射装置20により下方から二次プラズマ47が照射される。二次プラズマ47で活性化された水素は大気圧プラズマ照射部15Bでの被覆除去時に酸化した芯材3,3の表面のうち下側部分で化学反応を行い、この部分の酸化膜を還元除去する。   Subsequently, the secondary plasma 47 is irradiated from below by the plasma irradiation device 20 onto the wire 2 that has reached the atmospheric pressure plasma irradiation unit 16B. Hydrogen activated by the secondary plasma 47 undergoes a chemical reaction in the lower part of the surfaces of the core materials 3 and 3 oxidized during the coating removal in the atmospheric pressure plasma irradiation part 15B, and the oxide film in this part is reduced and removed. To do.

以上のように大気圧プラズマ照射部16A,16Bでの大気圧プラズマ照射により芯材3,3の表面が還元され酸化膜を除去される。   As described above, the surfaces of the core materials 3 and 3 are reduced and the oxide film is removed by the atmospheric pressure plasma irradiation in the atmospheric pressure plasma irradiation units 16A and 16B.

大気圧プラズマ照射部15A,15Bのプラズマ照射装置20は例えば以下のような条件で動作する。まず、高周波電源36の電力は20W以上50W以下程度に設定される。また、第1ガス源37AのAr流量は50sccm以上100sccm以下程度に設定される。第2ガス源37BのAr/O2流量は100sccm以上400sccm以下程度に設定される。また、第2ガス源37BでのO2濃度は1%以上2%以下程度の範囲に設定される。さらに、プラズマ照射時間は5秒以上15秒以下程度の範囲に設定される。 For example, the plasma irradiation apparatus 20 of the atmospheric pressure plasma irradiation units 15A and 15B operates under the following conditions. First, the power of the high frequency power supply 36 is set to about 20 W or more and 50 W or less. The Ar flow rate of the first gas source 37A is set to about 50 sccm or more and 100 sccm or less. The Ar / O 2 flow rate of the second gas source 37B is set to about 100 sccm or more and 400 sccm or less. Further, the O 2 concentration in the second gas source 37B is set in a range of about 1% to 2%. Further, the plasma irradiation time is set in a range of about 5 seconds to 15 seconds.

大気圧プラズマ照射部16A,16Bのプラズマ照射装置20は例えば以下のような条件で動作する。まず、高周波電源36の電力は20W以上50W以下程度に設定される。また、第1ガス源37AのAr流量は50sccm以上100sccm以下程度に設定される。第2ガス源37BのAr/H2流量は100sccm以上400sccm以下程度に設定される。また、第2ガス源37BでのH2濃度は1%以上2%以下程度の範囲に設定される。さらに、プラズマ照射時間は5秒以上15秒以下程度の範囲に設定される。 The plasma irradiation apparatus 20 of the atmospheric pressure plasma irradiation units 16A and 16B operates, for example, under the following conditions. First, the power of the high frequency power supply 36 is set to about 20 W or more and 50 W or less. The Ar flow rate of the first gas source 37A is set to about 50 sccm or more and 100 sccm or less. The Ar / H 2 flow rate of the second gas source 37B is set to about 100 sccm or more and 400 sccm or less. Further, the H 2 concentration in the second gas source 37B is set in a range of about 1% to 2%. Further, the plasma irradiation time is set in a range of about 5 seconds to 15 seconds.

大気圧プラズマ照射部15A,15Bにおいて反応性ガスとしてO2を含む混合ガス(Ar/O2)のプラズマで被覆4をより高速に分解し、その後に大気圧プラズマ照射部16A,16Bにおいて反応性ガスとしてH2を含む混合ガス(Ar/H2)のプラズマで芯材3,3の表面を還元して酸化膜を除去することで、芯材3の酸化を抑制ししつ高速で被覆4を除去できる。 In the atmospheric pressure plasma irradiation sections 15A and 15B, the coating 4 is decomposed at a higher speed with a plasma of a mixed gas (Ar / O 2 ) containing O 2 as a reactive gas, and then the reactivity is detected in the atmospheric pressure plasma irradiation sections 16A and 16B. The surface of the core materials 3 and 3 is reduced with a plasma of a mixed gas (Ar / H 2 ) containing H 2 as a gas to remove the oxide film, thereby suppressing the oxidation of the core material 3 and coating 4 at high speed. Can be removed.

また、線材2のうちマスク22の開口22aから露出している部分にのみ大気圧プラズマ照射部15A〜16Bにおいてプラズマが照射されるので、線材2の所望の位置の被覆4を選択的に除去できる。   Moreover, since the plasma is irradiated in the atmospheric pressure plasma irradiation units 15A to 16B only on the portion of the wire 2 exposed from the opening 22a of the mask 22, the coating 4 at a desired position of the wire 2 can be selectively removed. .

前述のように、大気圧プラズマ照射部15A,15Bよりも線材2の送り方向上流側の冷却部14Aで大気圧プラズマ照射部15A,15Bよりも上流側の線材2への熱伝達を低減することで、大気圧プラズマ照射部15A,15Bよりも上流側の線材2において被覆4の炭化、被覆4の溶融ないし軟化による形状の不安定な部分の拡大を抑制できる。また、前述のように、大気圧プラズマ照射部16A,16Bよりも線材2の送り方向下流側の冷却部14Bで大気圧プラズマ照射部16A,16Bよりも下流側の線材2への熱伝達を抑制することで、大気圧プラズマ照射部16A,16Bよりも下流側の線材2において被覆4の炭化、被覆4の溶融ないし軟化による形状の不安定な部分の拡大を抑制できる。さらに、前述のように、線材2のうち酸化膜が大気圧プラズマ照射部16A,16Bでプラズマ照射により還元除去された部分は、冷却部14Bにより冷却されて温度が低下するので、再酸化を防止できる。   As described above, heat transfer to the wire 2 upstream of the atmospheric pressure plasma irradiation units 15A and 15B is reduced by the cooling unit 14A upstream of the atmospheric pressure plasma irradiation units 15A and 15B in the feed direction of the wire 2. Thus, in the wire 2 upstream of the atmospheric pressure plasma irradiation portions 15A and 15B, the expansion of the unstable portion due to carbonization of the coating 4 and melting or softening of the coating 4 can be suppressed. Further, as described above, heat transfer to the wire 2 downstream of the atmospheric pressure plasma irradiation units 16A and 16B is suppressed by the cooling unit 14B downstream of the atmospheric pressure plasma irradiation units 16A and 16B in the feed direction of the wire 2. By doing so, in the wire 2 on the downstream side of the atmospheric pressure plasma irradiation parts 16A and 16B, it is possible to suppress expansion of an unstable portion due to carbonization of the coating 4 and melting or softening of the coating 4. Further, as described above, the portion of the wire 2 where the oxide film has been reduced and removed by plasma irradiation in the atmospheric pressure plasma irradiation units 16A and 16B is cooled by the cooling unit 14B and the temperature is lowered, thereby preventing reoxidation. it can.

以上のように、本実施形態の被覆除去装置1により、芯材3,3の酸化を抑制しつつ被覆4を選択的かつ高速で除去することができる。   As described above, the coating removal apparatus 1 of the present embodiment can selectively and rapidly remove the coating 4 while suppressing the oxidation of the core materials 3 and 3.

本発明は前記実施形態に限定されず、種々の変形が可能である。例えば、反応性ガスとしてO2を含む混合ガス(Ar/O2)のプラズマを照射するための単一の大気圧プラズマ照射部を設け、この大気圧プラズマ照射部の上下姿勢を上向きと下向きに切換可能としてもよい。同様に、反応性ガスとしてH2を含む混合ガス(Ar/H2)のプラズマを照射するための単一の大気圧プラズマ照射部を設け、この大気圧プラズマ照射部の上下姿勢を上向きと下向きに切換可能としてもよい。 The present invention is not limited to the above embodiment, and various modifications can be made. For example, a single atmospheric pressure plasma irradiation unit for irradiating plasma of mixed gas (Ar / O 2 ) containing O 2 as a reactive gas is provided, and the vertical position of this atmospheric pressure plasma irradiation unit is set upward and downward Switching may be possible. Similarly, a single atmospheric pressure plasma irradiation unit is provided to irradiate plasma of a mixed gas (Ar / H 2 ) containing H 2 as a reactive gas, and the vertical position of this atmospheric pressure plasma irradiation unit is upward and downward It may be possible to switch to.

1 被覆除去装置(プラズマ処理装置)
2 線材
3 芯材
4 被覆
11 供給部
11a ドラム
11b 駆動機構
12 回収部
12a ドラム
12b 駆動機構
13A,13B 張力付与部
13a 支軸
13b 固定ローラ
13c ガイドレール
13d 支軸
13e 可動ローラ
14 冷却部
14a 台座
14b 冷却部材
14c 貫通孔
15A,15B,16A,16B 大気圧プラズマ照射部
20 プラズマ照射装置
21 保持部
21a 底壁
21b 側壁
21c 切欠
22 マスク
22a 開口
23 接地電極
24 回収機構
25 制御装置
31 プラズマヘッド
32 反応空間
33 放電管
34 アンテナ(誘導結合型プラズマ発生部)
35 整合回路
36 高周波電源
37A 第1ガス源
37B 第2ガス源
38A,38B 流量制御装置
41 混合器(プラズマ展開部)
42 混合室
42a プラズマ噴射口
43 ガス供給口
46 一次プラズマ
47 二次プラズマ
1 Coating removal equipment (plasma processing equipment)
2 Wire material 3 Core material 4 Coating 11 Supply unit 11a Drum 11b Drive mechanism 12 Collection unit 12a Drum 12b Drive mechanism 13A, 13B Tension applying unit 13a Support shaft 13b Fixed roller 13c Guide rail 13d Support shaft 13e Movable roller 14 Cooling unit
14a Pedestal 14b Cooling member 14c Through-hole 15A, 15B, 16A, 16B Atmospheric pressure plasma irradiation part 20 Plasma irradiation apparatus 21 Holding part 21a Bottom wall 21b Side wall 21c Notch 22 Mask 22a Opening 23 Ground electrode 24 Recovery mechanism 25 Control apparatus 31 Plasma head 32 Reaction space 33 Discharge tube 34 Antenna (inductively coupled plasma generator)
35 Matching Circuit 36 High Frequency Power Supply 37A First Gas Source 37B Second Gas Source 38A, 38B Flow Control Device 41 Mixer (Plasma Development Unit)
42 Mixing chamber 42a Plasma injection port 43 Gas supply port 46 Primary plasma 47 Secondary plasma

Claims (4)

有機材料からなる被覆を有する被処理物を保持する保持部と、第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを吹き出す誘導結合型プラズマ発生部と、第2の不活性ガスとO2ガスの混合ガス領域と前記一次プラズマとが衝突されることによりプラズマ化した混合ガスから成る第1の二次プラズマを発生するプラズマ展開部とを有し、前記第1の二次プラズマを前記被処理物に照射する第1の大気圧プラズマ照射部と、
前記被処理物を保持する保持部と、前記第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを吹き出す誘導結合型プラズマ発生部と、前記第2の不活性ガスとH2ガスの混合ガス領域と前記一次プラズマとが衝突されることによりプラズマ化した混合ガスから成る第2の二次プラズマを発生するプラズマ展開部とを有し、前記第2の二次プラズマを前記被処理物に照射する第2の大気圧プラズマ照射部と
を備えるプラズマ処理装置。
A holding unit for holding an object to be processed having a coating made of an organic material, an inductively coupled plasma generating unit for blowing a primary plasma composed of an inductively coupled plasma of a first inert gas, a second inert gas and O A plasma expanding section for generating a first secondary plasma composed of a mixed gas that has been made into plasma by collision of a mixed gas region of two gases with the primary plasma, and the first secondary plasma is A first atmospheric pressure plasma irradiation unit for irradiating a workpiece;
A holding unit for holding the object to be processed, an inductively coupled plasma generating unit for blowing out primary plasma composed of inductively coupled plasma of the first inert gas, and a mixture of the second inert gas and H 2 gas A plasma developing section for generating a second secondary plasma composed of a mixed gas that has been made into a plasma by collision of the gas region with the primary plasma, and the second secondary plasma is applied to the object to be processed. A plasma processing apparatus comprising: a second atmospheric pressure plasma irradiation unit for irradiation.
前記第1及び第2の大気圧プラズマ照射部毎に、
前記大気圧プラズマ照射部との間に配置されて前記二次プラズマの前記被処理物に対する照射領域を制限するマスクと、
前記被処理物に対して前記大気圧プラズマ照射部及び前記マスクとは反対側に配置された接地電極と
をさらに備える請求項1に記載のプラズマ処理装置。
For each of the first and second atmospheric pressure plasma irradiation units,
A mask that is disposed between the atmospheric pressure plasma irradiation unit and restricts an irradiation region of the secondary plasma to the object to be processed;
The plasma processing apparatus according to claim 1, further comprising: a ground electrode disposed on a side opposite to the atmospheric pressure plasma irradiation unit and the mask with respect to the object to be processed.
前記被処理物は線材であり、
前記保持部に保持される線材に対して張力を付与する張力付与部をさらに備える、請求項1から請求項2に記載のプラズマ処理装置。
The object to be treated is a wire,
The plasma processing apparatus according to claim 1, further comprising a tension applying unit that applies tension to the wire held by the holding unit.
第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを発生させ、発生した一次プラズマを第2の不活性ガスとO2ガスの混合ガスに衝突させることによりプラズマ化した混合ガスから成る第1の二次プラズマを発生させ、
前記第1の二次プラズマを有機材料からなる被覆を有する被処理物に照射し、
前記第1の不活性ガスの誘導結合型プラズマからなる一次プラズマを発生させ、発生した一次プラズマを前記第2の不活性ガスとH2ガスの混合ガスに衝突させることによりプラズマ化した混合ガスから成る第2の二次プラズマを発生させ、
前記第2の二次プラズマを前記被処理物の前記第1の二次プラズマが照射された領域に照射する、プラズマ処理方法。
A primary plasma composed of inductively coupled plasma of the first inert gas is generated, and the generated primary plasma collides with a mixed gas of the second inert gas and O 2 gas to form a plasma mixed gas. 1 secondary plasma is generated,
Irradiating an object to be processed having a coating made of an organic material with the first secondary plasma,
A primary plasma composed of inductively coupled plasma of the first inert gas is generated, and the generated primary plasma is made to collide with the mixed gas of the second inert gas and H 2 gas to generate plasma. Generating a second secondary plasma comprising:
A plasma processing method of irradiating a region of the workpiece to which the first secondary plasma is irradiated with the second secondary plasma.
JP2011043855A 2011-03-01 2011-03-01 Plasma processing apparatus and plasma processing method Withdrawn JP2014099246A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011043855A JP2014099246A (en) 2011-03-01 2011-03-01 Plasma processing apparatus and plasma processing method
PCT/JP2012/001322 WO2012117713A1 (en) 2011-03-01 2012-02-27 Plasma processing device and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011043855A JP2014099246A (en) 2011-03-01 2011-03-01 Plasma processing apparatus and plasma processing method

Publications (1)

Publication Number Publication Date
JP2014099246A true JP2014099246A (en) 2014-05-29

Family

ID=46757658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011043855A Withdrawn JP2014099246A (en) 2011-03-01 2011-03-01 Plasma processing apparatus and plasma processing method

Country Status (2)

Country Link
JP (1) JP2014099246A (en)
WO (1) WO2012117713A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147137B2 (en) * 1993-05-14 2001-03-19 セイコーエプソン株式会社 Surface treatment method and device, semiconductor device manufacturing method and device, and liquid crystal display manufacturing method
JPH08118027A (en) * 1994-10-17 1996-05-14 Nippon Steel Corp Width widening method of plasma jet
JP4372918B2 (en) * 1999-06-30 2009-11-25 パナソニック電工株式会社 Plasma processing apparatus and plasma processing method
JP2002110613A (en) * 2000-09-26 2002-04-12 Matsushita Electric Works Ltd Plasma cleaning apparatus and method
DE10320472A1 (en) * 2003-05-08 2004-12-02 Kolektor D.O.O. Plasma treatment for cleaning copper or nickel
JP4896367B2 (en) * 2003-10-23 2012-03-14 パナソニック株式会社 Electronic component processing method and apparatus
JP4418227B2 (en) * 2003-12-26 2010-02-17 アリオス株式会社 Atmospheric pressure plasma source
JP4577155B2 (en) * 2005-08-26 2010-11-10 パナソニック株式会社 Plasma processing method
JP2007305309A (en) * 2006-05-08 2007-11-22 Matsushita Electric Ind Co Ltd Method and apparatus for generating atmospheric-pressure plasma
JP4682946B2 (en) * 2006-07-25 2011-05-11 パナソニック株式会社 Plasma processing method and apparatus
JP2008027717A (en) * 2006-07-20 2008-02-07 Seiko Epson Corp Plasma device

Also Published As

Publication number Publication date
WO2012117713A1 (en) 2012-09-07

Similar Documents

Publication Publication Date Title
US5735451A (en) Method and apparatus for bonding using brazing material
US5831238A (en) Method and apparatus for bonding using brazing material at approximately atmospheric pressure
US7977598B2 (en) Apparatus and method for removal of surface oxides via fluxless technique involving electron attachment and remote ion generation
JP3313972B2 (en) Flow soldering method and apparatus related to dry fluxing operation
MXPA96001752A (en) Wave welding procedure and device, integrating a dry pre-treatment operation
TW201110214A (en) Method for the removal of surface oxides by electron attachment
US20140332583A1 (en) Wire bonding apparatus
JP2010247126A (en) Method and apparatus for producing reactive species and method and apparatus for performing treatment by using reactive species
TW201332027A (en) Chip engagement device and chip engagement method
JPWO2015137364A1 (en) Plasma processing equipment
EP1473105B1 (en) Method for removal of surface oxide via fluxless technique involving electron attachement and remote ion generation
MX2012008943A (en) Apparatus and method for removal of surface oxides via fluxless technique involving electron attachment.
WO2012117713A1 (en) Plasma processing device and plasma processing method
JPWO2012063474A1 (en) Plasma processing apparatus and plasma processing method
JP2012182001A (en) Apparatus and method for processing plasma
JP4896367B2 (en) Electronic component processing method and apparatus
JP2015070053A (en) Junction assembly apparatus
JP2011023509A (en) Method for manufacturing semiconductor device, and semiconductor manufacturing apparatus used in the same
JP2010067839A (en) Method and device for reforming surface by micro electric discharge
WO2018179362A1 (en) Plasma generation device
JP2007305309A (en) Method and apparatus for generating atmospheric-pressure plasma
JP2004211161A (en) Plasma generating apparatus
JP2002036255A (en) Method and apparatus for plasma treatment
JP2001300298A (en) Method and apparatus for decomposing sf6 gas
JP2001308424A (en) High frequency discharge type excitation oxygen generator for iodine laser and generating method for high frequency discharge excitation oxygen

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603