JP2014098630A - Eddy current flaw detector - Google Patents

Eddy current flaw detector Download PDF

Info

Publication number
JP2014098630A
JP2014098630A JP2012250524A JP2012250524A JP2014098630A JP 2014098630 A JP2014098630 A JP 2014098630A JP 2012250524 A JP2012250524 A JP 2012250524A JP 2012250524 A JP2012250524 A JP 2012250524A JP 2014098630 A JP2014098630 A JP 2014098630A
Authority
JP
Japan
Prior art keywords
sensor
eddy current
support shaft
end side
current flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012250524A
Other languages
Japanese (ja)
Other versions
JP5894059B2 (en
Inventor
Mikiyasu Urata
幹康 浦田
Yasuharu Yamada
康晴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012250524A priority Critical patent/JP5894059B2/en
Publication of JP2014098630A publication Critical patent/JP2014098630A/en
Application granted granted Critical
Publication of JP5894059B2 publication Critical patent/JP5894059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to inspect an inner surface of a conduit by an eddy current flaw detection method according to the conduit and the shape of the inner surface thereof while keeping a distance between a sensor and the inner surface of the conduit at a small state.SOLUTION: An eddy current flaw detector 100 is inserted into the inside of a conductive conduit 10 and generate an eddy current by providing an induction current from a sensor 104 with an inner surface of the conduit to detect the defect thereof by a change in the eddy current. The eddy current flaw detector includes: a support shaft 102 that supports the sensor so as to oppose the inner surface of the conduit; and a sensor movement mechanism part 112 that reduces the diameter of the sensor toward the support shaft in a radial direction of the cross section of the conduit when the sensor comes in contact with part of the inner surface of the conduit. As the sensor movement mechanism part, an elastic member can be used that elastically reduces the diameter of the sensor toward the inner surface of the conduit in a vertical direction.

Description

本発明は、陸用ボイラ伝熱管等の導電性管路の内面に発生した欠陥の検出に使用される内挿式の渦電流探傷装置に関する。   The present invention relates to an interpolated eddy current flaw detector used for detecting a defect generated on the inner surface of a conductive conduit such as a land boiler heat transfer tube.

陸用ボイラ等に備わる伝熱管は、内面に亀裂や減肉、疵等の欠陥が発生・進展し、蒸気漏洩等のトラブルが発生する場合がある。当該トラブルを防止するために、伝熱管に対しては、渦電流探傷法(ECT;Eddy Current Testing)を利用した内挿式の渦電流センサを用いて、伝熱管内面に生じた欠陥を非破壊的に検出する方法が知られている。渦電流探傷法は、励磁電流を供給した励磁コイルが発生する磁束変化により,被検体に渦電流を発生させて、この渦電流により発生する磁束を表す検出信号を検出コイルで取得し、この検出信号に基づいて被検体となる管路内面に有する欠陥の位置、形状、深さ等を求める技術である。   The heat transfer tubes provided in land boilers may cause defects such as cracks, thinning, and flaws on the inner surface, resulting in problems such as steam leakage. In order to prevent such troubles, the heat transfer tubes are nondestructive of defects generated on the inner surface of the heat transfer tubes by using an interpolated eddy current sensor using eddy current testing (ECT). The method of detecting automatically is known. In the eddy current flaw detection method, an eddy current is generated in a subject by a change in magnetic flux generated by an exciting coil supplied with an exciting current, and a detection signal representing the magnetic flux generated by the eddy current is acquired by the detecting coil, and this detection is performed. This is a technique for obtaining the position, shape, depth, and the like of a defect on the inner surface of a duct that is a subject based on a signal.

渦電流センサを用いて管路内面の探傷作業を行う際には、渦電流センサと被検体となる管路内面との距離(リフトオフ)が欠陥検出能力に大きく影響する。渦電流センサの検出能力を高めるためには、当該リフトオフの低減が重要となる。特許文献1には、フィルム状の薄いコイルを円筒状の筐体に等間隔に複数個を貼付して、管端部の拡管や管板の不用信号を抑制するため交互に配線して渦流探傷器に差動接続させることにより、管内面とコイルとのリフトオフを低減させる渦流探傷プローブが開示されている。   When flaw detection is performed on the inner surface of a pipeline using an eddy current sensor, the distance (lift-off) between the eddy current sensor and the inner surface of the pipeline serving as a subject greatly affects the defect detection capability. In order to increase the detection capability of the eddy current sensor, it is important to reduce the lift-off. In Patent Document 1, eddy current flaw detection is performed by attaching a plurality of thin film-like coils to a cylindrical casing at equal intervals, and alternately wiring in order to suppress pipe end expansion and unnecessary signals from the tube sheet. An eddy current flaw detection probe is disclosed in which lift-off between the inner surface of the tube and the coil is reduced by differentially connecting to a vessel.

実用新案登録第3165804号公報Utility Model Registration No. 3165804

しかしながら、ボイラ伝熱管には、曲げベンドによる管の偏平や、溶接裏波により管内径が変形する箇所があるため、被検体なる管内面とコイルとのリフトオフをあまり小さくすると、管内におけるセンサの通過性が悪くなり、検査が困難な状況が発生する。すなわち、リフトオフが小さい程、欠陥検出能力は向上するが、図5に示すように、伝熱管10の曲げベンド部12を通過できず、曲げベンド部12から下段に有する2段目以降の伝熱管を検査できない可能性がある。また、図6に示すように、管路を接続するために管路の内面側に形成される溶接裏波14によりセンサ16が通過できない可能性がある。特許文献1に開示されている渦流探傷プローブでは、曲げ半径が小さいベンド部12や溶接裏波14への適用が困難である。   However, boiler heat transfer tubes have flat portions due to bending bends and locations where the inner diameter of the tubes deforms due to welding back waves. Therefore, if the lift-off between the inner surface of the subject tube and the coil is made too small, the sensor passes through the tube. The situation becomes difficult and inspection becomes difficult. That is, as the lift-off is smaller, the defect detection capability is improved, but as shown in FIG. 5, the second and subsequent heat transfer tubes that cannot pass through the bending bend portion 12 of the heat transfer tube 10 and are provided at the lower stage from the bending bend portion 12. May not be able to inspect. Further, as shown in FIG. 6, there is a possibility that the sensor 16 cannot pass due to the weld back wave 14 formed on the inner surface side of the pipe to connect the pipe. The eddy current flaw detection probe disclosed in Patent Document 1 is difficult to apply to the bend portion 12 and the welding back wave 14 having a small bending radius.

本発明は、従来の渦電流探傷装置が有する上記課題に鑑みてなされたものであり、被検体となる管路の形状に応じて渦電流探傷法による検査に適用することの可能な、新規かつ改良された渦電流探傷装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the conventional eddy current flaw detection apparatus, and can be applied to an inspection by an eddy current flaw detection method according to the shape of a pipe line to be examined. An object is to provide an improved eddy current flaw detector.

本発明の一態様は、導電性の管路の内部に挿通して、管路内面にセンサから誘導電流を与えて渦電流を生じさせ、該渦電流の変化によって前記管路内面の欠陥を検知する渦電流探傷装置であって、前記センサが前記管路内面に対向するように支持する支持軸と、前記センサが前記管路内面の一部に当接した際に、前記センサを前記支持軸に向けて前記管路の断面の半径方向に縮径させるセンサ移動機構部と、を備えることを特徴とする渦電流探傷装置に関係する。   In one embodiment of the present invention, an inside of a conductive pipe is inserted, an induced current is applied to the inner surface of the pipe from a sensor to generate an eddy current, and a defect in the inner face of the pipe is detected by a change in the eddy current. An eddy current flaw detection device that supports the sensor so that the sensor faces the inner surface of the pipe line, and the sensor moves the support shaft when the sensor abuts a part of the inner surface of the pipe line. And a sensor moving mechanism for reducing the diameter in the radial direction of the cross section of the pipe line toward the eddy current flaw detector.

本発明の一態様によれば、センサが管路内面に有する溶接裏波や管路の曲げベンド部等の管路内面の一部に当接した際に、センサが半径方向に縮径する。このため、溶接裏波等により管路の内径が狭くなっている箇所や、曲げ半径が小さいベンド部でもセンサを引っ掛けずに挿通させて、渦電流探傷法による管路内面の検査ができる。   According to one aspect of the present invention, when the sensor comes into contact with a part of the inner surface of the pipe, such as a weld back wave or a bending bend of the pipe, which the inner surface of the pipe has, the sensor is radially reduced in diameter. For this reason, it is possible to inspect the inner surface of the pipe by the eddy current flaw detection method by inserting the sensor without hooking the sensor even in a portion where the inner diameter of the pipe is narrow due to welding back waves or the like or a bend having a small bending radius.

このとき、本発明の一態様では、前記センサ移動機構部は、前記支持軸に対して前記センサを前記半径方向に弾性的に縮径させる弾性部材であることとしてもよい。   At this time, in one aspect of the present invention, the sensor moving mechanism section may be an elastic member that elastically reduces the diameter of the sensor in the radial direction with respect to the support shaft.

このようにすれば、センサと管路内面との距離を小さい状態に維持しながら、管路や管路内面の形状に追従して、渦電流探傷法による管路内面の検査ができる。   In this way, the inner surface of the pipeline can be inspected by the eddy current flaw detection method while following the shape of the pipeline and the inner surface of the pipeline while maintaining the distance between the sensor and the inner surface of the pipeline in a small state.

また、本発明の一態様では、前記支持軸が先端側支持軸と後端側支持軸に分離され、前記センサ移動機構部は、前記先端側支持軸の後端側に設けられる先端側連結部と、前記後端側支持軸の先端側に設けられる後端側連結部と、一端が前記センサと連結され、他端が前記先端側連結部と連結され、前記センサを前記管路の長さ方向及び前記半径方向に揺動可能とする先端側揺動部材と、一端が前記センサと連結され、他端が前記後端側連結部と連結され、前記センサを前記長さ方向及び前記半径方向に揺動可能とする後端側揺動部材と、を備え、かつ前記センサが前記管路内面の一部と接触可能な屈曲部となることとしてもよい。   In one aspect of the present invention, the support shaft is separated into a front end side support shaft and a rear end side support shaft, and the sensor moving mechanism section is provided on a rear end side of the front end side support shaft. A rear end side connection portion provided on the front end side of the rear end side support shaft, one end is connected to the sensor, the other end is connected to the front end side connection portion, and the sensor is connected to the length of the pipe line. One end is connected to the sensor, the other end is connected to the rear end side connecting portion, and the sensor is connected to the length direction and the radial direction. And a rear end-side swinging member that can swing, and the sensor may be a bent portion that can contact a part of the inner surface of the pipe line.

このようにすれば、センサと管路内面との距離を小さい状態に維持しながら、フレキシブルに管路や管路内面の形状に追従して、渦電流探傷法による管路内面の検査ができる。   In this way, the inner surface of the pipeline can be inspected by an eddy current flaw detection method while flexibly following the shape of the pipeline and the inner surface of the pipeline while keeping the distance between the sensor and the inner surface of the pipeline small.

また、本発明の一態様では、前記センサは、前記支持軸の周方向に複数設けられることとしてもよい。   In one embodiment of the present invention, a plurality of sensors may be provided in the circumferential direction of the support shaft.

このようにすれば、管路の内面の全方向に向けて、渦電流探傷法による管路内面の検査ができるようになる。   In this way, the inner surface of the pipe can be inspected by the eddy current flaw detection method in all directions on the inner surface of the pipe.

また、本発明の一態様では、前記センサは、複数のアレイコイルを前記支持軸の周方向に配列させて構成されることとしてもよい。   In the aspect of the invention, the sensor may be configured by arranging a plurality of array coils in a circumferential direction of the support shaft.

このようにすれば、管路内面の広範囲に亘って渦電流探傷法による検査ができるようになる。   If it does in this way, it will become possible to inspect by the eddy current flaw detection method over a wide range of the inner surface of the pipeline.

以上説明したように本発明によれば、センサが管路内面の一部に当接した際に、センサを支持軸に向けて管路断面の半径方向に縮径させることができる。このため、センサと管路内面との距離を小さい状態に維持しながら、管路や管路内面の形状の変化に対応するように、渦電流探傷法による管路内面の検査ができるようになる。   As described above, according to the present invention, when the sensor contacts a part of the inner surface of the pipe, the sensor can be reduced in diameter in the radial direction of the pipe cross section toward the support shaft. For this reason, while maintaining the distance between the sensor and the inner surface of the pipe line in a small state, the inner surface of the pipe line can be inspected by an eddy current flaw detection method so as to cope with a change in the shape of the pipe line or the inner surface of the pipe line. .

本発明の渦電流探傷装置の第1の実施形態における概略構成図である。It is a schematic block diagram in 1st Embodiment of the eddy current flaw detector of this invention. 図1のA−A断面図である。It is AA sectional drawing of FIG. (a)、(b)、(c)は、同実施形態における渦電流探傷装置の動作説明図である。(A), (b), (c) is operation | movement explanatory drawing of the eddy current flaw detector in the same embodiment. 本発明の渦電流探傷装置の第2の実施形態における概略構成図である。It is a schematic block diagram in 2nd Embodiment of the eddy current flaw detector of this invention. 渦電流探傷装置で検査対象となる伝熱管の一例を示す図である。It is a figure which shows an example of the heat exchanger tube used as a test object with an eddy current flaw detector. 従来の渦電流探傷装置における問題点の動作説明図である。It is operation | movement explanatory drawing of the problem in the conventional eddy current flaw detector.

以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are essential as means for solving the present invention. Not necessarily.

(第1の実施形態)
まず、本発明の渦電流探傷装置の第1の実施形態の構成について、図面を使用しながら説明する。図1は、本発明の渦電流探傷装置の第1の実施形態の概略構成図であり、図2は、図1のA−A断面図である。
(First embodiment)
First, the configuration of the first embodiment of the eddy current flaw detector according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a first embodiment of an eddy current flaw detector according to the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

渦電流探傷装置は、導電性の管路の内部に挿通して、管路内面にセンサから誘導電流を与えて渦電流を生じさせ、当該渦電流の変化によって管路内面の欠陥を検知する装置である。本実施形態の渦電流探傷装置100は、図1に示すように、支持軸102と、センサ104と、先端ガイド106と、調芯治具108とを備える。   The eddy current flaw detection apparatus is an apparatus that is inserted into a conductive pipe line, generates an eddy current by applying an induced current from the sensor to the inner surface of the pipe line, and detects a defect on the inner surface of the pipe line by a change in the eddy current. It is. As shown in FIG. 1, the eddy current flaw detector 100 according to the present embodiment includes a support shaft 102, a sensor 104, a tip guide 106, and an alignment jig 108.

支持軸102は、管路の形状に応じて曲げることの可能なフレキシブルシャフトであり、センサ104が管路内面に対向するように支持する。支持軸102の先端には、渦電流探傷装置100を管路内部に挿通するのを誘導する先端ガイド106が設けられている。また、センサ104を支持する支持軸102が管路中心軸上に配置するようにするために、支持軸102のセンサ104の先端側と後端側には、それぞれ支持軸102を中心に放射状にブラシが取り付けられているブラシ式の調芯治具108が設けられている。なお、調芯治具108は、ブラシ式に限定されず,管形状が変化しても通過可能な調芯治具であれば、籠式等の他の形態のものでもよい。渦電流探傷装置100は、可撓チューブ112を介して伝熱管の外に置かれる不図示の送り装置に接続されている。送り装置は、動力をプッシャー式、水圧式、又は空気圧式等としたものであり、渦電流探傷装置100を伝熱管の内部に挿通させるように動作する。   The support shaft 102 is a flexible shaft that can be bent in accordance with the shape of the pipeline, and supports the sensor 104 so as to face the inner surface of the pipeline. A distal end guide 106 is provided at the distal end of the support shaft 102 for guiding the eddy current flaw detector 100 to be inserted into the duct. Further, in order to arrange the support shaft 102 that supports the sensor 104 on the central axis of the pipe line, the front end side and the rear end side of the sensor 104 of the support shaft 102 are radially arranged around the support shaft 102, respectively. A brush-type alignment jig 108 to which a brush is attached is provided. The alignment jig 108 is not limited to the brush type, and may be another type such as a saddle type as long as the alignment jig can pass even if the tube shape changes. The eddy current flaw detector 100 is connected to a feeder (not shown) placed outside the heat transfer tube via a flexible tube 112. The feeding device is a pusher type, a hydraulic type, a pneumatic type, or the like, and operates so that the eddy current flaw detector 100 is inserted into the heat transfer tube.

センサ104は、図1に示すように、複数のアレイコイル110を支持軸102の周方向に配列させるようにして構成される。複数のアレイコイル100をセンサ104の表面に取り付けることにより、管路内面の略全周を網羅した渦電流探傷検査が可能とする。   As shown in FIG. 1, the sensor 104 is configured such that a plurality of array coils 110 are arranged in the circumferential direction of the support shaft 102. By attaching a plurality of array coils 100 to the surface of the sensor 104, an eddy current flaw inspection covering almost the entire circumference of the inner surface of the pipe line can be performed.

また、管路内面の全方向に向けて、渦電流探傷法による管路内面の検査ができるようにするために、センサ104は、支持軸102の周方向に複数設けられ、これらセンサ104により支持軸102を覆う略楕円球形状となるように構成される。本実施形態では、図2に示すように、支持軸102を囲むようにして、センサ104が4つ設けられている。なお、センサ104は、検査対象の配管内面を全面的に走査できるように、支持軸102の周方向に配置されていれば良いので、その個数は、4つに限定されない。   In addition, a plurality of sensors 104 are provided in the circumferential direction of the support shaft 102 so that the inner surface of the pipe can be inspected by an eddy current flaw detection method in all directions on the inner surface of the pipe. It is comprised so that it may become the substantially elliptical sphere shape which covers the axis | shaft 102. FIG. In the present embodiment, as shown in FIG. 2, four sensors 104 are provided so as to surround the support shaft 102. Note that the number of sensors 104 is not limited to four because the sensors 104 may be arranged in the circumferential direction of the support shaft 102 so that the entire inner surface of the pipe to be inspected can be scanned.

本実施形態では、図2に示すように、各センサ104がバネ112を介して、支持軸102に支持されていることを特徴とする。すなわち、センサ104が管路内面に向けて弾性的に移動させる弾性部材となるバネ112を介して、支持軸102の軸方向に対して垂直方向に支持されている。本実施形態では、センサ104が管路内面の一部に当接した際に、バネ112がセンサ104を支持軸102に向けて管路10の断面の半径方向に縮径させるセンサ移動機構部として機能する。また、管路や管路内面の形状に応じて、センサ104を弾性的に伝熱管10の半径方向に縮径させるために、各センサ104との間には、支持軸102の周方向に所定の大きさのクリアランス114が設けられている。なお、ここで言及する「管路内面の一部」とは、例えば、管路内面に有する溶接裏波14や管路の曲げベンド部12を言うものとする。   In the present embodiment, as shown in FIG. 2, each sensor 104 is supported by a support shaft 102 via a spring 112. That is, the sensor 104 is supported in a direction perpendicular to the axial direction of the support shaft 102 via a spring 112 that is an elastic member that elastically moves toward the inner surface of the pipe line. In the present embodiment, when the sensor 104 abuts on a part of the inner surface of the pipe line, the spring 112 serves as a sensor moving mechanism unit that reduces the diameter of the sensor 104 toward the support shaft 102 in the radial direction of the cross section of the pipe line 10. Function. Further, in order to elastically reduce the diameter of the sensor 104 in the radial direction of the heat transfer tube 10 according to the shape of the pipe line or the inner surface of the pipe line, a predetermined distance is provided between the sensor 104 and the circumferential direction of the support shaft 102. A clearance 114 having a size of 1 mm is provided. The “part of the inner surface of the pipe line” referred to here refers to, for example, the weld back wave 14 or the bending bend portion 12 of the pipe line that is provided on the inner surface of the pipe line.

このように、センサ104がバネ112を介して支持軸102に支持される構成とすることにより、センサ104と管路内面との距離であるリフトオフを小さい状態に維持しながら、管路や管路内面の形状に追従して、渦電流探傷法による管路内面の検査ができるようになる。   In this way, by adopting a configuration in which the sensor 104 is supported by the support shaft 102 via the spring 112, the pipeline or pipeline can be maintained while maintaining a small lift-off, which is the distance between the sensor 104 and the pipeline inner surface. Following the shape of the inner surface, the inner surface of the pipeline can be inspected by the eddy current flaw detection method.

次に、本実施形態の渦電流探傷装置を用いた伝熱管の内面欠陥検査の動作について、図面を使用しながら説明する。図4は、本実施形態における渦電流探傷装置の動作説明図であり、(a)はセンサが溶接裏波と当接する前の状態、(b)はセンサが溶接裏波と当接した状態、(c)は(b)のB−B断面図である。   Next, the operation of the inner surface defect inspection of the heat transfer tube using the eddy current flaw detector of the present embodiment will be described with reference to the drawings. FIG. 4 is an operation explanatory diagram of the eddy current flaw detector according to the present embodiment, where (a) is a state before the sensor comes into contact with the welding back wave, (b) is a state where the sensor is in contact with the welding back wave, (C) is BB sectional drawing of (b).

伝熱管10は、複数の管路を溶接により接続することによって形成され、管路同士の溶接部には、図3(a)に示すように、溶接裏波14が管路内面側に凸状に形成される。本発明は、このように管路内面に溶接裏波14が形成されて、配管内径が小さくなるような箇所においても、センサ104を縮径させることによって、センサ104を溶接裏波14に引っかけずに挿通させて、管路内面を検査できるようにしたものである。   The heat transfer tube 10 is formed by connecting a plurality of pipelines by welding. As shown in FIG. 3 (a), a weld back wave 14 is convex on the inner surface side of the pipeline. Formed. In the present invention, the weld back wave 14 is formed on the inner surface of the pipe in this way, and the sensor 104 is not hooked on the weld back wave 14 by reducing the diameter of the sensor 104 even at a location where the inner diameter of the pipe becomes small. It is made to be able to inspect the inner surface of the pipe line.

すなわち、渦電流探傷装置100が伝熱管10の内部を走査する際に、センサ104が溶接裏波14と当接すると、図3(b)、(c)に示すように、センサ104を支持するバネ112が弾性的に収縮して、センサ104が支持軸102の方に移動しながら縮径する。センサ104を支持するバネ112が収縮して、センサ104の軸方向断面の外径が小さくなると、センサ104が溶接裏波14に引っ掛からずに、通過することができる。   That is, when the sensor 104 comes into contact with the welding back wave 14 when the eddy current flaw detector 100 scans the inside of the heat transfer tube 10, the sensor 104 is supported as shown in FIGS. The spring 112 contracts elastically, and the sensor 104 contracts while moving toward the support shaft 102. When the spring 112 supporting the sensor 104 contracts and the outer diameter of the cross section in the axial direction of the sensor 104 becomes smaller, the sensor 104 can pass without being caught by the welding back wave 14.

このように、本実施形態では、センサ104は、伝熱管10の管路内面の一部に当接した際に、断面半径方向に移動して縮径する構成となっている。このため、溶接裏波14等により伝熱管10の内径が狭くなっている箇所や、曲げ半径が小さいベンド部12(図5参照)でも、センサ10を縮径させることにより、センサ104を管路内面の一部に引っ掛けずに挿通させて、管路内面の検査ができるようになる。すなわち、センサ104と管路内面とのリフトオフを小さい状態に維持しながら、溶接裏波14や曲げベンド部12のような変形部に追従できるフレキシブルなセンサ構造とすることが出来る。   Thus, in the present embodiment, the sensor 104 is configured to move in the radial direction of the cross section and reduce the diameter when contacting the part of the inner surface of the pipe of the heat transfer tube 10. For this reason, the sensor 104 is reduced in diameter by reducing the diameter of the sensor 10 even at a portion where the inner diameter of the heat transfer tube 10 is narrowed by the welding back wave 14 or the like or at the bend portion 12 (see FIG. 5) having a small bending radius. The pipe inner surface can be inspected by being inserted without being caught on a part of the inner surface. That is, a flexible sensor structure that can follow a deformed portion such as the weld back wave 14 and the bending bend portion 12 while maintaining a small lift-off between the sensor 104 and the inner surface of the pipe line can be obtained.

(第2の実施形態)
次に、本発明の渦電流探傷装置の第2の実施形態の構成について、図面を使用しながら説明する。図4は、本発明の渦電流探傷装置の第2の実施形態の概略構成図である。
(Second Embodiment)
Next, the configuration of the second embodiment of the eddy current flaw detector according to the present invention will be described with reference to the drawings. FIG. 4 is a schematic configuration diagram of a second embodiment of the eddy current flaw detector according to the present invention.

本実施形態の渦電流探傷装置200は、図4に示すように、先端側支持軸202aと、後端側支持軸202bと、センサ204と、先端ガイド206と、調芯治具208と、先端側揺動部材212と、後端側揺動部材214と、先端側連結部216と、後端側連結部218とを備える。なお、先端ガイド206と調芯治具208の構成、機能は、第1の実施形態と同様なので、その説明は、省略する。   As shown in FIG. 4, the eddy current flaw detector 200 of the present embodiment includes a front end side support shaft 202a, a rear end side support shaft 202b, a sensor 204, a front end guide 206, an alignment jig 208, and a front end. A side swing member 212, a rear end side swing member 214, a front end side connecting portion 216, and a rear end side connecting portion 218 are provided. The configurations and functions of the tip guide 206 and the alignment jig 208 are the same as those in the first embodiment, and a description thereof will be omitted.

センサ204は、図4に示すように、複数のアレイコイル210を支持軸202の周方向に配列させるようにして構成される。複数のアレイコイル210をセンサ204の表面に取り付けることにより、管路内面の略全周を網羅した渦電流探傷検査が可能とする。   As shown in FIG. 4, the sensor 204 is configured such that a plurality of array coils 210 are arranged in the circumferential direction of the support shaft 202. By attaching a plurality of array coils 210 to the surface of the sensor 204, an eddy current flaw inspection covering almost the entire circumference of the inner surface of the pipe line can be performed.

また、管路内面の全方向に向けて、渦電流探傷法による管路内面の検査ができるようにするために、センサ204は、先端側支持軸202a及び後端側支持軸202bで構成される支持軸の周方向に複数設けられる。本実施形態では、図4に示すように、先端側支持軸202a及び後端側支持軸202bの中心線を挟むようにして、センサ204が2つ設けられている。なお、センサ204は、検査対象の配管内面を全面的に走査できるように、支持軸202a、202bの周方向に配置されていれば良いので、その個数は、2つに限定されない。   Further, the sensor 204 includes a front end side support shaft 202a and a rear end side support shaft 202b so that the inner surface of the pipe line can be inspected by eddy current flaw detection in all directions of the inner surface of the pipe line. A plurality are provided in the circumferential direction of the support shaft. In the present embodiment, as shown in FIG. 4, two sensors 204 are provided so as to sandwich the center line of the front end side support shaft 202a and the rear end side support shaft 202b. Note that the number of the sensors 204 is not limited to two, as long as the sensors 204 are arranged in the circumferential direction of the support shafts 202a and 202b so that the entire inner surface of the pipe to be inspected can be scanned.

本実施形態では、センサ204が管路内面の一部に当接した際に、センサ204を半径方向に縮径させるセンサ移動機構部の構成が第1の実施形態と異なる。すなわち、本実施形態では、支持軸が先端側支持軸202aと後端側支持軸202bに分離され、センサ移動機構部は、先端側揺動部材212と、後端側揺動部材214と、先端側連結部216と、後端側連結部218と、を備える構成となっている。また、センサ移動機構部は、図4に示すように、センサ204が管路内面の一部と接触可能な屈曲部となって、先端側揺動部材212と後端側揺動部材214で折れ線形状を形成するような構成となっている。   In the present embodiment, the configuration of the sensor moving mechanism that reduces the diameter of the sensor 204 in the radial direction when the sensor 204 abuts on a part of the inner surface of the pipe is different from that of the first embodiment. That is, in this embodiment, the support shaft is separated into the front end side support shaft 202a and the rear end side support shaft 202b, and the sensor moving mechanism section includes the front end side swing member 212, the rear end side swing member 214, and the front end The side connection portion 216 and the rear end side connection portion 218 are provided. Further, as shown in FIG. 4, the sensor moving mechanism portion is a bent portion in which the sensor 204 can come into contact with a part of the inner surface of the pipe line, and is bent by the front end side swing member 212 and the rear end side swing member 214. It is configured to form a shape.

先端側連結部216は、先端側支持軸202aの後端側に設けられており、先端側揺動部材212と連結している。後端側連結部218は、後端側支持軸202bの先端側に設けられており、後端側揺動部材214と連結している。   The distal end side connecting portion 216 is provided on the rear end side of the distal end side support shaft 202 a and is connected to the distal end side swinging member 212. The rear end side connecting portion 218 is provided on the front end side of the rear end side support shaft 202 b and is connected to the rear end side swinging member 214.

先端側揺動部材212は、バネ等の弾性部材で形成され、一端がセンサ204と連結され、他端が先端側連結部216を介して先端側支持軸202aと連結され、センサ204を伝熱管10の長さ方向及び半径方向に弾性的に揺動させる機能を有する。後端側揺動部材214は、バネ等の弾性部材で形成され、一端がセンサ204と連結され、他端が後端側連結部218を介して後端側支持軸202bと連結され、センサ204を伝熱管10の長さ方向及び半径方向に弾性的に揺動させる機能を有する。   The distal-side oscillating member 212 is formed of an elastic member such as a spring, and has one end coupled to the sensor 204 and the other end coupled to the distal-side support shaft 202a via the distal-side coupling part 216. The sensor 204 is connected to the heat transfer tube. 10 has a function of elastically rocking in the length direction and the radial direction. The rear end side swinging member 214 is formed of an elastic member such as a spring, one end is connected to the sensor 204, and the other end is connected to the rear end side support shaft 202 b via the rear end side connecting portion 218. Has a function of elastically rocking the heat transfer tube 10 in the length direction and the radial direction.

本実施形態のセンサ移動機構部を上記構成とすることにより、センサ204を先端側方向に揺動させる際には、先端側揺動部材212を収縮させ、かつ後端側揺動部材214を伸長させる。また、センサ204を後端側方向に揺動させる際には、先端側揺動部材212を伸長させ、かつ後端側揺動部材214を収縮させる。さらに、センサ204を支持軸202a、202bに近づく方向に揺動させる際には、先端側揺動部材212及び後端側揺動部材214を収縮させ、センサ204を支持軸202a、202bから遠ざかる方向に揺動させる際には、先端側揺動部材212及び後端側揺動部材214を伸長させる。   By configuring the sensor moving mechanism of this embodiment as described above, when the sensor 204 is swung in the front end direction, the front end side swing member 212 is contracted and the rear end side swing member 214 is extended. Let Further, when the sensor 204 is swung in the rear end direction, the front end swing member 212 is extended and the rear end swing member 214 is contracted. Further, when the sensor 204 is swung in a direction approaching the support shafts 202a and 202b, the front end-side swing member 212 and the rear end-side swing member 214 are contracted, and the sensor 204 is moved away from the support shafts 202a and 202b. When swinging the front end side swinging member 212, the front end side swinging member 212 and the rear end side swinging member 214 are extended.

このように、本実施形態では、センサ204が管路内面の一部と当接した際に、センサ204を管路長さ方向及び管路半径方向に揺動させながら、縮径させることができる。このため、センサ204は、曲げベンド部12や溶接裏波14による伝熱管10の内径の変化に追従できるようになる。すなわち、センサ204と管路内面とのリフトオフを小さい状態に維持しながら、フレキシブルに管路や管路内面の形状に追従して、渦電流探傷法による管路内面の検査ができるようになる。   Thus, in this embodiment, when the sensor 204 abuts a part of the inner surface of the pipe, the diameter of the sensor 204 can be reduced while swinging in the pipe length direction and the pipe radial direction. . For this reason, the sensor 204 can follow changes in the inner diameter of the heat transfer tube 10 due to the bending bend portion 12 and the welding back wave 14. That is, the inner surface of the pipeline can be inspected by an eddy current flaw detection method while flexibly following the shape of the pipeline and the inner surface of the pipeline while maintaining the lift-off between the sensor 204 and the inner surface of the pipeline in a small state.

なお、上記のように本発明の第1及び第2の実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。   Although the first and second embodiments of the present invention have been described in detail as described above, it will be apparent to those skilled in the art that many modifications that do not substantially depart from the novel matters and effects of the present invention are possible. Will be easily understood. Therefore, all such modifications are included in the scope of the present invention.

例えば、明細書または図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書または図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、渦電流探傷装置の構成、動作も本発明の第1及び第2の実施形態で説明したものに限定されず、種々の変形実施が可能である。   For example, a term described at least once together with a different term having a broader meaning or the same meaning in the specification or the drawings can be replaced with the different term anywhere in the specification or the drawings. Further, the configuration and operation of the eddy current flaw detector are not limited to those described in the first and second embodiments of the present invention, and various modifications can be made.

10 伝熱管(管路)
12 曲げベンド部
14 溶接裏波
100、200 渦電流探傷装置
102、202a、202b 支持軸
104、204 センサ
106、206 先端ガイド
108、208 調芯治具
110、210 アレイコイル
112 弾性部材(センサ移動機構部)
114 クリアランス
212 先端側揺動部材
214 後端側揺動部材
216 先端側連結部
218 後端側連結部
10 Heat transfer tube (pipe)
12 Bend Bend 14 Weld Back Wave 100, 200 Eddy Current Flaw Detection Device 102, 202a, 202b Support Shaft 104, 204 Sensor 106, 206 Tip Guide 108, 208 Alignment Jig 110, 210 Array Coil 112 Elastic Member (Sensor Moving Mechanism) Part)
114 Clearance 212 Front end side swinging member 214 Rear end side swinging member 216 Front end side connecting portion 218 Rear end side connecting portion

Claims (5)

導電性の管路の内部に挿通して、管路内面にセンサから誘導電流を与えて渦電流を生じさせ、該渦電流の変化によって前記管路内面の欠陥を検知する渦電流探傷装置であって、
前記センサが前記管路内面に対向するように支持する支持軸と、
前記センサが前記管路内面の一部に当接した際に、前記センサを前記支持軸に向けて前記管路の断面の半径方向に縮径させるセンサ移動機構部と、を備えることを特徴とする渦電流探傷装置。
It is an eddy current flaw detector that is inserted into a conductive pipe line, generates an eddy current by applying an induced current from a sensor to the inner surface of the pipe line, and detects a defect on the inner surface of the pipe line by a change in the eddy current. And
A support shaft that supports the sensor so as to face the inner surface of the pipe line;
A sensor moving mechanism for reducing the diameter of the sensor in the radial direction of the cross section of the pipe line toward the support shaft when the sensor comes into contact with a part of the inner surface of the pipe line. Eddy current flaw detector.
前記センサ移動機構部は、前記支持軸に対して前記センサを前記半径方向に弾性的に縮径させる弾性部材であることを特徴とする請求項1に記載の渦電流探傷装置。   The eddy current flaw detector according to claim 1, wherein the sensor moving mechanism unit is an elastic member that elastically reduces the diameter of the sensor in the radial direction with respect to the support shaft. 前記支持軸が先端側支持軸と後端側支持軸に分離され、
前記センサ移動機構部は、
前記先端側支持軸の後端側に設けられる先端側連結部と、
前記後端側支持軸の先端側に設けられる後端側連結部と、
一端が前記センサと連結され、他端が前記先端側連結部と連結され、前記センサを前記管路の長さ方向及び前記半径方向に揺動可能とする先端側揺動部材と、
一端が前記センサと連結され、他端が前記後端側連結部と連結され、前記センサを前記長さ方向及び前記半径方向に揺動可能とする後端側揺動部材と、を備え、
かつ前記センサが前記管路内面の一部と接触可能な屈曲部となることを特徴とする請求項1に記載の渦電流探傷装置。
The support shaft is separated into a front end side support shaft and a rear end side support shaft,
The sensor moving mechanism unit is
A distal end side connecting portion provided on a rear end side of the distal end side support shaft;
A rear end side connecting portion provided on a front end side of the rear end side support shaft;
One end is connected to the sensor, the other end is connected to the tip-side connecting portion, and a tip-side swinging member that enables the sensor to swing in the length direction and the radial direction of the conduit;
One end connected to the sensor, the other end connected to the rear end side connecting portion, and a rear end side swinging member that enables the sensor to swing in the length direction and the radial direction,
The eddy current flaw detector according to claim 1, wherein the sensor is a bent portion capable of contacting a part of the inner surface of the pipe line.
前記センサは、前記支持軸の周方向に複数設けられることを特徴とする請求項2又は3に記載の渦電流探傷装置。   The eddy current flaw detector according to claim 2 or 3, wherein a plurality of the sensors are provided in a circumferential direction of the support shaft. 前記センサは、複数のアレイコイルを前記支持軸の周方向に配列させて構成されることを特徴とする請求項1〜4の何れか1項に記載の渦電流短章装置。
The eddy current short device according to claim 1, wherein the sensor is configured by arranging a plurality of array coils in a circumferential direction of the support shaft.
JP2012250524A 2012-11-14 2012-11-14 Eddy current flaw detector Active JP5894059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012250524A JP5894059B2 (en) 2012-11-14 2012-11-14 Eddy current flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012250524A JP5894059B2 (en) 2012-11-14 2012-11-14 Eddy current flaw detector

Publications (2)

Publication Number Publication Date
JP2014098630A true JP2014098630A (en) 2014-05-29
JP5894059B2 JP5894059B2 (en) 2016-03-23

Family

ID=50940745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250524A Active JP5894059B2 (en) 2012-11-14 2012-11-14 Eddy current flaw detector

Country Status (1)

Country Link
JP (1) JP5894059B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118540A (en) * 2014-12-03 2016-06-30 ゼネラル・エレクトリック・カンパニイ Probes for inspection system for substantially round hole
WO2017043752A1 (en) * 2015-09-11 2017-03-16 한국전력공사 Device for detecting fracture of rebar for utility pole

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182569A (en) * 1985-02-05 1986-08-15 ウエスチングハウス エレクトリック コ−ポレ−ション Inspection device for inside of pipe
JPS63135275U (en) * 1987-02-26 1988-09-05
JPH09504364A (en) * 1993-08-23 1997-04-28 アトミック エナジー オブ カナダ リミテッド Eccentric rotation probe for inspecting pipes etc.
JP2011128077A (en) * 2009-12-18 2011-06-30 Sumitomo Metal Ind Ltd Flaw detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61182569A (en) * 1985-02-05 1986-08-15 ウエスチングハウス エレクトリック コ−ポレ−ション Inspection device for inside of pipe
US4668912A (en) * 1985-02-05 1987-05-26 Westinghouse Electric Corp. Eddy current inspection probe and method for assembling same
JPS63135275U (en) * 1987-02-26 1988-09-05
JPH09504364A (en) * 1993-08-23 1997-04-28 アトミック エナジー オブ カナダ リミテッド Eccentric rotation probe for inspecting pipes etc.
JP2011128077A (en) * 2009-12-18 2011-06-30 Sumitomo Metal Ind Ltd Flaw detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118540A (en) * 2014-12-03 2016-06-30 ゼネラル・エレクトリック・カンパニイ Probes for inspection system for substantially round hole
WO2017043752A1 (en) * 2015-09-11 2017-03-16 한국전력공사 Device for detecting fracture of rebar for utility pole

Also Published As

Publication number Publication date
JP5894059B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP6006990B2 (en) Eddy current testing probe
JP6175215B2 (en) Eddy current testing probe
US7984650B2 (en) Portable ultrasonic scanner device for nondestructive testing
JP2006220610A (en) Defect detector
JP5140677B2 (en) Leakage magnetic flux inspection device for tube-shaped object
JP5894059B2 (en) Eddy current flaw detector
US20150285768A1 (en) Apparatus and method for inspection of tubes in a boiler
JP2011128077A (en) Flaw detector
JP7050420B2 (en) Piping inspection method using piping inspection sensor, piping inspection device, and piping inspection sensor
KR101966168B1 (en) Eddy Current Inspection Apparatus for Nondestructive Test
KR101977921B1 (en) A nondestructive testing apparatus including spiral direction current induction means
JP7064086B2 (en) Eddy current flaw detector
JP5687021B2 (en) Calibration method, calibration jig and tube inspection method
JP5404369B2 (en) Inspection device
KR102265354B1 (en) annular array eddy currentprobe non-destructive inspection device equipped with magnetic lenses
CN108333184B (en) Method for detecting welded joint of steam turbine rotor
JP2015526719A (en) Apparatus and method for detecting ovalization of circumferential section of heat exchanger tube
JP5960032B2 (en) Tube outer and inner surface inspection equipment
JP5145073B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus
CN211553856U (en) Ring type eddy current testing probe
KR102185877B1 (en) Eddy current probe having tilted coils
JPH0634607A (en) Device and method for testing eddy-current detection
JP6155691B2 (en) Ultrasonic flaw detector
JP5800696B2 (en) Remote field eddy current flaw detection system and remote field eddy current flaw detection method
JPS59163562A (en) Ultrasonic measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160225

R151 Written notification of patent or utility model registration

Ref document number: 5894059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151