JP2014097027A - Viable cell count measuring method and viable cell count measuring kit - Google Patents

Viable cell count measuring method and viable cell count measuring kit Download PDF

Info

Publication number
JP2014097027A
JP2014097027A JP2012250981A JP2012250981A JP2014097027A JP 2014097027 A JP2014097027 A JP 2014097027A JP 2012250981 A JP2012250981 A JP 2012250981A JP 2012250981 A JP2012250981 A JP 2012250981A JP 2014097027 A JP2014097027 A JP 2014097027A
Authority
JP
Japan
Prior art keywords
membrane
bag
cell count
container
viable cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012250981A
Other languages
Japanese (ja)
Inventor
Hiromi Ushijima
ひろみ 牛島
Sayumi Michihata
さゆ美 道畠
Eiichi Tamiya
栄一 民谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO DEVICE TECHNOLOGY KK
GATE KK
Original Assignee
BIO DEVICE TECHNOLOGY KK
GATE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO DEVICE TECHNOLOGY KK, GATE KK filed Critical BIO DEVICE TECHNOLOGY KK
Priority to JP2012250981A priority Critical patent/JP2014097027A/en
Publication of JP2014097027A publication Critical patent/JP2014097027A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a viable cell count measuring method and a viable cell count measuring kit which can quickly and accurately measure a viable cell count despite of its simple structure and is also easy to handle and operate.SOLUTION: After liquid to be tested is filtered through a membrane, the membrane that was used in filtration is stored in a bag-shaped vessel without oxygen permeability. Then, a printed electrode is inserted into the bag-shaped vessel so as to come into contact with the membrane, and an amount of decrease of oxygen in the bag-shaped vessel is electrochemically measured in order to measure a viable cell count.

Description

本発明は、生菌数を電気化学的に計測し得る生菌数計測方法及び生菌数計測キットに関するものであり、特に、極めて簡易な構成でありながら迅速に生菌数を計測し得る生菌数計測方法及び生菌数計測キットに関する。   The present invention relates to a viable cell count method and a viable cell count kit capable of electrochemically measuring the viable cell count, and in particular, a viable cell count capable of quickly measuring the viable cell count with an extremely simple configuration. The present invention relates to a method for measuring the number of bacteria and a kit for measuring the number of viable bacteria.

例えば食品分野においては、大腸菌等、各種細菌による汚染の防止が大きな課題となっている。細菌による汚染は、食中毒等の原因にもなることから、これを極力排除する必要がある。そのためには、細菌による汚染度合い(食品等に付着している生菌の数)を正確に把握する必要があり、できる限り簡易に、且つ短時間に生菌の数を計測し得ることが望まれる。   For example, in the food field, prevention of contamination by various bacteria such as Escherichia coli is a major issue. Contamination with bacteria can cause food poisoning and the like, so it is necessary to eliminate it as much as possible. For that purpose, it is necessary to accurately grasp the degree of contamination by bacteria (the number of viable bacteria adhering to food, etc.), and it is desirable to be able to measure the number of viable bacteria as easily and in a short time as possible. It is.

このような状況から、各方面で生菌数の計測方法に関する検討が進められ、様々な方式の生菌数計測方法、生菌数計測装置が提案されている(特許文献1〜3等を参照)。   Under such circumstances, studies on the method for measuring the number of viable bacteria are being promoted in various directions, and various methods for measuring the number of viable bacteria and a viable cell count measuring apparatus have been proposed (see Patent Documents 1 to 3, etc.) ).

例えば特許文献1には、酵素電極の先端部に被検菌体を固定したメンブランフィルターを装着し、メンブランフィルターを酵素電極の先端部と共に透析膜で被覆して生菌数の計測を行う生菌数計測用センサが開示されている。   For example, in Patent Document 1, a membrane filter in which a test cell is fixed to the tip of an enzyme electrode is attached, and the membrane filter is covered with a dialysis membrane together with the tip of the enzyme electrode to measure the number of viable bacteria. A number measuring sensor is disclosed.

特許文献2には、微生物を含有する試料溶液中の溶存酸素の減少量を酸素電極を用いて測定することにより試料中の生菌数を測定する方法が開示されており、溶存酸素の減少量の測定を試料溶液を容器内に密閉した状態で行うことが記載されている。   Patent Document 2 discloses a method for measuring the number of viable bacteria in a sample by measuring the amount of decrease in dissolved oxygen in a sample solution containing microorganisms using an oxygen electrode. It is described that the measurement is performed with the sample solution sealed in a container.

特許文献3には、濾過膜に試料液を通水することによって試料液中の細菌を濾過膜上に捕集し、該濾過膜を溶菌剤及び酵素反応基質に接触させ、ターゲット細菌中酵素の酵素反応基質に対する酵素活性値を求めることによって、試料液中の細菌数を定量する細菌の検出方法が開示されている。   In Patent Document 3, bacteria in a sample solution are collected on the filtration membrane by passing the sample solution through the filtration membrane, the filtration membrane is brought into contact with a lysing agent and an enzyme reaction substrate, and the enzyme in the target bacteria is detected. A method for detecting bacteria is disclosed in which the number of bacteria in a sample solution is quantified by determining an enzyme activity value for an enzyme reaction substrate.

特開昭64−91050号公報JP-A-64-91050 特開昭63−15150号公報JP 63-15150 A 特開2007−37536号公報JP 2007-37536 A

しかしながら、特許文献1記載の生菌数計測センサの場合、酵素電極とメンブランフィルターの間にテフロン(登録商標)膜を挟み、透析膜で外側を包み、2種類の溶液に浸して電流値を測定し、その差から生菌数を計測しており、輪ゴムで留める等、メンブランフィルターの酵素電極への装着が煩雑である。また、計測自体も、2種類の溶液(リン酸緩衝液と培養液)についてそれぞれ計測を行う必要があり、煩雑である。   However, in the case of the viable cell count sensor described in Patent Document 1, a Teflon (registered trademark) membrane is sandwiched between the enzyme electrode and the membrane filter, the outside is wrapped with a dialysis membrane, and the current value is measured by immersing in two types of solutions. However, the viable count is measured from the difference, and it is complicated to attach the membrane filter to the enzyme electrode, such as fastening with a rubber band. Further, the measurement itself is complicated because it is necessary to measure each of the two types of solutions (phosphate buffer solution and culture solution).

一方、特許文献2記載の方法の場合、メンブランによる濃縮を行っていないため、感度が不十分である他、酸素電極を用いて溶存酸素の減少量を計測しているため、装置構成が煩雑で、現場での簡易検査等には向いていない。また、特許文献3記載の方法は、酵素反応を利用したものであるので、試薬の数も多く、やはり簡易検査には向いていない。   On the other hand, in the case of the method described in Patent Document 2, since the concentration by the membrane is not performed, the sensitivity is insufficient and the amount of dissolved oxygen is measured using an oxygen electrode, so that the apparatus configuration is complicated. It is not suitable for on-site simple inspections. In addition, since the method described in Patent Document 3 uses an enzyme reaction, the number of reagents is large and it is not suitable for simple inspection.

本発明は、以上のような従来技術の抱える課題を解消することを目的とするものであり、簡易な構成でありながら迅速に生菌数を正確に計測することができ、取り扱いや操作が容易で、あらゆる状況において、生菌数の計測を行うことが可能な生菌数測定方法及び生菌数測定キットを提供することを目的とする。   The object of the present invention is to solve the above-mentioned problems of the prior art, and it is possible to measure the number of viable bacteria quickly and accurately with a simple configuration, and easy to handle and operate. Thus, an object of the present invention is to provide a viable cell count measurement method and a viable cell count measurement kit capable of measuring the viable cell count in any situation.

前述の目的を達成するために、本発明の生菌数測定方法は、検査対象液を細菌捕集可能なメンブランで濾過し、前記濾過に使用したメンブランを酸素透過性のない袋状容器内に収容するとともに、印刷電極をメンブランに接触するように袋状容器内に挿入し、袋状容器内の酸素減少量を電気化学的に測定し生菌数を計測することを特徴とする。 In order to achieve the above-mentioned object, the method for measuring the viable cell count of the present invention is to filter the liquid to be examined with a membrane capable of collecting bacteria, and place the membrane used for the filtration in a bag-like container having no oxygen permeability. In addition, the printed electrode is inserted into a bag-like container so as to be in contact with the membrane, and the oxygen reduction amount in the bag-like container is electrochemically measured to count the number of viable bacteria.

また、本発明の生菌数測定キットは、検査対象液を濾過する細菌捕集可能なメンブランと、前記濾過に使用したメンブランを収容する酸素透過性のない袋状容器と、前記メンブランに接触するように袋状容器内に挿入される印刷電極とを備え、袋状容器内の酸素減少量を電気化学的に測定することにより生菌数を計測することを特徴とする。 The viable cell count kit of the present invention is in contact with the membrane, a membrane-capable membrane for filtering the liquid to be tested, a non-oxygen permeable bag-like container containing the membrane used for the filtration, and the membrane. And a printed electrode inserted into the bag-like container, and the number of viable bacteria is measured by electrochemically measuring the amount of oxygen reduction in the bag-like container.

本発明によれば、メンブランによる濃縮を採用しているので、生菌数を感度良く短時間に測定することが可能である。また、酵素電極や酸素電極は必要なく、極めて簡易な印刷電極を用いており、他に必要なのは袋状容器のみであり、非常に簡便な測定方法、測定キットを実現することが可能である。さらに、本発明によれば、輪ゴムによるメンブランの装着や、電極移動等も不要であり、測定操作や取り扱いも容易である。   According to the present invention, since concentration by a membrane is employed, it is possible to measure the viable cell count with high sensitivity in a short time. In addition, an enzyme electrode and an oxygen electrode are not required, and a very simple printed electrode is used. In addition, only a bag-like container is required, and a very simple measurement method and measurement kit can be realized. Furthermore, according to the present invention, it is not necessary to attach a membrane with a rubber band, move an electrode, or the like, and the measurement operation and handling are easy.

本発明による生菌数の測定の様子を示す図である。It is a figure which shows the mode of the measurement of the number of viable bacteria by this invention. 浸漬法による測定開始時及び30分後のピーク高さと菌濃度の関係を示す特性図である。It is a characteristic view which shows the relationship between the peak height at the time of the measurement start by an immersion method, and 30 minutes after, and a microbe density | concentration. 本発明を適用した測定方法における測定結果の一例を示す図である。It is a figure which shows an example of the measurement result in the measuring method to which this invention is applied. 本発明の測定方法により作成した検量線の一例を示す図である。It is a figure which shows an example of the calibration curve created with the measuring method of this invention. 本発明の測定方法により作成した検量線の他の例を示す図である。It is a figure which shows the other example of the calibration curve created with the measuring method of this invention. メンブレン上の生菌数とピーク電流値の関係を示す図である。It is a figure which shows the relationship between the number of viable bacteria on a membrane, and a peak electric current value.

以下、本発明を適用した生菌数測定方法及び生菌数測定キットの実施形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of a viable cell count measurement method and a viable cell count measurement kit to which the present invention is applied will be described in detail with reference to the drawings.

本発明の生菌数測定方法及び生菌数測定キットは、例えば食品等に存在する生菌数を測定するものである。その測定原理は、生菌による酸素消費量を指標とするもので、検査対象サンプルを洗浄した液体をメンブランで濾過した後、前記濾過に使用したメンブランを酸素透過性のない袋状容器内に収容するとともに、印刷電極をメンブランに接触するように袋状容器内に挿入し、袋状容器内の酸素減少量を電気化学的に測定するという、極めて簡便なものである。   The viable cell count measurement method and the viable cell count measurement kit of the present invention measure the viable cell count present in, for example, food. The measurement principle is based on the consumption of oxygen by viable bacteria, and after filtering the liquid in which the sample to be examined is washed with a membrane, the membrane used for the filtration is stored in a bag-like container that is not permeable to oxygen. At the same time, the printing electrode is inserted into the bag-like container so as to be in contact with the membrane, and the oxygen reduction amount in the bag-like container is measured electrochemically.

図1は、本発明による生菌数の測定の様子を示すものである。測定に際しては、先ず、検査対象液を細菌捕集可能なメンブランで濾過する。これにより、検査対象液に含まれる生菌がメンブランに濃縮され固定される。検査対象液としては、被検対象サンプル(例えば食品等)が液体でない場合には、その表面を細菌を含まない液体(水や培地等)で洗浄した洗浄液を用いるか、あるいは綿棒で表面をぬぐい、その綿棒を洗浄した洗浄液を用いる。検査対象サンプルが液体である場合には、液体サンプルをそのままの状態で検査対象液として用いる。いずれの場合にも、これらを前処理カラムで濾過して用いることも可能である。   FIG. 1 shows how the number of viable bacteria is measured according to the present invention. In the measurement, first, the test solution is filtered through a membrane capable of collecting bacteria. As a result, viable bacteria contained in the test solution are concentrated and fixed on the membrane. If the sample to be tested (for example, food) is not liquid, use a cleaning solution whose surface is washed with a liquid that does not contain bacteria (water, medium, etc.), or wipe the surface with a cotton swab. Use a cleaning solution for cleaning the swab. When the inspection target sample is a liquid, the liquid sample is used as it is as the inspection target liquid. In any case, these can be used after being filtered through a pretreatment column.

次いで、図1に示すように、濾過後のメンブラン1を酸素透過性のない袋状容器2に入れる。袋状容器2は、例えば、2枚重ねにしたプラスチックフィルムの2辺をヒートシールしたものであり、市販のものを使用することも可能である。   Next, as shown in FIG. 1, the membrane 1 after filtration is put into a bag-like container 2 having no oxygen permeability. The bag-like container 2 is, for example, one obtained by heat-sealing two sides of a two-layer plastic film, and a commercially available one can also be used.

袋状容器2に菌を固定したメンブラン1を入れた後、メンブラン1に接触するように平板な印刷電極3を袋状容器2内に挿入する。印刷電極3は、例えばカーボン印刷電極等、所定の電極パターン(例えば、作用極、参照極、及び対極)が印刷された簡単な構造のものを使用することができる。   After the membrane 1 in which bacteria are fixed is put into the bag-like container 2, a flat printed electrode 3 is inserted into the bag-like container 2 so as to come into contact with the membrane 1. The printed electrode 3 may have a simple structure on which a predetermined electrode pattern (for example, a working electrode, a reference electrode, and a counter electrode) is printed, such as a carbon printed electrode.

この状態で酸素減少量をサイクリックボルタンメトリー(cyclic voltammetry)を用いて電気化学的に測定する。例えば、培養液を少量入れた状態で、電圧を変化させ、酸素濃度を反映する0.8V付近のピークの減少を測定する。電圧変化は、例えば50mV/秒で行う。この減少の度合いを、予め作成しておいた検量線と照らし合わせることで、生菌数を計測することができる。なお、電気化学的測定としては、前記のようにピーク電流値を指標とするのが良いが、ピークの現れる範囲を積分して指標とすることも可能である。   In this state, the amount of oxygen decrease is measured electrochemically using cyclic voltammetry. For example, in a state where a small amount of culture solution is added, the voltage is changed, and the decrease in the peak around 0.8 V reflecting the oxygen concentration is measured. The voltage change is performed at 50 mV / second, for example. The number of viable bacteria can be measured by comparing the degree of this decrease with a calibration curve prepared in advance. For electrochemical measurement, the peak current value is preferably used as an index as described above, but it is also possible to integrate the range in which the peak appears as an index.

一般的な生菌数測定方法では、24時間以上かけて培養を行い、それから測定を行うため、測定に長時間を要することになる。本発明の測定方法では、メンブラン1に濃縮された菌がごく少量の培地中の酸素を消費するので、酸素減少量が検出し易く、20分〜60分程度で測定を完了することが可能である。生菌数が少ない場合、従来法では測定が難しいが、本発明方法を採用した場合、例えば10個/ml程度の生菌数であっても、1時間〜2時間程度で測定が可能である。 In a general method for measuring the number of viable bacteria, culturing is performed for 24 hours or more, and then measurement is performed. Therefore, the measurement takes a long time. In the measurement method of the present invention, since the bacteria concentrated in the membrane 1 consume a very small amount of oxygen in the medium, the amount of oxygen decrease is easy to detect, and the measurement can be completed in about 20 to 60 minutes. is there. When the number of viable bacteria is small, it is difficult to measure by the conventional method, but when the method of the present invention is adopted, even if the number of viable bacteria is, for example, about 10 3 cells / ml, it can be measured in about 1 to 2 hours. is there.

前述の通り、本発明方法を採用することで、簡単な操作で、迅速且つ高感度に被検対象サンプルの生菌数を計測することが可能である。また、係る測定を行うための生菌数測定キットについても、メンブランと袋状容器、印刷電極、さらには必要に応じてシリンジやメンブランホルダ等をセットにして提供すればよく、極めて簡易な構成でありながら、高性能な生菌数測定キットを提供することが可能である。   As described above, by employing the method of the present invention, it is possible to measure the number of viable bacteria in a sample to be examined quickly and with high sensitivity by a simple operation. In addition, a viable cell count kit for performing such measurement may be provided as a set of a membrane, a bag-like container, a printed electrode, and a syringe, a membrane holder, etc. as necessary. Nevertheless, it is possible to provide a high-performance viable count kit.

以上、本発明を適用した実施形態についてを説明してきたが、本発明が前述の実施形態に限られるものでないことは言うまでもなく、本発明の要旨を逸脱しない範囲において、多様な変更または改良を加えることが可能である。   Although the embodiment to which the present invention is applied has been described above, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications or improvements are made without departing from the gist of the present invention. It is possible.

次に、本発明を適用した具体的な実施例について、実験結果を基に説明する。   Next, specific examples to which the present invention is applied will be described based on experimental results.

浸漬法による測定(比較例)
生菌(N−3株)を1×10個/mL〜1×10個/mL含む液体をエッペンチューブに入れ、印刷電極を挿入し、電圧を変化させながら電流値の変化を測定した。測定開始時及び30分後のピーク高をプロットしたものを図2に示す。
Measurement by immersion method (comparative example)
A liquid containing 1 × 10 3 cells / mL to 1 × 10 8 cells / mL of viable bacteria (N-3 strain) was placed in an Eppendorf tube, a printed electrode was inserted, and the change in current value was measured while changing the voltage. . A plot of the peak height at the start of measurement and after 30 minutes is shown in FIG.

図2から明らかなように、いずれの濃度のサンプルにおいても、測定開始時に比べて30分後のピーク高は減少していた。平均値では、菌濃度が高くなるにしたがってピークの大きさは小さくなっているが、例えば1×10個/mLのサンプルと1×10個/mLのサンプルでは、有意な差は認められなかった。 As is apparent from FIG. 2, the peak height after 30 minutes was decreased in the samples of any concentration compared to the measurement start time. In the average value, the peak size decreases as the bacterial concentration increases. However, for example, a significant difference is observed between a sample of 1 × 10 5 cells / mL and a sample of 1 × 10 6 cells / mL. There was no.

メンブランを用いた濃縮法(実施例)
1×10個/mL〜1×10個/mLの生菌(N−3株)を含む培養液50mLをメンブランで濾過して生菌をメンブランに固定し、この生菌を固定したメンブランをビニールパウチに入れた。さらに、ビニールパウチ(袋状容器)内に100μLの培養液を入れ、印刷電極をメンブランに密着するようにビニールパウチ内に挿入した。
Concentration method using membrane (Example)
A culture solution containing 1 × 10 4 cells / mL to 1 × 10 6 cells / mL viable bacteria (N-3 strain) was filtered through a membrane to fix the live cells to the membrane, and the membrane to which the live cells were fixed Was put in a vinyl pouch. Further, 100 μL of the culture solution was placed in a vinyl pouch (bag-like container), and the printed electrode was inserted into the vinyl pouch so as to be in close contact with the membrane.

この状態で、比較例と同様、印刷電極により電圧を変化させながら電流値の変化を測定した。1×10個/mLの生菌(N−3株)を含む培養液50mLを濾過したメンブランについての測定結果を図3に示す。いずれの濃度においても、浸漬法(比較例)と同様、時間とともに減少する酸素ピークが確認された。 In this state, as in the comparative example, the change in the current value was measured while changing the voltage with the printed electrode. The measurement result about the membrane which filtered 50 mL of culture solution containing 1 * 10 < 4 > piece / mL viable bacteria (N-3 strain | stump | stock) is shown in FIG. At any concentration, as in the immersion method (Comparative Example), an oxygen peak decreasing with time was confirmed.

1×10個/mLの生菌(N−3株)を含む培養液50mLを濾過したメンブランについては、測定開始から10分でもピークはほとんど認められないくらいに減少しており、浸漬法では測定できない範囲においても、本発明方法であれば測定が可能であると考えられる。 The membrane obtained by filtering 50 mL of the culture solution containing 1 × 10 6 cells / mL viable bacteria (N-3 strain) has decreased to such a degree that almost no peak is observed even after 10 minutes from the start of measurement. Even in a range where measurement is not possible, the method of the present invention is considered to allow measurement.

図4は、測定開始30分後のピーク電流値を指標とした検量線である。1×10個/mL、1×10個/mL、1×10個/mLで、それぞれ有意な差が認められた。培養液の量を100mLとすると、1×10個/mLと1×10個/mLでも差が認められた。図5は、培養液を500mlに増やした場合の検量線である。1×10個/mLと1×10個/mLの差は、さらに顕著なものとなった。 FIG. 4 is a calibration curve using the peak current value 30 minutes after the start of measurement as an index. Significant differences were observed at 1 × 10 4 cells / mL, 1 × 10 5 cells / mL, and 1 × 10 6 cells / mL. When the amount of the culture solution was 100 mL, a difference was observed even at 1 × 10 4 cells / mL and 1 × 10 3 cells / mL. FIG. 5 is a calibration curve when the culture solution is increased to 500 ml. The difference between 1 × 10 3 cells / mL and 1 × 10 4 cells / mL was even more remarkable.

図3や図4に示す検量線は、生菌の培養液中の濃度に対して作成したものである。そこで、メンブレン上の生菌数とピーク電流値の関係を検討したところ、図6に示す関係となった。図6から明らかなように、濾過した液量に関わらず、シグモイド曲線上に載っていることから、例えば生菌数センサにプリセットする検量線として使用できるものと考えられる。
The calibration curves shown in FIG. 3 and FIG. 4 are prepared with respect to the concentration of viable bacteria in the culture solution. Then, when the relationship between the number of viable bacteria on the membrane and the peak current value was examined, the relationship shown in FIG. 6 was obtained. As apparent from FIG. 6, since it is on the sigmoid curve regardless of the amount of filtered liquid, it can be considered that it can be used, for example, as a calibration curve preset in a viable cell count sensor.

Claims (5)

検査対象液を細菌捕集可能なメンブランで濾過し、
前記濾過に使用したメンブランを酸素透過性のない袋状容器内に収容するとともに、印刷電極をメンブランに接触するように袋状容器内に挿入し、
袋状容器内の酸素減少量を電気化学的に測定し生菌数を計測することを特徴とする生菌数測定方法。
Filter the fluid to be tested through a membrane that can collect bacteria,
The membrane used for the filtration is housed in a bag-like container having no oxygen permeability, and the printed electrode is inserted into the bag-like container so as to contact the membrane,
A method for measuring the number of viable bacteria, characterized in that the amount of oxygen reduction in a bag-like container is electrochemically measured to count the number of viable bacteria.
検査対象液は、検査対象サンプルを洗浄した液体、サンプル表面をぬぐった綿棒等を洗浄した液体、液体サンプル、あるいはこれらを前処理カラムで濾過した液体であることを特徴とする請求項1記載の生菌数測定方法。   The liquid to be inspected is a liquid in which a sample to be inspected is washed, a liquid in which a cotton swab or the like that wiped the sample surface is washed, a liquid sample, or a liquid in which these are filtered through a pretreatment column. Viable count method. 測定に際して、袋状容器内に培養液を入れることを特徴とする請求項1または2記載の生菌数測定方法。   3. The method for measuring the number of viable bacteria according to claim 1 or 2, wherein a culture solution is placed in a bag-like container at the time of measurement. 検査対象液を濾過する細菌捕集可能なメンブランと、
前記濾過に使用したメンブランを収容する酸素透過性のない袋状容器と、
前記メンブランに接触するように袋状容器内に挿入される印刷電極とを備え、
袋状容器内の酸素減少量を電気化学的に測定することにより生菌数を計測することを特徴とする生菌数測定キット。
A membrane capable of collecting bacteria that filters the liquid to be tested;
A non-oxygen permeable bag-like container containing the membrane used for the filtration;
A printed electrode inserted into the bag-like container so as to contact the membrane,
A viable cell count kit characterized in that the viable cell count is measured by electrochemically measuring an oxygen reduction amount in a bag-like container.
前記酸素透過性のない袋状容器は、2枚重ねにしたプラスチックフィルムの2辺をヒートシールした袋状容器であることを特徴とする請求項4記載の生菌数測定キット。   5. The viable cell count measurement kit according to claim 4, wherein the bag-like container having no oxygen permeability is a bag-like container in which two sides of a two-layered plastic film are heat-sealed.
JP2012250981A 2012-11-15 2012-11-15 Viable cell count measuring method and viable cell count measuring kit Pending JP2014097027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012250981A JP2014097027A (en) 2012-11-15 2012-11-15 Viable cell count measuring method and viable cell count measuring kit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012250981A JP2014097027A (en) 2012-11-15 2012-11-15 Viable cell count measuring method and viable cell count measuring kit

Publications (1)

Publication Number Publication Date
JP2014097027A true JP2014097027A (en) 2014-05-29

Family

ID=50939652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250981A Pending JP2014097027A (en) 2012-11-15 2012-11-15 Viable cell count measuring method and viable cell count measuring kit

Country Status (1)

Country Link
JP (1) JP2014097027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235403A1 (en) * 2019-05-20 2020-11-26 国立研究開発法人物質・材料研究機構 Detection device and data collection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235403A1 (en) * 2019-05-20 2020-11-26 国立研究開発法人物質・材料研究機構 Detection device and data collection method
JPWO2020235403A1 (en) * 2019-05-20 2020-11-26
JP7136508B2 (en) 2019-05-20 2022-09-13 国立研究開発法人物質・材料研究機構 Detection device and data collection method
EP3973915A4 (en) * 2019-05-20 2023-05-17 National Institute for Materials Science Detection device and data collection method

Similar Documents

Publication Publication Date Title
US20240158828A1 (en) Devices, systems and methods to detect viable infectious agents in a fluid sample and susceptibility of infectious agents to anti-infectives
CA2820072C (en) Single use bioreactor for use with detachable dissolved oxygen sensor
Niyomdecha et al. A novel BOD biosensor based on entrapped activated sludge in a porous chitosan-albumin cryogel incorporated with graphene and methylene blue
WO2005022143B1 (en) Method and apparatus for assay of electrochemical properties
CN106770563B (en) Double-electron mediator electrochemical biosensor and application thereof
CN101825603A (en) Current enzyme electrode for detecting catalase-positive bacteria and preparation method thereof
JP2014097027A (en) Viable cell count measuring method and viable cell count measuring kit
Pan et al. Determination of carbamazepine: a comparison of the differential pulse voltammetry (DPV) method and the immunoassay method in a clinical trial
JP6467146B2 (en) Diaphragm sensor, liquid analyzer
CN201837609U (en) ORP detection bottle
CN202041502U (en) Electrochemical biosensor
CN103163190A (en) Single use bioreactor/container for use with detachable dissolved oxygen sensor
CN206248606U (en) A kind of measuring electrode for detecting uric acid
TW201226896A (en) Microbe or cell inspection system and method thereof
CN102103088A (en) Device and method for measuring water quality chemical oxygen demand by ozone method for acquiring total light intensity
CN201885997U (en) Chlorine ion micro electrode
JP5161471B2 (en) Biosensor and method for detecting object to be detected
CN205449876U (en) Oxygen current measurement circuit and dissolved oxygen measuring apparatu
JP2003202315A (en) Diaphragm cartridge
CN114894870B (en) CuNC/graphene paper-based electrode for sensitively detecting phthalein sulfonamides, and preparation method and application thereof
JPH05500311A (en) Method for electrochemically determining bacterial population
CN206339516U (en) A kind of measuring electrode and detection means for being used to detect serotonin
CN203772797U (en) Small blocky oxygen electrode using silver reference electrode
JP2007206044A (en) Diaphragm-type gas sensor and packing used therein
CN106770533A (en) It is a kind of with voice broadcast based on the two poles of the earth system water quality detection system