JP2014096297A - Plasma processing apparatus - Google Patents

Plasma processing apparatus Download PDF

Info

Publication number
JP2014096297A
JP2014096297A JP2012247799A JP2012247799A JP2014096297A JP 2014096297 A JP2014096297 A JP 2014096297A JP 2012247799 A JP2012247799 A JP 2012247799A JP 2012247799 A JP2012247799 A JP 2012247799A JP 2014096297 A JP2014096297 A JP 2014096297A
Authority
JP
Japan
Prior art keywords
vacuum chamber
processing apparatus
electrode
plasma processing
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012247799A
Other languages
Japanese (ja)
Inventor
Ryuji Hashimoto
龍司 橋本
Ryuichiro Kamimura
隆一郎 上村
Naoki Moriguchi
尚樹 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012247799A priority Critical patent/JP2014096297A/en
Publication of JP2014096297A publication Critical patent/JP2014096297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma processing apparatus with a simple configuration capable of removing deposits over the whole surface of an inner wall surface of a vacuum chamber without generating abnormal discharge in the vacuum chamber.SOLUTION: A plasma processing apparatus comprises: a vacuum chamber; plasma generation means for generating a plasma in the vacuum chamber; an electrode arranged along one outer wall of the vacuum chamber; and a power supply applying a voltage to the electrode 6 so that ions in the plasma are introduced into an inner wall surface of the vacuum chamber in a state that the plasma is generated in the vacuum chamber. The electrode 6 comprises: a base 61; a plurality of main branch parts 62 extending from the base in a radial direction point-symmetrically with respect to the base; and sub branch parts 63 dividing each space sectioned by the main branch parts adjacent to each other into a plurality of spaces, and protrusively provided to the main branch part. When the voltage is applied to the electrode from the power supply, ions are introduced over the whole surface of the inner wall surface of the vacuum chamber opposed to the electrode.

Description

本発明は、プラズマ処理装置に関し、詳しくは、真空チャンバと、真空チャンバ内にプラズマを発生させるプラズマ発生手段と、真空チャンバの一の外壁に沿って配置された電極と、真空チャンバ内にプラズマを発生させた状態で、プラズマ中のイオンが真空チャンバの内壁面に引き込まれるように電極に電圧を印加する電源とを備えたものに関する。   The present invention relates to a plasma processing apparatus, and more particularly, to a vacuum chamber, plasma generating means for generating plasma in the vacuum chamber, an electrode disposed along one outer wall of the vacuum chamber, and plasma in the vacuum chamber. And a power source for applying a voltage to an electrode so that ions in the plasma are drawn into an inner wall surface of a vacuum chamber in a generated state.

従来、上記種のプラズマ処理装置は例えば特許文献1で知られている。このものでは、真空チャンバの一の外壁に沿って平面状の電極を配置している。この電極は、円盤形状の基部と、この基部から径方向にのびる複数の枝部とを有し、各枝部の先端が二股に分かれている。このような電極に電圧印加すると、プラズマ中のイオンが真空チャンバの内壁面に引き込まれ、引き込まれたイオンにより内壁面の付着物がスパッタエッチングされて除去される。   Conventionally, such a plasma processing apparatus is known, for example, from Patent Document 1. In this device, planar electrodes are disposed along one outer wall of the vacuum chamber. This electrode has a disk-shaped base and a plurality of branches extending in the radial direction from the base, and the tip of each branch is divided into two branches. When a voltage is applied to such an electrode, ions in the plasma are drawn into the inner wall surface of the vacuum chamber, and deposits on the inner wall surface are removed by sputter etching by the drawn ions.

ところで、電極に対向する真空チャンバの内壁面の全面に亘って付着物を除去するためには、この内壁面の全面に亘ってイオンを引き込むことが必要である。上記特許文献1記載のものでは、モータで構成した移動手段を更に備え、この移動手段の回転軸に電極を取り付けている。そして、移動手段の作動により電極を一定速度で回転させて、電極の枝部を真空チャンバの外壁全体に亘って走査するようにしている。   By the way, in order to remove deposits over the entire inner wall surface of the vacuum chamber facing the electrode, it is necessary to draw ions over the entire inner wall surface. In the thing of the said patent document 1, the moving means comprised with the motor is further provided, and the electrode is attached to the rotating shaft of this moving means. Then, the electrode is rotated at a constant speed by the operation of the moving means, and the branch portion of the electrode is scanned over the entire outer wall of the vacuum chamber.

然し、上記のような移動手段を設けると、装置構成が複雑になり、コストアップを招来するという問題がある。しかも、移動手段により電極を回転させると、真空チャンバ内で異常放電が発生することが本発明者らによって確認された。   However, if the moving means as described above is provided, there is a problem that the apparatus configuration becomes complicated and the cost is increased. Moreover, it has been confirmed by the present inventors that abnormal discharge occurs in the vacuum chamber when the electrode is rotated by the moving means.

特開平10−152784号公報JP-A-10-152784

本発明は、以上の点に鑑み、真空チャンバ内で異常放電を発生させることなく、真空チャンバの内壁面の全面に亘って付着物を除去可能な簡単な構成のプラズマ処理装置を提供することをその課題とする。   In view of the above, the present invention provides a plasma processing apparatus having a simple configuration capable of removing deposits over the entire inner wall surface of a vacuum chamber without causing abnormal discharge in the vacuum chamber. Let that be the issue.

上記課題を解決するために、本発明は、真空チャンバと、真空チャンバ内にプラズマを発生させるプラズマ発生手段と、真空チャンバの一の外壁に沿って配置された電極と、真空チャンバ内にプラズマを発生させた状態で、プラズマ中のイオンが真空チャンバの内壁面に引き込まれるように電極に電圧を印加する電源とを備えたプラズマ処理装置において、前記電極は、基部と、この基部を起点に点対称となるように当該基部から径方向にのびる複数本の主枝部と、互いに隣接する主枝部で区画される空間を複数に分割する、主枝部に突設された従枝部とを有し、前記電源より電極に電圧印加したとき、当該電極に対向する真空チャンバの内壁面の全面に亘ってイオンが引き込まれるように構成したこと特徴とする。   In order to solve the above problems, the present invention provides a vacuum chamber, plasma generating means for generating plasma in the vacuum chamber, an electrode disposed along one outer wall of the vacuum chamber, and plasma in the vacuum chamber. In a plasma processing apparatus comprising a power source for applying a voltage to an electrode so that ions in the plasma are drawn into the inner wall surface of the vacuum chamber in a generated state, the electrode has a base portion and the base portion as a starting point. A plurality of main branches extending radially from the base so as to be symmetrical, and a follower protruding from the main branch that divides the space defined by the adjacent main branches into a plurality of parts. And when the voltage is applied to the electrode from the power source, ions are drawn over the entire inner wall surface of the vacuum chamber facing the electrode.

本発明によれば、互いに隣接する主枝部で画成される空間を従枝部により細分化したため、電極の主枝部及び従枝部に電圧印加すると、これら主枝部及び従枝部に対向する真空チャンバの内壁面の全面に亘ってイオンを引き込むことができ、この内壁面の全面に亘って付着物を除去することができる。この場合、従来例の如く移動手段を設ける必要がないため、装置構成を簡単にでき、しかも、真空チャンバ内で異常放電が発生することを防止できる。   According to the present invention, since the space defined by the adjacent main branches is subdivided by the follower, when a voltage is applied to the main branch and follower of the electrode, the main branch and follower are applied to the main branch and follower. Ions can be drawn over the entire inner wall surface of the opposing vacuum chamber, and deposits can be removed over the entire inner wall surface. In this case, since there is no need to provide a moving means unlike the conventional example, the apparatus configuration can be simplified, and abnormal discharge can be prevented from occurring in the vacuum chamber.

前記電極が平面視円形の輪郭を備える本発明のプラズマ処理装置においては、前記主枝部は周方向に45°または60°の間隔で基部に設けられ、前記従枝部は、主枝部の一側に径方向に等間隔で且つ他の主枝部と平行に設けられることが好ましい。これによれば、互いに隣接する主枝部で区画される空間を従枝部により均等に分割できる。この場合、隣接する従枝部の相互の間隔が、従枝部の平面視の幅と同等以上であることが好ましい。尚、本発明において、同等とは、厳密な一致を意味するものではなく、実質的に等しいことを意味する。従枝部の間隔が幅よりも短いと、誘導電界が遮蔽されてしまい、誘導結合放電が発生しなくなる。例えば、従枝部の幅は3〜10mmの範囲に設定され、従枝部の間隔は3〜25mmの範囲に設定されることが好ましい。従枝部の幅が10mmよりも長い場合や、従枝部の間隔が25mmよりも長い場合には、内壁面の全面に亘ってイオンが引き込まれず、内壁面に付着物が残存する箇所が生じる。   In the plasma processing apparatus of the present invention, in which the electrode has a circular outline in plan view, the main branch portion is provided at a base portion at intervals of 45 ° or 60 ° in the circumferential direction, and the follower branch portion It is preferable to be provided on one side at equal intervals in the radial direction and in parallel with the other main branches. According to this, the space defined by the main branch portions adjacent to each other can be equally divided by the slave branch portions. In this case, it is preferable that the interval between adjacent follower portions is equal to or greater than the width of the follower portion in plan view. In the present invention, “equivalent” does not mean exact coincidence, but means substantially equal. If the distance between the follower portions is shorter than the width, the induction electric field is shielded and inductive coupling discharge does not occur. For example, the width of the follower portion is preferably set in a range of 3 to 10 mm, and the interval between the follower portions is preferably set in a range of 3 to 25 mm. When the width of the follower portion is longer than 10 mm, or when the interval between the follower portions is longer than 25 mm, the ions are not drawn over the entire inner wall surface, and there are places where deposits remain on the inner wall surface. .

本発明において、前記外壁を介して基板表面に光を照射し、基板表面からの反射光を受光し、受光した反射光に基づき処理の終点を検出する終点検出手段を更に備える場合、前記電極の基部に、終点検出用の光の透過を許容する透孔が開設されていることが好ましい。この場合、透孔に対向する真空チャンバ内壁面の付着物を除去できるため、付着物による終点検出用の光の散乱や吸収を抑えることができるので、終点検出を精度良く行うことができる。   In the present invention, in the case of further comprising end point detection means for irradiating the substrate surface through the outer wall, receiving reflected light from the substrate surface, and detecting an end point of processing based on the received reflected light, It is preferable that a through-hole that allows transmission of light for end point detection is formed in the base. In this case, since the deposit on the inner wall surface of the vacuum chamber facing the through hole can be removed, the scattering and absorption of the light for endpoint detection by the deposit can be suppressed, so that the endpoint detection can be performed with high accuracy.

本発明において、前記透孔は、周方向に所定間隔で径方向内側に向けて突出する突起部を備えることが好ましい。これによれば、透孔の径が大きくても(例えば、φ5mm以上)、透孔に対向する真空チャンバ内壁面の付着物を除去できる。   In this invention, it is preferable that the said through-hole is provided with the projection part which protrudes toward a radial inside at predetermined intervals in the circumferential direction. According to this, even if the diameter of the through hole is large (for example, φ5 mm or more), the deposits on the inner wall surface of the vacuum chamber facing the through hole can be removed.

本発明において、前記内壁面と前記基板との間に透孔を有する石英板を設け、この透孔にサファイア板を設置して終点検出用の光が通るように構成することが好ましい。サファイア板は、石英板に比べてイオン照射による耐性が高い(表面荒れが少ない)。このようなサファイア板を光が通るように構成したため、石英板を光が通る場合に比べて、表面荒れによる終点検出用の光の散乱や吸収をより一層抑えることができる。そして、これらの石英板及びサファイア板は、付着物が所定量に達した時点で交換すればよいため、内壁面に付着物が付着する場合に比べてメンテナンス性を向上できる。   In the present invention, it is preferable that a quartz plate having a through hole is provided between the inner wall surface and the substrate, and a sapphire plate is installed in the through hole so that light for end point detection passes. The sapphire plate has higher resistance to ion irradiation (less surface roughness) than the quartz plate. Since such a sapphire plate is configured to allow light to pass, it is possible to further suppress scattering and absorption of light for endpoint detection due to surface roughness as compared to the case where light passes through a quartz plate. And since these quartz plates and sapphire plates may be replaced when the amount of deposits reaches a predetermined amount, the maintainability can be improved compared to the case where deposits adhere to the inner wall surface.

本発明の第1実施形態のプラズマ処理装置の構成を示す模式図。The schematic diagram which shows the structure of the plasma processing apparatus of 1st Embodiment of this invention. 図1に示す電極の平面図。The top view of the electrode shown in FIG. 本発明の第2実施形態のプラズマ処理装置の構成を示す模式図。The schematic diagram which shows the structure of the plasma processing apparatus of 2nd Embodiment of this invention. 図3に示す電極の平面図。The top view of the electrode shown in FIG. 本発明の実験結果を示す写真。The photograph which shows the experimental result of this invention.

以下、図面を参照して、本発明の第1実施形態のプラズマ処理装置について、ドライエッチング装置を例に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。   Hereinafter, the plasma processing apparatus according to the first embodiment of the present invention will be described with reference to the drawings, taking a dry etching apparatus as an example. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

図1を参照して、M1は、ICP(誘導結合プラズマ)型のエッチング装置であり、エッチング装置M1は、底付き円筒状の真空チャンバ1を備える。真空チャンバ1の上部開口は、石英等の誘電体で形成される天板11で塞がれている。天板11は、真空チャンバ1の一の外壁を構成し、その下面11aが、真空チャンバ1の内壁面を構成する。真空チャンバ1の側壁上部にはフランジ1aが設けられ、フランジ上面には凹溝1bが形成され、この凹溝1bに嵌め込まれたOリング12によりフランジ1aと天板11との間がシールされている。   Referring to FIG. 1, M1 is an ICP (inductively coupled plasma) type etching apparatus, and the etching apparatus M1 includes a bottomed cylindrical vacuum chamber 1. The upper opening of the vacuum chamber 1 is closed with a top plate 11 formed of a dielectric material such as quartz. The top plate 11 constitutes one outer wall of the vacuum chamber 1, and the lower surface 11 a constitutes the inner wall surface of the vacuum chamber 1. A flange 1a is provided in the upper portion of the side wall of the vacuum chamber 1, and a concave groove 1b is formed on the upper surface of the flange. A gap between the flange 1a and the top plate 11 is sealed by an O-ring 12 fitted in the concave groove 1b. Yes.

真空チャンバ1内の底部には、基板ステージ2が設けられ、図示省略の公知の静電チャック等により、処理すべき基板Sをその処理面を上側にして位置決め保持できるようになっている。基板ステージ2には、高周波電源E1からの出力が接続されており、基板Sにバイアス電位を印加できるようになっている。尚、基板ステージ2にヒータや冷媒流路を組み込み、基板Sを所定温度に加熱または冷却できるようにしてもよい。   A substrate stage 2 is provided at the bottom of the vacuum chamber 1 so that the substrate S to be processed can be positioned and held by a known electrostatic chuck (not shown) with its processing surface facing upward. The substrate stage 2 is connected to an output from the high frequency power supply E1 so that a bias potential can be applied to the substrate S. In addition, a heater or a refrigerant flow path may be incorporated in the substrate stage 2 so that the substrate S can be heated or cooled to a predetermined temperature.

真空チャンバ1の底部には、図示省略の真空ポンプなどの真空排気手段に通じる排気管3が接続され、真空チャンバ1内を真空引きできるようになっている。また、真空チャンバ1の側壁には、図示省略の流量制御手段(マスフローコントローラ)を介してガス源に通じるガス管4が接続され、真空チャンバ1内にエッチングガスを所定流量で導入できるようになっている。   An exhaust pipe 3 leading to vacuum exhaust means such as a vacuum pump (not shown) is connected to the bottom of the vacuum chamber 1 so that the inside of the vacuum chamber 1 can be evacuated. Further, a gas pipe 4 communicating with a gas source is connected to the side wall of the vacuum chamber 1 via a flow rate control means (mass flow controller) (not shown) so that an etching gas can be introduced into the vacuum chamber 1 at a predetermined flow rate. ing.

天板11の外側には、複数段(本実施形態では2段)のループ状のアンテナコイル5が設けられ、このアンテナコイル5には、高周波電源E2からの出力が接続され、プラズマ発生用の高周波電力を投入できるようになっている。これらのアンテナコイル5及び高周波電源E2は、本発明の「プラズマ発生手段」を構成する。   A loop antenna coil 5 having a plurality of stages (two stages in the present embodiment) is provided outside the top plate 11, and an output from the high frequency power source E2 is connected to the antenna coil 5 to generate plasma. High frequency power can be input. The antenna coil 5 and the high-frequency power source E2 constitute “plasma generating means” of the present invention.

天板11とアンテナコイル5との間には、天板11に沿って電極6が配置されている。電極6には、高周波電源E2からの出力が可変容量コンデンサ(例えば、10pF〜100pF)7を介して接続されており、真空チャンバ1内にプラズマが発生した状態で、電極6に電圧印加すると、電極6に対向する天板11の下面11aの全面に亘ってイオンが引き込まれるようになっている。   An electrode 6 is disposed along the top plate 11 between the top plate 11 and the antenna coil 5. The output from the high-frequency power source E2 is connected to the electrode 6 via a variable capacitor (for example, 10 pF to 100 pF) 7. When a voltage is applied to the electrode 6 in a state where plasma is generated in the vacuum chamber 1, Ions are drawn over the entire lower surface 11 a of the top plate 11 facing the electrode 6.

図2を参照して、電極6は、基部61と、この基部61を起点に点対称となるように基部61から径方向にのびる複数本(本実施形態では6本)の主枝部62と、互いに隣接する主枝部62で区画される空間を複数に分割する、主枝部62に突設された従枝部63とで構成される。本実施形態では、電極6は平面視円形の輪郭を有し、主枝部62は周方向に60°の間隔で基部61に設けられ、従枝部63は主枝部62の一側に径方向に等間隔で且つ隣接する主枝部62と平行に設けられている。この場合、隣接する従枝部63の相互の間隔dは、従枝部63の平面視の幅wと同等以上であることが好ましい。ここで、従枝部63の断面形状は特に限定されることがなく、従枝部63の断面形状として例えば矩形または円形に形成することができ、また、上記幅wは従枝部63を平面視でみたときの最大幅とする。また、従枝部63は、主枝部62の一側との接続端から先端まで幅が一定に形成されたものに限定されず、幅が変化するものであってもよい。従枝部63の幅が変化する場合には、上記幅wは、変化する幅の最大値とする。従枝部63の間隔dが幅wよりも短いと、誘導電界が遮蔽されてしまい、誘導結合放電が発生しなくなる。従枝部63の幅wは3〜10mmの範囲で設定され、間隔dは3〜25mmの範囲で設定されることが好ましい。例えば、幅wが4mmに設定されると、間隔dは4〜25mmの範囲で設定される。幅wが10mmよりも長い場合や、間隔dが25mmよりも長い場合には、天板下面10aの全面に亘ってイオンが引き込まれず、天板下面10aに付着物が残存する箇所が生じる。以下、上記エッチング装置M1を用いたエッチング方法について説明する。   Referring to FIG. 2, the electrode 6 includes a base portion 61, and a plurality of (six in this embodiment) main branch portions 62 extending radially from the base portion 61 so as to be symmetric with respect to the base portion 61. , And a sub-branch portion 63 protruding from the main branch portion 62 that divides the space defined by the adjacent main branch portions 62 into a plurality of portions. In the present embodiment, the electrode 6 has a circular outline in plan view, the main branches 62 are provided on the base 61 at intervals of 60 ° in the circumferential direction, and the follower 63 is arranged on one side of the main branch 62. It is provided at equal intervals in the direction and in parallel with the adjacent main branches 62. In this case, the interval d between the adjacent branch parts 63 is preferably equal to or greater than the width w of the branch part 63 in plan view. Here, the cross-sectional shape of the follower portion 63 is not particularly limited, and the follower portion 63 can be formed in, for example, a rectangular shape or a circular shape, and the width w is a flat surface of the follower portion 63. The maximum width when viewed visually. Further, the follower portion 63 is not limited to the one having a constant width from the connection end to the one end with the one side of the main branch portion 62, and the width may be changed. When the width of the follower 63 changes, the width w is the maximum value of the changing width. If the distance d between the follower portions 63 is shorter than the width w, the induction electric field is shielded and inductive coupling discharge does not occur. The width w of the follower 63 is preferably set in the range of 3 to 10 mm, and the distance d is preferably set in the range of 3 to 25 mm. For example, when the width w is set to 4 mm, the interval d is set in the range of 4 to 25 mm. When the width w is longer than 10 mm or when the distance d is longer than 25 mm, ions are not drawn over the entire surface of the top plate lower surface 10a, and there are places where deposits remain on the top plate lower surface 10a. Hereinafter, an etching method using the etching apparatus M1 will be described.

先ず、真空排気手段を作動させて真空チャンバ1内を所望の真空度まで真空引きした状態で、図外の搬送ロボットを用いて基板Sを搬送して基板ステージ2上に載置する。ガス管4から真空チャンバ1内に、Arガスを20〜100sccmの流量で導入する。次いで、高周波電源E2からアンテナコイル5に例えば13.56MHzの高周波電力を500W〜2000W投入することで、真空チャンバ1内にプラズマが発生する。これと併せて、基板Sに例えば12.5MHzの高周波電力を100W〜1000W投入することで、イオンが基板に引き込まれてエッチングが行われる。このとき、電極6に電圧を1000V〜5000V印加することで、天板11の内面11aにその全面に亘ってイオンが引き込まれ、その内面11aの全面に亘って付着物が除去される。   First, the substrate S is transported and placed on the substrate stage 2 using a transport robot (not shown) in a state where the vacuum exhaust means is operated and the vacuum chamber 1 is evacuated to a desired degree of vacuum. Ar gas is introduced into the vacuum chamber 1 from the gas pipe 4 at a flow rate of 20 to 100 sccm. Next, plasma is generated in the vacuum chamber 1 by applying, for example, 500 W to 2000 W of high frequency power of 13.56 MHz from the high frequency power source E <b> 2 to the antenna coil 5. At the same time, by applying, for example, 100 W to 1000 W of high frequency power of 12.5 MHz to the substrate S, ions are drawn into the substrate and etching is performed. At this time, by applying a voltage of 1000 V to 5000 V to the electrode 6, ions are drawn over the entire inner surface 11 a of the top plate 11, and deposits are removed over the entire inner surface 11 a.

以上説明した第1実施形態によれば、互いに隣接する主枝部62で画成される空間を従枝部63により細分化したため、電極6の主枝部62及び従枝部63に電圧印加すると、これら主枝部62及び従枝部63に対向する天板11の下面11aの全面に亘ってイオンを引き込むことができ、この下面11aの全面に亘って付着物を除去することができる。この場合、従来例の如く移動手段を設ける必要がないため、装置構成を簡単にでき、しかも、真空チャンバ1内で異常放電が発生することを防止できる。   According to the first embodiment described above, since the space defined by the adjacent main branch portions 62 is subdivided by the follower portion 63, when voltage is applied to the main branch portion 62 and the follower portion 63 of the electrode 6. The ions can be drawn over the entire lower surface 11a of the top plate 11 facing the main branch 62 and the follower 63, and the deposits can be removed over the entire lower surface 11a. In this case, since it is not necessary to provide a moving means unlike the conventional example, the apparatus configuration can be simplified, and abnormal discharge in the vacuum chamber 1 can be prevented.

次に、図3を参照して、本発明の第2実施形態のプラズマ処理装置について、エッチング装置M2を例に説明する。エッチング装置M2は、終点検出手段8として、例えば、干渉式の膜厚測定手段を備えている。干渉式の膜厚測定手段8としては、図示省略のレーザ光源、受光部、光学系等で構成される公知のものを用いることができるため、ここではその詳細な説明を省略する。   Next, the plasma processing apparatus according to the second embodiment of the present invention will be described with reference to FIG. 3 using the etching apparatus M2 as an example. The etching apparatus M2 includes, for example, an interference type film thickness measuring unit as the end point detecting unit 8. As the interference-type film thickness measuring means 8, a well-known device composed of a laser light source, a light receiving unit, an optical system, etc. (not shown) can be used, and therefore detailed description thereof is omitted here.

真空チャンバ1の上部開口には径方向に窪む段差1cが凹設され、この段差1cに石英板13を落とし込むことで、天板11と基板Sとの間に石英板13が配置される。石英板13は、その中央付近に透孔13aを有し、この透孔13aにサファイア板14を設置して、終点検出用の光が通るようにしている。   A step 1c that is recessed in the radial direction is formed in the upper opening of the vacuum chamber 1, and the quartz plate 13 is placed between the top plate 11 and the substrate S by dropping the quartz plate 13 into the step 1c. The quartz plate 13 has a through hole 13a in the vicinity of the center thereof, and a sapphire plate 14 is installed in the through hole 13a so that light for end point detection can pass therethrough.

即ち、上記膜厚測定手段8のレーザ光源から発せられたレーザ光は、天板11及びサファイア板14を介して基板S表面に照射される。レーザ光は基板S表面で反射されるが、このとき、薄膜の膜厚等に応じた光路長差により干渉を起こす。このように干渉した反射光は受光部により受光され、受光された反射光の干渉強度が求められる。この干渉強度を後述する制御手段によりモニタすることで、エッチングの終点を検出することができる。   In other words, the laser light emitted from the laser light source of the film thickness measuring means 8 is applied to the surface of the substrate S through the top plate 11 and the sapphire plate 14. The laser light is reflected on the surface of the substrate S. At this time, interference occurs due to the optical path length difference corresponding to the film thickness of the thin film. The reflected light thus interfered is received by the light receiving unit, and the interference intensity of the received reflected light is obtained. The end point of etching can be detected by monitoring the interference intensity by a control means described later.

図4を参照して、電極60の基部64には、終点検出用の光の透過を許容する透孔が開設されている。ここで、透孔の径がφ3mmを超えると、電極60に電圧印加したときに、天板下面11aの基部64に対向する部分引き込まれるイオンが減少するため、当該部分に付着物が残存するという不具合が生じ得る。そこで、基部64の透孔に、その周方向に所定間隔(例えば、60°)で径方向内側に向けて突出する突起部64aを設けることにより、天板下面11aの基部64に対向する部分にイオンを引き込むことができる。   Referring to FIG. 4, a base 64 of electrode 60 is provided with a through hole that allows transmission of light for end point detection. Here, if the diameter of the through-hole exceeds φ3 mm, when a voltage is applied to the electrode 60, the portion of ions that are attracted partially facing the base portion 64 of the top plate lower surface 11 a is reduced, so that deposits remain in the portion. Malfunctions can occur. Therefore, by providing a projection 64a projecting radially inward in the circumferential direction at a predetermined interval (for example, 60 °) in the through hole of the base 64, a portion facing the base 64 of the top plate lower surface 11a is provided. Ions can be drawn.

上記エッチング装置M2は、コンピュータ、シーケンサーやドライバー等を備えた制御手段Cを備え、上述した部品や終点検出手段8等の動作が統括制御されるようになっている。   The etching apparatus M2 includes a control unit C including a computer, a sequencer, a driver, and the like, and the operations of the above-described components, the end point detection unit 8, and the like are controlled in an integrated manner.

以上説明した第2実施形態によれば、電極60の基部64に終点検出用の光の透過を許容する透孔を開設し、この透孔に対向する天板11及びサファイア板14の付着物を除去するようにしたため、付着物による終点検出用の光の散乱や吸収を抑えることができるので、終点検出を精度良く行うことができる。サファイア板14は、石英板13に比べてイオン照射による耐性が高い(表面荒れが少ない)ため、表面荒れによる光の散乱や吸収を抑えることができて有利である。   According to the second embodiment described above, the base 64 of the electrode 60 is provided with a through hole that allows transmission of light for end point detection, and the top plate 11 and the sapphire plate 14 that are opposed to the through hole are attached to the base plate 64. Since the removal is performed, the scattering and absorption of the light for detecting the end point due to the adhering matter can be suppressed, so that the end point can be detected with high accuracy. The sapphire plate 14 is more resistant to ion irradiation than the quartz plate 13 (less surface roughness), and is advantageous in that it can suppress light scattering and absorption due to surface roughness.

その上、天板11と基板Sとの間に石英板13及びサファイア板14を配置したため、天板11の付着物を大幅に減らすことができる。そして、これらの石英板13及びサファイア板14は、付着物が所定量に達した時点で交換すればよいため、天板11に付着物が付着する場合に比べてメンテナンス性を向上できる。   In addition, since the quartz plate 13 and the sapphire plate 14 are disposed between the top plate 11 and the substrate S, the deposits on the top plate 11 can be greatly reduced. Since the quartz plate 13 and the sapphire plate 14 may be exchanged when the deposit reaches a predetermined amount, the maintainability can be improved compared to the case where the deposit adheres to the top plate 11.

上記実施形態の効果を確認するために、以下の実験を行った。本実験では、処理すべき基板を、表面にAu膜が形成されたシリコン基板とし、上記エッチング装置M1を用いてAu膜をエッチングした。ここで、電極6の従枝部63の幅wは4mm、間隔dは22mmとし、エッチング条件は、エッチングガスたるArガスの流量:50sccm、プロセス圧力:0.5Pa、高周波電力(バイアス):12.5MHz,500W、高周波電力(アンテナ):13.56MHz,500Wとした。エッチング後に天板11の下面11aの状態を確認した。その結果、図5に示すように、下面11aの全面に亘って付着物が除去されており、下面11aの全面に亘ってイオンを引き込めることが確認された。   In order to confirm the effect of the above embodiment, the following experiment was performed. In this experiment, the substrate to be processed was a silicon substrate having an Au film formed on the surface, and the Au film was etched using the etching apparatus M1. Here, the width w of the follower 63 of the electrode 6 is 4 mm, the interval d is 22 mm, and the etching conditions are: Ar gas flow rate: 50 sccm, process pressure: 0.5 Pa, high frequency power (bias): 12 .5 MHz, 500 W, high frequency power (antenna): 13.56 MHz, 500 W. After the etching, the state of the lower surface 11a of the top plate 11 was confirmed. As a result, as shown in FIG. 5, it was confirmed that deposits were removed over the entire lower surface 11a, and ions could be drawn over the entire lower surface 11a.

なお、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、エッチング装置を例に説明したが、プラズマ処理装置はこれに限られず、例えばスパッタリング装置に対しても本発明を適用することができる。この場合、膜厚測定手段8により基板表面に成膜された薄膜の膜厚をモニタすることで、終点を検出するようにしてもよい。また、上記エッチング装置M1,M2において、電極6とアンテナコイル5との間に永久磁石を配置することもできる。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the etching apparatus has been described as an example. However, the plasma processing apparatus is not limited to this, and the present invention can be applied to, for example, a sputtering apparatus. In this case, the end point may be detected by monitoring the film thickness of the thin film formed on the substrate surface by the film thickness measuring means 8. In the etching apparatuses M1 and M2, a permanent magnet can be arranged between the electrode 6 and the antenna coil 5.

上記実施形態では、基部61に主枝部62を周方向に60°の間隔で6本設ける場合を例に説明したが、その周方向に45°の間隔で8本設ける場合にも本発明を適用することができ、この場合も同様の効果を奏する。   In the above embodiment, the case where six main branch portions 62 are provided in the base 61 at intervals of 60 ° has been described as an example. The same effect can be obtained in this case.

上記第2実施形態では、天板11と基板Sとの間に、石英板13及びサファイア板14を設けたが、これらを設けなくてもよい。この場合、天板11を石英製のものとし、その中央付近に透孔を形成し、サファイア板を設置して終点検出用の光が通るように構成することが好ましい。これによれば、天板11を光が通る場合に比べて、終点検出用の光の散乱や吸収をより一層抑えることができる。   In the second embodiment, the quartz plate 13 and the sapphire plate 14 are provided between the top plate 11 and the substrate S, but these need not be provided. In this case, it is preferable that the top plate 11 is made of quartz, a through hole is formed in the vicinity of the center, and a sapphire plate is provided so that light for end point detection passes. According to this, compared with the case where light passes through the top plate 11, scattering and absorption of light for end point detection can be further suppressed.

M…エッチング装置(プラズマ処理装置)、1…真空チャンバ、6…電極、8…膜厚測定手段(終点検出手段)、11…天板(一の外壁)、11a…下面(内壁面)、13…石英板、14…サファイア板、61,64…基部、62…主枝部、63…従枝部、64a…突起部。
DESCRIPTION OF SYMBOLS M ... Etching apparatus (plasma processing apparatus), 1 ... Vacuum chamber, 6 ... Electrode, 8 ... Film thickness measurement means (end point detection means), 11 ... Top plate (one outer wall), 11a ... Lower surface (inner wall surface), 13 ... quartz plate, 14 ... sapphire plate, 61, 64 ... base, 62 ... main branch, 63 ... follower, 64a ... projection.

Claims (6)

真空チャンバと、真空チャンバ内にプラズマを発生させるプラズマ発生手段と、真空チャンバの一の外壁に沿って配置された電極と、真空チャンバ内にプラズマを発生させた状態で、プラズマ中のイオンが真空チャンバの内壁面に引き込まれるように電極に電圧を印加する電源とを備えたプラズマ処理装置において、
前記電極は、基部と、この基部を起点に点対称となるように当該基部から径方向にのびる複数本の主枝部と、互いに隣接する主枝部で区画される空間を複数に分割する、主枝部に突設された従枝部とを有し、前記電源より電極に電圧印加したとき、当該電極に対向する真空チャンバの内壁面の全面に亘ってイオンが引き込まれるように構成したことを特徴とするプラズマ処理装置。
A vacuum chamber, plasma generating means for generating plasma in the vacuum chamber, electrodes arranged along one outer wall of the vacuum chamber, and ions in the plasma are vacuumed in a state where the plasma is generated in the vacuum chamber. In a plasma processing apparatus comprising a power source for applying a voltage to an electrode so as to be drawn into the inner wall surface of the chamber,
The electrode divides a space defined by a base, a plurality of main branches extending in the radial direction from the base so as to be point-symmetric with respect to the base, and a main branch adjacent to each other. And a branch portion projecting from the main branch portion, and when a voltage is applied to the electrode from the power supply, ions are drawn over the entire inner wall surface of the vacuum chamber facing the electrode. A plasma processing apparatus.
請求項1記載のプラズマ処理装置であって、前記電極が平面視円形の輪郭を有するものにおいて、
前記主枝部は周方向に45°または60°の間隔で基部に設けられ、前記従枝部は、主枝部の一側に径方向に等間隔で且つ他の主枝部と平行に設けられていることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 1, wherein the electrode has a circular outline in plan view.
The main branches are provided at the base at intervals of 45 ° or 60 ° in the circumferential direction, and the follower is provided at one side of the main branch at equal intervals in the radial direction and in parallel with the other main branches. A plasma processing apparatus.
隣接する従枝部の相互の間隔は、前記従枝部の平面視の幅と同等以上にすることを特徴とする請求項2記載のプラズマ処理装置。   The plasma processing apparatus according to claim 2, wherein an interval between adjacent follower portions is equal to or greater than a width in plan view of the follower portions. 請求項1〜3のいずれか1項に記載のプラズマ処理装置において、
前記外壁を介して基板表面に光を照射し、基板表面からの反射光を受光し、受光した反射光に基づき処理の終点を検出する終点検出手段を更に備え、
前記電極の基部に、終点検出用の光の透過を許容する透孔が開設されていることを特徴とするプラズマ処理装置。
In the plasma processing apparatus of any one of Claims 1-3,
Irradiating the substrate surface with light through the outer wall, receiving reflected light from the substrate surface, and further comprising an end point detecting means for detecting an end point of processing based on the received reflected light,
A plasma processing apparatus, wherein a through-hole that allows transmission of light for detecting an end point is formed in a base portion of the electrode.
請求項4記載のプラズマ処理装置において、
前記透孔は、周方向に所定間隔で径方向内側に向けて突出する突起部を備えることを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 4, wherein
The said through-hole is provided with the projection part which protrudes toward a radial inside at predetermined intervals in the circumferential direction, The plasma processing apparatus characterized by the above-mentioned.
請求項4または5記載のプラズマ処理装置において、
前記内壁面と前記基板との間に透孔を有する石英板を設け、この透孔にサファイア板を設置して終点検出用の光が通るように構成したことを特徴とするプラズマ処理装置。
The plasma processing apparatus according to claim 4 or 5,
A plasma processing apparatus, wherein a quartz plate having a through hole is provided between the inner wall surface and the substrate, and a sapphire plate is installed in the through hole so that light for end point detection passes.
JP2012247799A 2012-11-09 2012-11-09 Plasma processing apparatus Pending JP2014096297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247799A JP2014096297A (en) 2012-11-09 2012-11-09 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012247799A JP2014096297A (en) 2012-11-09 2012-11-09 Plasma processing apparatus

Publications (1)

Publication Number Publication Date
JP2014096297A true JP2014096297A (en) 2014-05-22

Family

ID=50939222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247799A Pending JP2014096297A (en) 2012-11-09 2012-11-09 Plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP2014096297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005579A (en) * 2019-06-25 2021-01-14 株式会社アルバック Dry-etching method and manufacturing method of device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073801A (en) * 2004-09-02 2006-03-16 Samco Inc Dielectric window anti-mist type plasma processing device
JP2006186222A (en) * 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd Plasma processing apparatus
JP2009218453A (en) * 2008-03-11 2009-09-24 Samco Inc Plasma processing apparatus
WO2011040147A1 (en) * 2009-09-29 2011-04-07 株式会社 アルバック Plasma etching apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073801A (en) * 2004-09-02 2006-03-16 Samco Inc Dielectric window anti-mist type plasma processing device
JP2006186222A (en) * 2004-12-28 2006-07-13 Matsushita Electric Ind Co Ltd Plasma processing apparatus
JP2009218453A (en) * 2008-03-11 2009-09-24 Samco Inc Plasma processing apparatus
WO2011040147A1 (en) * 2009-09-29 2011-04-07 株式会社 アルバック Plasma etching apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005579A (en) * 2019-06-25 2021-01-14 株式会社アルバック Dry-etching method and manufacturing method of device
JP7232135B2 (en) 2019-06-25 2023-03-02 株式会社アルバック Dry etching method and device manufacturing method

Similar Documents

Publication Publication Date Title
JP5711953B2 (en) Plasma processing equipment
JP2022183200A (en) Control method, plasma processing device, processor, and non-transitory computer-readable recording medium
TWI712339B (en) Method for controlling ion energy within a plasma chamber
JP6078419B2 (en) Control method of plasma processing apparatus, plasma processing method and plasma processing apparatus
CN111029238A (en) Plasma processing apparatus and control method
JP2020025083A (en) Control method and plasma processing apparatus
TW201703187A (en) Multiple electrode substrate support assembly and phase control system
TWI772206B (en) Selective etch rate monitor
KR101444228B1 (en) Apparatus and method for plasma treatment
JP6762410B2 (en) Plasma processing equipment and control method
TW202040682A (en) Plasma processing apparatus and control method
WO2011013702A1 (en) Plasma processing device and plasma processing method
KR20120116888A (en) Cleaning method of plasma processing apparatus and plasma processing method
TWI591679B (en) System and method for detecting dc bias in a plasma processing chamber
JP2016512393A5 (en)
JP2019110028A (en) Plasma processing apparatus
KR102529337B1 (en) Focus ring and sensor chip
JP5665746B2 (en) Plasma etching apparatus and plasma etching method
CN107871649A (en) Monitoring unit, apparatus for processing plasma and the method for manufacturing semiconductor device
KR20160130745A (en) Plasma processing device cleaning method and plasma processing device
JP2014096297A (en) Plasma processing apparatus
WO2019229784A1 (en) Plasma treatment apparatus
JP6595335B2 (en) Plasma processing equipment
JP6645856B2 (en) Plasma processing equipment
JP5914786B1 (en) Insulator target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228