JP2014098073A - Method for preparing rubber composition for tire, and rubber composition for tire - Google Patents

Method for preparing rubber composition for tire, and rubber composition for tire Download PDF

Info

Publication number
JP2014098073A
JP2014098073A JP2012249870A JP2012249870A JP2014098073A JP 2014098073 A JP2014098073 A JP 2014098073A JP 2012249870 A JP2012249870 A JP 2012249870A JP 2012249870 A JP2012249870 A JP 2012249870A JP 2014098073 A JP2014098073 A JP 2014098073A
Authority
JP
Japan
Prior art keywords
rubber composition
rubber
tire
dispersion fluid
chitin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012249870A
Other languages
Japanese (ja)
Inventor
Satoshi Mihara
諭 三原
Takashi Shikakubo
隆志 鹿久保
Kota Ogura
孝太 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Sugino Machine Ltd
Original Assignee
Yokohama Rubber Co Ltd
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd, Sugino Machine Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2012249870A priority Critical patent/JP2014098073A/en
Publication of JP2014098073A publication Critical patent/JP2014098073A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a rubber composition for tires, which allows wet grip property and rolling resistance of a tire to be improved by blended chitin or chitosan and haves excellent reinforcing effect, and to provide the rubber composition for tires.SOLUTION: The method for preparing the rubber composition for tires comprises the steps of: injecting a dispersion fluid L, which is obtained by dispersing a material M being one of chitin and chitosan in water and is pressurized highly, to make the injected fluid collide with a collision object body 6 so that the material M is micronized to have short fiber-like shapes having 10-100 nm average fiber diameter; dispersing the micronized material M1 in water W to obtain a micronized dispersion fluid L1; mixing the micronized dispersion fluid in a diene rubber R-dissolved rubber composition solution RL to obtain a mixture; and drying the mixture to obtain the solidified rubber composition RS.

Description

本発明は、タイヤ用ゴム組成物の製造方法およびタイヤ用ゴム組成物に関し、さらに詳しくは、配合したキチンまたはキトサンにより、タイヤのウエットグリップ性および転がり抵抗性を改善させるとともに、優れた補強効果を得ることができるタイヤ用ゴム組成物の製造方法およびタイヤ用ゴム組成物に関するものである。   The present invention relates to a method for producing a tire rubber composition and a tire rubber composition. More specifically, the blended chitin or chitosan improves the wet grip property and rolling resistance of the tire and has an excellent reinforcing effect. The present invention relates to a method for producing a tire rubber composition and a tire rubber composition.

タイヤのトレッドゴムにシリカ配合ゴムを用いることによって、タイヤのウエットグリップ性および転がり抵抗性(低燃費性)を改善させることができる。近年、これら性能に対する要求が益々高まっているため、シリカ配合ゴムを用いるだけでは、この要求に応えることが難しくなっている。一方、キチン、キトサン、澱粉、セルロース等を配合したゴム組成物をトレッドゴムに使用してウエットグリップ性や転がり抵抗を改善させることが種々提案されている(例えば、特許文献1〜4参照)。   By using a silica-containing rubber for the tread rubber of a tire, the wet grip property and rolling resistance (low fuel consumption) of the tire can be improved. In recent years, demands for these performances are increasing, and it is difficult to meet these demands only by using silica-containing rubber. On the other hand, various proposals have been made to improve wet grip properties and rolling resistance by using a rubber composition containing chitin, chitosan, starch, cellulose and the like for tread rubber (see, for example, Patent Documents 1 to 4).

例えば、キチンやキトサンをゴムに配合してウエットグリップ性および転がり抵抗性を改善させるには、ある程度微細化することが必要であるが、これら生体高分子を十分に微細化することは困難であった。そのため、十分な改善効果を得るには改良の余地があった。また、ゴムに配合するキチンやキトサンの微細化が不十分であると、ゴム強度(耐摩耗性等)に悪影響が生じるという問題があった。   For example, in order to improve wet grip and rolling resistance by adding chitin or chitosan to rubber, it is necessary to reduce the size to some extent, but it is difficult to sufficiently reduce these biopolymers. It was. Therefore, there is room for improvement in order to obtain a sufficient improvement effect. Further, if the chitin or chitosan blended in the rubber is not sufficiently refined, there is a problem that the rubber strength (wear resistance, etc.) is adversely affected.

特開平5−287130号公報Japanese Patent Laid-Open No. 5-287130 特開平5−279512号公報Japanese Patent Laid-Open No. 5-279512 特開平10−17713号公報Japanese Patent Laid-Open No. 10-17713 特開2001−89599号公報JP 2001-89599 A

本発明の目的は、配合したキチンまたはキトサンにより、タイヤのウエットグリップ性および転がり抵抗性を改善させるとともに、優れた補強効果を得ることができるタイヤ用ゴム組成物の製造方法およびタイヤ用ゴム組成物を提供することにある。   An object of the present invention is to improve the wet grip property and rolling resistance of a tire with the blended chitin or chitosan, and to provide a tire rubber composition manufacturing method and a tire rubber composition capable of obtaining an excellent reinforcing effect Is to provide.

上記目的を達成するため本発明のタイヤ用ゴム組成物の製造方法は、キチンまたはキトサンのいずれか一方の材料を水に分散させた分散流体を高圧噴射して衝突用対象体に衝突させることにより、前記材料を繊維状で平均繊維径10nm〜100nmに微細化し、この微細化した材料を水に分散させた微細化分散流体を、ジエン系ゴムを溶解させたゴム組成物溶液に混合した後で乾燥させることにより固形化したゴム組成物を得ることを特徴とする。   In order to achieve the above object, a method for producing a rubber composition for a tire according to the present invention includes high-pressure injection of a dispersed fluid in which one of chitin and chitosan is dispersed in water to cause collision with a collision object. After the above-mentioned material is fibrous and refined to an average fiber diameter of 10 nm to 100 nm, and the refined dispersion fluid in which the refined material is dispersed in water is mixed with the rubber composition solution in which the diene rubber is dissolved. A solid rubber composition is obtained by drying.

本発明のタイヤ用ゴム組成物は、繊維状で平均繊維径10nm〜100nmに微細化したキチンまたはキトサンのいずれか一方の材料が、ジエン系ゴムに配合されたことを特徴とする。   The rubber composition for tires of the present invention is characterized in that either one of chitin and chitosan, which are fibrous and refined to an average fiber diameter of 10 nm to 100 nm, is blended with a diene rubber.

本発明によれば、繊維状で平均繊維径10nm〜100nmに微細化されたキチンまたはキトサンのいずれか一方の材料が、ジエン系ゴムに配合されたゴム組成物を得ることができる。このゴム組成物をタイヤのトレッドゴムとして使用すると、微細化されたキチンまたはキトサンによって、微細化されていない場合に比して、タイヤのウエットグリップ性および転がり抵抗性が改善されるとともに、優れた補強効果を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the rubber composition by which any one material of the chitin or chitosan refined | miniaturized by fiber shape and the average fiber diameter of 10-100 nm was mix | blended with the diene-type rubber | gum can be obtained. When this rubber composition is used as a tread rubber of a tire, the wet grip property and rolling resistance of the tire are improved by the refined chitin or chitosan as compared with the case where the refined product is not refined, and excellent. A reinforcing effect can be obtained.

キチンまたはキトサンを微細化する工程を例示する説明図である。It is explanatory drawing which illustrates the process of refining chitin or chitosan. キチンまたはキトサンを微細化する工程の別の例を示す説明図である。It is explanatory drawing which shows another example of the process of refine | miniaturizing chitin or chitosan. 微細化分散流体を混合したゴム組成物溶液を乾燥させる工程を例示する説明図である。It is explanatory drawing which illustrates the process of drying the rubber composition solution which mixed the refinement | distribution dispersion fluid.

以下、本発明のタイヤ用ゴム組成物の製造方法およびタイヤ用ゴム組成物を実施形態に基づいて説明する。   Hereinafter, the manufacturing method of the rubber composition for tires and the rubber composition for tires of the present invention are explained based on an embodiment.

本発明のタイヤ用ゴム組成物の製造方法では、キチンまたはキトサンのいずれか一方の材料Mを使用する。例えば材料Mとして、除タンパク質および脱カルシウム処理された精製キチン、精製キトサンを用いる。そして、いずれか一方の材料Mを水Wに混合、分散させて分散流体Lを調製する。この分散流体Lにおける材料Mの濃度は1〜20質量%程度である。   In the method for producing a rubber composition for a tire according to the present invention, either the chitin or the chitosan material M is used. For example, as the material M, purified chitin and purified chitosan subjected to deproteinization and decalcification treatment are used. Then, one of the materials M is mixed and dispersed in the water W to prepare a dispersion fluid L. The concentration of the material M in the dispersion fluid L is about 1 to 20% by mass.

次いで、分散流体Lを高圧噴射して材料Mを微細化する。この微細化には、例えば、図1に示すシングルノズルチャンバータイプの高圧噴射装置1Aを用いる。高圧噴射装置1Aでは、分散流体Lを100〜245 MPaの超高圧に加圧し、流入部2を通じてオリフィス部3の微細なノズル3a(φ0.1〜0.8mm程度)から高圧で噴射する。   Next, the dispersion fluid L is jetted at high pressure to refine the material M. For this miniaturization, for example, a single nozzle chamber type high-pressure injection device 1A shown in FIG. 1 is used. In the high-pressure injection device 1A, the dispersion fluid L is pressurized to an ultrahigh pressure of 100 to 245 MPa, and is injected through the inflow portion 2 from the fine nozzle 3a (about φ0.1 to 0.8 mm) of the orifice portion 3 at a high pressure.

ノズル3aからの吐出流は440〜700m/s程度の高速噴流となり、その速度までに加速されるオリフィス部3では、高い剪断力が発生する。オリフィス部3の厚みtを0.4mm程度と極端に薄くすることにより、圧力エネルギーのほぼ100%を噴射の速度エネルギーに変換することができる。   The discharge flow from the nozzle 3a becomes a high-speed jet of about 440 to 700 m / s, and a high shearing force is generated in the orifice portion 3 accelerated to that speed. By making the thickness t of the orifice part 3 as extremely thin as about 0.4 mm, almost 100% of the pressure energy can be converted into the velocity energy of the injection.

また、440〜700m/s程度の高速噴流ではキャビテーション気泡が発生し、この気泡が消滅することによって強い衝撃力が発生する。オリフィス部3の後側に、拡径してある程度の容積を有する衝撃増強領部4を設けることで、キャビテーションを効率的に発生させることができる。ノズル3aから噴射直後の分散流体Lのレイノルズ数Reは、例えば、2266≦Re≦3885の範囲をとる。衝撃増強領部4を経た分散流体Lは、衝突用チャンバー5に設けられたボール状または平板状のセラミック硬質体等からなる衝突用対象体6に衝突して排出部7から排出される。   Further, cavitation bubbles are generated in a high-speed jet flow of about 440 to 700 m / s, and a strong impact force is generated by the disappearance of the bubbles. Cavitation can be efficiently generated by providing the impact enhancing region 4 having a certain volume after expanding the diameter on the rear side of the orifice portion 3. The Reynolds number Re of the dispersion fluid L immediately after jetting from the nozzle 3a is in the range of 2266 ≦ Re ≦ 3885, for example. The dispersion fluid L that has passed through the impact enhancement region 4 collides with a collision target body 6 made of a ball or flat ceramic hard body provided in the collision chamber 5 and is discharged from the discharge unit 7.

この高圧噴射装置1Aによる処理を1回または繰り返して複数回(必要に応じて50回以下、30回以下、或いは10回以下)行なう。繊維状の材料Mは、ノズル3aを通過する際のせん断力、液中噴射によるキャビテーション衝撃力および衝突用対象体6に衝突することによる衝撃力により、繊維の絡まりがほどけて繊維径が縮小し、繊維が切断されて繊維長が短くなる。   The processing by the high-pressure injection device 1A is performed once or repeated a plurality of times (50 times or less, 30 times or less, or 10 times or less as necessary). The fibrous material M has a fiber diameter reduced by unwinding the fibers due to the shear force when passing through the nozzle 3a, the cavitation impact force caused by submerged jetting, and the impact force caused by colliding with the collision object 6. The fiber is cut to shorten the fiber length.

このようにして分散流体Lに分散する材料Mを、短繊維状や中・長繊維状で平均繊維径10nm〜100nmに微細化した材料M1にする。例えば、短繊維状で平均繊維径10nm〜100nmに細分化する。短繊維状とは、繊維長が100nm〜10μm程度をいう。   Thus, the material M disperse | distributed to the dispersion fluid L is made into the material M1 refined | miniaturized by the average fiber diameter of 10 nm-100 nm in the shape of a short fiber form or medium-long fiber form. For example, it is a short fiber and is subdivided into an average fiber diameter of 10 nm to 100 nm. The short fiber shape means a fiber length of about 100 nm to 10 μm.

微細化した材料M1のアスペクト比(繊維径/繊維長)は、1〜1000程度になる。微細化した材料M1の平均繊維径は、より好ましくは10nm〜50nm、さらに好ましくは15nm〜25nm程度にする。   The aspect ratio (fiber diameter / fiber length) of the refined material M1 is about 1-1000. The average fiber diameter of the refined material M1 is more preferably about 10 nm to 50 nm, and further preferably about 15 nm to 25 nm.

材料Mを細分化するには、図2に例示する斜向衝突チャンバータイプの高圧噴射装置1Bを用いることもできる。この高圧噴射装置1Bは、衝撃用チャンバー5の両側に流入部2が接続されている。高圧噴射装置1Bでは、分散流体Lを100〜245 MPaの超高圧に加圧し、それぞれの流入部2を通じて、オリフィス部3の微細なノズル3aから高圧で噴射する。対向させて噴射した分散流体L同士は、衝突用チャンバー5で衝突する。即ち、この高圧噴射装置1Bでは、高圧噴射した一方の分散流体Lと対向させて高圧噴射したもう一方の分散流体Lを、図1に示した高圧噴射装置1Aに備えた衝突用対象体6として用いる。   In order to subdivide the material M, the oblique collision chamber type high-pressure injection apparatus 1B illustrated in FIG. 2 can also be used. In the high pressure injection device 1B, the inflow portions 2 are connected to both sides of the impact chamber 5. In the high pressure injection device 1 </ b> B, the dispersion fluid L is pressurized to an ultrahigh pressure of 100 to 245 MPa, and is injected at a high pressure from the fine nozzle 3 a of the orifice portion 3 through each inflow portion 2. The dispersed fluids L jetted opposite to each other collide in the collision chamber 5. That is, in this high-pressure injection device 1B, the other dispersion fluid L that has been subjected to high-pressure injection so as to face one of the dispersion fluids L that has been subjected to high-pressure injection is used as the collision object 6 provided in the high-pressure injection device 1A shown in FIG. Use.

この高圧噴射装置1Bを用いる場合も、その処理を1回または繰り返して複数回(必要に応じて50回以下、30回以下、或いは10回以下)行なう。繊維状の材料Mは、ノズル3aを分散流体Lが通過するときのせん断力、液中噴射によるキャビテーション衝撃力、材料M同士が対向衝突するときの衝撃力および対向噴流での相対速度増加によるせん断力によって、繊維の絡まりがほどけて繊維径が縮小し、繊維が切断されて繊維長が短くなる。このようにして分散流体Lに分散していた材料Mを、短繊維状や中・長繊維状で平均繊維径10nm〜100nmに微細化した材料M1にする。例えば、短繊維状で平均繊維径10nm〜100nmに細分化する。   Also in the case of using this high-pressure injection device 1B, the process is performed once or repeated a plurality of times (as required, 50 times or less, 30 times or less, or 10 times or less). The fibrous material M has a shearing force when the dispersion fluid L passes through the nozzle 3a, a cavitation impact force due to submerged jetting, an impact force when the materials M collide opposite each other, and a shear due to an increase in relative velocity in the opposing jet. The force unwinds the fibers and reduces the fiber diameter, cutting the fibers and shortening the fiber length. In this way, the material M dispersed in the dispersion fluid L is changed to a material M1 that is in the form of short fibers, medium or long fibers, and is refined to an average fiber diameter of 10 nm to 100 nm. For example, it is a short fiber and is subdivided into an average fiber diameter of 10 nm to 100 nm.

次いで、微細化した材料M1は、水Wに分散させて微細化分散流体L1を調製する。この微細化分散流体L1における材料M1の量は、乾燥させた後に目的の重量部となるように適宜調整する。   Next, the refined material M1 is dispersed in water W to prepare a refined dispersion fluid L1. The amount of the material M1 in the finely dispersed fluid L1 is appropriately adjusted so as to be a target part by weight after drying.

次いで、微細化分散流体L1を、ジエン系ゴムRを溶解させたゴム組成物溶液RLに混合する。ジエン系ゴムRとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等を例示できる。   Next, the finely dispersed fluid L1 is mixed with the rubber composition solution RL in which the diene rubber R is dissolved. Examples of the diene rubber R include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), and the like.

ゴム組成物溶液RLとしては、ゴムラテックスやゴム溶液を用いるが、ゴムラテックスを用いると取り扱い性がよい。ゴム溶液の溶媒としては、例えば、トルエン、キシレン、クロロホルム、テトラヒドロフラン、ヘキサン、ヘプタン、オクタンやこれらを2種類以上混合したものを用いることができる。   As the rubber composition solution RL, rubber latex or a rubber solution is used, but if rubber latex is used, the handling property is good. As the solvent for the rubber solution, for example, toluene, xylene, chloroform, tetrahydrofuran, hexane, heptane, octane or a mixture of two or more of these can be used.

そして、微細化分散流体L1を混合したゴム組成物溶液RLを乾燥させることにより、微細化した材料M1を含有し、固形化したゴム組成物RSを得る。微細化分散流体L1を混合したゴム組成物溶液RLを乾燥させるには、例えば、図3に示すように、パルス燃焼器8を用いる。パルス燃焼器8は、燃料供給口12およびスタータプラグ13が設けられた燃焼部9を備えている。燃焼部9の前後にはそれぞれ吸引口10とテールパイプ11とが接続されている。このテールパイプ11の後側に噴射ノズル14と乾燥ホッパ15とが設けられる。   Then, the rubber composition solution RL mixed with the finely dispersed fluid L1 is dried to obtain a solidified rubber composition RS containing the finely divided material M1. In order to dry the rubber composition solution RL mixed with the finely dispersed fluid L1, for example, a pulse combustor 8 is used as shown in FIG. The pulse combustor 8 includes a combustion unit 9 provided with a fuel supply port 12 and a starter plug 13. A suction port 10 and a tail pipe 11 are connected to the front and rear of the combustion unit 9, respectively. An injection nozzle 14 and a drying hopper 15 are provided on the rear side of the tail pipe 11.

パルス燃焼器8では、燃焼部9に吸引口10から燃焼空気Aが導入されるとともに、燃料供給口12から、天然ガス、プロパンガス、灯油等の燃料Fが供給され、スタータプラグ13により点火されて爆破が生じる。そして、爆破燃焼排ガスがテールパイプ11を通じて乾燥ホッパ15に噴出する。この噴出する爆破燃焼排ガスに向かって、微細化分散流体L1を混合したゴム組成物溶液RLを噴射ノズル14から噴射して接触させる。   In the pulse combustor 8, combustion air A is introduced into the combustion unit 9 from the suction port 10, and fuel F such as natural gas, propane gas, kerosene, etc. is supplied from the fuel supply port 12, and is ignited by the starter plug 13. Blasting occurs. Then, the explosion combustion exhaust gas is ejected to the drying hopper 15 through the tail pipe 11. A rubber composition solution RL mixed with the finely dispersed fluid L1 is sprayed from the spray nozzle 14 and brought into contact with the blown blast combustion exhaust gas.

この接触により、このゴム組成物溶液RLは瞬間的(例えば、0.01秒程度)に乾燥する。即ち、パルス燃焼による衝撃波(周波数60〜1000Hz)、爆発生成気体、交番流、ガス温度(40℃〜200℃)等の組み合わせによって、瞬時に脱水および乾燥がなされる。この場合の乾燥温度は、好ましくは140℃以下、より好ましくは40〜100℃である。その結果、ジエン系ゴムRに、キチンまたはキトサンのいずれか一方を繊維状で平均繊維径10nm〜100nmに微細化した材料M1が配合された固形のゴム組成物RSが製造される。   By this contact, the rubber composition solution RL is dried instantaneously (for example, about 0.01 seconds). That is, dehydration and drying are instantaneously performed by a combination of shock wave (frequency: 60 to 1000 Hz) by pulse combustion, explosion generated gas, alternating flow, gas temperature (40 ° C. to 200 ° C.), and the like. The drying temperature in this case is preferably 140 ° C. or lower, more preferably 40 to 100 ° C. As a result, a solid rubber composition RS is produced in which the diene rubber R is blended with a material M1 in which either chitin or chitosan is fibrous and refined to an average fiber diameter of 10 nm to 100 nm.

乾燥方法は、その他に、自然乾燥、オーブン乾燥、凍結乾燥、噴露乾燥等を用いることができる。乾燥温度は、自然乾燥の場合は室温(通常、20〜30℃)であり、オーブン乾燥の場合は好ましくは40〜80℃である。   Other drying methods include natural drying, oven drying, freeze drying, spray drying, and the like. The drying temperature is room temperature (usually 20 to 30 ° C.) in the case of natural drying, and preferably 40 to 80 ° C. in the case of oven drying.

このゴム組成物RSは、グリーンタイヤのトレッドゴムの成形部材として使用され、グリーンタイヤを加硫して製造されたタイヤのトレッドゴムとなる。本発明のゴム組成物RSは、キチンまたはキトサンの一方の材料Mが配合され、この材料Mが、例えば短繊維状で、平均繊維径10nm〜100nmに微細化されている。即ち、従来配合されるキチンやキトサンよりも微細化した材料M1が微分散してタイヤのウエットグリップ性が改善される。また、従来よりも微細化した材料M1とゴムとの相互作用が増加するため、転がり抵抗性(低燃費性)が改善される。さらには、微細化した材料M1によって、優れた補強効果が得られることが分かった。   This rubber composition RS is used as a molded member of a tread rubber for a green tire, and becomes a tread rubber for a tire manufactured by vulcanizing a green tire. In the rubber composition RS of the present invention, one material M of chitin or chitosan is blended, and this material M is, for example, in a short fiber shape and is refined to an average fiber diameter of 10 nm to 100 nm. That is, the material M1 refined more finely than chitin or chitosan blended conventionally is finely dispersed to improve the wet grip property of the tire. Further, since the interaction between the material M1 and the rubber, which are made finer than before, increases, rolling resistance (low fuel consumption) is improved. Furthermore, it was found that an excellent reinforcing effect can be obtained by the refined material M1.

ゴム組成物RSは、ジエン系ゴム100質量部に対して、微細化した材料M1の配合量を2質量部〜20質量部にするのが好ましく、さらに好ましくは2質量部〜10質量部にする。微細化した材料M1の配合量が2質量部未満では、ウエットグリップ性および転がり抵抗性の改善効果が小さくなり、20質量部超では転がり抵抗性に悪影響が生じ易くなる。   In the rubber composition RS, the amount of the refined material M1 is preferably 2 parts by mass to 20 parts by mass, more preferably 2 parts by mass to 10 parts by mass with respect to 100 parts by mass of the diene rubber. . If the blending amount of the refined material M1 is less than 2 parts by mass, the effect of improving wet grip properties and rolling resistance becomes small, and if it exceeds 20 parts by mass, the rolling resistance tends to be adversely affected.

また、ジエン系ゴムRを溶解させたゴム組成物溶液RLを乾燥させる際には、上述したパルス燃焼器8を用いて瞬時に乾燥させることが好ましい。瞬時に乾燥させることにより、微細化した材料M1同士が凝集し難くなり補強効果が大幅に向上させることが可能になる。   Further, when the rubber composition solution RL in which the diene rubber R is dissolved is dried, it is preferably dried instantaneously using the pulse combustor 8 described above. By drying instantaneously, the miniaturized materials M1 are less likely to agglomerate and the reinforcing effect can be significantly improved.

尚、本発明は、カーボンブラック配合のゴム組成物に限らず、シリカ配合(シリカおよびシランカップリング剤配合)のゴム組成物に適用することができる。   The present invention can be applied not only to a rubber composition containing carbon black but also to a rubber composition containing silica (silica and silane coupling agent).

表1に示すように、天然ゴム100質量部に対して、微細化キチン、微細化キトサン、キチン、キトサンのいずれか1つの材料と、それぞれの配合剤とを表1に示す数値の質量部で配合して未加硫のゴム組成物を13種類(従来例、実施例1〜8、比較例1〜4)調製した。それぞれの未加硫のゴム組成物をシート状にして160℃の条件下で15分間加硫して加硫ゴムシート(厚さ2mm)を作製した。この加硫ゴムシートについてゴム物性を測定した。その結果は表1に示すとおりであった。   As shown in Table 1, with respect to 100 parts by mass of natural rubber, any one material of refined chitin, refined chitosan, chitin, and chitosan, and each compounding agent are expressed in parts by mass shown in Table 1. Thirteen types of unvulcanized rubber compositions (conventional examples, Examples 1 to 8, Comparative Examples 1 to 4) were prepared by blending. Each unvulcanized rubber composition was formed into a sheet and vulcanized at 160 ° C. for 15 minutes to prepare a vulcanized rubber sheet (thickness 2 mm). The rubber physical properties of this vulcanized rubber sheet were measured. The results are shown in Table 1.

Figure 2014098073
Figure 2014098073

ゴム組成物の調製
従来例および比較例3、4:60%濃縮天然ゴムラテックスを、一般的な減圧凍結乾燥方法により、減圧下で水分除去して乾燥させて固形化したゴム組成物を得た。この固形化したゴム組成物に表1に示す配合剤を一般的な方法により混合して未加硫のゴム組成物を得た。
Preparation of Rubber Composition Conventional Example and Comparative Example 3, 4: 60% concentrated natural rubber latex was dried by removing water under reduced pressure by a general vacuum freeze-drying method to obtain a solid rubber composition. . A compounding agent shown in Table 1 was mixed with the solidified rubber composition by a general method to obtain an unvulcanized rubber composition.

実施例1〜4:キチンまたはキトサンのいずれか一方の材料を水に分散させた分散流体を高圧噴射して衝突用対象体に衝突させることにより、短繊維状で平均繊維径10nm〜100nmに微細化した材料を水に分散させた微細化分散流体を、60%濃縮天然ゴムラテックスに混合した後、一般的な減圧凍結乾燥方法により、減圧下で水分除去して乾燥させて固形化したゴム組成物を得た。この固形化したゴム組成物に表1に示す配合剤を一般的な方法により混合して未加硫のゴム組成物を得た。   Examples 1 to 4: A dispersion fluid in which either one of chitin and chitosan is dispersed in water is jetted at high pressure to collide with an object for collision, so that it has a short fiber shape and has an average fiber diameter of 10 nm to 100 nm. A rubber composition obtained by mixing a refined dispersion fluid obtained by dispersing a liquefied material in water with 60% concentrated natural rubber latex, and then removing the water under reduced pressure by a general vacuum freeze-drying method, followed by drying and solidifying. I got a thing. A compounding agent shown in Table 1 was mixed with the solidified rubber composition by a general method to obtain an unvulcanized rubber composition.

実施例5〜8:キチンまたはキトサンのいずれか一方の材料を水に分散させた分散流体を高圧噴射して衝突用対象体に衝突させることにより、短繊維状で平均繊維径10nm〜100nmに微細化した材料を水に分散させた微細化分散流体を、60%濃縮天然ゴムラテックスに混合した後、パルス燃焼器を用いた上述した乾燥方法により、乾燥させて固形化したゴム組成物を得た。この固形化したゴム組成物に表1に示す配合剤を一般的な方法により混合して未加硫のゴム組成物を得た。   Examples 5 to 8: A dispersion fluid in which any one material of chitin or chitosan is dispersed in water is jetted at high pressure to collide with an object for collision, so that it has a short fiber shape and has an average fiber diameter of 10 nm to 100 nm. A refined dispersion fluid obtained by dispersing the material obtained in water was mixed with 60% concentrated natural rubber latex, and then dried by the above-described drying method using a pulse combustor to obtain a solid rubber composition. . A compounding agent shown in Table 1 was mixed with the solidified rubber composition by a general method to obtain an unvulcanized rubber composition.

比較例1:ナカライテスク社製キチン粉末(平均粒径1μm)を水に分散させた分散流体を、60%濃縮天然ゴムラテックスに混合した後、一般的な減圧凍結乾燥方法により、減圧下で水分除去して乾燥させて固形化したゴム組成物を得た。この固形化したゴム組成物に表1に示す配合剤を一般的な方法により混合して未加硫のゴム組成物を得た。   Comparative Example 1: A dispersion fluid in which chitin powder (average particle size: 1 μm) manufactured by Nacalai Tesque Co., Ltd. was dispersed in water was mixed with 60% concentrated natural rubber latex. It was removed and dried to obtain a solid rubber composition. A compounding agent shown in Table 1 was mixed with the solidified rubber composition by a general method to obtain an unvulcanized rubber composition.

比較例2:焼津水産化学工業社製微粉末キトサン(平均粒径50μm)を水に分散させた分散流体を、60%濃縮天然ゴムラテックスに混合した後、一般的な減圧凍結乾燥方法により、減圧下で水分除去して乾燥させて固形化したゴム組成物を得た。この固形化したゴム組成物に表1に示す配合剤を一般的な方法により混合して未加硫のゴム組成物を得た。   Comparative Example 2: Fine powder chitosan (average particle size 50 μm) manufactured by Yaizu Suisan Kagaku Kogyo Co., Ltd. was mixed in water with 60% concentrated natural rubber latex, and then reduced in pressure by a general vacuum freeze-drying method. Under the condition, water was removed and dried to obtain a solid rubber composition. A compounding agent shown in Table 1 was mixed with the solidified rubber composition by a general method to obtain an unvulcanized rubber composition.

配合剤
亜鉛華:正同化学工業社製「酸化亜鉛3種」
ステアリン酸:日本油脂社製「ビーズステアリン酸」
シリカ:ローディア社製「Zeosil 1165MP」
カーボンブラック:東海カーボン社製「シースト6」
老化防止剤:スレキシス社製「6PPD」
シランカップリング剤:デグッサ社製「Si69」
オイル:昭和シェル石油社製「エキストラクト4号S」
硫黄:鶴見化学工業社製「金華印油入微粉硫黄」
加硫促進剤1:大内新興化学工業社製「ノクセラーCZ−G」
加硫促進剤2:三新化学工業社製「サンセラーD−G」
Compounding agent Zinc Hana: “Zinc oxide 3 types” manufactured by Shodo Chemical Industry Co., Ltd.
Stearic acid: “Bead stearic acid” manufactured by NOF Corporation
Silica: “Zeosil 1165MP” manufactured by Rhodia
Carbon black: “Seast 6” manufactured by Tokai Carbon
Anti-aging agent: “6PPD” manufactured by Surexis
Silane coupling agent: “Si69” manufactured by Degussa
Oil: "Extract No. 4 S" manufactured by Showa Shell Sekiyu KK
Sulfur: “Fine powder sulfur with Jinhua seal oil” manufactured by Tsurumi Chemical Co., Ltd.
Vulcanization accelerator 1: “Noxeller CZ-G” manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Vulcanization accelerator 2: "Sunceller DG" manufactured by Sanshin Chemical Industry Co., Ltd.

ゴム物性の測定
硬度(20℃):それぞれの加硫ゴムシートを、JISK6253に準拠して温度20℃の条件下でリュブケJIS硬度を測定した。表1の数値は従来例を基準の100として指数表示したものであり、数値が大きいほど硬度が高いことを示す。
Measurement of rubber physical properties Hardness (20 ° C.): Each vulcanized rubber sheet was measured for Lübke JIS hardness at a temperature of 20 ° C. according to JIS K6253. The numerical values in Table 1 are indexed with the conventional example as 100 as a reference, and the larger the numerical value, the higher the hardness.

100%モジュラス:それぞれの加硫ゴムシートからJIS3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251に準拠して行なって、100%モジュラスを室温にて測定した。表1の数値は従来例を基準の100として指数表示したものであり、数値が大きいほどモジュラスが大きくて配合材料による補強効果が大きいことを示す。   100% modulus: A JIS No. 3 dumbbell-shaped test piece was punched out from each vulcanized rubber sheet, and a tensile test at a tensile speed of 500 mm / min was performed in accordance with JIS K6251 to measure 100% modulus at room temperature. The numerical values in Table 1 are indexed with the conventional example as 100 as a reference. The larger the numerical value, the larger the modulus and the greater the reinforcing effect of the blended material.

破断強度:それぞれの加硫ゴムシートからJIS3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251に準拠して行なって、引張破断強度を室温にて測定した。表1の数値は従来例を基準の100として指数表示したものであり、数値が大きいほど破断強度が大きくてウエットグリップ性に優れることを示す。   Breaking strength: A JIS No. 3 dumbbell-shaped test piece was punched out from each vulcanized rubber sheet, a tensile test at a tensile speed of 500 mm / min was performed in accordance with JIS K6251, and the tensile breaking strength was measured at room temperature. The numerical values in Table 1 are indexed with the conventional example as 100 as a reference, and the larger the numerical value, the higher the breaking strength and the better the wet grip property.

tanδの測定:それぞれの加硫ゴムシートの動的粘弾性を、東洋精機製作所社製粘弾性スペクトロメータを用いて、初期歪み10%、振幅±2%、周波数20Hz、温度60℃におけるtanδを測定した。表1の数値は従来例を基準の100として指数表示したものであり、数値が小さいほどtanδが小さくて転がり抵抗性に優れることを示す。   Measurement of tan δ: The dynamic viscoelasticity of each vulcanized rubber sheet was measured by using a viscoelastic spectrometer manufactured by Toyo Seiki Seisakusho, tan δ at an initial strain of 10%, an amplitude of ± 2%, a frequency of 20 Hz, and a temperature of 60 ° C. did. The numerical values in Table 1 are indexed with the conventional example as 100 as a reference, and the smaller the numerical value, the smaller the tan δ and the better the rolling resistance.

表1の結果から、微細化したキチンまたはキトサンを配合した実施例1〜8は、従来例および比較例1〜4に比して、ウエットグリップ性(破断強度)および転がり抵抗性(60°tanδ)が改善することが分かる。さらに、優れた補強効果(100%モジュラス)が得られることが分かる。また、パルス燃焼器による乾燥方法を用いた実施例5〜8では、補強効果が顕著に向上することが分かる。   From the results of Table 1, Examples 1 to 8 containing refined chitin or chitosan were wet grip property (breaking strength) and rolling resistance (60 ° tan δ) as compared with the conventional example and Comparative Examples 1 to 4. ) Will improve. Furthermore, it can be seen that an excellent reinforcing effect (100% modulus) can be obtained. Moreover, it turns out that the reinforcement effect improves notably in Examples 5-8 using the drying method by a pulse combustor.

尚、表1には天然ゴムをベースにしたゴム組成物について記載しているが、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)等の別のジエン系ゴムをベースにしたゴム組成物についても同様の結果が得られることが確認されている。   Table 1 describes a rubber composition based on natural rubber, but based on another diene rubber such as isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), etc. It has been confirmed that similar results can be obtained with the rubber composition.

1A 高圧噴射装置
1B 高圧噴射装置
2 流入部
3 オリフィス部
3a ノズル
4 衝撃増強部
5 衝突用チャンバー
6 衝突用対象体
7 排出部
8 パルス燃焼器
9 燃焼部
10 吸引口
11 テールパイプ
12 燃料供給口
13 スタータプラグ
14 噴射ノズル
15 乾燥ホッパ
A 燃焼空気
F 燃料
L 分散流体
L1 微細化分散流体
M 材料(キチンまたはキトサン)
M1 微細化した材料
R ジエン系ゴム
RL ゴム組成物溶液
RS ゴム組成物
W 水
DESCRIPTION OF SYMBOLS 1A High pressure injection apparatus 1B High pressure injection apparatus 2 Inflow part 3 Orifice part 3a Nozzle 4 Impact enhancement part 5 Collision chamber 6 Collision object 7 Discharge part 8 Pulse combustor 9 Combustion part 10 Suction port 11 Tail pipe 12 Fuel supply port 13 Starter plug 14 Injection nozzle 15 Drying hopper A Combustion air F Fuel L Dispersion fluid L1 Fine dispersion fluid M Material (chitin or chitosan)
M1 Fine material R Diene rubber RL Rubber composition solution RS Rubber composition W Water

Claims (7)

キチンまたはキトサンのいずれか一方の材料を水に分散させた分散流体を高圧噴射して衝突用対象体に衝突させることにより、前記材料を繊維状で平均繊維径10nm〜100nmに微細化し、この微細化した材料を水に分散させた微細化分散流体を、ジエン系ゴムを溶解させたゴム組成物溶液に混合した後で乾燥させることにより固形化したゴム組成物を得ることを特徴とするタイヤ用ゴム組成物の製造方法。   The dispersion fluid in which either one of chitin and chitosan is dispersed in water is jetted at high pressure to collide with the object to be collided, so that the material is refined to an average fiber diameter of 10 nm to 100 nm. For a tire characterized by obtaining a solid rubber composition by mixing a refined dispersion fluid obtained by dispersing a material obtained in water with a rubber composition solution in which a diene rubber is dissolved and then drying the mixture. A method for producing a rubber composition. 前記高圧噴射した分散流体と対向させてもう一方の分散流体を高圧噴射することにより、この高圧噴射したもう一方の分散流体を前記衝突用対象体とし、対向させて噴射した分散流体同士を衝突させる請求項1に記載のタイヤ用ゴム組成物の製造方法。   The other dispersion fluid jetted oppositely is made to collide with the other dispersion fluid jetted in the opposite direction by making the other dispersion fluid jetted at a high pressure to face the dispersion fluid jetted at a high pressure. The manufacturing method of the rubber composition for tires of Claim 1. 前記ゴム組成物溶液がゴムラテックスである請求項1または2に記載のタイヤ用ゴム組成物の製造方法。   The method for producing a rubber composition for a tire according to claim 1 or 2, wherein the rubber composition solution is a rubber latex. 前記微細化分散流体を混合した前記ゴム組成物溶液を、パルス燃焼器から噴出する爆破燃焼排ガスに向かって噴射して接触させることにより瞬間的に乾燥させて前記固形化したゴム組成物を得る請求項1〜3のいずれかに記載のタイヤ用ゴム組成物の製造方法。   The rubber composition solution mixed with the finely dispersed fluid is instantaneously dried by being injected and brought into contact with a blast combustion exhaust gas ejected from a pulse combustor to obtain the solidified rubber composition. The manufacturing method of the rubber composition for tires in any one of claim | item 1-3. 前記ジエン系ゴム100質量部に対して、前記材料を2質量部〜20質量部配合する請求項1〜4のいずれかに記載のタイヤ用ゴム組成物の製造方法。   The manufacturing method of the rubber composition for tires in any one of Claims 1-4 which mix | blend 2-20 mass parts of said materials with respect to 100 mass parts of said diene rubbers. 繊維状で平均繊維径10nm〜100nmに微細化したキチンまたはキトサンのいずれか一方の材料が、ジエン系ゴムに配合されたことを特徴とするタイヤ用ゴム組成物。   A rubber composition for tires, characterized in that any one material of chitin or chitosan which is fibrous and refined to an average fiber diameter of 10 nm to 100 nm is blended with a diene rubber. 前記ジエン系ゴム100質量部に対して、前記材料が2質量部〜20質量部配合された請求項6に記載のタイヤ用ゴム組成物。   The tire rubber composition according to claim 6, wherein 2 to 20 parts by mass of the material is blended with respect to 100 parts by mass of the diene rubber.
JP2012249870A 2012-11-14 2012-11-14 Method for preparing rubber composition for tire, and rubber composition for tire Pending JP2014098073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012249870A JP2014098073A (en) 2012-11-14 2012-11-14 Method for preparing rubber composition for tire, and rubber composition for tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012249870A JP2014098073A (en) 2012-11-14 2012-11-14 Method for preparing rubber composition for tire, and rubber composition for tire

Publications (1)

Publication Number Publication Date
JP2014098073A true JP2014098073A (en) 2014-05-29

Family

ID=50940348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249870A Pending JP2014098073A (en) 2012-11-14 2012-11-14 Method for preparing rubber composition for tire, and rubber composition for tire

Country Status (1)

Country Link
JP (1) JP2014098073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057332A (en) * 2015-09-18 2017-03-23 アシザワ・ファインテック株式会社 Method for reducing the thermal expansion coefficient of resin molded body
JP2018070812A (en) * 2016-11-01 2018-05-10 住友ゴム工業株式会社 Method for producing master batch

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270891A (en) * 2004-03-26 2005-10-06 Tetsuo Kondo Wet crushing method of polysaccharide
JP2005298672A (en) * 2004-04-12 2005-10-27 Yokohama Rubber Co Ltd:The Method for producing polymer composition using polymer-containing liquid
JP2006206864A (en) * 2004-12-27 2006-08-10 Yokohama Rubber Co Ltd:The Masterbatch of rubber/short fiber, manufacturing method for the same and pneumatic tire using the same
JP2007146114A (en) * 2005-10-27 2007-06-14 Yokohama Rubber Co Ltd:The Production method for natural rubber having lowered viscosity, natural rubber obtained thereby and rubber composition containing the same
JP2009001672A (en) * 2007-06-21 2009-01-08 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2009001671A (en) * 2007-06-21 2009-01-08 Sumitomo Rubber Ind Ltd Rubber composition, method for producing the same and pneumatic tire
JP2011056456A (en) * 2009-09-14 2011-03-24 National Institute Of Advanced Industrial Science & Technology Method for producing bio-nanofiber
JP2011167237A (en) * 2010-02-16 2011-09-01 Kanazawa Inst Of Technology Bio-applicable material
JP2011225461A (en) * 2010-04-16 2011-11-10 Tsukioka:Kk Film preparation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270891A (en) * 2004-03-26 2005-10-06 Tetsuo Kondo Wet crushing method of polysaccharide
JP2005298672A (en) * 2004-04-12 2005-10-27 Yokohama Rubber Co Ltd:The Method for producing polymer composition using polymer-containing liquid
JP2006206864A (en) * 2004-12-27 2006-08-10 Yokohama Rubber Co Ltd:The Masterbatch of rubber/short fiber, manufacturing method for the same and pneumatic tire using the same
JP2007146114A (en) * 2005-10-27 2007-06-14 Yokohama Rubber Co Ltd:The Production method for natural rubber having lowered viscosity, natural rubber obtained thereby and rubber composition containing the same
JP2009001672A (en) * 2007-06-21 2009-01-08 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2009001671A (en) * 2007-06-21 2009-01-08 Sumitomo Rubber Ind Ltd Rubber composition, method for producing the same and pneumatic tire
JP2011056456A (en) * 2009-09-14 2011-03-24 National Institute Of Advanced Industrial Science & Technology Method for producing bio-nanofiber
JP2011167237A (en) * 2010-02-16 2011-09-01 Kanazawa Inst Of Technology Bio-applicable material
JP2011225461A (en) * 2010-04-16 2011-11-10 Tsukioka:Kk Film preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057332A (en) * 2015-09-18 2017-03-23 アシザワ・ファインテック株式会社 Method for reducing the thermal expansion coefficient of resin molded body
JP2018070812A (en) * 2016-11-01 2018-05-10 住友ゴム工業株式会社 Method for producing master batch

Similar Documents

Publication Publication Date Title
JP5060899B2 (en) Method for producing rubber-filler composite
JP6975049B2 (en) A rubber composition comprising a styrene / butadiene copolymer having a low glass transition temperature and a high content filler and plasticizer.
CN105658718B (en) Include the tire containing zinc acrylate resin derivative and the composition of peroxide
JP6634382B2 (en) Rubber composition containing aromatic dicyclopentadiene resin
JP5691463B2 (en) Rubber composition for tire
JP5647694B2 (en) Rubber composition for aircraft tire tread
JP2006206864A (en) Masterbatch of rubber/short fiber, manufacturing method for the same and pneumatic tire using the same
JP2011057967A (en) Rubber composition for tire tread
JP6193581B2 (en) Rubber composition for tire and pneumatic tire
JP2021073345A (en) Pneumatic tire
WO2017145480A1 (en) Rubber composition and pneumatic tire
EP3663103A1 (en) Pneumatic tire
JP2010185032A (en) Rubber composition, and tire using the same
JP2014098073A (en) Method for preparing rubber composition for tire, and rubber composition for tire
JP2011195804A (en) Rubber composition for tire and pneumatic tire
JP2007231177A (en) Rubber composition for tire tread
JPH0649802B2 (en) Rubber composition
JP2018188601A (en) Rubber composition for studless tire
JP2011153168A (en) Rubber composition for tire and pneumatic tire using the same
CN111727124A (en) Method for producing rubber composition using depolymerized carbon nanotubes
JP4012160B2 (en) Rubber composition for base tread and pneumatic tire
JP2021195071A (en) tire
US9145482B2 (en) Carbon black, method for producing carbon black, and rubber composition
CN105399993B (en) A kind of tread mix of wear-resisting stretch-proof
JP2009263478A (en) Rubber composition and tire using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206