JP2014097597A - Stacked body for reinforcement material - Google Patents

Stacked body for reinforcement material Download PDF

Info

Publication number
JP2014097597A
JP2014097597A JP2012249911A JP2012249911A JP2014097597A JP 2014097597 A JP2014097597 A JP 2014097597A JP 2012249911 A JP2012249911 A JP 2012249911A JP 2012249911 A JP2012249911 A JP 2012249911A JP 2014097597 A JP2014097597 A JP 2014097597A
Authority
JP
Japan
Prior art keywords
modulus
young
layer
mpa
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012249911A
Other languages
Japanese (ja)
Other versions
JP6007073B2 (en
Inventor
Motonaga Shimizu
基修 志水
Yoshinori Ono
嘉則 小野
Hirokuni Tajima
宏邦 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rengo Co Ltd
Original Assignee
Rengo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rengo Co Ltd filed Critical Rengo Co Ltd
Priority to JP2012249911A priority Critical patent/JP6007073B2/en
Publication of JP2014097597A publication Critical patent/JP2014097597A/en
Application granted granted Critical
Publication of JP6007073B2 publication Critical patent/JP6007073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27DWORKING VENEER OR PLYWOOD
    • B27D1/00Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring
    • B27D1/04Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring to produce plywood or articles made therefrom; Plywood sheets
    • B27D1/06Manufacture of central layers; Form of central layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27DWORKING VENEER OR PLYWOOD
    • B27D1/00Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring
    • B27D1/04Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring to produce plywood or articles made therefrom; Plywood sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcement material which suppresses dimensional change of a foamed body, and can have both of bending strength and machinability compared with a conventional plywood board which is used as a reinforcement material that is used so as to come in contact with a foamed body.SOLUTION: A stacked body 5 comprises: a core layer 3; barrier layers 1a and 1b arranged on both surfaces of the core layer 3; and intermediate layers 2a and 2b arranged between the core layer 3 and the barrier layers 1a and 1b respectively. The core layer 3 has a density of 0.30 g/cmor more and 0.80 g/cmor less, and a thickness of 0.50 mm or more and 2.00 mm or less. The barrier layers 1a and 1b have a moisture vapor transmission rate of 5.0 g/m24 h or less. The intermediate layers 2a and 2b have a density of 0.80 g/cmor more, a Young's modulus in at least one direction out of a MD vertical direction and a parallel direction of 2,800 MPa or more, an average Young's modulus of the MD vertical direction and the MD parallel direction of 4,000 MPa or more, and a moisture vapor transmission rate of 10.0 g/m24 h or less. The whole of the stacked body 5 has a moisture vapor transmission rate of 2.0 g/m24 h or less and a thickness of 1.15 mm or more.

Description

この発明は、補強材用積層体に関し、主にはそれを用いた、建材等に使用される樹脂発泡体を保護する補強材に関する。   The present invention relates to a laminate for a reinforcing material, and mainly relates to a reinforcing material using the same and protecting a resin foam used for a building material or the like.

樹脂発泡体は、断熱性、軽量性、緩衝性に優れ、また加工が容易であることから、ポリプロピレンなどのオレフィン系およびスチレン系などの樹脂発泡体が、家屋の壁材、床材、天井材等の建材として使用されている。しかしながら、樹脂発泡体は前記の利点を有する一方で、低密度ゆえ衝撃により表面が変形しやすく、変形した部分では断熱性が低下したり、すき間が生じたりする欠点がある。このため、樹脂発泡体の表面を保護するための補強材と組み合わされて使用される場合が多い。この補強材としては、安価であるベニヤ板(合板)や木質繊維板、プラスチック板、厚紙などが用いられたりしている。   Resin foams are excellent in heat insulation, light weight, cushioning properties, and easy to process, so olefin-based and styrene-based resin foams such as polypropylene are used for house wall materials, flooring materials, and ceiling materials. It is used as a building material. However, while the resin foam has the above-mentioned advantages, it has a defect that its surface is easily deformed due to impact because of its low density, and the heat insulating property is lowered or a gap is generated at the deformed portion. For this reason, it is often used in combination with a reinforcing material for protecting the surface of the resin foam. As this reinforcing material, inexpensive plywood (plywood), wood fiber board, plastic board, cardboard, etc. are used.

例えば、特許文献1〜3には、樹脂発泡体の補強材としてベニヤ板を使用した壁材、床材、天井材が、特許文献4では発泡体上部にベニヤ板を乗せることで荷重分散、変形を防止した展示台が、特許文献5〜7では樹脂発泡体の補強材として、ベニヤ板、合成樹脂シート材、紙、又はプラスチック段ボール等が例示されている。   For example, in Patent Documents 1 to 3, wall materials, floor materials, and ceiling materials that use plywood as a reinforcing material for resin foam are used. In Patent Document 4, load distribution and deformation are prevented by placing a plywood on top of the foam. Patent Documents 5 to 7 exemplify veneer boards, synthetic resin sheet materials, paper, plastic corrugated board, and the like as the reinforcing material for the resin foam in Patent Documents 5 to 7.

特開平05−098769号公報JP 05-098769 A 特開平08−284276号公報Japanese Patent Laid-Open No. 08-284276 特開2000−179129号公報JP 2000-179129 A 実開平06−061164号公報Japanese Utility Model Laid-Open No. 06-061164 特開平09−256607号公報JP 09-256607 A 特開平07−207885号公報Japanese Patent Application Laid-Open No. 07-20785 特開平07−009599号公報JP 07-009599 A

しかしながら、補強材にプラスチック板を用いた場合には、十分な強度が得られても、熱膨張係数が大きくまた高密度であるため寒暖差による寸法変化が大きく、寸法精度を維持することが難しい場合があった。厚紙の場合では湿度差による寸法変化が大きく、実用は困難であり、また十分な強度を得るには厚さが増し、重量が重くなる問題があった。ベニヤ板を用いた場合では、寸法精度が比較的高く、強度も一定の厚さがあれば十分であるが、ある程度の厚みを確保した場合は堅いために、切削加工性や穿孔性が悪いという問題があった。   However, when a plastic plate is used as the reinforcing material, even if sufficient strength is obtained, the coefficient of thermal expansion is large and the density is high, so the dimensional change due to temperature difference is large, and it is difficult to maintain the dimensional accuracy. There was a case. In the case of cardboard, the dimensional change due to the humidity difference is large and practical use is difficult, and there is a problem that the thickness is increased and the weight is increased to obtain sufficient strength. When plywood is used, it is sufficient if the dimensional accuracy is relatively high and the strength is constant. However, if a certain level of thickness is secured, the problem is that the workability and punchability are poor due to the rigidity. was there.

また、ポリオレフィンフォームやポリスチレンフォームなどの樹脂発泡体は断熱材や床の芯材などの建材として用いる場合が多いが、併用する補強材は季節ごとの湿度変化や温度変化を受けやすい環境にあり、この環境の変化による膨張収縮が起こりやすく、そのままでは夏と冬との湿度差や寒暖差に応じて寸法変化を生じる。このような膨張収縮をそのままにしておくと、建築物の壁面や床面に隙間を生じてしまう。樹脂発泡体と補強材を接着又は縫い合わせることで、この膨張収縮幅を軽減することはできるが、それでも、樹脂発泡体も温湿度の変化とともに膨張収縮するため、建材910mm×1820mmあたりの寸法変化を4.0mm未満にまでに抑制することが困難だった。   In addition, resin foams such as polyolefin foam and polystyrene foam are often used as building materials such as heat insulating materials and core materials for flooring, but the reinforcing materials used in combination are in an environment that is susceptible to seasonal changes in humidity and temperature. Expansion and contraction are likely to occur due to this environmental change, and if it is left as it is, a dimensional change will occur depending on the difference in humidity and temperature between summer and winter. If such expansion and contraction is left as it is, a gap is generated on the wall surface or floor surface of the building. This expansion and contraction width can be reduced by bonding or sewing the resin foam and the reinforcing material, but the resin foam also expands and contracts with changes in temperature and humidity, so the dimensional change per building material 910 mm x 1820 mm It was difficult to suppress it to less than 4.0 mm.

そこでこの発明は、樹脂発泡体等を補強するための曲げ強度が高く、寸法変化が小さい補強用材料を提供することを目的とする。   Accordingly, an object of the present invention is to provide a reinforcing material having a high bending strength and a small dimensional change for reinforcing a resin foam or the like.

この発明は、
コア層と、両方の表面のバリア層、及び、前記コア層と前記バリア層との間にそれぞれ中間層を有する積層体であり、
前記コア層は、密度が0.30g/cm以上0.80g/cm以下であり、厚みが0.50mm以上2.00mm以下である材料からなり、
前記バリア層は、透湿度が5.0g/m・24h以下であり、
前記中間層は、密度が0.80g/cm以上であり、透湿度が10.0g/m・24h以下であり、この中間層がその製造時に方向性を有する場合はそのMD(Machine Direction)方向に対して垂直あるいは平行に曲げた場合のどちらか一方のヤング率が2800MPa以上でありかつMD垂直方向とMD平行方向とのヤング率の平均が4000MPa以上であり、この中間層がその製造時に方向性を有しない場合は最も弱い方向のヤング率が2800MPa以上でありかつその最も弱い方向とそれに垂直な方向とのヤング率の平均が4000MPa以上であり、
積層体全体の透湿度が2.0g/m・24h以下で、厚みが1.15mm以上であり、上記中間層の製造時に方向性を有する場合はそのMD方向に対して垂直あるいは平行に曲げた場合のどちらか一方のヤング率が2500MPa以上でありかつMD垂直方向とMD平行方向のヤング率の平均が3800MPa以上であり、上記中間層がその製造時に方向性を有しない場合は最も弱い方向のヤング率が2500MPaでありかつその最も弱い方向とそれに垂直な方向とのヤング率の平均が3800MPa以上である積層体により、上記の課題を解決したのである。
This invention
A core layer, a barrier layer on both surfaces, and a laminate having an intermediate layer between the core layer and the barrier layer,
The core layer is made of a material having a density of 0.30 g / cm 3 to 0.80 g / cm 3 and a thickness of 0.50 mm to 2.00 mm.
The barrier layer has a moisture permeability of 5.0 g / m 2 · 24 h or less,
The intermediate layer has a density of 0.80 g / cm 3 or more and a moisture permeability of 10.0 g / m 2 · 24 h or less. When the intermediate layer has directionality at the time of manufacture, its MD (Machine Direction) ) Either of the Young's modulus when bent perpendicularly or parallel to the direction is 2800 MPa or more, and the average Young's modulus in the MD vertical direction and MD parallel direction is 4000 MPa or more. Sometimes when there is no directionality, the Young's modulus in the weakest direction is 2800 MPa or more, and the average Young's modulus in the weakest direction and the direction perpendicular thereto is 4000 MPa or more,
If the moisture permeability of the entire laminate is 2.0 g / m 2 · 24 h or less, the thickness is 1.15 mm or more, and if the intermediate layer has directionality, it is bent perpendicularly or parallel to the MD direction. The weakest direction when the Young's modulus of either one is 2500 MPa or more and the average of the Young's modulus in the MD vertical direction and MD parallel direction is 3800 MPa or more, and the intermediate layer does not have directionality during its production. The above problems were solved by a laminate having a Young's modulus of 2500 MPa and an average of Young's modulus in the weakest direction and a direction perpendicular thereto being 3800 MPa or more.

すなわち、この発明にかかる積層体は、少なくともバリア層、中間層、コア層、中間層、バリア層の5層を有している。これらの各層が必要な役割を最適に負担する複合構造とすることにより、求められる特性を発揮しうるものとなった。ただし、それぞれの層が均一な一層である必要はなく、それぞれの上記層が、さらに複数層からなるものであってもよい。   That is, the laminate according to the present invention has at least five layers of a barrier layer, an intermediate layer, a core layer, an intermediate layer, and a barrier layer. By making a composite structure in which each of these layers optimally bears the required role, the required properties can be exhibited. However, each layer does not need to be a uniform layer, and each of the above layers may be composed of a plurality of layers.

その役割分担は次のようなものである。低密度の材料からなるコア層は、嵩高さを確保して、剛性を十分に高めることができる。後述するが、剛性は厚さの3乗に比例するため強度の点で嵩高いことは非常に重要である。また、低密度の材料は高密度の物に比べ寸法変化が小さく、さらに寸法変化に伴う応力も低いことが積層体の寸法変化低減に寄与する。同時に、コア層が低密度であることで軽量化も果たすことができ、コア層がメインとなることで切削加工性も高くなる。ただし、コア層だけでは、ヤング率が低くなり補強材としての曲げ強度が不十分である。一方、コア層の上下に配された中間層はコア層より密度が高く必要な強度を有し、コア層の直接変形を防ぎ、補強材として必要な曲げ強度とを併せて発揮させる。高密度な中間層の構成だけでは、重くなりまた切削加工性に問題があるが、低密度なコア層を間に有することで、全体としては軽量化と切削加工性を確保できる。なお、そのためにそれぞれの中間層はコア層よりも薄いことが望ましく、最適値はコア層の厚みにもよるが、上記中間層の厚みは0.20mm以上0.90mm以下であれば好ましい。また、表面のバリア層と中間層は二重に湿度の侵入を抑えており、高密度の材料からなる中間層の湿度による寸法変化への影響を最小限に食い止めることができる。   The division of roles is as follows. The core layer made of a low-density material can ensure bulkiness and sufficiently increase rigidity. As will be described later, since the rigidity is proportional to the cube of the thickness, it is very important to be bulky in terms of strength. In addition, a low-density material has a smaller dimensional change than a high-density material, and a low stress accompanying the dimensional change contributes to a reduction in the dimensional change of the laminate. At the same time, the core layer can be reduced in weight because of its low density, and the machinability can be improved because the core layer is used as the main layer. However, the core layer alone has a low Young's modulus and insufficient bending strength as a reinforcing material. On the other hand, the intermediate layer disposed above and below the core layer has a higher density than the core layer and has a necessary strength, prevents direct deformation of the core layer, and exhibits a bending strength necessary as a reinforcing material. Only the configuration of the high-density intermediate layer is heavy, and there is a problem in cutting workability. However, by having a low-density core layer in between, weight reduction and cutting workability can be ensured as a whole. For this purpose, each intermediate layer is desirably thinner than the core layer, and the optimum value depends on the thickness of the core layer, but the thickness of the intermediate layer is preferably 0.20 mm or more and 0.90 mm or less. Further, the barrier layer and the intermediate layer on the surface doubly suppress the intrusion of humidity, and the influence on the dimensional change due to the humidity of the intermediate layer made of a high-density material can be minimized.

上記バリア層は、基本的には水蒸気バリア性を備えたプラスチックフィルムを用いると実現させやすい。また、低い透湿度を確保するためにプラスチックフィルムにコーティングや蒸着などで防湿層を設けることがより好ましい。ここでプラスチックフィルムの材料としては、ポリエチレンテレフタレートなどのポリエステルや、ポリプロピレンなどの、各層の接合に用いやすいポリエチレンよりも軟化点が高い樹脂を用いることが好ましい。   The barrier layer is basically easily realized by using a plastic film having a water vapor barrier property. In order to ensure low moisture permeability, it is more preferable to provide a moisture barrier layer on the plastic film by coating or vapor deposition. Here, as a material of the plastic film, it is preferable to use a resin having a softening point higher than that of polyethylene, such as polyester such as polyethylene terephthalate and polypropylene, which is easy to use for joining the layers.

上記コア層には、低密度の材料が好ましいが、例えばセルロースを主に含有する紙系材料を用いて、嵩高い上記の厚さを達成させることで、切削加工性を低下させることなく、強度を確保するために必要な厚みを持たせることができる。   For the core layer, a low-density material is preferable, but for example, by using a paper-based material mainly containing cellulose, by achieving the above-mentioned bulky thickness, the strength can be reduced without reducing the machinability. It is possible to have a thickness necessary for ensuring the above.

上記中間層は、樹脂を含む成分であると上記の物性を実現させやすい。具体的には、樹脂と紙の複合シートであるラミネート加工紙を用いると上記の強度や密度を達成させやすい。すなわち、上記中間層は上記コア層よりも高密度で高強度だが、その分層の厚さは薄くする。コア層より厚くなると切削加工性に問題が生じやすくなるため、それ以下の厚みとなる範囲で積層が可能である。ただし、ラミネート加工紙は一枚だけではなく、複数枚のラミネート加工紙を重ねて一つの上記中間層を形成させてもよい。   The said intermediate | middle layer is easy to implement | achieve said physical property as it is a component containing resin. Specifically, the use of laminated paper that is a composite sheet of resin and paper makes it easy to achieve the above strength and density. That is, the intermediate layer is denser and stronger than the core layer, but the thickness of the intermediate layer is reduced accordingly. If it is thicker than the core layer, a problem is likely to occur in the machinability, so that the layers can be laminated within a thickness range below that. However, the number of laminated papers is not limited to one, and a plurality of laminated papers may be stacked to form one intermediate layer.

この中間層が製造時に方向性を有する場合とそうで無い場合があるが、いずれも最も弱い方向の値と、それと垂直な方向との平均との値について上記の範囲であれば、基本的な強度は確保できる。なお、方向性を有する場合は、多くの場合、MD平行方向のヤング率の方が低い値となる。そして、この発明にかかる積層体全体が、主にこの中間層の方向性の有無とその方向に沿った高いヤング率を実現できるものとなる。   The intermediate layer may or may not have directionality at the time of manufacture, but if both are in the above range with respect to the value of the weakest direction and the average of the direction perpendicular thereto, it is fundamental. Strength can be secured. In addition, when it has directionality, the Young's modulus of MD parallel direction becomes a lower value in many cases. And the whole laminated body concerning this invention can mainly implement | achieve the presence or absence of directionality of this intermediate | middle layer, and the high Young's modulus along the direction.

これらの層は、熱可塑性樹脂による熱融着などで積層接着させるとよい。上記中間層にラミネート加工紙を用いる場合は、ラミネートに用いるポリオレフィンの融解によって接着できるので、他の接着剤層をあえて挟む必要がなくなる。   These layers are preferably laminated and bonded by heat fusion using a thermoplastic resin. When a laminated paper is used for the intermediate layer, it can be bonded by melting the polyolefin used for the lamination, so there is no need to dare to sandwich another adhesive layer.

この発明にかかる積層体は、中間層製造時のMD方向に対して垂直あるいは平行に曲げた場合のどちらか一方のヤング率が、あるいは中間層に方向性が無い場合は最も弱い方向のヤング率が2500MPa以上であり、MD垂直方向とMD平行方向のヤング率の平均が、あるいは中間層に方向性が無い場合は最も弱い方向とそれに垂直な方向とのヤング率の平均が3800MPa以上であって、いずれにしても曲げ圧力に対して十分強く、かつ寸法安定性がプラスチック板、厚紙、ベニヤ板よりも優れた補強材として、樹脂発泡体と併用した壁面材や床面材などの建材などに用いることができる。   The laminated body according to the present invention has either Young's modulus when bent in the direction perpendicular or parallel to the MD direction at the time of manufacturing the intermediate layer, or the weakest Young's modulus when the intermediate layer has no directionality. Is an average of Young's moduli in the MD vertical direction and MD parallel direction, or when the intermediate layer has no directionality, an average of Young's moduli in the weakest direction and the direction perpendicular thereto is 3800 MPa or more. In any case, as a reinforcing material that is sufficiently strong against bending pressure and has better dimensional stability than plastic board, cardboard, and veneer board, it is used for building materials such as wall materials and floor materials used in combination with resin foam. be able to.

この発明にかかる積層体の実施形態の例を示す断面図Sectional drawing which shows the example of embodiment of the laminated body concerning this invention 中間層が複数のシートからなる実施形態の例を示す断面図Sectional drawing which shows the example of embodiment which an intermediate | middle layer consists of a some sheet | seat

以下、この発明について詳細に説明する。この発明は、主に建材の樹脂発泡体層を保護するために配する補強材として使用可能な、曲げ強度と切削加工性と寸法安定性とを兼ね備えた積層体である。   The present invention will be described in detail below. The present invention is a laminate having bending strength, cutting workability and dimensional stability, which can be used mainly as a reinforcing material provided to protect a resin foam layer of a building material.

この発明にかかる積層体は、コア層と、上下の表面のバリア層、及び、前記コア層と前記バリア層との間にそれぞれ中間層を有する積層体である。すなわち、図1の断面図に示すように、順に少なくともバリア層1a、中間層2a、コア層3,中間層2b、バリア層1bの5層を有する積層体5である。   The laminate according to the present invention is a laminate having a core layer, upper and lower surface barrier layers, and an intermediate layer between the core layer and the barrier layer. That is, as shown in the cross-sectional view of FIG. 1, the laminate 5 has at least five layers of a barrier layer 1a, an intermediate layer 2a, a core layer 3, an intermediate layer 2b, and a barrier layer 1b.

バリア層1a,1bは、透湿度が5.0g/m・24h以下の層であり、3.0g/m・24h以下であると好ましく、低いほど好ましい。すなわち、水蒸気バリア性を発揮して内部への湿気の侵入を最も抑制するための層である。基本的には積層体5の上下表面に配するとよい。具体的な構成としては、プラスチックフィルム、又はそれにコーティングや蒸着を施したものが挙げられる。プラスチックとしては、例えばポリエチレンテレフタレートやポリプロピレンなどの、後述する熱融着の際にポリエチレンなどよりも軟化点が高く軟化しにくい高分子を用いることが好ましい。フィルムの厚さは100μm以下であると好ましく、60μm以下であるとより好ましい。厚すぎると温度変化による寸法変化の際の力が大きくなり、各層のバランスがとれなくなる恐れがあるためである。一方で、薄すぎると破れやすくなってしまうのである程度の強度を有することが必要である。プラスチックフィルム基材は防湿性の向上とコーティングまたは蒸着層を保護するためには厚い方が好ましく、8μm以上であると好ましく、10μm以上であるとより好ましい。アルミニウム箔基材も防湿性の観点から使用可能であるが、圧延の限界から薄膜化すると取り扱い困難であり、軽量化、省資源、省エネルギー、コストの面から、プラスチックフィルム基材の方が好ましい。 Barrier layer 1a, 1b is a layer less moisture permeability of 5.0g / m 2 · 24h, preferably is not more than 3.0g / m 2 · 24h, preferably lower. That is, it is a layer that exhibits the water vapor barrier property and most suppresses the intrusion of moisture into the inside. Basically, it may be arranged on the upper and lower surfaces of the laminate 5. Specific examples of the structure include a plastic film, or a film coated or deposited thereon. As the plastic, it is preferable to use, for example, a polymer having a softening point higher than that of polyethylene or the like and difficult to soften, such as polyethylene terephthalate or polypropylene. The thickness of the film is preferably 100 μm or less, and more preferably 60 μm or less. This is because if the thickness is too large, the force at the time of dimensional change due to temperature change increases, and there is a possibility that the balance of each layer may not be achieved. On the other hand, if it is too thin, it will be easily broken, so it is necessary to have some strength. The plastic film substrate is preferably thicker in order to improve moisture resistance and protect the coating or vapor deposition layer, preferably 8 μm or more, and more preferably 10 μm or more. An aluminum foil base material can also be used from the viewpoint of moisture resistance, but it is difficult to handle when it is thinned from the limit of rolling, and a plastic film base material is preferable from the viewpoint of weight reduction, resource saving, energy saving, and cost.

上記のコーティングの内容としては、アルミニウム、シリカ、アルミナを蒸着したもの、ポリ塩化ビニリデン(PVDC)やナノコンポジット系のコーティングをしたものなどが挙げられ、水蒸気バリア性を向上させるものであるとよい。
プラスチックフィルム基材の水蒸気バリア性を向上させる加工としては、PVDCコーティングとアルミニウムなどの金属蒸着が好ましく、焼却時のダイオキシンの問題を考慮するとアルミニウム蒸着がより好ましい。一方シリカ、アルミナ蒸着等はガラス質の為、屈曲に弱く、加工時、物流、実使用時の衝撃等で欠陥が生じバリア性が低下する場合がある。
なお、これらのコーティングや蒸着がされたフィルムを用いる場合、加工した防湿層を保護するため積層体5の表面側にフィルム基材が向き、中間層2a,2b側にコーティングや蒸着された面が向くように配するとよい。
Examples of the content of the coating include those obtained by vapor-depositing aluminum, silica, and alumina, those obtained by coating polyvinylidene chloride (PVDC) and nanocomposite, and the like, and may improve the water vapor barrier property.
As processing for improving the water vapor barrier property of the plastic film substrate, metal deposition such as PVDC coating and aluminum is preferable, and aluminum deposition is more preferable in consideration of the problem of dioxins during incineration. On the other hand, silica, alumina vapor deposition and the like are glassy, so they are vulnerable to bending, and defects may occur due to impacts during processing, physical distribution, actual use, etc., and the barrier property may be lowered.
In addition, when using the film by which these coating and vapor deposition were used, in order to protect the processed moisture-proof layer, the film base material faces the surface side of the laminated body 5, and the surface coated or vapor-deposited on the intermediate layer 2a, 2b side It is good to arrange it to face.

コア層3は、密度が0.30gcm以上0.80g/cm以下、好ましくは0.35g/cm以上0.70g/cm以下である材料からなる。このような材料としては、例えば、50質量%以上がパルプ、古紙、綿などのセルロース由来の原料を抄紙などの加工をしてボード状に加工した紙系材料や、ポリエステルなどの樹脂製繊維による不織布のような繊維積層体などが、比較的軽量で好適に用いることができる。ただし、木材そのものは入らない。木材の種類にもよるが、コア層3が木材であると、得られる積層体の切削加工性に問題が生じるおそれが高いためである。また、上記の紙系材料や繊維積層体は、必要に応じて紙力増強剤、湿潤紙力剤、バインダー成分、サイズ剤などの添加剤を含んでいてもよい。上記のような密度が0.30g/cm以上0.80g/cm以下とは比較的低密度の材料であり、寸法安定性と切削加工性に優れた材料である。0.30g/cmよりも低密度の素材では積層体5のヤング率が低くなり強度の点から問題となるおそれがある。0.35g/cm以上であると強度確保の点からより好ましい。一方で、所定の厚みを確保するコア層が0.80g/cmよりも高密度であると、コア層単独の寸法変化が大きく、また寸法変化に伴う応力も大きくなり、結果として積層体の寸法変化が大きくなる。0.80g/cm以下であると寸法変化と加工の点からはより好ましく、0.70g/cm以下であるとさらに好ましい。 The core layer 3 is made of a material having a density of 0.30 gcm 3 or more and 0.80 g / cm 3 or less, preferably 0.35 g / cm 3 or more and 0.70 g / cm 3 or less. As such a material, for example, 50% by mass or more is a paper-based material obtained by processing paper-derived raw materials derived from cellulose such as pulp, waste paper, and cotton, or a resin fiber such as polyester. A fiber laminate such as a non-woven fabric can be suitably used because it is relatively lightweight. However, wood itself does not enter. Although depending on the type of wood, if the core layer 3 is wood, there is a high risk of problems in the machinability of the resulting laminate. Moreover, said paper-type material and fiber laminated body may contain additives, such as a paper strength enhancer, a wet paper strength agent, a binder component, and a size agent, as needed. A density as described above of 0.30 g / cm 3 or more and 0.80 g / cm 3 or less is a material having a relatively low density and is excellent in dimensional stability and machinability. In the case of a material having a density lower than 0.30 g / cm 3, the Young's modulus of the laminate 5 is lowered, which may cause a problem in terms of strength. It is more preferable that it is 0.35 g / cm 3 or more from the viewpoint of securing the strength. On the other hand, if the core layer that secures a predetermined thickness is higher than 0.80 g / cm 3 , the dimensional change of the core layer alone is large, and the stress accompanying the dimensional change is also large, resulting in the laminate being Dimensional change increases. 0.80 g / cm 3 or less is more preferable from the viewpoint of dimensional change and processing, and 0.70 g / cm 3 or less is more preferable.

また、コア層3の厚みが0.50mm未満では積層体5全体の強度が不十分で、曲がり易すぎて補強材として不十分なものとなってしまうため、0.50mm以上である必要があり、0.60mm以上であると好ましい。補強材として必要な積層体全体の剛性を確保するには、素材の強さだけでは不十分で、一定の嵩高さが必要となるからである。なぜなら、具体的には、剛性は厚さの3乗とヤング率の積で示され厚いほど剛性が高くなるため、コア層3が厚いほど好ましくなる。厚いほど剛性は確保しやすくなるが、一方で、低密度のコア層3が2.00mmを越えると積層体5全体のヤング率が低下するため、2.00mm以下が好ましく、より積層体5の高ヤング率を維持するには1.50mm以下であるとより好ましい。   Further, if the thickness of the core layer 3 is less than 0.50 mm, the strength of the entire laminated body 5 is insufficient, and it is easy to bend and becomes insufficient as a reinforcing material, so it is necessary to be 0.50 mm or more. , 0.60 mm or more is preferable. This is because the strength of the material alone is not sufficient to ensure the rigidity of the entire laminate necessary as a reinforcing material, and a certain bulkiness is required. Specifically, the rigidity is indicated by the product of the cube of the thickness and the Young's modulus. The thicker the rigidity, the higher the rigidity. Therefore, the thicker the core layer 3, the better. The thicker the thickness, the easier it is to secure the rigidity. On the other hand, if the core layer 3 with a low density exceeds 2.00 mm, the Young's modulus of the entire laminate 5 is reduced. In order to maintain a high Young's modulus, it is more preferable that it is 1.50 mm or less.

中間層2a、2bは、密度が0.80g/cm以上である。すなわち、コア層3よりも高密度な材料である。低密度では強度が不十分で、コア層3と複合しての強度寄与効果が十分に発揮されなくなってしまうためである。素材にもよるが、1.00g/cm以上であるとより好ましい。 The intermediate layers 2a and 2b have a density of 0.80 g / cm 3 or more. That is, the material is denser than the core layer 3. This is because the strength is insufficient at low density, and the strength contribution effect combined with the core layer 3 is not sufficiently exhibited. Although it depends on the material, it is more preferably 1.00 g / cm 3 or more.

また、中間層2a、2bの透湿度は、10.0g/m・24h以下である必要があり、好ましくは8.0g/m・24h以下で、低いほど好ましい。バリア層1a、1bだけでは完全には水蒸気の侵入を防ぐことは難しく、積層体5全体の透湿抵抗を高め寸法変化を最小限に抑えるために、中間層2a、2bもある程度の水蒸気バリア性を発揮することが求められるためである。 Further, the moisture permeability of the intermediate layers 2a and 2b needs to be 10.0 g / m 2 · 24 h or less, preferably 8.0 g / m 2 · 24 h or less, and the lower the better. It is difficult to completely prevent water vapor from entering the barrier layers 1a and 1b alone, and the intermediate layers 2a and 2b also have some water vapor barrier properties in order to increase the moisture permeability resistance of the entire laminate 5 and to minimize dimensional changes. It is because it is required to exhibit.

さらに、この中間層2a,2bが十分な曲げ強度を発揮する必要がある。この中間層2a,2bの物性を実現するには、中間層がその製造時に方向性を有する場合はそのMD(Machine Direction)方向に対して垂直(すなわち、TD:Transverse Direction)あるいは平行(すなわち、MDそのもの)に曲げた場合のヤング率のどちらか一方のヤング率が2800MPa以上である必要があり、3000MPa以上であると好ましい。またMD垂直方向とMD平行方向のヤング率の平均が4000MPa以上である必要があり、4500MPa以上であると好ましい。一方、この中間層がその製造時に方向性を有しない場合には、最も弱い方向のヤング率が2800MPa以上である必要があり、3000MPa以上であると好ましい。また、その最も弱い方向とそれに垂直な方向とのヤング率の平均が4000MPa以上である必要があり、4500MPa以上であると好ましい。すなわち、方向によらず最低でも2800MPa以上のヤング率を有し、平均として4000MPa以上であると、積層体に対して必要な曲げ強度を発揮できる。   Furthermore, the intermediate layers 2a and 2b need to exhibit sufficient bending strength. In order to realize the physical properties of the intermediate layers 2a and 2b, when the intermediate layer has directionality at the time of manufacture, it is perpendicular to the MD (Machine Direction) direction (that is, TD: Transverse Direction) or parallel (that is, One of the Young's moduli when bent to MD itself) needs to be 2800 MPa or more, and preferably 3000 MPa or more. Moreover, the average of the Young's modulus of MD perpendicular direction and MD parallel direction needs to be 4000 Mpa or more, and it is preferable in it being 4500 Mpa or more. On the other hand, when this intermediate layer does not have directionality during its production, the Young's modulus in the weakest direction needs to be 2800 MPa or more, and preferably 3000 MPa or more. The average Young's modulus between the weakest direction and the direction perpendicular to the weakest direction needs to be 4000 MPa or more, and is preferably 4500 MPa or more. That is, the Young's modulus is at least 2800 MPa regardless of the direction, and the average bending strength of 4000 MPa or more can exhibit the required bending strength for the laminate.

この中間層2a、2bに用いるシートとしては、具体的にはポリエチレンなどのポリオレフィンによるラミネート加工がされた加工紙や、樹脂含浸紙を用いることができる。特にポリエチレンラミネート加工紙を用いると、バリア層1a、1bやコア層3との接着が中間層2a、2bを熱融解させるだけでできるので扱いやすく、製造しやすい。   As the sheet used for the intermediate layers 2a and 2b, specifically, a processed paper laminated with a polyolefin such as polyethylene or a resin-impregnated paper can be used. In particular, when polyethylene-laminated paper is used, adhesion to the barrier layers 1a and 1b and the core layer 3 can be performed simply by thermally melting the intermediate layers 2a and 2b.

この中間層2a、2bは、このようなシートを複数枚重ねた積層構造であってもよい。また、中間層2aと中間層2bとで厚みが違っていてもよい。すなわち、同じシートをそれぞれ用いて、中間層2aと中間層2bとでその枚数が違っていてもよいし、シート自体の厚みがそれぞれ違っていてもよい。ただし、同じシートを用いて枚数により調整すると、求められる物性の調整がしやすく、製造しやすい。例えば、中間層2a,2bがラミネートシート4をそれぞれ重ねたものである実施形態(仮に積層体5aとする)の断面図を図2に示す。図ではそれぞれの中間層2a,2bが二枚のラミネートシート4からなるが、枚数はこれに限定されず、互いに枚数が違っていてもよい。   The intermediate layers 2a and 2b may have a laminated structure in which a plurality of such sheets are stacked. Further, the intermediate layer 2a and the intermediate layer 2b may have different thicknesses. That is, using the same sheet, the number of sheets may be different between the intermediate layer 2a and the intermediate layer 2b, or the thickness of the sheet itself may be different. However, when the number of sheets is adjusted using the same sheet, it is easy to adjust the required physical properties and to manufacture easily. For example, FIG. 2 shows a cross-sectional view of an embodiment in which the intermediate layers 2a and 2b are obtained by laminating the laminate sheets 4 (assumed to be a laminated body 5a). In the figure, each intermediate layer 2a, 2b is composed of two laminate sheets 4, but the number of sheets is not limited to this, and the number of sheets may be different from each other.

ただし、個々の中間層2a,2bがコア層3よりも厚くなると、傾向として切削加工性が悪化しすぎてしまうので、コア層3よりも薄いことが望ましい。具体的には、中間層は0.90mm以下であると切削加工性上ほぼ問題がなく、0.70mm以下であると好ましい。一方で、薄すぎると曲げ強度が不十分に成りやすく、上記のヤング率を達成していても、積層体5全体としては強度不十分になる恐れがあるため、0.20mm以上であると好ましく、0.30mm以上であるとより好ましい。ただし、これらの厚みの範囲外でも、コア層3より薄ければ構成のバランス上問題ない場合もある。   However, if each of the intermediate layers 2 a and 2 b is thicker than the core layer 3, the machinability tends to be deteriorated as a tendency. Specifically, when the intermediate layer is 0.90 mm or less, there is almost no problem in cutting workability, and it is preferable that the intermediate layer is 0.70 mm or less. On the other hand, if the thickness is too thin, the bending strength tends to be insufficient, and even if the above Young's modulus is achieved, the laminate 5 as a whole may have insufficient strength. More preferably, it is 0.30 mm or more. However, even if out of the range of these thicknesses, there is a case where there is no problem in the balance of the structure as long as it is thinner than the core layer 3.

この積層体5は、上記の層以外に、後述する必要な物性の達成を阻害しない範囲でその他の層を有していてもよい。例えば、中間層2に熱可塑性樹脂を用いない場合に、各層を接着するための熱可塑性樹脂製等の接着剤層を有していてもよい。   In addition to the above layers, the laminate 5 may have other layers as long as the achievement of necessary physical properties to be described later is not hindered. For example, when a thermoplastic resin is not used for the intermediate layer 2, an adhesive layer made of a thermoplastic resin or the like for bonding the layers may be provided.

上記の層群を一つの積層体5として一体化する方法としては、十分な強度で一体化できれば特に限定されるものではなく、例えば熱可塑性樹脂で接着する方法が挙げられる。具体的には、バリア層1に用いるフィルム等、中間層2に用いるラミネート加工紙等、コア層3に用いる低密度紙などを一旦重ねた後、含有するポリエチレンなどの熱可塑性樹脂が融解される温度に全体を加熱して一体化するとよい。加熱する手法としては、一旦揃えたシート群を熱プレスする方法や、連続するシートを加熱し熱可塑性樹脂層を融解状態とし、ローラーで圧力を掛けつつ一体化する方法、ポリエチレンなどの熱可塑性樹脂押出ラミネーションで一体化する方法、接着剤を使用して一体化する方法などが挙げられる。   The method for integrating the group of layers as one laminate 5 is not particularly limited as long as it can be integrated with sufficient strength, and examples thereof include a method of bonding with a thermoplastic resin. Specifically, after a film used for the barrier layer 1, a laminated paper used for the intermediate layer 2, a low density paper used for the core layer 3, and the like, the thermoplastic resin such as polyethylene contained therein is melted. The whole is heated to the temperature and integrated. As a heating method, a method of hot pressing a group of sheets once prepared, a method of heating a continuous sheet to bring a thermoplastic resin layer into a molten state and applying pressure with a roller, a thermoplastic resin such as polyethylene Examples thereof include a method of integrating by extrusion lamination, a method of using an adhesive, and the like.

この発明にかかる積層体5は、最低限の曲げ強度として、ヤング率が少なくとも2500MPa以上である必要がある。上記の中間層や及びコア層等が製造時に方向性を有する場合、中間層およびコア層製造時のMD方向に対して垂直あるいは平行に曲げた場合のどちらか一方が2500MPa以上である。この値は、中間層やコア層等の基材の繊維配向、収縮に起因してヤング率が低くなる方向において少なくとも達成すべき値であり、3000MPa以上であるとより好ましい。また、MD垂直方向とMD平行方向とのヤング率の平均が3800MPa以上である必要があり、4500MPa以上であると好ましい。一方、もし方向性がない、あるいはあってもほとんど方向による差が無い手法で製造した場合においても、そのうち最も弱い方向のヤング率が2500MPa以上である必要があり、3000MPa以上であることが好ましい。かつ、そのような方向性が無い場合は、その最も弱い方向と、それに対して垂直な方向とのヤング率の平均が3800MPa以上である必要があり、4500MPa以上であると好ましい。   The laminate 5 according to the present invention needs to have a Young's modulus of at least 2500 MPa as a minimum bending strength. When said intermediate | middle layer, a core layer, etc. have directionality at the time of manufacture, either one when bent perpendicularly or parallel with respect to MD direction at the time of intermediate | middle layer and core layer manufacture is 2500 Mpa or more. This value is a value that should be achieved at least in the direction in which the Young's modulus decreases due to the fiber orientation and shrinkage of the base material such as the intermediate layer and the core layer, and is more preferably 3000 MPa or more. Moreover, the average of the Young's modulus of MD perpendicular direction and MD parallel direction needs to be 3800 MPa or more, and it is preferable in it being 4500 MPa or more. On the other hand, even if it is produced by a method with no directionality or little difference depending on the direction, the Young's modulus in the weakest direction among them needs to be 2500 MPa or more, and preferably 3000 MPa or more. And when there is no such directionality, the average Young's modulus of the weakest direction and the direction perpendicular | vertical to it needs to be 3800 MPa or more, and it is preferable in it being 4500 MPa or more.

ただし、積層体5のヤング率が高すぎると、強度が高すぎるために切削加工性を阻害するおそれがある。いずれか一方向でもヤング率が9000MPaを越える方向があると、手作業による容易な切削加工が難しくなる傾向にある。なお、ここで規定するヤング率の測定方法はJIS A 5905に準拠し行った。   However, when the Young's modulus of the laminated body 5 is too high, the strength is too high, which may impair the machinability. If there is a direction in which the Young's modulus exceeds 9000 MPa in any one direction, easy cutting by hand tends to be difficult. In addition, the measuring method of Young's modulus prescribed | regulated here was performed based on JISA5905.

また、この発明にかかる積層体5は、全体としての透湿度が2.0g/m・24h以下である必要があり、1.7g/m・24h以下であるとより好ましく、低いほど好ましい。全体として湿気を通しすぎると、積層体5内部へ侵入する湿気の量が多くなって、寸法安定性が悪化するからである。また、積層体を透過した湿気の樹脂発泡体への移行量の増加も懸念される。 Moreover, the laminated body 5 concerning this invention needs to have a moisture permeability of 2.0 g / m 2 · 24 h or less as a whole, more preferably 1.7 g / m 2 · 24 h or less, and the lower the better. . If too much moisture is passed as a whole, the amount of moisture that penetrates into the laminate 5 increases, and the dimensional stability deteriorates. There is also a concern about an increase in the amount of moisture that has permeated through the laminate to the resin foam.

さらに、この発明にかかる積層体5は、補強材として寸法安定性に優れたものである必要がある。すなわち、建材に用いる樹脂発泡体の温湿度変化に応じて起こる寸法変化が、建材として用いる際に、実用上問題が生じない程度にまで抑制することができる必要がある。この発明にかかる積層体5と上記樹脂発泡体とは、接着剤による接着や、糸による縫合などで一体化することとなる。具体的にこの積層体5の許容できる寸法変化としては、900mm角の試料を、23℃50%RHを標準状態とし、25℃90%RHの環境に7日間置いた時点で、試料のMD平行方向とMD垂直方向の寸法を測定し(方向性が無い場合は任意の方向の寸法を測定)、次に25℃30%RHの環境に7日間置いた後に両方向の寸法を測定し、標準状態との寸法変化が差にして2.0mm以下で、1.7mm以下であると好ましく、1.5mm以下であるとより好ましい。寸法安定性が比較的よく、従来補強材として用いられているベニヤ板の一般的な寸法変化が、同条件下で1.7mm程度であり、この発明にかかる積層体5は上記の層の複合構造により、ベニヤ板よりも優れた寸法安定性を実現できる。   Furthermore, the laminated body 5 concerning this invention needs to be excellent in dimensional stability as a reinforcing material. That is, it is necessary to be able to suppress the dimensional change that occurs according to the temperature and humidity change of the resin foam used for the building material to such an extent that no practical problem occurs when used as the building material. The laminate 5 according to the present invention and the resin foam are integrated by bonding with an adhesive or sewing with a thread. Specifically, the allowable dimensional change of the laminate 5 is that when a sample of 900 mm square is placed in an environment of 23 ° C. and 50% RH in an environment of 25 ° C. and 90% RH for 7 days, the sample is parallel to MD. Measure the dimensions in the direction and MD perpendicular direction (if there is no directionality, measure the dimensions in any direction), then measure the dimensions in both directions after being placed in an environment of 25 ° C and 30% RH for 7 days. And the difference in size is 2.0 mm or less, preferably 1.7 mm or less, and more preferably 1.5 mm or less. The dimensional stability is relatively good, and the general dimensional change of the veneer plate that has been used as a reinforcing material in the past is about 1.7 mm under the same conditions. The laminate 5 according to the present invention has a composite structure of the above layers. Therefore, dimensional stability superior to the plywood can be realized.

この発明にかかる積層体5によって補強できる材料としては、建材に用いる樹脂発泡体に接触させ、接着や縫いつけにより一体化して用いると、強度や剛性に欠ける樹脂発泡体の欠点を補強できるので望ましい。このような樹脂発泡体としては、例えば、ポリスチレンフォーム、ポリエチレンやポリプロピレンなどのポリオレフィンフォームの他に、硬質ポリウレタン、軟質ポリウレタン、フェノール樹脂、ユリア樹脂、エポキシ樹脂、アクリル樹脂などの熱硬化性樹脂フォームや、エボナイトフォーム、ポリ塩化ビニルフォームなどが挙げられる。   A material that can be reinforced by the laminate 5 according to the present invention is preferably brought into contact with a resin foam used as a building material and integrated by adhesion or sewing, because defects of the resin foam lacking in strength and rigidity can be reinforced. Examples of such resin foams include polystyrene foam, polyolefin foams such as polyethylene and polypropylene, and thermosetting resin foams such as hard polyurethane, soft polyurethane, phenol resin, urea resin, epoxy resin, and acrylic resin. , Ebonite foam, polyvinyl chloride foam and the like.

この発明を実施した実施例を具体的に挙げて説明する。
まず、各層に用いる素材について説明する。
An embodiment in which the present invention is implemented will be specifically described.
First, materials used for each layer will be described.

<バリア層>
・アルミニウム蒸着ポリエチレンテレフタレートフィルム:厚さ12μm、透湿度2.9g/m・24h(TORAY ADVANCED MATERIALS KOREA INC. EXCELL VM-PET1310)。
・ポリ塩化ビニリデンコーティング二軸延伸ポリプロピレンフィルム:厚さ30μm、透湿度5.0g/m・24h(ダイセルバリューコーティング(株)製セネシ1000)。「PVDC−OPP」と表記。
・ポリエチレンフィルム:厚さ40μm、透湿度13.0g/m・24h。以下、「PE40μ」と表記。
<中間層>
・樹脂ラミネート紙:坪量170g/mの上質耐水紙の両面に厚さ30μmのポリエチレン層をラミネート加工した、厚さ0.23mmの加工紙。坪量236g/m。密度1.05g/cm。透湿度7.7g/m・24h。ヤング率MD垂直方向7352MPa、MD平行方向3228MPa。以下、「SP」と表記。
・ラミネート加工コートボール:コートボール(レンゴー(株)製CRC、坪量400g/m、厚さ0.51mm)の両面に厚さ20μmのポリエチレン層をラミネート加工した加工紙。密度0.80g/cm。透湿度9.7g/m・24h。ヤング率MD垂直方向5408MPa、MD平行方向2802MPa。以下「ラミネート加工CRC」と表記。
(ポリエチレンフィルム:厚さ20μm、透湿度22g/m・24h)
<コア層又は比較例中間層>
・低密度紙:丸三製紙(株)製「MFS15」、密度0.35g/cm、厚さ1.50mm。
・低密度紙:丸三製紙(株)製「MF15」、密度0.40g/cm、厚さ1.50mm。
・低密度紙:丸三製紙(株)製「MF10」、密度0.41g/cm、厚さ1.00mm。
・低密度紙:丸三製紙(株)製「MF07」、密度0.45g/cm、厚さ0.70mm。
・紙管原紙:レンゴー(株)製5K、密度0.71g/cm、厚さ1.00mm。以下、「紙管原紙1mm」と表記。
・低密度紙:東洋ファイバー(株)製「フワットライトN720150」、密度0.20g/cm、厚さ0.75mm。
・低密度紙:丸三製紙(株)製「MFS20」、密度0.34g/cm、厚さ2.00mm。
<ベニヤ板>
・ベニヤ板:合板の日本農林規格における、普通合板、1類、厚さ2.35mm
<Barrier layer>
Aluminum deposited polyethylene terephthalate film: thickness of 12 [mu] m, moisture permeability 2.9g / m 2 · 24h (. TORAY ADVANCED MATERIALS KOREA INC EXCELL VM-PET1310).
Polyvinylidene chloride-coated biaxially stretched polypropylene film: thickness 30 μm, moisture permeability 5.0 g / m 2 · 24 h (Dencel Value Coating Co., Ltd., Senec 1000). Expressed as “PVDC-OPP”.
Polyethylene film: thickness 40 μm, moisture permeability 13.0 g / m 2 · 24 h. Hereinafter referred to as “PE40μ”.
<Intermediate layer>
Resin-laminated paper: A processed paper having a thickness of 0.23 mm obtained by laminating a 30 μm-thick polyethylene layer on both sides of a high-quality water-resistant paper having a basis weight of 170 g / m 2 . Basis weight 236 g / m 2 . Density 1.05 g / cm 3 . Moisture permeability 7.7g / m 2 · 24h. Young's modulus MD vertical direction 7352 MPa, MD parallel direction 3228 MPa. Hereinafter referred to as “SP”.
Laminated coated ball: A processed paper obtained by laminating a 20 μm thick polyethylene layer on both sides of a coated ball (CRN, Rengo Co., Ltd., basis weight 400 g / m 2 , thickness 0.51 mm). Density 0.80 g / cm 3 . The water vapor transmission rate is 9.7 g / m 2 · 24 h. Young's modulus MD vertical direction 5408 MPa, MD parallel direction 2802 MPa. Hereinafter referred to as “laminated CRC”.
(Polyethylene film: thickness 20 μm, moisture permeability 22 g / m 2 · 24 h)
<Core layer or comparative intermediate layer>
Low density paper: “MFS15” manufactured by Marusan Paper Co., Ltd., density 0.35 g / cm 3 , thickness 1.50 mm.
Low density paper: “MF15” manufactured by Marusan Paper Co., Ltd., density 0.40 g / cm 3 , thickness 1.50 mm.
Low density paper: “MF10” manufactured by Marusan Paper Co., Ltd., density 0.41 g / cm 3 , thickness 1.00 mm.
Low density paper: “MF07” manufactured by Marusan Paper Co., Ltd., density 0.45 g / cm 3 , thickness 0.70 mm.
-Paper tube base paper: Rengo Co., Ltd. 5K, density 0.71g / cm < 3 >, thickness 1.00mm. Hereinafter, it is expressed as “paper tube base paper 1 mm”.
Low density paper: “Fwatlite N720150” manufactured by Toyo Fiber Co., Ltd., density 0.20 g / cm 3 , thickness 0.75 mm.
Low density paper: “MFS20” manufactured by Marusan Paper Co., Ltd., density 0.34 g / cm 3 , thickness 2.00 mm.
<Veneer board>
・ Veneer board: Standard plywood, 1 type, thickness 2.35mm

実施例、比較例のそれぞれにかかる積層体は、SPなど、ポリエチレン層を層間接触部分に有するものについては、全体を上下から102℃の熱板を7kg/cmの圧力で2分間ホットプレスし、その後常温にて2分間コールドプレスして積層体を製造する。また層間接着部分を有しないものについては、ポリ酢酸ビニル製接着剤(コニシ株式会社製:ニューCH18)を30g/mで塗工して接着して製造する。なお、いずれの試料も、製造段階における長さおよび幅寸法は1000mmである。 For the laminates according to each of the examples and comparative examples, SP or the like having a polyethylene layer at the interlayer contact portion was hot-pressed from the top and bottom with a hot plate at 102 ° C. for 2 minutes at a pressure of 7 kg / cm 2. Then, the laminate is manufactured by cold pressing at room temperature for 2 minutes. For those having no interlayer adhesive portion, a polyvinyl acetate adhesive (manufactured by Konishi Co., Ltd .: New CH18) is applied at 30 g / m 2 and bonded. In all samples, the length and width dimensions in the production stage are 1000 mm.

次に、測定方法について説明する。
<透湿度測定方法>
バリア層および中間層の材料、ならびに積層した全体の補強材の透湿度は、JIS Z 0208 「防湿包装材料の透湿度試験方法(カップ法)」により測定した。
Next, a measurement method will be described.
<Moisture permeability measurement method>
The moisture permeability of the material of the barrier layer and the intermediate layer and the entire laminated reinforcing material was measured according to JIS Z 0208 “Method of testing moisture permeability of moisture-proof packaging material (cup method)”.

<寸法変化測定方法>
900mm角の試料を、23℃50%RHを標準状態とし、25℃90%RHの環境に7日間置いた時点で、試料のMD平行方向とMD垂直方向の寸法を測定し、次に25℃30%RHの環境に7日間置いた後に両方向の寸法を測定し、標準状態との最大変化量を求めた。変化量が0.5mm以下のものを評価◎、0.5mmを上回り1.5mm以下のものを評価○、1.5mmを上回り2.0mm以下のものを評価△、2.0mmを越えるものを評価×とした。
<Dimensional change measurement method>
When a 900 mm square sample was placed in an environment of 23 ° C. and 50% RH for 7 days in an environment of 25 ° C. and 90% RH, the dimensions of the sample in the MD parallel direction and MD vertical direction were measured. After being placed in a 30% RH environment for 7 days, the dimensions in both directions were measured to determine the maximum change from the standard state. Evaluated when the amount of change is 0.5 mm or less. Evaluated when 0.5 mm is greater than 1.5 mm. Evaluated when 1.5 mm is greater than 2.0 mm. It was set as evaluation x.

<ヤング率測定方法>
コア層、および中間層の材料、および製造した積層体からMD平行方向200mm、MD垂直方向50mmの長方形状の試料、およびMD垂直方向200mm、MD平行方向50mmの長方形状の試料をそれぞれ作製した。これをJIS A 5905「繊維板」の曲げ強度の測定方法と同様に、スパンの方向と試験片の長辺方向を平行にして、荷重とたわみ量の比例域におけるヤング率を測定した。
<Young's modulus measurement method>
From the core layer and intermediate layer materials and the manufactured laminate, a rectangular sample having an MD parallel direction of 200 mm and an MD vertical direction of 50 mm and a rectangular sample having an MD vertical direction of 200 mm and an MD parallel direction of 50 mm were prepared. Similar to the method for measuring the bending strength of JIS A 5905 “Fiberboard”, the Young's modulus in the proportional range of load and deflection was measured with the span direction and the long side direction of the test piece parallel.

<厚さ測定>
JIS P 8118 「紙及び板紙−厚さ及び密度の測定方法」により測定した。
<Thickness measurement>
It was measured according to JIS P 8118 “Paper and paperboard—Method for measuring thickness and density”.

<切削加工性評価>
積層体の寸法変化の測定試料を規定寸法に切り出す際に、積層体をカッターナイフ(エヌティー(株)製、L−500)で切削した場合に要した力の程度で評価した。切削時に要した力が軽微だった場合を評価○、やや力を要したがベニヤ板の切削時よりも軽微だった場合を評価△、ベニヤ板の切削と同等の力を要した場合を評価×とした。
<Cutability evaluation>
Measurement of the dimensional change of the laminate When the sample was cut out to a specified size, the laminate was evaluated by the degree of force required when the laminate was cut with a cutter knife (manufactured by NT Corporation, L-500). Evaluated when the force required at the time of cutting was slight ○, evaluated when the force required was slightly less than at the time of cutting the plywood board △, and evaluated as × when the force required to cut the plywood board was required .

次に、それぞれの実施例と比較例について説明する。それぞれ積層体を構成する層の物性と、測定したデータを表1に示す。   Next, each example and comparative example will be described. Table 1 shows the physical properties of the layers constituting each laminate and the measured data.

Figure 2014097597
Figure 2014097597

(実施例1〜8)
実施例1〜8は、積層体の上下両面のバリア層としてVM−PETを用い、コア層は低密度紙であるMFS15、およびMF07、10、15、および紙管原紙1mmを表のように変更し、中間層としてSPの枚数を表のように変更した積層体をそれぞれ製造した。コア層の密度が0.30g/cm〜0.80g/cmの範囲で密度が増すほどに積層体のヤング率は向上した。また中間層に用いるSPの枚数が多く、すなわち、層厚が増すほどにヤング率は向上し、また中間層の透湿度は低下し、寸法変化は小さくなっていった。
(Examples 1-8)
In Examples 1 to 8, VM-PET was used as the barrier layers on the upper and lower surfaces of the laminate, and the core layer was changed to MFS15, which is low density paper, and MF07, 10, 15 and paper tube base paper 1 mm as shown in the table. And the laminated body which changed the number of SP as a table | surface as an intermediate | middle layer was manufactured, respectively. Density of the core layer is improved in Young's modulus of the laminate as the density is increased in a range of 0.30g / cm 3 ~0.80g / cm 3 . In addition, as the number of SPs used in the intermediate layer increased, that is, as the layer thickness increased, the Young's modulus improved, the moisture permeability of the intermediate layer decreased, and the dimensional change became smaller.

(実施例9〜10)
実施例4においてバリア層であるVM−PETをPVDC−OPPに変更した実施例9では、積層体のヤング率は高く、寸法変化は小さかった。実施例2において中間層であるSP・3枚を「ラミネート加工CRC」に変更した実施例10では透湿度がやや高くなったが、ヤング率は高く、寸法変化は低く抑えられ、積層体として良好であった。
(Examples 9 to 10)
In Example 9 in which VM-PET as a barrier layer in Example 4 was changed to PVDC-OPP, the laminate had a high Young's modulus and a small dimensional change. In Example 2, in which the intermediate layer of SP · 3 was changed to “laminate CRC”, the moisture permeability was slightly high, but the Young's modulus was high, the dimensional change was kept low, and the laminate was good. Met.

(比較例1〜2)
実施例1において、コア層であるMFS15をフワットライトN720150に変更し、コア層の密度を0.20g/cmまで低密度にした比較例1、および実施例1のコア層であるMFS15をMFS20に変更し、コア層の密度が実施例1と同程度の0.34g/cmであっても厚さが2.00mmの場合の比較例2では、寸法変化は小さいものの、ヤング率は低くなり、強度が不十分という問題があった。
(Comparative Examples 1-2)
In Example 1, the core layer MFS15 was changed to Watlite N720150, and the density of the core layer was reduced to 0.20 g / cm 3. Comparative Example 1 and the core layer MFS15 of Example 1 were changed to MFS20. In Comparative Example 2 where the thickness of the core layer is 0.34 g / cm 3 , which is about the same as that of Example 1, but the thickness is 2.00 mm, the dimensional change is small, but the Young's modulus is low. Therefore, there was a problem that the strength was insufficient.

<中間層を低密度にした場合>
(比較例3,4)
実施例4において、中間層のSP・3枚及びコア層のMF07という配置を入れ替えて、中間層をMF07及びコア層をSP・3枚とした比較例3を検討した。また、実施例5において、中間層のSP・3枚を密度0.35g/cmのMFS15に変更した比較例4を検討した。いずれも、中間層のヤング率が低いためコア層を補強する効果が十分ではなく、積層体全体としてのヤング率が著しく低いものとなってしまった。またMF07およびMFS15の透湿度が高いために寸法変化が大きくなる問題があった。
<When the intermediate layer has a low density>
(Comparative Examples 3 and 4)
In Example 4, a comparative example 3 was examined in which the arrangement of SP · 3 for the intermediate layer and MF07 for the core layer were interchanged, and the intermediate layer was MF07 and the core layer was SP · 3. Further, in Example 5, Comparative Example 4 was examined in which the three SPs of the intermediate layer were changed to MFS 15 having a density of 0.35 g / cm 3 . In either case, the Young's modulus of the intermediate layer is low, so the effect of reinforcing the core layer is not sufficient, and the Young's modulus of the entire laminate is extremely low. Moreover, since the moisture permeability of MF07 and MFS15 is high, there has been a problem that the dimensional change becomes large.

<両面のバリア層が無い場合>
(比較例5〜8)
実施例2〜5において、両面のバリア層であるVM−PETを設けなかった比較例5〜8を検討したところ、いずれもバリア層がないために湿度の透過を十分に抑制できず、寸法変化量が大きく増大し、ベニヤ板よりも悪化してしまった。
<When there is no barrier layer on both sides>
(Comparative Examples 5 to 8)
In Examples 2 to 5, when Comparative Examples 5 to 8 in which VM-PET that is a double-sided barrier layer was not provided were examined, humidity transmission could not be sufficiently suppressed because there was no barrier layer, and dimensional change was observed. The amount increased greatly and became worse than the plywood.

<片面のバリア層が無い場合>
(比較例9,10)
実施例8,9において、バリア層であるVM−PETを片面に設けなかった比較例9,10を検討したところ、寸法変化量がベニヤ板よりも悪化してしまった。これは、バリア層がない面では湿気の透過を十分に抑制できず、寸法変化量が大きくなったためである。片面のみにバリア層を設けても補強材の膨張収縮を抑制できなかったものと考えられる。
<When there is no single-sided barrier layer>
(Comparative Examples 9 and 10)
In Examples 8 and 9, when Comparative Examples 9 and 10 in which VM-PET as a barrier layer was not provided on one side were examined, the amount of dimensional change was worse than that of the veneer board. This is because moisture permeation cannot be sufficiently suppressed on the surface without the barrier layer, and the dimensional change amount is increased. It is considered that the expansion and contraction of the reinforcing material could not be suppressed even when the barrier layer was provided only on one side.

<バリア層の透湿度が高い場合>
(比較例11)
実施例4において、バリア層のVM−PETを、透湿度がやや高いPE40μに変更した比較例11を検討したところ、積層体のヤング率は高いものの、寸法変化量がベニヤ板よりも僅かながら大きくなった。バリア層の透湿度がやや高く、湿気の透過を十分に抑制できなかった。
<When the moisture permeability of the barrier layer is high>
(Comparative Example 11)
In Example 4, when Comparative Example 11 in which the VM-PET of the barrier layer was changed to PE 40 μ with a slightly high moisture permeability was examined, although the Young's modulus of the laminate was high, the dimensional change amount was slightly larger than the veneer plate. It was. The moisture permeability of the barrier layer was slightly high, and moisture permeation could not be sufficiently suppressed.

<中間層を設けない場合>
(比較例12)
実施例5において、中間層のSP・3枚を設けない比較例12を検討したところ、積層体のヤング率がやや不十分であり、また中間層がないために中間層による透湿の抑制がなく、寸法変化量が大きくなった。
<When no intermediate layer is provided>
(Comparative Example 12)
In Example 5, when Comparative Example 12 in which no SP of three intermediate layers was provided was examined, the Young's modulus of the laminate was slightly insufficient, and since there was no intermediate layer, moisture transmission was suppressed by the intermediate layer. There was no dimensional change.

<中間層のみの場合>
(比較例13)
実施例6において、コア層のMF07を設けず、さらにバリア層のVM−PETを設けずにSPのみを4枚重ねて接合した比較例13を検討したところ、積層体のヤング率は確保できたが、寸法安定量は大きくなった。また実施例6と比較して積層体の反りが大きくなった。
<In case of intermediate layer only>
(Comparative Example 13)
In Example 6, when Comparative Example 13 in which only four SPs were stacked and joined without providing the core layer MF07 and without providing the barrier layer VM-PET, the Young's modulus of the laminate was secured. However, the amount of dimensional stability has increased. Further, the warpage of the laminate was larger than that of Example 6.

<中間層が低密度・透湿性の場合>
(比較例14)
実施例1において、中間層のSP、3枚を紙管原紙1mmに変更した比較例14を検討したところ、SPに比べて紙管原紙1mmの方が密度が低いためにヤング率が低く、中間層としてコア層を補強する効果が低かった。このため積層体のヤング率も低くなった。またSPに比べて紙管原紙1mmの方が透湿度が高いために、寸法安定性に問題のあるものとなってしまった。
<When the intermediate layer has low density and moisture permeability>
(Comparative Example 14)
In Example 1, a comparative example 14 in which the SP of the intermediate layer was changed to 1 mm of the paper tube base paper was examined, and the Young's modulus was lower because the density of the paper tube base paper 1 mm was lower than that of the SP. The effect of reinforcing the core layer as a layer was low. For this reason, the Young's modulus of the laminate was also lowered. In addition, the paper tube base paper 1 mm has a higher moisture permeability than SP, which causes a problem in dimensional stability.

<中間層が強固で切削加工性に問題となる場合>
(比較例15,16)
実施例4において、中間層のSP・3枚をSP・4枚、およびSP・5枚にそれぞれ枚数を増した比較例15,16を検討した。SPの枚数が連続して4枚以上になると、積層体のヤング率は非常に高くなり、また寸法変化はより小さくなり、積層体としての物性は高いが、切削加工性が著しく劣るという問題があり、実用性は低かった。
<When the intermediate layer is strong and causes a problem in cutting workability>
(Comparative Examples 15 and 16)
In Example 4, Comparative Examples 15 and 16 in which the number of SP · 3 intermediate layers was increased to SP · 4 and SP · 5 were examined. When the number of SPs is continuously 4 or more, the Young's modulus of the laminate becomes very high, the dimensional change becomes smaller, the physical properties of the laminate are high, but the machinability is remarkably inferior. Yes, practicality was low.

(参考例1)
従来から補強材として用いられているベニヤ板について補足的に検討した。ベニヤ板はヤング率の異方性が大きく、MD平行方向のヤング率が低いために一定方向からの衝撃に弱いという問題があった。一方、MD垂直方向のヤング率は高すぎるために、切削性が著しく劣るという問題があった。
(Reference Example 1)
A supplementary study was conducted on plywood that has been used as a reinforcing material. The veneer plate has a large Young's modulus anisotropy and a low Young's modulus in the MD parallel direction, so that it has a problem that it is vulnerable to impact from a certain direction. On the other hand, since the Young's modulus in the MD vertical direction is too high, there is a problem that the machinability is remarkably inferior.

(プラスチック素材での熱収縮性)
900mm角の試料を、25℃30%RH(7日間)の環境から、5℃30%RH(7日間)と温度変化させたとき、ベニヤ板(参考例1)と本願実施例(実施例4・実施例6)では寸法変化がないのに対して、ポリプロピレン製のプラダンA・Bでは温度変化による伸縮があり、建材等の補強材としては不適切であることが確認された。その結果を表2に示す。
(Heat shrinkage with plastic material)
When a 900 mm square sample was changed in temperature from 25 ° C. and 30% RH (7 days) to 5 ° C. and 30% RH (7 days), the plywood (Reference Example 1) and the present example (Example 4 In Example 6), there was no dimensional change, whereas in Pradan A and B made of polypropylene, there was expansion and contraction due to temperature change, and it was confirmed that it was inappropriate as a reinforcing material for building materials and the like. The results are shown in Table 2.

Figure 2014097597
Figure 2014097597

1,1a,1b バリア層
2,2a,2b 中間層
3 コア層
4 ラミネートシート
5,5a 積層体
1, 1a, 1b Barrier layer 2, 2a, 2b Intermediate layer 3 Core layer 4 Laminate sheet 5, 5a Laminate

Claims (5)

コア層と、両方の表面のバリア層、及び、前記コア層と前記バリア層との間にそれぞれ中間層を有する積層体であり、
前記コア層は、密度が0.30g/cm以上0.80g/cm以下であり、厚みが0.50mm以上2.00mm以下である材料からなり、
前記バリア層は、透湿度が5.0g/m・24h以下であり、
前記中間層は、密度が0.80g/cm以上であり、透湿度が10.0g/m・24h以下であり、この中間層がその製造時に方向性を有する場合はそのMD(Machine Direction)方向に対して垂直あるいは平行に曲げた場合のどちらか一方のヤング率が2800MPa以上でありかつMD垂直方向とMD平行方向のヤング率の平均が4000MPa以上であり、この中間層がその製造時に方向性を有しない場合は最も弱い方向のヤング率が2800MPa以上でありかつその最も弱い方向とそれに垂直な方向とのヤング率の平均が4000MPa以上であり、
積層体全体の透湿度が2.0g/m・24h以下で、厚みが1.15mm以上であり、上記中間層の製造に方向性を有する場合はそのMD方向に対して垂直あるいは平行に曲げた場合のどちらか一方のヤング率が2500MPa以上でありかつMD垂直方向とMD平行方向のヤング率の平均が3800MPa以上であり、上記中間層がその製造時に方向性を有しない場合は最も弱い方向のヤング率が2500MPaでありかつその最も弱い方向とそれに垂直な方向とのヤング率の平均が3800MPa以上である積層体。
A core layer, a barrier layer on both surfaces, and a laminate having an intermediate layer between the core layer and the barrier layer,
The core layer is made of a material having a density of 0.30 g / cm 3 to 0.80 g / cm 3 and a thickness of 0.50 mm to 2.00 mm.
The barrier layer has a moisture permeability of 5.0 g / m 2 · 24 h or less,
The intermediate layer has a density of 0.80 g / cm 3 or more and a moisture permeability of 10.0 g / m 2 · 24 h or less. When the intermediate layer has directionality at the time of manufacture, its MD (Machine Direction) ) Either of the Young's modulus when bent perpendicularly or parallel to the direction is 2800 MPa or more, and the average Young's modulus in the MD vertical direction and MD parallel direction is 4000 MPa or more. When there is no directionality, the Young's modulus in the weakest direction is 2800 MPa or more, and the average Young's modulus in the weakest direction and the direction perpendicular thereto is 4000 MPa or more,
If the moisture permeability of the entire laminate is 2.0 g / m 2 · 24 h or less, the thickness is 1.15 mm or more, and the intermediate layer has directionality, it is bent perpendicularly or parallel to the MD direction. The weakest direction when the Young's modulus of either one is 2500 MPa or more and the average of the Young's modulus in the MD vertical direction and MD parallel direction is 3800 MPa or more, and the intermediate layer does not have directionality during its production. A laminate in which the Young's modulus is 2500 MPa and the average Young's modulus in the weakest direction and the direction perpendicular thereto is 3800 MPa or more.
上記コア層が紙系材料である、請求項1に記載の積層体。   The laminate according to claim 1, wherein the core layer is a paper-based material. 上記中間層が、1枚以上のラミネート加工紙を積層接着して形成されたものである、請求項1又は2に記載の積層体。   The laminate according to claim 1 or 2, wherein the intermediate layer is formed by laminating and bonding one or more laminated papers. 上記中間層が、2枚以上のラミネート加工紙を積層接着して形成されたものである、請求項3に記載の積層体。   The laminate according to claim 3, wherein the intermediate layer is formed by laminating and bonding two or more laminated papers. 上記バリア層が、片面にポリ塩化ビニリデンコーティング又はアルミニウム蒸着処理を施したプラスチックフィルムからなり、コーティング又は蒸着をしていない面を外側に向けて配したものである、請求項1乃至4のいずれかに記載の積層体。   The said barrier layer consists of a plastic film which gave the polyvinylidene chloride coating or aluminum vapor deposition process on the single side | surface, and has distribute | arranged the surface which has not been coated or vapor-deposited toward the outer side. The laminated body as described in.
JP2012249911A 2012-11-14 2012-11-14 Reinforcement laminate Active JP6007073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012249911A JP6007073B2 (en) 2012-11-14 2012-11-14 Reinforcement laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012249911A JP6007073B2 (en) 2012-11-14 2012-11-14 Reinforcement laminate

Publications (2)

Publication Number Publication Date
JP2014097597A true JP2014097597A (en) 2014-05-29
JP6007073B2 JP6007073B2 (en) 2016-10-12

Family

ID=50940050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012249911A Active JP6007073B2 (en) 2012-11-14 2012-11-14 Reinforcement laminate

Country Status (1)

Country Link
JP (1) JP6007073B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988438A1 (en) * 2020-09-30 2022-04-27 Kögel Trailer GmbH Insulating panel, device for manufacturing an insulating panel and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138829A (en) * 1991-11-20 1993-06-08 Showa Denko Kk Laminated paper
US5220760A (en) * 1991-03-22 1993-06-22 Weyerhaeuser Company Multi-functional exterior structural foam sheathing panel
JPH07178708A (en) * 1993-10-12 1995-07-18 Bridgestone Corp Structure of wooden core material board
EP0940249A2 (en) * 1998-03-06 1999-09-08 Celotex Corporation Foam insulation board faced with a tough polymeric film or composite thereof
JP2000038801A (en) * 1998-07-23 2000-02-08 Toyo Alum Kk Boardlike material
JP2001179886A (en) * 1999-12-27 2001-07-03 Goyo Paper Working Co Ltd Laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220760A (en) * 1991-03-22 1993-06-22 Weyerhaeuser Company Multi-functional exterior structural foam sheathing panel
JPH06505934A (en) * 1991-03-22 1994-07-07 ウェヤーハウザー・カンパニー Multifunctional Outdoor Architectural Foam Encased Panel
JPH05138829A (en) * 1991-11-20 1993-06-08 Showa Denko Kk Laminated paper
JPH07178708A (en) * 1993-10-12 1995-07-18 Bridgestone Corp Structure of wooden core material board
EP0940249A2 (en) * 1998-03-06 1999-09-08 Celotex Corporation Foam insulation board faced with a tough polymeric film or composite thereof
JPH11314297A (en) * 1998-03-06 1999-11-16 Celotex Corp:The Foam insulating board whose surface is clad with tough polymer film or composite body thereof
JP2000038801A (en) * 1998-07-23 2000-02-08 Toyo Alum Kk Boardlike material
JP2001179886A (en) * 1999-12-27 2001-07-03 Goyo Paper Working Co Ltd Laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3988438A1 (en) * 2020-09-30 2022-04-27 Kögel Trailer GmbH Insulating panel, device for manufacturing an insulating panel and method of manufacturing the same

Also Published As

Publication number Publication date
JP6007073B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
EP1927464B1 (en) Sandwich panel
JP2009101648A (en) Wooden composite plywood and its method for manufacturing
US20080148663A1 (en) Interior structural panel
JP5808329B2 (en) How to make a board
JP6007073B2 (en) Reinforcement laminate
TW200301730A (en) Method of making structural cellular cores suitable to use of wood
JP6088697B2 (en) Reinforced paper board
GB2368074A (en) Corrugated board
KR200465140Y1 (en) Multi-layered insulating sheet
KR101299156B1 (en) Partition wall for tiolet with excellent durability and workability
JP5056457B2 (en) Method for producing moisture-proof plywood and floor board using the moisture-proof plywood
JP2015017372A (en) Floor material
TWI290883B (en) Plywood with carbon fabric and manufacturing method of plywood with carbon fabric
JP2008068421A (en) Manufacturing method of composite base material
JP5250384B2 (en) Flash structure door
JPS623216Y2 (en)
JP6076067B2 (en) tatami
CN217435219U (en) Light composite board with HPL board surface layer
KR101261623B1 (en) Panel assembly having paper tube wound with corrugated paper strip and method thereof
CN202895375U (en) Large tortuosity plywood
JP2006212895A (en) Laminate, building member and floor heating panel
JP2005199557A (en) Plywood and its production method
JP2002019012A (en) Composite board
CN214027570U (en) Anti-deformation vertical core plate
JP7218043B2 (en) honeycomb laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6007073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250