JP2014096215A - Discharge lamp and manufacturing method therefor - Google Patents

Discharge lamp and manufacturing method therefor Download PDF

Info

Publication number
JP2014096215A
JP2014096215A JP2012245504A JP2012245504A JP2014096215A JP 2014096215 A JP2014096215 A JP 2014096215A JP 2012245504 A JP2012245504 A JP 2012245504A JP 2012245504 A JP2012245504 A JP 2012245504A JP 2014096215 A JP2014096215 A JP 2014096215A
Authority
JP
Japan
Prior art keywords
electrode
metal foil
discharge lamp
axial direction
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012245504A
Other languages
Japanese (ja)
Inventor
Atsushi Yamada
淳 山田
Tsukasa Shirakawa
宰 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2012245504A priority Critical patent/JP2014096215A/en
Priority to EP13852720.5A priority patent/EP2919257B1/en
Priority to PCT/JP2013/071730 priority patent/WO2014073253A1/en
Publication of JP2014096215A publication Critical patent/JP2014096215A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/48Means forming part of the tube or lamp for the purpose of supporting it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • H01J61/368Pinched seals or analogous seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/28Manufacture of leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/32Sealing leading-in conductors
    • H01J9/323Sealing leading-in conductors into a discharge lamp or a gas-filled discharge device
    • H01J9/326Sealing leading-in conductors into a discharge lamp or a gas-filled discharge device making pinched-stem or analogous seals

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a discharge lamp having excellent bond strength, and to provide a manufacturing method therefor.SOLUTION: A discharge lamp includes a metal foil 31 having first and second surfaces on the front and back, and an electrode 32 connected with the metal foil 31. Welding marks 36 are formed so that the first surface and the electrode 32 overlap at least partially. When viewed from the second surface side 312, the welding mark 36 has an elliptical shape elongated in the axial direction of the electrode 32, and the ratio L1/L2 of a first length L1 in the axial direction and a second length L2 in the direction orthogonal to the axial direction satisfies a relation 1.08≤L1/L2≤1.56.

Description

本発明の実施形態は、放電ランプおよびその製造方法に関する。   Embodiments described herein relate generally to a discharge lamp and a method for manufacturing the same.

放電ランプは、発光管とシール部とを備える発光管のシール部に、電極マウントが封着されてなるランプである。電極マウントは、金属箔と電極とで構成されており、それらはレーザ照射により、溶接することができる。このレーザ溶接により接合した電極マウントにおいて、金属箔と電極の接合が外れる不具合が生じており、接合強度の改善が求められている。   The discharge lamp is a lamp in which an electrode mount is sealed to a seal portion of an arc tube including an arc tube and a seal portion. The electrode mount is composed of a metal foil and an electrode, which can be welded by laser irradiation. In the electrode mount joined by this laser welding, there is a problem that the joining of the metal foil and the electrode is disengaged, and improvement of the joining strength is required.

特開2012−84454号公報JP 2012-84454 A 特許第4972172号明細書Japanese Patent No. 4972172 特許第4494224号明細書Japanese Patent No. 4494224 特開2005−349477号公報JP 2005-349477 A 特開2004−363014号公報JP 2004-363014 A

本発明は、接合強度が優れた放電ランプおよびその製造方法を提供することを目的とする。   An object of this invention is to provide the discharge lamp excellent in joining strength, and its manufacturing method.

実施形態の放電ランプは、発光部と、シール部と、電極マウントを有する。発光部は、内部に金属ハロゲン化物が封入された放電空間を有する。シール部は、発光部の端部に形成されている。電極マウントは、表裏に位置する第1、第2の面を有する金属箔と、金属箔と接続された電極とを有する。第1の面と電極の少なくとも一部が重なり合うように溶接痕が形成されている。溶接痕は、第2の面側から見たときに電極の軸方向に長い楕円形状であり、軸方向の第1長さL1と軸方向と直交する方向の第2長さL2との比L1/L2が1.08≦L1/L2≦1.56の関係である。   The discharge lamp of the embodiment has a light emitting part, a seal part, and an electrode mount. The light emitting part has a discharge space in which a metal halide is enclosed. The seal part is formed at the end of the light emitting part. The electrode mount includes a metal foil having first and second surfaces located on the front and back sides, and an electrode connected to the metal foil. A welding mark is formed so that at least a part of the first surface and the electrode overlap each other. The welding mark has an elliptical shape that is long in the axial direction of the electrode when viewed from the second surface side, and the ratio L1 between the first length L1 in the axial direction and the second length L2 in the direction orthogonal to the axial direction. / L2 has a relationship of 1.08 ≦ L1 / L2 ≦ 1.56.

本発明によれば、接合強度が優れた放電ランプおよびその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the discharge lamp excellent in joining strength and its manufacturing method can be provided.

図1は、第1の実施形態の放電ランプを示す図である。FIG. 1 is a diagram showing a discharge lamp according to the first embodiment. 図2は、第1の実施形態の放電ランプを示す断面図である。FIG. 2 is a cross-sectional view showing the discharge lamp of the first embodiment. 図3は、第1の実施形態の放電ランプの金属箔を第2の面側から見たときの状態を示す図である。FIG. 3 is a diagram illustrating a state when the metal foil of the discharge lamp according to the first embodiment is viewed from the second surface side. 図4は、図3に示した範囲Aを示す拡大図である。FIG. 4 is an enlarged view showing the range A shown in FIG. 図5は、第1の実施形態の電極マウントを示す断面図である。FIG. 5 is a cross-sectional view showing the electrode mount of the first embodiment. 図6は、第1の実施形態の放電ランプの接合外れ発生率とL1/L2との関係を示す図である。FIG. 6 is a diagram showing a relationship between the occurrence rate of disconnection of the discharge lamp of the first embodiment and L1 / L2. 図7は、第1の実施形態の電極マウントの一製造方法を示す図である。FIG. 7 is a diagram illustrating a method of manufacturing the electrode mount according to the first embodiment. 図8は、第1の実施形態の電極マウントのレーザ照射を示す説明図である。FIG. 8 is an explanatory diagram showing laser irradiation of the electrode mount of the first embodiment. 図9は、電極マウントの他の例を示す図である。FIG. 9 is a diagram showing another example of the electrode mount. 図10は、電極マウントの他の例を示す図である。FIG. 10 is a diagram illustrating another example of the electrode mount.

以下で説明する実施形態に係る放電ランプは、発光部11と、シール部12と、電極マウント3を有する。発光部11は、内部に金属ハロゲン化物が封入された放電空間111を有する。シール部12は、発光部11の端部に形成されている。電極マウント3は、表裏に位置する第1の面311と第2の面312を有する金属箔31と、金属箔31と接続された電極32とを有する。第1の面311と電極32の少なくとも一部が重なり合うように溶接痕36が形成されている。溶接痕36は、第2の面312側から見たときに電極32の軸方向に長い楕円形状であり、軸方向の第1長さL1と軸方向と直交する方向の第2長さL2との比L1/L2が1.08≦L1/L2≦1.56の関係である。   The discharge lamp according to the embodiment described below includes a light emitting unit 11, a seal unit 12, and an electrode mount 3. The light emitting unit 11 has a discharge space 111 in which a metal halide is enclosed. The seal part 12 is formed at the end of the light emitting part 11. The electrode mount 3 includes a metal foil 31 having a first surface 311 and a second surface 312 located on the front and back sides, and an electrode 32 connected to the metal foil 31. A welding mark 36 is formed so that at least a part of the first surface 311 and the electrode 32 overlap. The welding mark 36 has an elliptical shape that is long in the axial direction of the electrode 32 when viewed from the second surface 312 side, and a first length L1 in the axial direction and a second length L2 in a direction orthogonal to the axial direction. The ratio L1 / L2 is 1.08 ≦ L1 / L2 ≦ 1.56.

また、以下で説明する実施形態に係る放電ランプは、第2長さL2と、電極32の直径Wとの比L2/Wが0.3≦L2/W≦0.9の関係である。   In the discharge lamp according to the embodiment described below, the ratio L2 / W between the second length L2 and the diameter W of the electrode 32 is such that 0.3 ≦ L2 / W ≦ 0.9.

また、以下で説明する実施形態に係る放電ランプは、電極32の直径Wは、0.2mm〜0.4mmである。   In the discharge lamp according to the embodiment described below, the diameter W of the electrode 32 is 0.2 mm to 0.4 mm.

また、以下で説明する実施形態に係る放電ランプは、溶接痕36は、金属箔31側から電極32の内部に延伸するように形成されており、かつ中心線が第2の面312の垂線方向に対して傾斜している。   In the discharge lamp according to the embodiment described below, the welding mark 36 is formed so as to extend from the metal foil 31 side to the inside of the electrode 32, and the center line is in the direction perpendicular to the second surface 312. It is inclined with respect to.

以下で説明する実施形態に係る放電ランプの製造方法は、第1の面311と電極32の少なくとも一部が重なり合うように、金属箔31と電極32を配置したのち、第2の面312側から重なり合った部分に、金属箔31の垂線方向に対して傾斜した光軸でレーザを照射して、電極32の軸方向の第1長さL1と軸方向と直交する方向の第2長さL2との比L1/L2が1.08≦L1/L2≦1.56の関係となる溶接痕36を形成するように、金属箔31と電極32とを溶接する。   In the discharge lamp manufacturing method according to the embodiment described below, the metal foil 31 and the electrode 32 are arranged so that at least a part of the first surface 311 and the electrode 32 overlap, and then from the second surface 312 side. The overlapping portion is irradiated with a laser beam with an optical axis inclined with respect to the normal direction of the metal foil 31, and the first length L1 in the axial direction of the electrode 32 and the second length L2 in the direction orthogonal to the axial direction are The metal foil 31 and the electrode 32 are welded so as to form a welding mark 36 having a ratio L1 / L2 of 1.08 ≦ L1 / L2 ≦ 1.56.

〔第1の実施形態〕
図1および図2を参照して、第1の実施形態を説明する。図1は、第1の実施形態の放電ランプを示す図である。図2は、第1の実施形態の放電ランプを示す断面図である。図3は、第1の実施形態の放電ランプの金属箔を第2の面側から見たときの状態を示す図である。
[First Embodiment]
The first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a diagram showing a discharge lamp according to the first embodiment. FIG. 2 is a cross-sectional view showing the discharge lamp of the first embodiment. FIG. 3 is a diagram illustrating a state when the metal foil of the discharge lamp according to the first embodiment is viewed from the second surface side.

本実施形態の放電ランプは、自動車前照灯用のヘッドランプに用いられるメタルハライドランプであり、気密容器として内管1を備えている。内管1は細長い形状であり、その中央付近には略楕円形の発光部11が形成されている。発光部11の両端には、ピンチシールにより形成された板状のシール部12、その両端には境界部13を介して円筒部14が連続形成されている。この内管1としては、例えば石英ガラスなどの耐熱性と透光性を具備した材料で構成されるのが望ましい。また、シール部12はシュリンクシールにより形成されることにより円柱状の形状であってもよい。   The discharge lamp of this embodiment is a metal halide lamp used for a headlamp for an automobile headlamp, and includes an inner tube 1 as an airtight container. The inner tube 1 has an elongated shape, and a substantially elliptical light emitting portion 11 is formed near the center thereof. A plate-like seal portion 12 formed by a pinch seal is formed at both ends of the light emitting portion 11, and a cylindrical portion 14 is continuously formed at both ends via a boundary portion 13. The inner tube 1 is preferably made of a material having heat resistance and translucency, such as quartz glass. Further, the seal portion 12 may be formed in a cylindrical shape by being formed by a shrink seal.

発光部11の内部には、中央が略円柱状で、両端に向かってテーパ状となっている放電空間111が形成されている。放電空間111には、金属ハロゲン化物2および希ガスが封入されている。金属ハロゲン化物2は、ヨウ化ナトリウム、ヨウ化スカンジウム、ヨウ化亜鉛、臭化インジウムで構成されている。なお、この金属ハロゲン化物2の組合せはこれに限らず、スズ、セシウムのハロゲン化物を追加するなどしてもよい。   A discharge space 111 having a substantially cylindrical shape at the center and a taper toward both ends is formed inside the light emitting unit 11. The discharge space 111 is filled with the metal halide 2 and the rare gas. The metal halide 2 is composed of sodium iodide, scandium iodide, zinc iodide, and indium bromide. The combination of the metal halides 2 is not limited to this, and tin and cesium halides may be added.

希ガスは、キセノンが使用されている。この希ガスの圧力は、12atm〜18atm、望ましくは13atm〜16atmである。なお、希ガスとしてはキセノンとネオン、アルゴン、クリプトンなどを組み合わせた混合ガスで使用することもできる。   Xenon is used as the rare gas. The pressure of the rare gas is 12 atm to 18 atm, desirably 13 atm to 16 atm. Note that the rare gas may be a mixed gas of xenon and neon, argon, krypton, or the like.

ここで、本実施形態のランプは、水銀フリー放電ランプである。この「水銀フリー」とは、水銀を実質的に含んでいないという意味である。   Here, the lamp of the present embodiment is a mercury-free discharge lamp. This “mercury-free” means that it does not substantially contain mercury.

発光部11の両側に形成されたシール部12には、それぞれ電極マウント3が封着されている。電極マウント3は、金属箔31、電極32、コイル33およびリード線34により構成されている。   The electrode mounts 3 are sealed to the seal portions 12 formed on both sides of the light emitting portion 11, respectively. The electrode mount 3 includes a metal foil 31, an electrode 32, a coil 33 and a lead wire 34.

金属箔31は、例えば、モリブデンからなる薄板状の部材であり、表裏に平坦な第1の面311と第2の面312を備えている。その平坦面の短手方向の両端は、徐々に厚みが薄くなるナイフエッジ形状になっている。本実施形態では、電極32が接続される側の第1の面311と第2の面312の半面(ただし、端部および電極32との重ね合わせ部分は除く)には、粗面313が形成されている。図4は、図3に示した範囲Aを示す拡大図である。この粗面313は、図4に示すように、複数の円形状の凹部3131からなるものである。凹部3131は例えば、直径は18μm、深さは3μmである非貫通の半円状の凹みであり、YAGレーザを照射することで形成することができる。   The metal foil 31 is a thin plate member made of, for example, molybdenum, and includes a flat first surface 311 and a second surface 312 on the front and back surfaces. Both ends of the flat surface in the short direction have a knife edge shape that gradually decreases in thickness. In the present embodiment, a rough surface 313 is formed on the first surface 311 on the side to which the electrode 32 is connected and the half surface of the second surface 312 (excluding the overlapping portion between the end portion and the electrode 32). Has been. FIG. 4 is an enlarged view showing the range A shown in FIG. As shown in FIG. 4, the rough surface 313 includes a plurality of circular recesses 3131. The recess 3131 is, for example, a non-penetrating semicircular recess having a diameter of 18 μm and a depth of 3 μm, and can be formed by irradiation with a YAG laser.

電極32は、例えばタングステンに酸化トリウムをドープした、いわゆるトリエーテッドタングステンからなる棒状の部材である。その一端は金属箔31の発光部11側の端部に接続され、他端は放電空間111内に突出し、所定の距離を保って互いの先端部同士が対向するように対設されている。直径Wは、0.2mm〜0.4mmである。ここで、直径Wが0.2mm未満であると、点灯時の電極32の温度が高くなって、放電空間111への電極物質の飛散(スパッタリング)が増加するので、点灯中の光束維持率が低下し、寿命特性が悪くなる。また、直径Wが0.4mmを超えると、内管1と電極32との封着部の歪(応力)が増加するため、放電ランプ製造時や点灯中などに内管1の割れが発生し、不点灯の要因の一つとなる可能性がある。本実施形態は、直径Wは、例えば0.38mmである。なお、自動車前照灯の用途の場合には、電極32同士の先端間の距離を、外管5を通して観察したときに3.7mm〜4.4mmの範囲に位置決めするのが好ましい。   The electrode 32 is a rod-shaped member made of so-called triated tungsten in which, for example, tungsten is doped with thorium oxide. One end thereof is connected to the end of the metal foil 31 on the light emitting portion 11 side, and the other end protrudes into the discharge space 111 and is opposed so as to face each other at a predetermined distance. The diameter W is 0.2 mm to 0.4 mm. Here, when the diameter W is less than 0.2 mm, the temperature of the electrode 32 at the time of lighting becomes high, and the scattering (sputtering) of the electrode material into the discharge space 111 increases. The life characteristics are deteriorated. In addition, if the diameter W exceeds 0.4 mm, the distortion (stress) of the sealing portion between the inner tube 1 and the electrode 32 increases, so that the inner tube 1 is cracked during manufacture of the discharge lamp or during lighting. This may be one of the causes of non-lighting. In the present embodiment, the diameter W is, for example, 0.38 mm. In the case of an automotive headlamp application, the distance between the tips of the electrodes 32 is preferably positioned in the range of 3.7 mm to 4.4 mm when observed through the outer tube 5.

コイル33は、例えば、ドープタングステンからなる金属線であって、シール部12に封着される電極32の軸部の軸周りに螺旋状に巻装されている。   The coil 33 is a metal wire made of, for example, doped tungsten, and is spirally wound around the axis of the shaft portion of the electrode 32 sealed to the seal portion 12.

リード線34は、例えば、モリブデンからなる金属線である。リード線34の一端は、発光部11から電極接続側に対して反対側の金属箔31の端部に接続されており、他端は内管1の外部まで管軸に略平行に延出されている。ランプの前端側、すなわちソケット6から遠位側に延出されたリード線34には、例えば、ニッケルからなるL字状のサポートワイヤ35の一端がレーザ溶接により接続されている。このサポートワイヤ35には、内管1と平行に延在する部位に、例えば、セラミックからなるスリーブ4が装着されている。   The lead wire 34 is a metal wire made of molybdenum, for example. One end of the lead wire 34 is connected to the end of the metal foil 31 opposite to the electrode connection side from the light emitting portion 11, and the other end extends substantially parallel to the tube axis to the outside of the inner tube 1. ing. One end of an L-shaped support wire 35 made of nickel, for example, is connected to the lead wire 34 extending distally from the front side of the lamp, that is, the socket 6 by laser welding. For example, a sleeve 4 made of ceramic is attached to the support wire 35 at a portion extending in parallel with the inner tube 1.

上記で構成された内管1の外側には、発光部11を覆うように筒状の外管5が内管1とほぼ同心状に設けられている。これら内外管の接続は、内管1の円筒部14付近に外管5の端部をそれぞれ溶着することにより行なわれている。内管1と外管5との間に形成された閉空間51には、ガスが封入されている。このガスには、誘電体バリア放電可能なガス、例えばネオン、アルゴン、キセノン、窒素から選択された一種のガスまたは混合ガスを使用することができる。ガスの圧力は0.3atm以下、特に0.1atm以下であるのが望ましい。なお、外管5としては、内管1に熱膨張係数が近く、かつ紫外線遮断性を有する材料で構成するのが望ましく、例えば、チタン、セリウム、アルミニウム等の酸化物を添加した石英ガラスを使用することができる。   On the outside of the inner tube 1 configured as described above, a cylindrical outer tube 5 is provided substantially concentrically with the inner tube 1 so as to cover the light emitting portion 11. These inner and outer pipes are connected by welding the end portions of the outer pipe 5 in the vicinity of the cylindrical portion 14 of the inner pipe 1. Gas is sealed in a closed space 51 formed between the inner tube 1 and the outer tube 5. As this gas, a gas capable of dielectric barrier discharge, for example, one kind of gas selected from neon, argon, xenon and nitrogen or a mixed gas can be used. The gas pressure is desirably 0.3 atm or less, particularly 0.1 atm or less. The outer tube 5 is preferably made of a material having a thermal expansion coefficient close to that of the inner tube 1 and having an ultraviolet blocking property. For example, quartz glass to which an oxide such as titanium, cerium, or aluminum is added is used. can do.

外管5が接続された内管1の一端には、ソケット6が接続されている。これらの接続は、外管5の外周面に金属バンド71を装着し、その金属バンド71をソケット6から4本突出形成させた金属製の舌片72で把持することで行なっている。また、ソケット6の底部には底部端子81、側部には側部端子82が形成されており、底部端子81と側部端子82には、それぞれリード線34とサポートワイヤ35が接続されている。   A socket 6 is connected to one end of the inner tube 1 to which the outer tube 5 is connected. These connections are made by attaching a metal band 71 to the outer peripheral surface of the outer tube 5 and holding the metal band 71 with four metal tongues 72 projecting from the socket 6. Further, a bottom terminal 81 is formed at the bottom of the socket 6, and a side terminal 82 is formed at the side, and a lead wire 34 and a support wire 35 are connected to the bottom terminal 81 and the side terminal 82, respectively. .

これらで構成された放電ランプ(箔シールランプ)は、底部端子81が高圧側、側部端子82が低圧側になるように点灯回路(図示なし)と接続され、本実施形態では、始動時はランプ電力が75W、安定点灯時は35Wとなるように点灯される。   The discharge lamp (foil seal lamp) constituted by these is connected to a lighting circuit (not shown) so that the bottom terminal 81 is on the high voltage side and the side terminal 82 is on the low voltage side. The lamp is lit so that the power of the lamp is 75 W and the stable lighting is 35 W.

ここで、金属箔31と電極32の接続について説明する。金属箔31と電極32は、第1の面311と電極32の少なくとも一部が重なり合うように配置された状態で、本実施形態では、2箇所溶接されている。図5は、第1の実施形態の電極マウントを示す断面図である。図5に示すように、溶接により、重なり合った部分には金属箔31側から電極32の内部に延伸するような形状の溶接痕36、および凹部37がそれぞれ溶接箇所に形成されている。各溶接痕36は、略楕円錐状である。第2の面312側から見たときの形状は、図4に示すように、電極32の軸方向に長い楕円形状である。ここで、楕円形状は、軸方向の第1長さL1が軸方向と直交する方向の第2長さL2よりも長く、外郭線が曲線で構成されていればよく、楕円形状のみならず略楕円形状も含むものである。各溶接痕36は、第1長さL1と第2長さL2との比L1/L2が下記の式(1)の関係に形成されている。
1.08≦L1/L2≦1.56 …(1)
Here, the connection between the metal foil 31 and the electrode 32 will be described. In the present embodiment, the metal foil 31 and the electrode 32 are welded at two locations in a state where at least a part of the first surface 311 and the electrode 32 is overlapped. FIG. 5 is a cross-sectional view showing the electrode mount of the first embodiment. As shown in FIG. 5, weld marks 36 and recesses 37 are formed at the welded portions by welding so as to extend from the metal foil 31 side to the inside of the electrode 32 in the overlapping portions. Each welding mark 36 has a substantially elliptical cone shape. The shape when viewed from the second surface 312 side is an elliptical shape that is long in the axial direction of the electrode 32 as shown in FIG. Here, in the elliptical shape, it is sufficient that the first length L1 in the axial direction is longer than the second length L2 in the direction orthogonal to the axial direction, and the outline is configured by a curve. An elliptical shape is also included. Each welding mark 36 is formed such that the ratio L1 / L2 between the first length L1 and the second length L2 is expressed by the following equation (1).
1.08 ≦ L1 / L2 ≦ 1.56 (1)

図6は、第1の実施形態の放電ランプの接合外れ発生率とL1/L2との関係を示す図である。図6に示すように、接合外れ発生率(%)は、溶接痕36の比L1/L2が1.00と1.08との間で大きく変化する。溶接痕36が比L1/L2が1.00以下(第2の面312側から見たときの形状が円および電極32の軸方向と直交する方向に長い楕円形状)では、比L1/L2が1.08と比較して、接合外れ発生率が急増する(同図では、約9倍程度)。従って、各溶接痕36の比L1/L2を1.08以上とすることで、1.00未満と比較して接合外れを著しく抑制することができる。同様に、接合外れ発生率(%)は、溶接痕36の比L1/L2が1.56と1.64との間で大きく変化する。溶接痕36が比L1/L2が1.64以上(第2の面312側から見たときの形状が電極32の軸方向と直交する方向よりも軸方向にかなり長い楕円形状)では、比L1/L2が1.56(第1長さL1が第2長さL2の約1.5倍)と比較して、接合外れ発生率が急増する(同図では、約6倍程度)。従って、各溶接痕36の比L1/L2を1.56以下とすることで、1.64以上と比較して接合外れを著しく抑制することができる。本実施形態では、比L1/L2が1.32(第1長さL1=330μm、第2長さL2=250μm)であるが、比L1/L2は、1.16〜1.48であることがさらに好ましい。   FIG. 6 is a diagram showing a relationship between the occurrence rate of disconnection of the discharge lamp of the first embodiment and L1 / L2. As shown in FIG. 6, the rate of occurrence of disconnection (%) greatly varies between the ratio L1 / L2 of the welding marks 36 between 1.00 and 1.08. When the weld mark 36 has a ratio L1 / L2 of 1.00 or less (the shape when viewed from the second surface 312 side is an ellipse that is long in a direction perpendicular to the circle and the axial direction of the electrode 32), the ratio L1 / L2 is Compared to 1.08, the rate of occurrence of disconnection increases rapidly (in the figure, about 9 times). Therefore, by setting the ratio L1 / L2 of each welding mark 36 to 1.08 or more, it is possible to remarkably suppress the disconnection compared to less than 1.00. Similarly, the occurrence rate (%) of the disconnection greatly varies between the ratios L1 / L2 of the welding marks 36 between 1.56 and 1.64. When the weld mark 36 has a ratio L1 / L2 of 1.64 or more (an elliptical shape in which the shape when viewed from the second surface 312 side is considerably longer in the axial direction than the direction orthogonal to the axial direction of the electrode 32), the ratio L1 Compared with / L2 of 1.56 (the first length L1 is about 1.5 times the second length L2), the rate of occurrence of joint detachment increases rapidly (about 6 times in the figure). Therefore, by setting the ratio L1 / L2 of each welding mark 36 to 1.56 or less, it is possible to significantly suppress the disconnection compared to 1.64 or more. In this embodiment, the ratio L1 / L2 is 1.32 (first length L1 = 330 μm, second length L2 = 250 μm), but the ratio L1 / L2 is 1.16 to 1.48. Is more preferable.

また、各溶接痕36は、第2長さL2と電極32の直径Wの比L2/Wが下記の式(2)の関係に形成されている。ここで、比L2/Wが0.3未満であると、溶接強度が弱くなり、接合外れ等の不良率が高くなる。また、比L2/Wが0.9を超えると電極32と金属箔31との間に隙間が発生する状態で溶接されるため、溶接時の加熱で金属箔31のみが溶融して孔あきなどの不良が発生する。本実施形態は、比L2/Wは、例えば0.66である。
0.3≦L2/W≦0.9 …(2)
Each welding mark 36 is formed such that the ratio L2 / W of the second length L2 and the diameter W of the electrode 32 is expressed by the following equation (2). Here, if the ratio L2 / W is less than 0.3, the welding strength is weakened, and the defect rate such as the disconnection is increased. Further, when the ratio L2 / W exceeds 0.9, welding is performed in a state where a gap is generated between the electrode 32 and the metal foil 31, so that only the metal foil 31 is melted by the heating at the time of welding and the like is perforated. Defects occur. In the present embodiment, the ratio L2 / W is, for example, 0.66.
0.3 ≦ L2 / W ≦ 0.9 (2)

各溶接痕36の金属箔31の短手方向に沿う断面における形状は、図5(a)に示すように、それぞれ中心線B1−B1’,B2−B2’(溶接痕36の電極32の最も内部に位置する頂点付近を通り、溶接痕36の面積を略二分する線)が第2の面312の垂線方向に対して略平行(平行を含む)となる略三角形状である。また、各溶接痕36の金属箔31の長手方向に沿う断面における形状は、図5(b)に示すように、それぞれ中心線B1−B1’,B2−B2’が第2の面312の垂線方向に対して略平行となる略三角形状になっている。つまり、その傾斜角α1,α2は、本実施形態では例えば0°となっている。なお、金属箔31とリード線34も同様の構造をしている。   As shown in FIG. 5A, the shape of each weld mark 36 in the cross section along the short direction of the metal foil 31 is center lines B1-B1 ′ and B2-B2 ′ (most of the electrodes 32 of the weld mark 36). A line that passes through the vicinity of the apex located inside and substantially bisects the area of the welding mark 36 has a substantially triangular shape that is substantially parallel (including parallel) to the perpendicular direction of the second surface 312. Further, the shape of each weld mark 36 in the cross section along the longitudinal direction of the metal foil 31 is such that the center lines B1-B1 ′ and B2-B2 ′ are perpendicular to the second surface 312 as shown in FIG. It has a substantially triangular shape that is substantially parallel to the direction. That is, the inclination angles α1 and α2 are, for example, 0 ° in the present embodiment. The metal foil 31 and the lead wire 34 have the same structure.

次に、金属箔31と電極32の溶接方法について説明する。図7は、第1の実施形態の電極マウントの一製造方法を示す図である。図8は、第1の実施形態の電極マウントのレーザ照射を示す説明図である。まず、図7に示すように、電極32およびリード線34が溝911に嵌るように、治具91に配置する。次に、電極32およびリード線34の一部に第1の面311が重複するように金属箔31を配置したのち、第2の面312の四隅に抑え部材92を配置して金属箔31を固定する。そして、図8に示すように、YAGレーザ照射装置のレーザ照射部93で、金属箔31と電極32の重ね合わせ部分に、第2の面312側からレーザを照射する。レーザ照射部93は、各溶接箇所(各溶接痕36が形成される位置)における光軸D1−D1’,D2−D2’が、図8(a)に示すように、金属箔31の長手方向から見た場合に第2の面312の垂線方向に対して略平行とし、図8(b)に示すように、金属箔31の短手方向から見た場合に第2の面312の垂線方向に対して略平行として、レーザを照射する。その光軸傾斜角β1,β2は、本実施形態では例えば0°となっている。このレーザ照射工程を、位置を変えて複数回、本実施形態では2回行い、金属箔31と電極32の重ね合わせ部分に2つ溶接痕36を形成する。ここで、レーザ照射部93は、レーザの照射範囲を円形状のみならず楕円形状に変更することができ、溶接痕36の比L1/L2が上記式1の関係となるような照射範囲で、金属箔31と電極32の重ね合わせ部分に、第2の面312側からレーザを照射することとなる。   Next, a method for welding the metal foil 31 and the electrode 32 will be described. FIG. 7 is a diagram illustrating a method of manufacturing the electrode mount according to the first embodiment. FIG. 8 is an explanatory diagram showing laser irradiation of the electrode mount of the first embodiment. First, as shown in FIG. 7, the electrode 32 and the lead wire 34 are arranged on the jig 91 so as to fit in the groove 911. Next, after arranging the metal foil 31 so that the first surface 311 overlaps a part of the electrode 32 and the lead wire 34, the holding members 92 are arranged at the four corners of the second surface 312 to dispose the metal foil 31. Fix it. Then, as shown in FIG. 8, the laser irradiation unit 93 of the YAG laser irradiation apparatus irradiates the overlapping portion of the metal foil 31 and the electrode 32 from the second surface 312 side. In the laser irradiation section 93, the optical axes D1-D1 ′ and D2-D2 ′ at the respective welding locations (positions where the respective welding marks 36 are formed) are arranged in the longitudinal direction of the metal foil 31 as shown in FIG. When viewed from the side, it is substantially parallel to the normal direction of the second surface 312, and as shown in FIG. 8B, the normal direction of the second surface 312 is viewed from the short direction of the metal foil 31. The laser beam is irradiated so as to be substantially parallel to. The optical axis inclination angles β1 and β2 are, for example, 0 ° in the present embodiment. This laser irradiation process is performed a plurality of times at different positions, twice in the present embodiment, and two welding marks 36 are formed in the overlapping portion of the metal foil 31 and the electrode 32. Here, the laser irradiation unit 93 can change the laser irradiation range to an elliptical shape as well as a circular shape, and the irradiation range in which the ratio L1 / L2 of the welding marks 36 is in the relationship of the above equation 1, The overlapping portion of the metal foil 31 and the electrode 32 is irradiated with laser from the second surface 312 side.

また、各溶接痕36は、中心線B1−B1’,B2−B2’が第2の面312の垂線方向に対して傾斜してもよい。図9は、電極マウントの他の例を示す図である。例えば、各溶接痕36の金属箔31の短手方向に沿う断面における形状は、図9(a)に示すように、それぞれ中心線B1−B1’,B2−B2’が第2の面312と略直交する略三角形状である。また、各溶接痕36の金属箔31の長手方向に沿う断面における形状は、図9(b)に示すように、それぞれ中心線B1−B1’,B2−B2’が第2の面312の垂線方向に対して傾斜した略三角形状になっている。上述した各溶接痕36の中心線B1−B1’,B2−B2’が第2の面312の垂線方向に対して略平行の場合と比較して接合強度を向上できる。その傾斜角α1,α2は、例えばそれぞれ35°となっている。なお、傾斜角α1,α2は、接合強度をさらに向上させるために、10°〜50°が好適である。また、凹部37の頂点は、溶接痕36が傾いた方向とは反対の方向に偏在している。ここで、中心線B1−B1’,B2−B2’が第2の面312の垂線方向に対して傾斜して各溶接痕36を形成する場合は、金属箔31の長手方向から見た場合に第2の面312と略直交し、金属箔31の短手方向から見た場合に第2の面312の垂線方向に対して傾斜するように、レーザを照射する。その光軸傾斜角β1,β2は、例えば35°となっている。なお、光軸傾斜角β1,β2は、接合強度をさらに向上させるために、10°〜50°が好適である。なお、レーザ照射部93によるレーザの照射範囲が円形状の場合において、各溶接痕36の比L1/L2は、各溶接箇所における光軸D1−D1’,D2−D2’の第2の面312の垂線方向に対する傾斜度合いに応じて変化する。従って、各加工箇所における光軸D1−D1’,D2−D2’は、比L1/L2が上記式1の関係となるように決定されることになる。   In addition, each welding mark 36 may have the center lines B <b> 1-B <b> 1 ′ and B <b> 2-B <b> 2 ′ inclined with respect to the normal direction of the second surface 312. FIG. 9 is a diagram showing another example of the electrode mount. For example, as shown in FIG. 9A, the center lines B <b> 1-B <b> 1 ′ and B <b> 2-B <b> 2 ′ are formed on the second surface 312 as shown in FIG. It is a substantially triangular shape that is substantially orthogonal. Moreover, the shape in the cross section along the longitudinal direction of the metal foil 31 of each welding mark 36 is centerline B1-B1 ', B2-B2' is perpendicular to the 2nd surface 312 as shown in FIG.9 (b). It has a substantially triangular shape inclined with respect to the direction. Compared with the case where the center lines B1-B1 'and B2-B2' of each welding mark 36 described above are substantially parallel to the perpendicular direction of the second surface 312, the joint strength can be improved. The inclination angles α1 and α2 are each 35 °, for example. The inclination angles α1 and α2 are preferably 10 ° to 50 ° in order to further improve the bonding strength. Further, the apex of the recess 37 is unevenly distributed in the direction opposite to the direction in which the welding mark 36 is inclined. Here, when the center lines B <b> 1-B <b> 1 ′ and B <b> 2-B <b> 2 ′ are inclined with respect to the normal direction of the second surface 312 to form the welding marks 36, when viewed from the longitudinal direction of the metal foil 31. The laser is irradiated so as to be substantially orthogonal to the second surface 312 and inclined with respect to the normal direction of the second surface 312 when viewed from the short direction of the metal foil 31. The optical axis inclination angles β1 and β2 are, for example, 35 °. The optical axis tilt angles β1 and β2 are preferably 10 ° to 50 ° in order to further improve the bonding strength. In addition, when the laser irradiation range by the laser irradiation unit 93 is circular, the ratio L1 / L2 of each welding mark 36 is the second surface 312 of the optical axes D1-D1 ′ and D2-D2 ′ at each welding point. It changes according to the inclination degree with respect to the perpendicular direction. Accordingly, the optical axes D1-D1 'and D2-D2' at the respective machining locations are determined so that the ratio L1 / L2 is in the relationship of the above formula 1.

このように、金属箔31と電極32の重ね合わせ部分にレーザを斜めに照射することにより、第2の面312側から見た溶接痕36の形状が楕円形状になるため、同じ径のレーザを用い、第2の面312に対して垂直にレーザを照射する場合(従来方法)に形成される円形の溶接痕と比較して、サイズが大きくなる。サイズが大きくなると、電極32と溶接痕36の接触面積が大きくなるため、金属箔31と電極32の接合強度を強化することができる。   In this way, by irradiating the laser to the overlapping portion of the metal foil 31 and the electrode 32 obliquely, the shape of the welding mark 36 viewed from the second surface 312 side becomes an elliptical shape. The size becomes larger compared to the circular welding mark formed when the laser is irradiated perpendicularly to the second surface 312 (conventional method). When the size is increased, the contact area between the electrode 32 and the welding mark 36 is increased, so that the bonding strength between the metal foil 31 and the electrode 32 can be enhanced.

なお、従来方法で金属箔31と電極32の接合強度を強化したい場合、一般的にはレーザの出力を上げる方法が用いられてきた。この方法の場合、電極に与えるダメージが大きくなり、電極の結晶粗大化や脆化を引き起こしてしまう。また、電極32内部における溶接痕36の高さhが高くなりすぎることを起因とする電極折れが発生するおそれがある。また、レーザの照射径を大きくする方法もあるが、使用可能なレーザの照射径は電極の直径に依存するため、場合によってはレーザの照射径を大きくすることはできない。これに対して、本実施形態の方法は、レーザの出力を上げることなく、上記のような問題の発生を抑制しつつ、金属箔31と電極32の接合強度を強化することができる。   In order to enhance the bonding strength between the metal foil 31 and the electrode 32 by a conventional method, a method of increasing the laser output has been generally used. In the case of this method, damage to the electrode is increased, and the crystal becomes coarse and brittle. Moreover, there is a possibility that the electrode breaks due to the height h of the welding mark 36 inside the electrode 32 being too high. Although there is a method of increasing the laser irradiation diameter, the usable laser irradiation diameter depends on the diameter of the electrode, so that the laser irradiation diameter cannot be increased in some cases. In contrast, the method of the present embodiment can enhance the bonding strength between the metal foil 31 and the electrode 32 while suppressing the occurrence of the above problems without increasing the laser output.

第1の実施形態においては、金属箔31と電極32の重なり合った部分に、第2の面312の垂線方向に対して傾斜させた状態で、第2の面312側からその重なり合った部分にレーザを照射して溶接することで、その重なり合った部分に、第2の面312側から見たときの形状は楕円形状で、第2の面312の垂線方向に対して中心線B1−B1’,B2−B2’が傾斜している溶接痕36を形成することができる。そのため、レーザの出力を上げることなく、金属箔31と電極32の接合強度を強化することができる。   In the first embodiment, a laser is applied to the overlapping portion from the second surface 312 side in a state where the overlapping portion of the metal foil 31 and the electrode 32 is inclined with respect to the normal direction of the second surface 312. , The overlapped portion is elliptical when viewed from the second surface 312 side, and the center line B1-B1 ′, with respect to the perpendicular direction of the second surface 312 A welding mark 36 in which B2-B2 ′ is inclined can be formed. Therefore, the bonding strength between the metal foil 31 and the electrode 32 can be enhanced without increasing the laser output.

本発明は上記実施態様に限定されるものではなく、種々の変形が可能である。   The present invention is not limited to the above embodiments, and various modifications are possible.

例えば、金属箔31の材料としては、モリブデンに限らず、レニウムモリブデン、タングステン、レニウムタングステンなどで構成しても本発明の効果を得ることができ、材料に限定されない。また、表面に薄膜や層を形成したものであってもよい。   For example, the material of the metal foil 31 is not limited to molybdenum, and the effect of the present invention can be obtained even if it is composed of rhenium molybdenum, tungsten, rhenium tungsten, etc., and is not limited to the material. Moreover, what formed the thin film and layer on the surface may be used.

電極32の形状は、先端の径を基端の径よりも大きくした段付き状であるもの、先端が径大の球状であるもの、一方の電極径と他方の電極径が異なる形状であってもよい。また、電極材料は、純タングステン、タングステンにアルミニウム、珪素、カリウムを微量にドープしたドープタングステン、タングステンにレニウムをドープしたレニウムタングステンなどであってもよい。   The shape of the electrode 32 is a stepped shape in which the diameter of the distal end is larger than the diameter of the proximal end, a shape in which the distal end is a spherical shape having a large diameter, and one electrode diameter is different from the other electrode diameter. Also good. The electrode material may be pure tungsten, tungsten doped with aluminum, silicon, or potassium in a small amount, rhenium tungsten doped with rhenium in tungsten, or the like.

図10は、電極マウントの他の例を示す図である。各溶接痕36の金属箔31の短手方向に沿う断面における形状は、図10(a)に示すように、それぞれ中心線B1−B1’,B2−B2’が第2の面312の垂線方向に対して傾斜した形状にしてもよい。また、図10(b)に示すように、溶接痕361の金属箔31の長手方向に沿う断面における形状を中心線B1−B1’が第2の面312の垂線方向に対して発光部11側に傾斜した形状とし、溶接痕362の金属箔31の長手方向に沿う断面における形状を中心線B2−B2’が第2の面312の垂線方向に対してリード線34側に傾斜した形状としてもよい。この形状では、溶接痕361,362が電極32をホールドするため、さらに接合外れを抑制することができる。   FIG. 10 is a diagram illustrating another example of the electrode mount. As shown in FIG. 10A, the center lines B <b> 1-B <b> 1 ′ and B <b> 2-B <b> 2 ′ are perpendicular to the second surface 312. You may make it the shape inclined with respect to. Also, as shown in FIG. 10B, the shape of the weld mark 361 in the cross section along the longitudinal direction of the metal foil 31 has a center line B <b> 1-B <b> 1 ′ with respect to the perpendicular direction of the second surface 312. The shape of the weld mark 362 in the cross section along the longitudinal direction of the metal foil 31 may be a shape in which the center line B2-B2 ′ is inclined toward the lead wire 34 with respect to the perpendicular direction of the second surface 312. Good. In this shape, since the welding marks 361 and 362 hold the electrode 32, it is possible to further suppress the disconnection.

また、各溶接痕36の金属箔31の短手方向に沿う断面における形状は、それぞれ中心線B1−B1’,B2−B2’が第2の面312の垂線方向を挟んで交差するように傾斜した形状にしてもよい。また、各溶接痕36の金属箔31の長手方向に沿う断面における形状は、傾斜角α1,α2が異なっていてもよい。   In addition, the shape of each weld mark 36 in the cross section along the short direction of the metal foil 31 is inclined such that the center lines B1-B1 ′ and B2-B2 ′ intersect with each other across the perpendicular direction of the second surface 312. You may make it the shape. In addition, the shape of each welding mark 36 in the cross section along the longitudinal direction of the metal foil 31 may have different inclination angles α1 and α2.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the invention described in the claims and equivalents thereof as well as included in the scope and gist of the invention.

1 内管
11 発光部
12 シール部
3 電極マウント
31 金属箔
32 電極
36 溶接痕
DESCRIPTION OF SYMBOLS 1 Inner pipe | tube 11 Light emission part 12 Sealing part 3 Electrode mount 31 Metal foil 32 Electrode 36 Welding trace

Claims (5)

内部に金属ハロゲン化物が封入された放電空間を有する発光部と、
前記発光部の端部に形成されたシール部と、
表裏に位置する第1、第2の面を有する金属箔と、前記金属箔と接続された電極とを有する電極マウントと、
を有し、
前記第1の面と前記電極の少なくとも一部が重なり合うように溶接痕が形成されており、
前記溶接痕は、前記第2の面側から見たときに前記電極の軸方向に長い楕円形状であり、前記軸方向の第1長さL1と前記軸方向と直交する方向の第2長さL2との比L1/L2は、下記の式(1)の関係である放電ランプ。
1.08≦L1/L2≦1.56 …(1)
A light emitting part having a discharge space in which a metal halide is enclosed;
A seal portion formed at an end of the light emitting portion;
An electrode mount having a metal foil having first and second surfaces located on the front and back, and an electrode connected to the metal foil;
Have
A welding mark is formed so that at least a part of the first surface and the electrode overlap,
The welding mark has an elliptical shape that is long in the axial direction of the electrode when viewed from the second surface side, and the first length L1 in the axial direction and the second length in a direction orthogonal to the axial direction. The ratio L1 / L2 to L2 is a discharge lamp having the relationship of the following formula (1).
1.08 ≦ L1 / L2 ≦ 1.56 (1)
請求項1に記載の放電ランプにおいて、
前記第2長さL2と、前記電極の直径Wとの比L2/Wは、下記の式(2)の関係である放電ランプ。
0.3≦L2/W≦0.9 …(2)
The discharge lamp according to claim 1, wherein
The ratio L2 / W between the second length L2 and the diameter W of the electrode is a discharge lamp having a relationship of the following formula (2).
0.3 ≦ L2 / W ≦ 0.9 (2)
請求項1または2に記載の放電ランプにおいて、
前記電極の直径Wは、0.2mm〜0.4mmである放電ランプ。
The discharge lamp according to claim 1 or 2,
A discharge lamp having a diameter W of 0.2 to 0.4 mm.
請求項1〜3のいずれか1つに記載の放電ランプにおいて、
前記溶接痕は、前記金属箔側から前記電極の内部に延伸するように形成されており、かつ中心線が前記第2の面の垂線方向に対して傾斜している放電ランプ。
In the discharge lamp according to any one of claims 1 to 3,
The discharge mark is formed so that the welding mark extends from the metal foil side to the inside of the electrode, and a center line is inclined with respect to a direction perpendicular to the second surface.
内部に金属ハロゲン化物が封入された放電空間を有する発光部と、
前記発光部の端部に形成されたシール部と、
表裏に位置する第1、第2の面を有する金属箔と、前記金属箔と接続された電極とを有する電極マウントと、
を有する放電ランプの製造方法において、
前記第1の面と前記電極の少なくとも一部が重なり合うように、前記金属箔と前記電極を配置したのち、前記第2の面側から前記重なり合った部分に、前記金属箔の垂線方向に対して傾斜した光軸でレーザを照射して、前記電極の軸方向の第1長さL1と前記軸方向と直交する方向の第2長さL2との比L1/L2が下記の式(3)の関係となる溶接痕を形成するように、前記金属箔と前記電極とを溶接する放電ランプの製造方法。
1.08≦L1/L2≦1.56 …(3)
A light emitting part having a discharge space in which a metal halide is enclosed;
A seal portion formed at an end of the light emitting portion;
An electrode mount having a metal foil having first and second surfaces located on the front and back, and an electrode connected to the metal foil;
In a method of manufacturing a discharge lamp having
After arranging the metal foil and the electrode so that at least a part of the first surface and the electrode overlap, the overlapping portion from the second surface side to the perpendicular direction of the metal foil The laser beam is irradiated with the inclined optical axis, and the ratio L1 / L2 between the first length L1 in the axial direction of the electrode and the second length L2 in the direction orthogonal to the axial direction is expressed by the following equation (3). A method for manufacturing a discharge lamp, wherein the metal foil and the electrode are welded so as to form a welding mark as a relation.
1.08 ≦ L1 / L2 ≦ 1.56 (3)
JP2012245504A 2012-11-07 2012-11-07 Discharge lamp and manufacturing method therefor Pending JP2014096215A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012245504A JP2014096215A (en) 2012-11-07 2012-11-07 Discharge lamp and manufacturing method therefor
EP13852720.5A EP2919257B1 (en) 2012-11-07 2013-08-09 Discharge lamp and method for manufacturing same
PCT/JP2013/071730 WO2014073253A1 (en) 2012-11-07 2013-08-09 Discharge lamp and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012245504A JP2014096215A (en) 2012-11-07 2012-11-07 Discharge lamp and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2014096215A true JP2014096215A (en) 2014-05-22

Family

ID=50684371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012245504A Pending JP2014096215A (en) 2012-11-07 2012-11-07 Discharge lamp and manufacturing method therefor

Country Status (3)

Country Link
EP (1) EP2919257B1 (en)
JP (1) JP2014096215A (en)
WO (1) WO2014073253A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190575A (en) * 1992-10-23 1994-07-12 Mitsui Petrochem Ind Ltd Welding method and fequipment by laser beam
JP2004363014A (en) 2003-06-06 2004-12-24 Nec Lighting Ltd Manufacturing method of high-pressure discharge lamp
DE10336087A1 (en) * 2003-08-06 2005-03-03 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Electrode system with novel connection, associated lamp with this foil and method of making the connection
DE102004027806A1 (en) 2004-06-08 2006-01-05 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Method for welding a metal foil with a cylindrical metal pin
JP4494224B2 (en) * 2005-01-12 2010-06-30 ハリソン東芝ライティング株式会社 Seal for lamp and discharge lamp
WO2008129745A1 (en) * 2007-04-05 2008-10-30 Harison Toshiba Lighting Corp. Foil sealed lamp
JP4972172B2 (en) 2007-12-12 2012-07-11 ハリソン東芝ライティング株式会社 Discharge lamp
DE202010001373U1 (en) * 2010-01-26 2010-04-01 Osram Gesellschaft mit beschränkter Haftung Power supply system for an electric lamp and associated electric lamp
JP2012084454A (en) * 2010-10-14 2012-04-26 Koito Mfg Co Ltd Arc tube for discharge bulb

Also Published As

Publication number Publication date
EP2919257A1 (en) 2015-09-16
WO2014073253A1 (en) 2014-05-15
EP2919257B1 (en) 2017-04-05
EP2919257A4 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP4681668B2 (en) Foil seal lamp
JP4972172B2 (en) Discharge lamp
JP4494224B2 (en) Seal for lamp and discharge lamp
JP3518533B2 (en) Short arc type ultra high pressure discharge lamp
JP4922078B2 (en) Metal halide lamp
JP4837605B2 (en) Metal halide lamp
JP5958818B2 (en) Electrode mount and discharge lamp
JP4924664B2 (en) High pressure discharge lamp
JP5180393B1 (en) High pressure discharge lamp and arc tube
WO2014073253A1 (en) Discharge lamp and method for manufacturing same
JP5800189B2 (en) Short arc type discharge lamp
JP4709011B2 (en) Automotive discharge lamp
JP2015076306A (en) Short arc type discharge lamp
JP4719105B2 (en) Metal halide lamp
JP4922135B2 (en) Discharge lamp
JP6295776B2 (en) Discharge lamp and discharge lamp manufacturing method
JP2013089480A (en) Foil seal lamp
JP2014216149A (en) Discharge lamp
JP6153062B2 (en) Discharge lamp and discharge lamp manufacturing method
JP2007087683A (en) Metal-halide lamp
JP2011222121A (en) Discharge lamp
JP2009135075A (en) Discharge lamp
JP2017212142A (en) Discharge lamp
JP2006179366A (en) Discharge lamp
JP2013171696A (en) High-pressure discharge lamp and method of manufacturing the same