JP2014095896A - Transparent conductive film and use of the same - Google Patents

Transparent conductive film and use of the same Download PDF

Info

Publication number
JP2014095896A
JP2014095896A JP2013210770A JP2013210770A JP2014095896A JP 2014095896 A JP2014095896 A JP 2014095896A JP 2013210770 A JP2013210770 A JP 2013210770A JP 2013210770 A JP2013210770 A JP 2013210770A JP 2014095896 A JP2014095896 A JP 2014095896A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
layer
cured resin
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013210770A
Other languages
Japanese (ja)
Other versions
JP6279280B2 (en
Inventor
Kazuhiro Igai
和宏 猪飼
Katsunori Takada
勝則 高田
Hirotaka Kuramoto
浩貴 倉本
Naoki Tsuno
直樹 津野
Hiroyuki Takao
寛行 鷹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2013210770A priority Critical patent/JP6279280B2/en
Publication of JP2014095896A publication Critical patent/JP2014095896A/en
Application granted granted Critical
Publication of JP6279280B2 publication Critical patent/JP6279280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)
  • Non-Insulated Conductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film having blocking resistance and, at the same time, having good transparency and antiglare property; a display element using the transparent conductive film; and an image display device including the display element.SOLUTION: A transparent conductive film for a display element which includes a black matrix having a polygonal opening and which has a definition of 150 ppi or more is provided. The film comprises a transparent polymer substrate, a transparent conductive layer disposed on a first major surface side of the transparent polymer substrate, and a cured resin layer disposed at least either between the transparent polymer substrate and the transparent conductive layer or on a second major surface at the opposite side to the first major surface of the transparent polymer substrate. The outermost surface layer of the film where the cured resin layer is formed includes a flat portion and a protruding portion. A height of the protruding portion is larger than 10 nm from the flat portion; and a maximum diameter of a cross-sectional shape, which is formed by a plane parallel to the flat portion intersecting the protruding portion at a distance of 10 nm from the flat portion, is smaller than a minimum of distances between two non-adjacent sides of the opening of the black matrix.

Description

本発明は、透明導電性フィルムおよびその用途に関する。   The present invention relates to a transparent conductive film and its use.

透明高分子基材上に透明導電性薄膜が形成された透明導電性フィルムは、太陽電池や無機EL素子、有機EL素子用の透明電極、電磁波シールド材料、タッチパネル等に幅広く利用されている。特に、近年、携帯電話や携帯ゲーム機器、タブレットPCと呼ばれる電子機器等へのタッチパネルの搭載率が上昇しており透明導電性フィルムの需要が急速に拡大している。   Transparent conductive films in which a transparent conductive thin film is formed on a transparent polymer substrate are widely used for solar cells, inorganic EL elements, transparent electrodes for organic EL elements, electromagnetic wave shielding materials, touch panels, and the like. In particular, in recent years, the rate of mounting touch panels on electronic devices such as mobile phones, mobile game devices, and tablet PCs has increased, and the demand for transparent conductive films has been rapidly expanding.

タッチパネル等に用いられる透明導電性フィルムとしては、ポリエチレンテレフタレートフィルム等の可撓性の透明高分子基材上に、インジウム・スズ複合酸化物(ITO)等の導電性金属酸化物膜が形成されたものが広く用いられている。このような透明導電性フィルムでは、透明高分子基材に当初から存在している傷を視認されないようにしたり、製造過程で生じ得る傷を防止したりする目的のために、基材上に硬化樹脂層(ハードコート層)を形成することがある。   As a transparent conductive film used for a touch panel or the like, a conductive metal oxide film such as indium-tin composite oxide (ITO) was formed on a flexible transparent polymer substrate such as a polyethylene terephthalate film. Things are widely used. In such a transparent conductive film, the transparent polymer substrate is cured on the substrate for the purpose of preventing the scratch existing from the beginning from being visually recognized or preventing the scratch that may occur in the manufacturing process. A resin layer (hard coat layer) may be formed.

一般に硬化樹脂層は表面平滑性が高いため、基材表面に硬化樹脂層が設けられた透明導電性フィルムは、滑り性や耐ブロッキング性が不足し、ハンドリング性に劣る等の問題を有している。また、フィルムの生産や加工を行う際には、生産性やハンドリング性の観点から長尺シートをロール状に巻回した巻回体とすることが多いが、滑り性が不足するフィルムは、フィルムをロール搬送する際や巻回体として巻取る際にフィルム表面にキズが生じ易く、さらにはロール状に巻回する際の巻き取り性に劣る傾向がある。また、耐ブロッキング性に劣るフィルムをロール状に巻回した場合には、巻回体の保管・運搬時にブロッキングが生じ易い。   In general, since the cured resin layer has high surface smoothness, the transparent conductive film provided with the cured resin layer on the surface of the substrate has problems such as insufficient slipperiness and blocking resistance, and poor handling properties. Yes. Also, when producing and processing a film, from the viewpoint of productivity and handling properties, it is often a wound body in which a long sheet is wound in a roll shape. When the film is conveyed in a roll or wound as a wound body, the film surface is likely to be scratched, and further, the winding property tends to be inferior when wound into a roll. Moreover, when a film having poor blocking resistance is wound into a roll, blocking is likely to occur during storage and transportation of the wound body.

このような問題を解決する観点から、透明プラスチックフィルムの表面に微細凹凸を形成することで、滑り性や耐ブロッキング性を向上させる技術が提案されている(特許文献1)。   From the viewpoint of solving such a problem, a technique for improving slipperiness and blocking resistance by forming fine irregularities on the surface of a transparent plastic film has been proposed (Patent Document 1).

特開2003−45234号公報JP 2003-45234 A

しかしながら、特許文献1に記載されているように、プラスチックフィルムに微細凹凸を形成すると、その凹凸による光散乱に起因して、透明導電性フィルムの透明性が損なわれるなどの外観上の不良を生じる場合がある。   However, as described in Patent Document 1, when fine irregularities are formed on a plastic film, appearance defects such as loss of transparency of the transparent conductive film are caused due to light scattering by the irregularities. There is a case.

これに対し、比較的大きい粒子(例えば、硬化樹脂層の膜厚より大きい粒子)を硬化樹脂層に添加して隆起を形成することにより、少ない添加量で耐ブロッキング性を確保しつつ、同時に、添加量が少ないことによる高い透明性の維持を図るという方策も考えられる。   On the other hand, by adding relatively large particles (for example, particles larger than the thickness of the cured resin layer) to the cured resin layer to form a bulge, while ensuring blocking resistance with a small amount of addition, A measure to maintain high transparency by adding a small amount is also conceivable.

ところが、近年高精細化が進む液晶表示ディスプレイ等に上述のような粒子を利用する透明導電性フィルムを組み込むと、ギラツキが生じて外観性が損なわれる場合があることが判明した。   However, it has been found that when a transparent conductive film using the above-described particles is incorporated in a liquid crystal display or the like, which has recently been improved in definition, glare occurs and appearance may be impaired.

上記観点に鑑み、本発明は、耐ブロッキング性を有するとともに、良好な透明性およびギラツキ防止性を有する透明導電性フィルム及びこれを用いる表示素子、並びに該表示素子を備える画像表示装置を提供することを目的とする。   In view of the above viewpoint, the present invention provides a transparent conductive film having anti-blocking properties and good transparency and antiglare properties, a display element using the same, and an image display device including the display element. With the goal.

本発明者らは、前記課題を解決すべく鋭意検討した結果、高精細ディスプレイに対応した特定サイズの隆起部を有する最表面層を備える透明導電性フィルムが上記目的を達成し得ることを見出し本発明にいたった。   As a result of intensive studies to solve the above problems, the present inventors have found that a transparent conductive film having an outermost surface layer having raised portions of a specific size corresponding to a high-definition display can achieve the above object. Invented.

すなわち、本発明は、多角形状の開口部を有するブラックマトリックスを備える精細度が150ppi以上の表示素子用の透明導電性フィルムであって、
透明高分子基材と、
前記透明高分子基材の第1主面側に設けられた透明導電層と、
前記透明高分子基材と前記透明導電層との間および前記透明高分子基材の第1主面と反対側の第2主面の少なくとも一方に設けられた硬化樹脂層と
を備え、
前記硬化樹脂層が形成された側の最表面層の表面には平坦部と隆起部とが形成されており、
前記隆起部の高さは前記平坦部から10nmより大きく、
前記平坦部に平行な面が前記平坦部から10nm離れた位置において前記隆起部と交差してなす断面形状の最大径は、前記ブラックマトリックスの開口部の隣接しない二辺間の距離の最小値よりも小さい透明導電性フィルムである。
That is, the present invention is a transparent conductive film for a display element having a definition of 150 ppi or more comprising a black matrix having a polygonal opening,
A transparent polymer substrate;
A transparent conductive layer provided on the first main surface side of the transparent polymer substrate;
A cured resin layer provided between the transparent polymer substrate and the transparent conductive layer and on at least one of the second principal surface opposite to the first principal surface of the transparent polymer substrate;
A flat portion and a raised portion are formed on the surface of the outermost surface layer on the side where the cured resin layer is formed,
The height of the raised portion is larger than 10 nm from the flat portion,
The maximum diameter of the cross-sectional shape formed by intersecting the raised portion at a position parallel to the flat portion at a distance of 10 nm from the flat portion is based on the minimum value of the distance between two non-adjacent sides of the opening of the black matrix. Is a small transparent conductive film.

当該透明導電性フィルムでは、最表面層の表面における隆起部により良好な耐ブロッキング性を発揮することができる。また、フィルムの巻取性に優れるため、長尺シートをロール状に巻回した巻回体を容易に作製し得るために、その後のタッチパネルの形成等に用いる際の作業性に優れるとともに、コストや廃棄物低減にも寄与し得る。また、硬化樹脂層の表面全体に微細な凹凸を形成するのではなく平坦部と隆起部とを併存させているので、最表面層においても平坦部の中に隆起部が形成される状態となり、その結果、透明導電性フィルムの高い透明性を維持することができる。さらに、最表面層の隆起部の裾野(平坦部から10nmの高さの領域)の断面形状の最大径を表示素子のブラックマトリックスの開口部の隣接しない二辺間距離の最小値より小さくしているので、150ppi以上の高精細表示素子に組み込んだ際にもギラツキを防止して表示素子の高精細化にも対応することができる。   In the said transparent conductive film, favorable blocking resistance can be exhibited by the protruding part in the surface of the outermost surface layer. In addition, since it is excellent in the winding property of the film, it is easy to produce a wound body obtained by winding a long sheet into a roll shape. And can also contribute to waste reduction. In addition, since the flat portion and the raised portion coexist instead of forming fine irregularities on the entire surface of the cured resin layer, the raised portion is formed in the flat portion even in the outermost surface layer, As a result, high transparency of the transparent conductive film can be maintained. Further, the maximum diameter of the cross-sectional shape of the base of the raised portion of the outermost surface layer (region having a height of 10 nm from the flat portion) is made smaller than the minimum value of the distance between two adjacent sides of the black matrix opening of the display element. Therefore, even when incorporated in a high-definition display element of 150 ppi or more, it is possible to prevent glare and cope with higher definition of the display element.

前記硬化樹脂層は、表面にベース平坦部とベース隆起部とを有し、前記最表面層の平坦部は前記ベース平坦部に起因して形成され、前記隆起部は前記ベース隆起部に起因して形成されていることが好ましい。膜厚の増大や表面加工が比較的容易な硬化樹脂層にベース平坦部とベース隆起部を設けることにより、透明導電性フィルムの最表面層に対してもこれらベース平坦部及びベース隆起部に倣った平坦部及び隆起部を容易に付与することができる。   The cured resin layer has a base flat portion and a base raised portion on a surface, the flat portion of the outermost surface layer is formed due to the base flat portion, and the raised portion is caused by the base raised portion. It is preferable to be formed. By providing a base flat part and a base bulge in a cured resin layer that is relatively easy to increase in film thickness and surface processing, the base flat part and the base bulge are also copied to the outermost surface layer of the transparent conductive film. A flat portion and a raised portion can be easily provided.

前記硬化樹脂層は粒子を含み、前記ベース隆起部は前記粒子に起因して形成されていることが好ましい。これにより効率良くかつ簡便にベース隆起部を形成することができ、ひいては最表面層において隆起部を形成可能となるとともに、透明性の向上(低ヘイズ化)を容易に図ることができる。   It is preferable that the cured resin layer includes particles, and the base protruding portion is formed due to the particles. As a result, the base raised portion can be formed efficiently and simply, and as a result, the raised portion can be formed on the outermost surface layer, and transparency can be easily improved (low haze).

前記硬化樹脂層のベース平坦部の厚さを前記粒子の最頻粒子径より小さくすることで、ヘイズを低減させて透明性をより向上させることができる。   By making the thickness of the base flat portion of the cured resin layer smaller than the mode particle diameter of the particles, haze can be reduced and transparency can be further improved.

当該透明導電性フィルムでは、前記硬化樹脂層が前記透明高分子基材と前記透明導電層との間に設けられており、前記硬化樹脂層と前記透明導電層との間に屈折率調整層をさらに備えていてもよい。   In the transparent conductive film, the cured resin layer is provided between the transparent polymer substrate and the transparent conductive layer, and a refractive index adjustment layer is provided between the cured resin layer and the transparent conductive layer. Furthermore, you may provide.

当該透明導電性フィルムのヘイズは5%以下であることが好ましい。これにより高い透明性を発揮して良好な視認性を確保することができる。   The haze of the transparent conductive film is preferably 5% or less. Thereby, high transparency can be exhibited and favorable visibility can be ensured.

当該透明導電性フィルムは、前記透明高分子基材の第1主面側とは反対側の第2主面側に設けられた透明導電層をさらに備えていてもよい。   The transparent conductive film may further include a transparent conductive layer provided on the second main surface side opposite to the first main surface side of the transparent polymer substrate.

当該透明導電性フィルムを長尺シート状とし、これをロール状に巻回した透明導電性フィルム巻回体の形態で用いてもよい。   You may use the said transparent conductive film in the form of a long sheet form, and the transparent conductive film winding body which wound this in roll shape.

本発明には、当該透明導電性フィルムを備えるタッチパネルや、当該透明導電性フィルムを備える精細度が150ppi以上の表示素子、精細度が150ppi以上の表示素子と当該タッチパネルとが積層された画像表示装置も含まれる。当該透明導電性フィルムによると、高精細化が進む表示素子等にも対応することができ、より鮮明な画像を獲得することができる。   The present invention includes a touch panel including the transparent conductive film, a display element including the transparent conductive film having a definition of 150 ppi or more, and an image display device in which the display element having a definition of 150 ppi or more and the touch panel are stacked. Is also included. According to the transparent conductive film, it is possible to deal with display elements and the like that are becoming higher in definition, and a clearer image can be obtained.

本発明の一実施形態に係る透明導電性フィルムの模式的断面図である。It is typical sectional drawing of the transparent conductive film which concerns on one Embodiment of this invention. 表示素子におけるブラックマトリックスの模式的平面図である。It is a schematic plan view of the black matrix in a display element. ブラックマトリックスの開口部の一例を模式的に示す拡大平面図である。It is an enlarged plan view which shows an example of the opening part of a black matrix typically. ブラックマトリックスの開口部の他の一例を模式的に示す拡大平面図である。It is an enlarged plan view which shows typically another example of the opening part of a black matrix. 最表面層の隆起部の断面形状の最大径とブラックマトリックスの開口部の隣接しない二辺間の距離の最小値との関係を模式的に示す模式的平面図である。FIG. 6 is a schematic plan view schematically showing the relationship between the maximum diameter of the cross-sectional shape of the raised portion of the outermost surface layer and the minimum value of the distance between two non-adjacent sides of the opening of the black matrix. 最表面層の隆起部の断面形状の最大径とブラックマトリックスの開口部の隣接しない二辺間の距離の最小値との関係を模式的に示す断面図である。It is sectional drawing which shows typically the relationship between the maximum diameter of the cross-sectional shape of the protruding part of an outermost surface layer, and the minimum value of the distance between the two sides which the opening part of a black matrix does not adjoin. 最表面層の隆起部の断面形状の最大径の一例を示す模式図である。It is a schematic diagram which shows an example of the largest diameter of the cross-sectional shape of the protruding part of an outermost surface layer.

本発明の一実施形態について、図面を参照しながら以下に説明する。図1は、本発明の透明導電性フィルムの一実施形態を模式的に示す断面図である。透明導電性フィルム10において、透明高分子基材1の一方の主面である第1主面1a側には、透明導電層3が形成されており、透明高分子基材1と透明導電層3との間および透明高分子基材1の他方の主面である第2主面1b側のそれぞれに粒子5を含有する硬化樹脂層2a、2b(以下、両者を合わせて「硬化樹脂層2」という場合がある。)が形成されている。さらに硬化樹脂層2aと透明導電層3との間には屈折率調整層4が形成されている。透明導電性フィルム10では、透明高分子基材1の両面に硬化樹脂層2a、2bが形成されているので、透明高分子基材1の第1主面1a側では透明導電層3が最表面層となり、第2主面1b側では硬化樹脂層2bが最表面層となる。   An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing one embodiment of the transparent conductive film of the present invention. In the transparent conductive film 10, a transparent conductive layer 3 is formed on the first main surface 1 a side which is one main surface of the transparent polymer substrate 1, and the transparent polymer substrate 1 and the transparent conductive layer 3 are formed. And a cured resin layer 2a, 2b containing particles 5 on the second principal surface 1b side which is the other principal surface of the transparent polymer substrate 1 (hereinafter referred to as “cured resin layer 2” together) Is formed). Further, a refractive index adjusting layer 4 is formed between the cured resin layer 2 a and the transparent conductive layer 3. In the transparent conductive film 10, since the cured resin layers 2 a and 2 b are formed on both surfaces of the transparent polymer substrate 1, the transparent conductive layer 3 is the outermost surface on the first main surface 1 a side of the transparent polymer substrate 1. The cured resin layer 2b is the outermost surface layer on the second main surface 1b side.

また、硬化樹脂層2aは、表面にベース平坦部21及びベース隆起部22を有する。透明導電性フィルム10では、硬化樹脂層2aの厚さに比して屈折率調整層4及び透明導電層3の各厚さを薄くしているので、硬化樹脂層2aの表面に倣うように屈折率調整層4及び透明導電層3が積層されることになる。これにより、最表面層である透明導電層3は、硬化樹脂層2aのベース平坦部21及びベース隆起部22に起因して、それぞれ平坦部31及び隆起部32を有することとなる。同様に、硬化樹脂層2bも平坦部及び隆起部を有する。   Moreover, the cured resin layer 2a has the base flat part 21 and the base protruding part 22 on the surface. In the transparent conductive film 10, since the thicknesses of the refractive index adjustment layer 4 and the transparent conductive layer 3 are made thinner than the thickness of the cured resin layer 2a, they are refracted so as to follow the surface of the cured resin layer 2a. The rate adjusting layer 4 and the transparent conductive layer 3 are laminated. Thereby, the transparent conductive layer 3 which is the outermost surface layer has the flat portion 31 and the raised portion 32 due to the base flat portion 21 and the base raised portion 22 of the cured resin layer 2a, respectively. Similarly, the cured resin layer 2b also has a flat portion and a raised portion.

透明導電層3の隆起部32の高さは、平坦部21を基準として10nmより大きくなっているものの、100nm以上3μm以下が好ましく、200nm以上2μm以下がより好ましく、300nm以上1.5μm以下がさらに好ましい。隆起部32の高さを上記範囲とすることにより、耐ブロッキング性を満足すると同時に、ギラツキを十分に低減し、かつヘイズの上昇を十分に抑えることができる。   The height of the raised portion 32 of the transparent conductive layer 3 is larger than 10 nm with respect to the flat portion 21, but is preferably 100 nm or more and 3 μm or less, more preferably 200 nm or more and 2 μm or less, and further preferably 300 nm or more and 1.5 μm or less. preferable. By setting the height of the raised portion 32 in the above range, the anti-blocking property can be satisfied, the glare can be sufficiently reduced, and the haze increase can be sufficiently suppressed.

透明導電性フィルム10においては、硬化樹脂層2が形成されている側の最表面層(本実施形態では、透明導電層3及び硬化樹脂層2b)の隆起部の裾野付近の最大径と表示素子のブラックマトリックスの開口部の隣接しない二辺間の距離の最小値とが特定の関係を満たしている。この構成を以下に説明する。   In the transparent conductive film 10, the maximum diameter near the skirt of the raised portion of the outermost surface layer (in this embodiment, the transparent conductive layer 3 and the cured resin layer 2b) on the side where the cured resin layer 2 is formed, and the display element The minimum value of the distance between two non-adjacent sides of the opening of the black matrix satisfies a specific relationship. This configuration will be described below.

ブラックマトリックス11は、例えば液晶表示素子等におけるカラーフィルタの各画素(サブ画素)に対応させてR(赤色)、G(緑色)、B(青色)の光の透過を制御する部材として用いられ、図2に代表的に示すように、矩形の開口部Oがマトリクス状に形成された格子状の部材である。なお、表示素子の画素密度は開口部Oのサイズによって規定される。開口部Oは、2組の対向する平行な二辺で構成された矩形を有する。従って、開口部Oには、隣接しない二辺として短辺同士及び長辺同士が存在する。開口部Oでは短辺間の距離及び長辺間の距離のうち長辺間の距離の方が短くなっているので、隣接しない二辺間の距離の最小値としては長辺間の距離Lとなる。 The black matrix 11 is used as a member for controlling the transmission of light of R (red), G (green), and B (blue) corresponding to each pixel (sub-pixel) of a color filter in a liquid crystal display element, for example. As representatively shown in FIG. 2, a rectangular member in which rectangular openings O 1 are formed in a matrix. Note that the pixel density of the display element is defined by the size of the opening O 1 . The opening O 1 has a rectangle composed of two sets of two parallel sides facing each other. Accordingly, the opening O 1 has short sides and long sides as two sides that are not adjacent to each other. In the opening O 1 , the distance between the long sides is shorter than the distance between the short sides and the distance between the long sides. Therefore, the minimum value of the distance between two non-adjacent sides is the distance L between the long sides. 1

図3A及び3Bは、開口部の他の形態を示す平面図である。図3Aに示す開口部Oの形状は平面視で平行四辺形となっており、隣接しない二辺間の距離の最小値としては長辺間の距離Lとなる。また、図3Bに示す開口部Oの形状は、平面視で2つの平行四辺形(図3Bでは互いに合同)がその短辺で接して全体としてV字となるように組み合わさった形状となっており、ここでは、3組の対向する平行な二辺によって開口部Oが構成されていることになる。この場合、理論上、隣接しない二辺の組み合わせは6組(図3Bに示したように、各辺にA〜Fを割り当て、対称性を考慮して重複を除くと、A−C間、A−D間、A−E間、B−D間、B−E間、B−F間の6組)存在することになるが、このうちB−F間の距離Lが隣接しない二辺間の距離の最小値に該当することになる。他の形態の開口部についても同様の考えに基づき、隣接しない二辺間の距離の最小値を求めることができる。 3A and 3B are plan views showing other forms of the opening. The shape of the opening O 2 shown in FIG. 3A is a parallelogram in plan view, and the minimum value of the distance between two non-adjacent sides is the distance L 2 between the long sides. Also, the shape of the opening O 3 shown in FIG. 3B is a shape in which two parallelograms (congruent to each other in FIG. 3B) are in contact with each other in the plan view so as to form a V shape as a whole. Here, the opening O 3 is constituted by three sets of two parallel sides facing each other. In this case, theoretically, there are six combinations of two sides that are not adjacent (As shown in FIG. 3B, when A to F are assigned to each side and duplication is removed in consideration of symmetry, A-C, A inter -D, between a-E, between B-D, between B-E, 6 pairs between B-F), but will be present, between the out distance L 3 between the B-F are not adjacent two sides This corresponds to the minimum distance. The minimum value of the distance between two non-adjacent sides can be obtained based on the same idea for the openings of other forms.

図4A及びBは、透明導電性フィルムと表示素子を積層した際に、表示素子を構成するブラックマトリックスのみを抜き出し、このブラックマトリックスと透明導電性フィルムとを積層体として示した模式図である。図4Aは、ブラックマトリックス11側からその積層体を平面視した模式図であり、図4Bは、図4AのX−X線断面図である。透明導電性フィルム10において、最表面層である透明導電層3の平坦部31に平行な面Pが平坦部31から10nm離れた位置において隆起部32と交差してなす断面形状Cの最大径dが、表示素子のブラックマトリックス11の開口部Oにおける隣接しない二辺間(ここでは長辺間)の距離の最小値Lよりも小さくなっている。なお、説明の便宜上、図4Aにおいて、開口部Oの内側には隆起部32全体を図示しているわけではなく上記断面形状Cのみを図示し、また、図4Bでは、図1の透明導電性フィルムの構成要素のうち、透明高分子基材1及び透明高分子基材1の第1主面1a側の透明導電層3の表面の輪郭3aのみを示している。もちろん、透明高分子基材の第2主面1b側にも最表面層として硬化樹脂層2bが設けられているので、この硬化樹脂層2bにおける隆起部についても上記と同様の関係が成り立つ。 4A and 4B are schematic views showing only a black matrix constituting the display element when the transparent conductive film and the display element are laminated, and showing the black matrix and the transparent conductive film as a laminate. 4A is a schematic view of the laminate viewed from the black matrix 11 side, and FIG. 4B is a cross-sectional view taken along the line XX of FIG. 4A. In the transparent conductive film 10, the maximum diameter of the cross-sectional shape C 1 formed by the plane P parallel to the flat portion 31 of the transparent conductive layer 3, which is the outermost surface layer, intersecting the raised portion 32 at a position 10 nm away from the flat portion 31. d 1 is smaller than the minimum value L 1 of the distance between two non-adjacent sides (here, between the long sides) in the opening O 1 of the black matrix 11 of the display element. For convenience of explanation, in FIG. 4A, the entire raised portion 32 is not shown inside the opening O 1 , but only the cross-sectional shape C 1 is shown. In FIG. 4B, the transparent portion of FIG. Of the constituent elements of the conductive film, only the transparent polymer substrate 1 and the contour 3a of the surface of the transparent conductive layer 3 on the first main surface 1a side of the transparent polymer substrate 1 are shown. Of course, since the cured resin layer 2b is provided as the outermost surface layer also on the second main surface 1b side of the transparent polymer base material, the same relationship as described above holds for the raised portions in the cured resin layer 2b.

隆起部の裾野の断面形状の最大径は、ブラックマトリックスの開口部の隣接しない二辺間の距離の最小値より小さければよく、上記最大径は上記開口部の隣接しない二辺間の距離の最小値の10〜95%であることが好ましく、10〜80%であることがより好ましい。   The maximum diameter of the cross-sectional shape of the base of the bulge is only required to be smaller than the minimum value of the distance between two non-adjacent sides of the opening of the black matrix, and the maximum diameter is the minimum of the distance between two non-adjacent sides of the opening. It is preferably 10 to 95% of the value, and more preferably 10 to 80%.

透明導電性フィルム10では、最表面層の隆起部の裾野付近のサイズとブラックマトリックスの開口部の開口サイズとが特定の関係にあるので、耐ブロッキング性を付与しつつ、高精細度の表示素子との組み合わせでもギラツキを防止することができる。   In the transparent conductive film 10, the size near the base of the raised portion of the outermost surface layer and the opening size of the opening portion of the black matrix have a specific relationship, so that a high-definition display element is provided while providing blocking resistance Glittering can be prevented even in combination with.

また、図4A及び4Bでは、透明導電層3とブラックマトリックス11とが対向するように両者を積層させているが、積層形態はこれに限定されず、透明高分子基材1の第2主面1b側の硬化樹脂層2bとブラックマトリックス11とが対向するような積層形態であってもよい。いずれの積層形態であっても、最表面層の隆起部の断面形状の最大径はブラックマトリックスの開口部の隣接しない二辺間の距離の最小値より小さくなる。   4A and 4B, the transparent conductive layer 3 and the black matrix 11 are laminated so that they face each other. However, the lamination form is not limited to this, and the second main surface of the transparent polymer substrate 1 is not limited thereto. The laminated form may be such that the cured resin layer 2b on the 1b side and the black matrix 11 face each other. In any laminated form, the maximum diameter of the cross-sectional shape of the raised portion of the outermost surface layer is smaller than the minimum value of the distance between two non-adjacent sides of the opening of the black matrix.

図5は、平坦部と平行な面と隆起部とが交差してなす断面形状の他の形態を示す模式図である。図4Aの断面形状Cは円形であるのに対し、図5の断面形状Cは楕円となっている。この場合の最大径dは楕円の長径と一致する。 FIG. 5 is a schematic diagram showing another form of a cross-sectional shape formed by intersecting a surface parallel to the flat portion and the raised portion. Sectional shape C 1 in FIG. 4A whereas a circular cross-sectional shape C 2 in FIG. 5 is an elliptical. Maximum diameter d 2 in this case coincides with the major axis of the ellipse.

透明導電性フィルムのヘイズは、要求される透明性を確保可能であれば特に限定されないものの、5%以下が好ましく、4%以下がより好ましく、3%以下がさらに好ましい。なお、ヘイズの下限は0%が好ましいものの、最表面層の隆起部等の存在により、一般的に0.3%以上となることが多い。   The haze of the transparent conductive film is not particularly limited as long as the required transparency can be secured, but is preferably 5% or less, more preferably 4% or less, and even more preferably 3% or less. In addition, although the lower limit of haze is preferably 0%, it is generally often 0.3% or more due to the presence of a raised portion of the outermost surface layer.

<透明高分子基材>
透明高分子基材1としては、特に制限されないが、透明性を有する各種のプラスチックフィルムが用いられる。例えば、その材料として、ポリエステル系樹脂、アセテート系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、ポリノルボルネン系樹脂などのポリシクロオレフィン系樹脂、(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリアリレート系樹脂、ポリフェニレンサルファイド系樹脂等が挙げられる。これらの中で特に好ましいのは、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂である。
<Transparent polymer substrate>
Although it does not restrict | limit especially as the transparent polymer base material 1, The various plastic film which has transparency is used. For example, the materials include polyester resins, acetate resins, polyethersulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, polynorbornene resins, and other polycycloolefin resins (meta ) Acrylic resins, polyvinyl chloride resins, polyvinylidene chloride resins, polystyrene resins, polyvinyl alcohol resins, polyarylate resins, polyphenylene sulfide resins and the like. Of these, polyester resins, polycarbonate resins, and polyolefin resins are particularly preferable.

透明高分子基材1の厚さは、2〜200μmの範囲内であることが好ましく、20〜180μmの範囲内であることがより好ましい。透明高分子基材1の厚さが2μm未満であると、透明高分子基材1の機械的強度が不足し、フィルム基材をロール状にして透明導電層4を連続的に形成する操作が困難になる場合がある。一方、厚さが200μmを超えると、透明導電層4の耐擦傷性やタッチパネル用としての打点特性の向上が図れない場合がある。   The thickness of the transparent polymer substrate 1 is preferably in the range of 2 to 200 μm, and more preferably in the range of 20 to 180 μm. When the thickness of the transparent polymer substrate 1 is less than 2 μm, the mechanical strength of the transparent polymer substrate 1 is insufficient, and the operation of continuously forming the transparent conductive layer 4 by making the film substrate into a roll shape. It can be difficult. On the other hand, if the thickness exceeds 200 μm, the scratch resistance of the transparent conductive layer 4 and the dot characteristics for touch panels may not be improved.

透明高分子基材1には、表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下塗り処理を施して、フィルム基材上に形成される硬化樹脂層や透明導電層等との密着性を向上させるようにしてもよい。また、硬化樹脂層や透明導電層を形成する前に、必要に応じて溶剤洗浄や超音波洗浄などにより、フィルム基材表面を除塵、清浄化してもよい。   The transparent polymer substrate 1 is a cured resin formed on the film substrate by subjecting the surface to an etching treatment or undercoating treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, and oxidation in advance. You may make it improve adhesiveness with a layer, a transparent conductive layer, etc. In addition, before forming the cured resin layer or the transparent conductive layer, the surface of the film substrate may be dust-removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.

<硬化樹脂層>
硬化樹脂層2は、上述のように、表面にベース平坦部21とベース隆起部22とを有する。ベース隆起部22は、硬化樹脂層2に含まれる粒子5に起因して形成されている。ベース隆起部22の高さは、ベース平坦部22を基準として10nmより大きく、好ましくは100nm以上3μm以下であり、より好ましくは200nm以上2μm以下であり、さらに好ましくは300nm以上1.5μm以下である。ベース隆起部22の高さを上記範囲に設定することで、最表面層(図1の第1主面1a側では透明導電層3、第2主面1b側では硬化樹脂層2b)に所定の隆起部を付与することができ、その結果、透明導電性フィルム10の耐ブロッキング性を満足すると同時に、ギラツキを十分に低減し、かつヘイズの上昇を十分に抑えることができる。
<Curing resin layer>
As described above, the cured resin layer 2 has the base flat portion 21 and the base raised portion 22 on the surface. The base raised portion 22 is formed due to the particles 5 included in the cured resin layer 2. The height of the base raised portion 22 is larger than 10 nm with respect to the base flat portion 22, preferably 100 nm or more and 3 μm or less, more preferably 200 nm or more and 2 μm or less, and further preferably 300 nm or more and 1.5 μm or less. . By setting the height of the base raised portion 22 in the above range, a predetermined amount is applied to the outermost surface layer (the transparent conductive layer 3 on the first main surface 1a side in FIG. 1 and the cured resin layer 2b on the second main surface 1b side). As a result, a raised portion can be provided, and as a result, the anti-blocking property of the transparent conductive film 10 can be satisfied, and at the same time, the glare can be sufficiently reduced and the increase in haze can be sufficiently suppressed.

硬化樹脂層2のベース平坦部21の厚さは、特に限定されないものの、200nm以上30μm以下であることが好ましく、500nm以上10μm以下であることがより好ましく、800nm以上5μm以下であることがさらに好ましい。硬化樹脂層のベース平坦部の厚さが過度に小さいと、透明高分子基材からのオリゴマー等の低分子量成分の析出を抑止することができず、透明導電性フィルムや、これを用いたタッチパネルの視認性が悪化する傾向がある。一方、硬化樹脂層のベース平坦部の厚さが過度に大きいと、透明導電層の結晶化時やタッチパネルの組み立て時の加熱によって、硬化樹脂層形成面を内側として透明導電性フィルムがカールする傾向がある。そのため、硬化樹脂層のベース平坦部の厚さが大きい場合は、耐ブロッキング性や易滑性とは別の問題で、フィルムの取り扱い性に劣る傾向がある。なお、本明細書において、硬化樹脂層のベース平坦部の厚さとは、硬化樹脂層のベース平坦部における平均厚さを指す。   Although the thickness of the base flat part 21 of the cured resin layer 2 is not particularly limited, it is preferably 200 nm or more and 30 μm or less, more preferably 500 nm or more and 10 μm or less, and further preferably 800 nm or more and 5 μm or less. . If the thickness of the base flat portion of the cured resin layer is too small, precipitation of low molecular weight components such as oligomers from the transparent polymer base material cannot be suppressed, and a transparent conductive film or a touch panel using the same There is a tendency for the visibility to deteriorate. On the other hand, when the thickness of the flat base portion of the cured resin layer is excessively large, the transparent conductive film tends to curl with the cured resin layer forming surface as the inside due to heating during crystallization of the transparent conductive layer or assembly of the touch panel There is. Therefore, when the thickness of the base flat part of a cured resin layer is large, it is a problem different from blocking resistance and slipperiness, and there exists a tendency for it to be inferior to the handleability of a film. In addition, in this specification, the thickness of the base flat part of a cured resin layer refers to the average thickness in the base flat part of a cured resin layer.

さらに、硬化樹脂層2のベース平坦部21の厚さを粒子5の最頻粒子径より小さくすることで、ヘイズを低減させて透明性をより向上させることができるので好ましい。   Furthermore, it is preferable to make the thickness of the base flat portion 21 of the cured resin layer 2 smaller than the mode particle diameter of the particles 5 because haze can be reduced and transparency can be further improved.

粒子の最頻粒子径は、最表面層の隆起部のサイズや硬化樹脂層2のベース平坦部21の厚さとの関係などを考慮して適宜設定することができ、特に限定されない。なお、透明導電性フィルムに耐ブロッキング性を十分に付与し、かつヘイズの上昇を十分に抑制するという観点から、粒子の最頻粒子径は500nm以上30μm以下であることが好ましく、800nm以上20μm以下であることがより好ましく、1μm以上10μm以下であることがより好ましい。なお、本明細書において、「最頻粒子径」とは、粒子分布の極大値を示す粒径をいい、フロー式粒子像分析装置(Sysmex社製、製品名「FPIA−3000S」)を用いて、所定条件下(Sheath液:酢酸エチル、測定モード:HPF測定、測定方式:トータルカウント)で測定することによって求められる。測定試料は、粒子を酢酸エチルで1.0重量%に希釈し、超音波洗浄機を用いて均一に分散させたものを用いる。   The mode particle diameter of the particles can be appropriately set in consideration of the relationship between the size of the protruding portion of the outermost surface layer and the thickness of the base flat portion 21 of the cured resin layer 2, and is not particularly limited. In addition, from the viewpoint of sufficiently imparting blocking resistance to the transparent conductive film and sufficiently suppressing increase in haze, the mode particle diameter of the particles is preferably 500 nm or more and 30 μm or less, and 800 nm or more and 20 μm or less. It is more preferable that it is 1 μm or more and 10 μm or less. In the present specification, “mode particle diameter” means a particle diameter showing the maximum value of particle distribution, and using a flow type particle image analyzer (product name “FPIA-3000S” manufactured by Sysmex). , By measuring under predetermined conditions (Sheath solution: ethyl acetate, measurement mode: HPF measurement, measurement method: total count). The measurement sample is prepared by diluting the particles to 1.0% by weight with ethyl acetate and uniformly dispersing the particles using an ultrasonic cleaner.

粒子は多分散粒子及び単分散粒子のいずれでもよいが、隆起部の付与の容易性やギラツキ防止性を考慮すると単分散粒子が好ましい。単分散粒子の場合は、粒子の粒径と最頻粒子径とが実質的に同一と見なすことができる。   The particles may be either polydisperse particles or monodisperse particles, but monodisperse particles are preferred in view of the ease of providing the raised portions and the antiglare property. In the case of monodisperse particles, the particle size and mode particle size can be regarded as substantially the same.

硬化樹脂層中の粒子の含有量は、樹脂組成物の固形分100重量部に対して0.01〜5重量部であることが好ましく、0.02〜1重量部であることがより好ましく、0.05〜0.5重量部であることがさらに好ましい。硬化樹脂層中の粒子の含有量が小さいと、硬化樹脂層の表面に耐ブロッキング性や易滑性を付与するのに十分なベース隆起部が形成され難くなる傾向がある。一方、粒子の含有量が大きすぎると、粒子による光散乱に起因して透明導電性フィルムのヘイズが高くなり、視認性が低下する傾向がある。また、粒子の含有量が大きすぎると、硬化樹脂層の形成時(溶液の塗布時)に、スジが発生し、視認性が損なわれたり、透明導電層の電気特性が不均一となったりする場合がある。   The content of the particles in the cured resin layer is preferably 0.01 to 5 parts by weight, more preferably 0.02 to 1 part by weight with respect to 100 parts by weight of the solid content of the resin composition, More preferably, it is 0.05-0.5 weight part. When the content of the particles in the cured resin layer is small, there is a tendency that a base raised portion sufficient to impart blocking resistance and slipperiness to the surface of the cured resin layer is hardly formed. On the other hand, if the content of the particles is too large, the haze of the transparent conductive film increases due to light scattering by the particles, and the visibility tends to decrease. Moreover, when the content of the particles is too large, streaks are generated during the formation of the cured resin layer (at the time of application of the solution), and visibility may be impaired, or the electrical characteristics of the transparent conductive layer may be uneven. There is a case.

(樹脂組成物)
硬化樹脂層2を形成する樹脂組成物としては粒子の分散が可能で、硬化樹脂層形成後の皮膜として十分な強度を持ち、透明性のあるものを特に制限なく使用できる。用いる樹脂としては熱硬化型樹脂、熱可塑型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂などがあげられるが、これらのなかでも紫外線照射による硬化処理にて、簡単な加工操作にて効率よく皮膜を形成することができる紫外線硬化型樹脂が好適である。
(Resin composition)
As the resin composition for forming the cured resin layer 2, particles can be dispersed, and a transparent film having sufficient strength as a film after the cured resin layer is formed can be used without particular limitation. Examples of the resin to be used include thermosetting resins, thermoplastic resins, ultraviolet curable resins, electron beam curable resins, and two-component mixed resins. Among these, simple curing treatment by ultraviolet irradiation is possible. An ultraviolet curable resin capable of efficiently forming a film by a processing operation is preferable.

紫外線硬化型樹脂としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系等の各種のものがあげられ、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、例えば紫外線重合性の官能基を有するもの、なかでも当該官能基を2個以上、特に3〜6個有するアクリル系のモノマーやオリゴマー成分を含むものがあげられる。また、紫外線硬化型樹脂には、紫外線重合開始剤が配合されている。   Examples of the ultraviolet curable resin include polyester-based, acrylic-based, urethane-based, amide-based, silicone-based, and epoxy-based resins, and include ultraviolet curable monomers, oligomers, polymers, and the like. Examples of the ultraviolet curable resin preferably used include those having an ultraviolet polymerizable functional group, particularly those containing an acrylic monomer or oligomer component having 2 or more, particularly 3 to 6 functional groups. Further, an ultraviolet polymerization initiator is blended in the ultraviolet curable resin.

樹脂層の形成材料には、前記材料に加えて、レベリング剤、チクソトロピー剤、帯電防止剤等の添加剤を用いることができる。チクソトロピー剤を用いると、微細凹凸形状表面における突出粒子の形成に有利である。チクソトロピー剤としては、0.1μm以下のシリカ、マイカ等があげられる。これら添加剤の含有量は、通常、紫外線硬化型樹脂100重量部に対して、15重量部以下程度、好ましくは0.01〜15重量部、とするのが好適である。   In addition to the materials described above, additives such as leveling agents, thixotropic agents, and antistatic agents can be used as the resin layer forming material. Use of a thixotropic agent is advantageous for the formation of protruding particles on the surface of a fine irregular shape. Examples of the thixotropic agent include silica and mica of 0.1 μm or less. The content of these additives is usually about 15 parts by weight or less, preferably 0.01 to 15 parts by weight with respect to 100 parts by weight of the ultraviolet curable resin.

(粒子)
硬化樹脂層2に含有される粒子としては、各種金属酸化物、ガラス、プラスチックなどの透明性を有するものを特に制限なく使用することができる。例えばシリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム等の無機系粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル系樹脂、アクリル−スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の各種ポリマーからなる架橋又は未架橋の有機系粒子やシリコーン系粒子などがあげられる。前記粒子は、1種または2種以上を適宜に選択して用いることができるが、有機系粒子が好ましい。有機系粒子としては、屈折率の観点から、アクリル系樹脂が好ましい。
(particle)
As particles contained in the cured resin layer 2, those having transparency such as various metal oxides, glass, and plastic can be used without particular limitation. For example, inorganic particles such as silica, alumina, titania, zirconia, calcium oxide, polymethylmethacrylate, polystyrene, polyurethane, acrylic resin, acrylic-styrene copolymer, benzoguanamine, melamine, polycarbonate, or other cross-linked or uncrosslinked polymers. Examples include crosslinked organic particles and silicone particles. The particles can be used by appropriately selecting one type or two or more types, but organic particles are preferable. The organic particles are preferably acrylic resins from the viewpoint of refractive index.

(コーティング組成物)
硬化樹脂層を形成するのに用いられるコーティング組成物は、上記の樹脂、粒子、および溶媒を含む。また、コーティング組成物は、必要に応じて、種々の添加剤を添加することができる。このような添加剤として、帯電防止剤、可塑剤、界面活性剤、酸化防止剤、及び紫外線吸収剤などの常用の添加剤が挙げられる。
(Coating composition)
The coating composition used to form the cured resin layer includes the resin, particles, and solvent described above. Moreover, a coating composition can add various additives as needed. Examples of such additives include conventional additives such as antistatic agents, plasticizers, surfactants, antioxidants, and ultraviolet absorbers.

コーティング組成物は、上記の樹脂および粒子を、必要に応じて溶媒、添加剤、触媒等と混合することにより調製される。コーティング組成物中の溶媒は、特に限定されるものではなく、用いる樹脂や塗装の下地となる部分の材質および組成物の塗装方法などを考慮して適時選択される。溶媒の具体例としては、例えば、トルエン、キシレンなどの芳香族系溶媒;メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、アニソール、フェネトールなどのエーテル系溶媒;酢酸エチル、酢酸ブチル、酢酸イソプロピル、エチレングリコールジアセテートなどのエステル系溶媒;ジメチルホルムアミド、ジエチルホルムアミド、N−メチルピロリドンなどのアミド系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのセロソルブ系溶媒;メタノール、エタノール、プロパノールなどのアルコール系溶媒;ジクロロメタン、クロロホルムなどのハロゲン系溶媒;などが挙げられる。これらの溶媒を単独で使用してもよく、また2種以上を併用して使用してもよい。これらの溶媒のうち、エステル系溶媒、エーテル系溶媒、アルコール系溶媒およびケトン系溶媒が好ましく使用される。   A coating composition is prepared by mixing said resin and particle | grains with a solvent, an additive, a catalyst, etc. as needed. The solvent in the coating composition is not particularly limited, and is appropriately selected in consideration of the resin to be used, the material used as the base of the coating, the coating method of the composition, and the like. Specific examples of the solvent include aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone, and cyclohexanone; diethyl ether, isopropyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, and ethylene glycol. Ether solvents such as diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, anisole and phenetol; ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate and ethylene glycol diacetate; dimethylformamide, diethylformamide, N -Amide solvents such as methylpyrrolidone; methyl cellosolve, ethyl Cellosolve, cellosolve-based solvents such as butyl cellosolve; methanol, ethanol, alcohol solvents such as propanol; and the like; dichloromethane, halogenated solvents such as chloroform. These solvents may be used alone or in combination of two or more. Of these solvents, ester solvents, ether solvents, alcohol solvents and ketone solvents are preferably used.

コーティング組成物において、粒子は溶液中に分散されていることが好ましい。溶液中に粒子を分散させる方法としては、樹脂組成物溶液に粒子を添加して混合する方法や、予め溶媒中に分散させた粒子を樹脂組成物溶液に添加する方法等、各種公知の方法を採用することができる。   In the coating composition, the particles are preferably dispersed in a solution. As a method for dispersing particles in a solution, various known methods such as a method of adding particles to a resin composition solution and mixing, a method of adding particles dispersed in a solvent in advance to a resin composition solution, and the like. Can be adopted.

コーティング組成物の固形分濃度は、1重量%〜70重量%が好ましく、2重量%〜50重量%がより好ましく、5重量%〜40重量%が最も好ましい。固形分濃度が低くなりすぎると、塗布後の乾燥工程で硬化樹脂層表面のベース隆起部のばらつきが大きくなり、硬化樹脂層表面のベース隆起部が大きくなった部分のヘイズが上昇する場合がある。一方、固形分濃度が大きくなりすぎると、含有成分が凝集しやすくなり、その結果、凝集部分が顕在化して透明導電性フィルムの外観を損ねる場合がある。   The solid concentration of the coating composition is preferably 1% by weight to 70% by weight, more preferably 2% by weight to 50% by weight, and most preferably 5% by weight to 40% by weight. If the solid content concentration is too low, the unevenness of the base bulge portion on the surface of the cured resin layer increases in the drying step after coating, and the haze of the portion where the base bulge portion on the surface of the cured resin layer is large may increase. . On the other hand, if the solid content concentration is too high, the contained components are likely to aggregate, and as a result, the aggregated portion becomes obvious and the appearance of the transparent conductive film may be impaired.

(塗布および硬化)
硬化樹脂層は、基材上に、上記のコーティング組成物を塗布することにより形成される。透明高分子基材1上へのコーティング組成物の塗布は、図1のような本実施形態の場合には基材の両面に行う。なお、コーティング組成物は、透明高分子基材1上に直接行ってもよく、透明高分子基材1上に形成されたアンダーコート層等の上に行うこともできる。
(Coating and curing)
A cured resin layer is formed by apply | coating said coating composition on a base material. Application of the coating composition onto the transparent polymer substrate 1 is performed on both sides of the substrate in the case of this embodiment as shown in FIG. In addition, the coating composition may be performed directly on the transparent polymer substrate 1 or may be performed on an undercoat layer or the like formed on the transparent polymer substrate 1.

コーティング組成物の塗布方法は、コーティング組成物および塗装工程の状況に応じて適時選択することができ、例えばディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、ダイコート法やエクストルージョンコート法などにより塗布することができる。   The application method of the coating composition can be selected as appropriate according to the coating composition and the state of the painting process. For example, the dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method, gravure method It can be applied by a coating method, a die coating method or an extrusion coating method.

コーティング組成物を塗布後、塗膜を硬化させることによって、硬化樹脂層を形成することができる。樹脂組成物が光硬化性である場合は、必要に応じた波長の光を発する光源を用いて光を照射することによって、硬化させることができる。照射する光として、例えば、露光量150mJ/cm以上の光、好ましくは200mJ/cm〜1000mJ/cmの光を用いることができる。またこの照射光の波長は特に限定されるものではないが、例えば380nm以下の波長を有する照射光などを用いることができる。なお、光硬化処理の際に加熱を行ってもよい。 A cured resin layer can be formed by curing the coating film after applying the coating composition. When the resin composition is photocurable, it can be cured by irradiating light using a light source that emits light having a wavelength as required. As the irradiation light, for example, the exposure amount 150 mJ / cm 2 or more optical, preferably using light of 200mJ / cm 2 ~1000mJ / cm 2 . The wavelength of the irradiation light is not particularly limited, and for example, irradiation light having a wavelength of 380 nm or less can be used. In addition, you may heat in the case of a photocuring process.

<透明導電層>
透明導電層3の構成材料は特に限定されず、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステンからなる群より選択される少なくとも1種の金属の金属酸化物が好適に用いられる。当該金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。例えば酸化スズを含有する酸化インジウム(ITO)、アンチモンを含有する酸化スズ(ATO)などが好ましく用いられる。
<Transparent conductive layer>
The constituent material of the transparent conductive layer 3 is not particularly limited, and is at least selected from the group consisting of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, and tungsten. A metal oxide of one kind of metal is preferably used. The metal oxide may further contain a metal atom shown in the above group, if necessary. For example, indium oxide (ITO) containing tin oxide and tin oxide (ATO) containing antimony are preferably used.

透明導電層3の厚さは特に制限されないが、その表面抵抗を1×10Ω/□以下の良好な導電性を有する連続被膜とするには、厚さを10nm以上とするのが好ましい。膜厚が、厚くなりすぎると透明性の低下などをきたすため、15〜35nmであることが好ましく、より好ましくは20〜30nmの範囲内である。透明導電層3の厚さが15nm未満であると膜表面の電気抵抗が高くなり、かつ連続被膜になり難くなる。また、透明導電層3の厚さが35nmを超えると透明性の低下などをきたす場合がある。 The thickness of the transparent conductive layer 3 is not particularly limited, but in order to obtain a continuous film having good conductivity with a surface resistance of 1 × 10 3 Ω / □ or less, the thickness is preferably 10 nm or more. When the film thickness becomes too thick, the transparency is lowered, and it is preferably 15 to 35 nm, more preferably in the range of 20 to 30 nm. If the thickness of the transparent conductive layer 3 is less than 15 nm, the electrical resistance of the film surface becomes high and it becomes difficult to form a continuous film. Further, when the thickness of the transparent conductive layer 3 exceeds 35 nm, the transparency may be lowered.

透明導電層3の形成方法は特に限定されず、従来公知の方法を採用することができる。具体的には、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等のドライプロセスを例示できる。また、必要とする膜厚に応じて適宜の方法を採用することもできる。なお、図1に示すように、硬化樹脂層2a形成面側に透明導電層3を形成する場合、透明導電層3がスパッタリング法等のドライプロセスによって形成されれば、透明導電層3の表面は、その下地層である硬化樹脂層2a表面のベース平坦部及びベース隆起部の形状をほぼ維持する。そのため、硬化樹脂層2a上に透明導電層3が形成されている場合においても、透明導電層3表面にも耐ブロッキング性および易滑性を好適に付与することができる。   The formation method of the transparent conductive layer 3 is not specifically limited, A conventionally well-known method is employable. Specific examples include dry processes such as vacuum deposition, sputtering, and ion plating. In addition, an appropriate method can be adopted depending on the required film thickness. In addition, as shown in FIG. 1, when forming the transparent conductive layer 3 on the cured resin layer 2a formation surface side, if the transparent conductive layer 3 is formed by a dry process such as a sputtering method, the surface of the transparent conductive layer 3 is The shapes of the base flat portion and the base raised portion on the surface of the cured resin layer 2a as the underlying layer are substantially maintained. Therefore, even when the transparent conductive layer 3 is formed on the cured resin layer 2a, blocking resistance and easy slipperiness can be suitably imparted to the surface of the transparent conductive layer 3.

透明導電層3は、必要に応じて加熱アニール処理(例えば、大気雰囲気下、80〜150℃で30〜90分間程度)を施して結晶化することができる。透明導電層を結晶化することで、透明導電層が低抵抗化されることに加えて、透明性および耐久性が向上する。透明導電性フィルム10において硬化樹脂層2aの厚さを上記範囲とすることにより、加熱アニール処理の際にもカールの発生が抑制され、ハンドリング性に優れる。   The transparent conductive layer 3 can be crystallized by performing a heat annealing treatment (for example, at 80 to 150 ° C. for about 30 to 90 minutes in an air atmosphere) as necessary. By crystallizing the transparent conductive layer, transparency and durability are improved in addition to the resistance of the transparent conductive layer being lowered. By setting the thickness of the cured resin layer 2a in the transparent conductive film 10 within the above range, the occurrence of curling is suppressed even during the heat annealing treatment, and the handling property is excellent.

また、透明導電層3は、エッチング等によりパターン化してもよい。例えば、静電容量方式のタッチパネルやマトリックス式の抵抗膜方式のタッチパネルに用いられる透明導電性フィルムにおいては、透明導電層3がストライプ状にパターン化されることが好ましい。なお、エッチングにより透明導電層3をパターン化する場合、先に透明導電層3の結晶化を行うと、エッチングによるパターン化が困難となる場合がある。そのため、透明導電層3のアニール処理は、透明導電層3をパターン化した後に行うことが好ましい。   The transparent conductive layer 3 may be patterned by etching or the like. For example, in a transparent conductive film used for a capacitive touch panel or a matrix resistive touch panel, the transparent conductive layer 3 is preferably patterned in a stripe shape. In addition, when patterning the transparent conductive layer 3 by etching, if the transparent conductive layer 3 is crystallized first, patterning by etching may be difficult. Therefore, it is preferable to perform the annealing treatment of the transparent conductive layer 3 after patterning the transparent conductive layer 3.

<屈折率調整層>
本実施形態の透明導電性フィルム10においては、硬化樹脂層層2aと透明導電層3との間に、透明導電層の密着性や反射特性の制御等を目的として屈折率調整層4が設けられている。屈折率調整層は1層でもよく、2層あるいはそれ以上設けてもよい。屈折率調整層は、無機物、有機物、あるいは無機物と有機物との混合物により形成される。屈折率調整層を形成する材料としては、NaF、NaAlF、LiF、MgF、CaF2、SiO、LaF、CeF、Al、TiO、Ta、ZrO、ZnO、ZnS、SiO(xは1.5以上2未満)などの無機物や、アクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマーなどの有機物が挙げられる。特に、有機物として、メラミン樹脂とアルキド樹脂と有機シラン縮合物の混合物からなる熱硬化型樹脂を使用することが好ましい。屈折率調整層は、上記の材料を用いて、グラビアコート法やバーコート法などの塗工法、真空蒸着法、スパッタリング法、イオンプレーティング法などにより形成できる。
<Refractive index adjustment layer>
In the transparent conductive film 10 of the present embodiment, the refractive index adjustment layer 4 is provided between the cured resin layer 2a and the transparent conductive layer 3 for the purpose of controlling the adhesion and reflection characteristics of the transparent conductive layer. ing. The refractive index adjustment layer may be one layer or two or more layers. The refractive index adjusting layer is formed of an inorganic material, an organic material, or a mixture of an inorganic material and an organic material. As a material for forming the refractive index adjustment layer, NaF, Na 3 AlF 6 , LiF, MgF 2 , CaF 2, SiO 2 , LaF 3 , CeF 3 , Al 2 O 3 , TiO 2 , Ta 2 O 5 , ZrO 2 , ZnO, ZnS, SiO x (x is 1.5 or more and less than 2), and organic substances such as acrylic resin, urethane resin, melamine resin, alkyd resin, and siloxane polymer. In particular, it is preferable to use a thermosetting resin made of a mixture of a melamine resin, an alkyd resin, and an organic silane condensate as the organic substance. The refractive index adjusting layer can be formed using the above materials by a coating method such as a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.

屈折率調整層4の厚さは、10nm〜200nmであることが好ましく、20nm〜150nmであることがより好ましく、20nm〜130nmであることがさらに好ましい。屈折率調整層の厚さが過度に小さいと連続被膜となりにくい。また、屈折率調整層の厚さが過度に大きいと、透明導電性フィルムの透明性が低下したり、屈折率調整層にクラックが生じ易くなったりする傾向がある。また、屈折率調整層がこのようなナノオーダーレベルの厚さで形成されれば、屈折率調整層の透明導電層3側の表面は、その下地層である硬化樹脂層2表面の隆起形状をほぼ維持する。そして、透明導電層3の表面においてもその隆起形状が維持されて隆起部32が形成されるために、耐ブロッキング性および易滑性を有する透明導電性フィルムとすることができる。   The thickness of the refractive index adjustment layer 4 is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm, and further preferably 20 nm to 130 nm. If the thickness of the refractive index adjusting layer is too small, it is difficult to form a continuous film. Moreover, when the thickness of a refractive index adjustment layer is too large, there exists a tendency for the transparency of a transparent conductive film to fall or for a crack to arise easily in a refractive index adjustment layer. Further, if the refractive index adjusting layer is formed with such a nano-order thickness, the surface of the refractive index adjusting layer on the side of the transparent conductive layer 3 has a raised shape on the surface of the cured resin layer 2 that is the underlying layer. Maintain almost. And since the protruding shape is maintained also on the surface of the transparent conductive layer 3, and the protruding part 32 is formed, it can be set as the transparent conductive film which has blocking resistance and slipperiness.

屈折率調整層は、平均粒径が1nm〜500nmのナノ微粒子を有していてもよい。屈折率調整層中のナノ微粒子の含有量は0.1重量%〜90重量%であることが好ましい。屈折率調整層に用いられるナノ微粒子の平均粒径は、上述のように1nm〜500nmの範囲であることが好ましく、5nm〜300nmであることがより好ましい。また、屈折率調整層中のナノ微粒子の含有量は10重量%〜80重量%であることがより好ましく、20重量%〜70重量%であることがさらに好ましい。屈折率調整層中にナノ微粒子を含有することによって、屈折率調整層自体の屈折率の調整を容易に行うことができる。   The refractive index adjusting layer may have nanoparticles having an average particle diameter of 1 nm to 500 nm. The content of the nanoparticles in the refractive index adjusting layer is preferably 0.1% by weight to 90% by weight. As described above, the average particle diameter of the nanoparticles used in the refractive index adjusting layer is preferably in the range of 1 nm to 500 nm, and more preferably 5 nm to 300 nm. Further, the content of the nano fine particles in the refractive index adjusting layer is more preferably 10% by weight to 80% by weight, and further preferably 20% by weight to 70% by weight. By containing nanoparticles in the refractive index adjusting layer, the refractive index of the refractive index adjusting layer itself can be easily adjusted.

ナノ微粒子を形成する無機酸化物としては、例えば、酸化ケイ素(シリカ)、中空ナノシリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム等の微粒子があげられる。これらの中でも、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウムの微粒子が好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。   Examples of the inorganic oxide forming the nano fine particles include fine particles such as silicon oxide (silica), hollow nano silica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, and zirconium oxide. Among these, fine particles of silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, and zirconium oxide are preferable. These may be used alone or in combination of two or more.

<透明導電性フィルム巻回体>
本実施形態の透明導電性フィルム10は、長尺シートがロール状に巻回された透明導電性フィルム巻回体とすることができる。透明導電性フィルムの長尺シートの巻回体は、透明高分子基材として長尺シートのロール状巻回体を用い、前述の硬化樹脂層、透明導電層、および屈折率調整層等の付加的な層を、いずれもロール・トゥー・ロール法により形成することによって形成し得る。このような巻回体の形成にあたっては、透明導電性フィルムの表面に、弱粘着層を備える保護フィルム(セパレータ)を貼り合わせた上で、ロール状に巻回してもよいが、本実施形態の透明導電性フィルムは、滑り性や耐ブロッキング性が改善されているために、保護フィルムを用いずとも透明導電性フィルムの長尺シートの巻回体を形成し得る。すなわち、滑り性や耐ブロッキング性が改善されていることによって、ハンドリング時のフィルム表面へのキズの発生が抑止されるとともにフィルムの巻取性に優れるため、表面に保護フィルムを貼り合わせずとも、長尺シートをロール状に巻回した巻回体を得られ易い。このように、本実施形態の透明導電性フィルムは、保護フィルムを用いることなく長尺シートの巻回体を形成し得るために、その後のタッチパネルの形成等に用いる際の作業性に優れる。また、工程部材である保護フィルムを不要とすることによって、コスト削減や廃棄物低減にも寄与し得る。
<Transparent conductive film roll>
The transparent conductive film 10 of this embodiment can be a transparent conductive film wound body in which a long sheet is wound in a roll shape. The roll of the long sheet of the transparent conductive film uses a roll-shaped roll of the long sheet as the transparent polymer substrate, and adds the above-mentioned cured resin layer, transparent conductive layer, refractive index adjustment layer, etc. Any of the typical layers may be formed by a roll-to-roll process. In forming such a wound body, a protective film (separator) having a weak adhesive layer may be bonded to the surface of the transparent conductive film and then wound into a roll shape. Since the transparent conductive film has improved slipperiness and blocking resistance, it can form a wound sheet of a long sheet of transparent conductive film without using a protective film. That is, by improving slipperiness and blocking resistance, the occurrence of scratches on the film surface at the time of handling is suppressed and the film is easy to wind, so even without attaching a protective film to the surface, It is easy to obtain a wound body obtained by winding a long sheet into a roll. Thus, since the transparent conductive film of this embodiment can form the wound body of a long sheet, without using a protective film, it is excellent in workability | operativity at the time of using for formation of a subsequent touch panel, etc. Further, by eliminating the need for a protective film as a process member, it can contribute to cost reduction and waste reduction.

<タッチパネル>
透明導電性フィルム10は、例えば、静電容量方式、抵抗膜方式などのタッチパネルに好適に適用できる。
<Touch panel>
The transparent conductive film 10 can be suitably applied to, for example, a capacitive touch panel or a resistive touch panel.

タッチパネルの形成に際しては、透明導電性フィルムの一方または両方の主面に透明な粘着剤層を介して、ガラスや高分子フィルム等の他の基材等を貼り合わせることができる。例えば、透明導電性フィルムの透明導電層3が形成されていない側の面に透明な粘着剤層を介して透明基体が貼り合わせられた積層体を形成してもよい。透明基体は、1枚の基体フィルムからなっていてもよく、2枚以上の基体フィルムの積層体(例えば透明な粘着剤層を介して積層したもの)であってもよい。また、透明導電性フィルムに貼り合わせる透明基体の外表面にハードコート層を設けることもできる。   In forming the touch panel, another substrate such as glass or a polymer film can be bonded to one or both main surfaces of the transparent conductive film via a transparent adhesive layer. For example, you may form the laminated body by which the transparent base | substrate was bonded together through the transparent adhesive layer on the surface by which the transparent conductive layer 3 of the transparent conductive film is not formed. The transparent substrate may be composed of a single substrate film or may be a laminate of two or more substrate films (for example, laminated via a transparent adhesive layer). A hard coat layer can also be provided on the outer surface of the transparent substrate to be bonded to the transparent conductive film.

透明導電性フィルムと基材との貼り合わせに用いられる粘着剤層としては、透明性を有するものであれば特に制限なく使用できる。具体的には、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度な濡れ性、凝集性及び接着性等の粘着特性を示し、耐候性や耐熱性等にも優れるという点からは、アクリル系粘着剤が好ましく用いられる。   The pressure-sensitive adhesive layer used for bonding the transparent conductive film and the substrate can be used without particular limitation as long as it has transparency. Specifically, for example, acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate / vinyl chloride copolymers, modified polyolefins, epoxy systems, fluorine systems, natural rubbers, rubbers such as synthetic rubbers, etc. Those having the above polymer as a base polymer can be appropriately selected and used. In particular, an acrylic pressure-sensitive adhesive is preferably used from the viewpoint that it is excellent in optical transparency, exhibits adhesive properties such as appropriate wettability, cohesiveness and adhesiveness, and is excellent in weather resistance and heat resistance.

上記の本発明にかかる透明導電性フィルムを、タッチパネルの形成に用いた場合、タッチパネル形成時のハンドリング性に優れる。そのため、透明性および視認性に優れたタッチパネルを生産性高く製造することが可能である。   When the transparent conductive film according to the present invention is used for forming a touch panel, the handling property at the time of forming the touch panel is excellent. Therefore, a touch panel excellent in transparency and visibility can be manufactured with high productivity.

<表示素子>
本実施形態の透明導電性フィルムは、例えば、液晶表示素子や固体撮像素子といった各種表示素子の透明部材の帯電防止や電磁波遮断、液晶調光ガラス、透明ヒーター等として好適に利用できる。本実施形態の透明導電性フィルムの最表面の隆起部は、これらの表示素子に含まれるブラックマトリックスの開口部サイズと特定の関係を有しているので、より高精細な表示素子とすることができる。
<Display element>
The transparent conductive film of the present embodiment can be suitably used as, for example, antistatic or electromagnetic wave shielding for a transparent member of various display elements such as a liquid crystal display element and a solid-state imaging element, liquid crystal light control glass, and a transparent heater. Since the raised portion on the outermost surface of the transparent conductive film of the present embodiment has a specific relationship with the opening size of the black matrix included in these display elements, a higher-definition display element can be obtained. it can.

<画像表示装置>
本実施形態の画像表示装置は、画像表示素子および上述のタッチパネルを有する。画像表示素子は、一般的に画像表示セルの視認側にブラックマトリックスを有するカラーフィルタを備え、視認側と反対側に偏光板を備える。画像表示セルとしては、液晶セルや有機ELセル等を用いることができる。本実施形態に係るタッチパネルと各種表示素子とを組み合わせることにより、ギラツキが抑制され、より高精細な画像表示装置(例えば、液晶タッチパネル等)を作製することができる。
<Image display device>
The image display apparatus of this embodiment has an image display element and the touch panel described above. The image display element generally includes a color filter having a black matrix on the viewing side of the image display cell, and a polarizing plate on the opposite side to the viewing side. As the image display cell, a liquid crystal cell, an organic EL cell, or the like can be used. By combining the touch panel according to this embodiment and various display elements, glare is suppressed, and a higher-definition image display device (for example, a liquid crystal touch panel) can be manufactured.

[他の実施形態] [Other Embodiments]

図1に示した実施形態では、透明導電層3は透明高分子基材1の一方の第1主面1a側にのみ設けられているが、これに限定されず、他方の第2主面1b側にも設けられていてもよい。この場合、図1に示すように下地層として硬化樹脂層2bが形成されていると、その硬化樹脂層2bのベース平坦部とベース隆起部とに起因して、第2主面1b側に設けられた透明導電層の表面にも平坦部と隆起部とが形成されることになる。   In the embodiment shown in FIG. 1, the transparent conductive layer 3 is provided only on one first main surface 1 a side of the transparent polymer substrate 1, but is not limited thereto, and the other second main surface 1 b. It may also be provided on the side. In this case, as shown in FIG. 1, when the cured resin layer 2b is formed as a base layer, it is provided on the second main surface 1b side due to the base flat portion and the base raised portion of the cured resin layer 2b. A flat portion and a raised portion are also formed on the surface of the transparent conductive layer formed.

硬化樹脂層のベース隆起部の形成方法は、図1のように硬化樹脂層に粒子を分散含有させて隆起形状を付与する方法のほか、適宜な方式を採用することができる。たとえば、硬化樹脂層上に別途硬化樹脂層を塗工付加し、当該硬化樹脂層表面に、金型による転写方式等によりベース隆起部を付与する方法があげられる。また、可能である限り、前記硬化樹脂層の形成に用いたフィルムの表面を、予め、サンドブラストやエンボスロール、化学エッチング等の適宜な方式で粗面化処理してフィルム表面に隆起形状を付与する方法等により、硬化樹脂層を形成する部材そのものの表面をベース隆起部として形成する方法があげられる。これらベース隆起部の形成方法は、二種以上の方法を組み合わせ、異なる状態のベース隆起部を複合させた層として形成してもよい。前記硬化樹脂層の形成方法のなかでも、形状付与の容易性やヘイズの増加抑制等の観点より、粒子を分散含有する硬化樹脂層を設ける方法が好ましい。   As a method for forming the base raised portion of the cured resin layer, an appropriate method can be adopted in addition to a method of imparting a raised shape by dispersing particles in the cured resin layer as shown in FIG. For example, there may be mentioned a method in which a cured resin layer is separately applied on the cured resin layer, and a base raised portion is provided on the surface of the cured resin layer by a transfer method using a mold or the like. In addition, as much as possible, the surface of the film used for forming the cured resin layer is previously roughened by an appropriate method such as sandblasting, embossing roll, chemical etching, etc., to give a raised shape to the film surface. The method of forming the surface of the member itself which forms a cured resin layer as a base protruding part by a method etc. is mention | raised. These base ridges may be formed as a layer in which two or more methods are combined to combine base ridges in different states. Among the methods for forming the cured resin layer, a method of providing a cured resin layer in which particles are dispersedly dispersed is preferable from the viewpoints of ease of imparting shape and suppressing increase in haze.

以下、本発明に関して実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。実施例中、特に示さない限り「部」とあるのは「重量部」を意味する。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to a following example, unless the summary is exceeded. In the examples, unless otherwise indicated, “parts” means “parts by weight”.

[実施例1]
最頻粒子径3.0μmの複数の単分散粒子(積水樹脂社製、商品名「SSX105」)とバインダー樹脂(DIC社製、商品名「ユニディックELS−888)とを含み、溶媒を酢酸エチルとするコーティング組成物を準備した。次に、厚さ100μm(日本ゼオン社製、商品名「ゼオノア」)からなる長尺基材の片面に、コーティング組成物をグラビアコーターを用いて乾燥後の厚さが1.0μmとなるように塗布し、80℃で1分間加熱することにより塗膜を乾燥させた。その後、高圧水銀ランプにて、積算光量250mJ/cmの紫外線を照射することで、硬化樹脂層を形成した。粒子の添加部数については樹脂100部に対して0.07部添加した。なお、硬化樹脂層のベース平坦部の厚さは、分光計測計(大塚電子製 商品名「MCPD2000」)を用いて、フィルムの幅方向に等間隔の5点について測定した厚さの平均値から求めた。
[Example 1]
It contains a plurality of monodisperse particles (trade name “SSX105” manufactured by Sekisui Jushi Co., Ltd.) having a mode particle diameter of 3.0 μm and a binder resin (trade name “Unidic ELS-888” manufactured by DIC Corporation), and the solvent is ethyl acetate. Next, the thickness after drying the coating composition using a gravure coater on one side of a long substrate having a thickness of 100 μm (trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.) The coating was dried by heating at 80 ° C. for 1 minute. Then, the cured resin layer was formed by irradiating the ultraviolet-ray of the integrated light quantity 250mJ / cm < 2 > with a high pressure mercury lamp. About the addition part of particle | grains, 0.07 part was added with respect to 100 parts of resin. In addition, the thickness of the base flat part of the cured resin layer is obtained from an average value of thicknesses measured at five points equally spaced in the film width direction using a spectrophotometer (trade name “MCPD2000” manufactured by Otsuka Electronics Co., Ltd.). Asked.

次に、硬化樹脂層の表面に、屈折率調整剤(JSR社製、商品名「オプスターKZ6661」をグラビアコーターを用いて塗布し、60℃で1分間加熱することにより塗膜を乾燥させた。その後、高圧水銀ランプにて、積算光量250mJ/cmの紫外線を照射して硬化処理を施すことで、厚さ100nmで屈折率1.65の屈折率調整層を形成した。その後、硬化樹脂層及び屈折率調整層を有する長尺基材を巻き取り式スパッタ装置に投入し、屈折率調整層の表面に、透明導電体層として厚さ27nmのインジウム・スズ酸化物層(アルゴンガス98%と酸素2%とからなる0.4Paの雰囲気中、酸化インジウム97重量%−酸化スズ3重量%からなる焼結体を用いたスパッタリング)と、金属層として厚さ200nmの銅層を順次積層した。この際、上記の屈折率調整層、透明導電層および金属層は、上記硬化樹脂層のベース平坦部及びベース隆起部に沿うように積層した。これにより透明導電性フィルムを作製した。 Next, on the surface of the cured resin layer, a refractive index adjusting agent (manufactured by JSR, trade name “OPSTAR KZ6661” was applied using a gravure coater, and the coating film was dried by heating at 60 ° C. for 1 minute. Then, the refractive index adjustment layer with a thickness of 100 nm and a refractive index of 1.65 was formed by irradiating an ultraviolet ray with an integrated light quantity of 250 mJ / cm 2 with a high-pressure mercury lamp to form a refractive index adjustment layer having a refractive index of 1.65. And a long base material having a refractive index adjusting layer is put into a take-up type sputtering apparatus, and an indium tin oxide layer having a thickness of 27 nm (argon gas: 98% and argon gas) is formed on the surface of the refractive index adjusting layer as a transparent conductor layer. In an atmosphere of 0.4 Pa composed of 2% oxygen, sputtering using a sintered body composed of 97% by weight of indium oxide-3% by weight of tin oxide) and a copper layer having a thickness of 200 nm are sequentially stacked. At this time, the refractive index adjusting layer, the transparent conductive layer, and the metal layer were laminated along the base flat portion and the base raised portion of the cured resin layer, thereby producing a transparent conductive film.

[実施例2]
粒子として最頻粒子径2.5μmの単分散粒子(日本触媒社製、商品名「シーホスターKE−P250」)を用い、樹脂100部に対する添加部数を0.4部としたこと以外は、実施例1と同様に透明導電性フィルムを作製した。
[Example 2]
Except that monodisperse particles (manufactured by Nippon Shokubai Co., Ltd., trade name “Seahoster KE-P250”) having a mode particle diameter of 2.5 μm were used as particles, and the number of parts added to 100 parts of resin was 0.4 parts. A transparent conductive film was prepared in the same manner as in 1.

[実施例3]
粒子として最頻粒子径1.8μmの単分散粒子(綜研社製、商品名「MX−180TA」)を用い、樹脂100部に対する添加部数を0.2部としたこと以外は、実施例1と同様に透明導電性フィルムを作製した。
[Example 3]
Example 1 except that monodisperse particles (manufactured by Soken Co., Ltd., trade name “MX-180TA”) having a mode particle diameter of 1.8 μm were used as the particles, and the number of added parts relative to 100 parts of resin was 0.2 parts. Similarly, a transparent conductive film was produced.

[実施例4]
長尺基材の両面に硬化樹脂層を形成したこと以外は、実施例3と同様に透明導電性フィルムを作製した。
[Example 4]
A transparent conductive film was produced in the same manner as in Example 3 except that a cured resin layer was formed on both sides of the long base material.

[実施例5]
粒子として最頻粒子径2.0μmの単分散粒子(積水樹脂社製、商品名「XX134AA」)を用い、樹脂100部に対する添加部数を0.2部としたこと以外は、実施例1と同様に透明導電性フィルムを作製した。
[Example 5]
The same as Example 1 except that monodispersed particles (trade name “XX134AA”, manufactured by Sekisui Jushi Co., Ltd.) having a mode particle diameter of 2.0 μm were used as the particles, and the number of added parts relative to 100 parts of resin was 0.2 parts. A transparent conductive film was prepared.

[実施例6]
粒子として最頻粒子径1.5μmの単分散粒子(日本触媒社製、商品名「シーホスターKE−P150」)を用い、樹脂100部に対する添加部数を0.4部としたこと以外は、実施例1と同様に透明導電性フィルムを作製した。
[Example 6]
Example 1 except that monodisperse particles (manufactured by Nippon Shokubai Co., Ltd., trade name “Seahoster KE-P150”) having a mode particle diameter of 1.5 μm are used as particles, and the number of added parts is 0.4 parts with respect to 100 parts of resin. A transparent conductive film was prepared in the same manner as in 1.

[実施例7]
粒子として最頻粒子径1.3μmの単分散粒子(綜研社製、商品名「SX−130H」)を用い、樹脂100部に対する添加部数を0.4部としたこと以外は、実施例1と同様に透明導電性フィルムを作製した。
[Example 7]
Example 1 except that monodisperse particles having a mode particle diameter of 1.3 μm (trade name “SX-130H”, manufactured by Soken Co., Ltd.) were used as the particles, and the number of parts added to 100 parts of resin was 0.4 parts. Similarly, a transparent conductive film was produced.

[実施例8]
粒子として最頻粒子径3.5μmの単分散粒子(積水樹脂社製、商品名「XX121AA」)を用い、樹脂100部に対する添加部数を0.1部とし、硬化後の硬化樹脂層の膜厚を2.0μmとしたこと以外は、実施例1と同様に透明導電性フィルムを作製した。
[Example 8]
Using monodisperse particles (manufactured by Sekisui Resin Co., Ltd., trade name “XX121AA”) having a mode particle diameter of 3.5 μm as particles, the number of parts added per 100 parts of resin is 0.1 part, and the thickness of the cured resin layer after curing A transparent conductive film was produced in the same manner as in Example 1 except that the thickness was set to 2.0 μm.

[比較例1]
粒子として最頻粒子径5μmの単分散粒子(積水樹脂社製、商品名「XX83AA」)を用い、樹脂100部に対する添加部数を0.1部としたこと以外は、実施例1と同様に透明導電性フィルムを作製した。
[Comparative Example 1]
Transparent as in Example 1, except that monodisperse particles (manufactured by Sekisui Jushi Co., Ltd., trade name “XX83AA”) having a mode particle diameter of 5 μm were used as the particles, and the number of added parts relative to 100 parts of the resin was 0.1 parts. A conductive film was prepared.

[評価]
実施例および比較例で得られたそれぞれの透明導電性フィルムについて、下記の評価を行った。
[Evaluation]
The following evaluation was performed about each transparent conductive film obtained by the Example and the comparative example.

(ギラツキ判定)
作製した透明導電性フィルムを5cm角に切り取り、評価サンプルとした。別途、隣接しない二辺間の距離の最小値が表1に示す値を有する矩形の開口部(図2に示す形状)が形成されたブラックマトリックスを備える市販の液晶表示装置をそれぞれ用意し、水平台上に載置した。次に、評価サンプルの評価面(透明導電層側)を上向きにして表示装置の表示面上に載置した。その後、表示装置の表示面に緑色の背景を表示して、その際の評価サンプルの真上から目視判定によりギラツキの有無を評価した。ギラツキがない場合を「○」、ある場合を「×」として評価した。結果を表1に示す。
(Glare determination)
The produced transparent conductive film was cut into a 5 cm square and used as an evaluation sample. Separately, commercially available liquid crystal display devices each including a black matrix in which a rectangular opening (the shape shown in FIG. 2) having a minimum distance between two non-adjacent sides having the values shown in Table 1 are prepared. Placed on a flat table. Next, the evaluation sample was placed on the display surface of the display device with the evaluation surface (transparent conductive layer side) facing upward. Thereafter, a green background was displayed on the display surface of the display device, and the presence or absence of glare was evaluated by visual judgment from directly above the evaluation sample. The case where there was no glare was evaluated as “◯”, and the case where it was present was evaluated as “×”. The results are shown in Table 1.

(ブラックマトリックスの開口部の隣接しない二辺間の距離の最小値)
上記ギラツキ判定における液晶表示装置のブラックマトリックスの開口部の隣接しない二辺間の距離の最小値(すなわち、図2に示す開口部の短辺の長さ)を形状測定レーザーマイクロスコープ((株)キーエンス社製、商品名「VK−8500」、倍率:10倍)にて測定した。結果を表1に示す。
(Minimum distance between two non-adjacent sides of the black matrix opening)
The minimum value of the distance between two non-adjacent sides of the opening of the black matrix of the liquid crystal display device in the glare determination (that is, the length of the short side of the opening shown in FIG. 2) is measured with a shape measuring laser microscope (Co., Ltd.). Measurement was carried out by Keyence Corporation, trade name “VK-8500”, magnification: 10 times. The results are shown in Table 1.

(隆起部の断面形状の最大径の測定)
上記ギラツキ判定で作製した評価サンプルの最表面層である透明導電層側の表面形状を非接触式三次元表面粗さ計(Veeco社製、商品名「WYKO NT3300」)により、92μm×121μmの視野範囲、50倍の倍率で測定した。得られた表面形状データにおける隆起部を平坦部から10nmの高さに位置する平面で輪切りにし、その際に得られる断面形状の最大径を測定した。なお、実施例4に係る評価サンプルに対しては両面(透明導電層表面及び硬化樹脂層表面)について測定した。結果を表1に示す。
(Measurement of the maximum diameter of the cross-sectional shape of the ridge)
The surface shape of the transparent conductive layer side, which is the outermost surface layer of the evaluation sample prepared by the above-described glare determination, is measured with a non-contact type three-dimensional surface roughness meter (trade name “WYKO NT3300” manufactured by Veeco) with a field of view of 92 μm × 121 μm. The measurement was performed at a magnification of 50 times in the range. The raised portion in the obtained surface shape data was cut into a circle at a plane located at a height of 10 nm from the flat portion, and the maximum diameter of the cross-sectional shape obtained at that time was measured. In addition, it measured about both surfaces (the transparent conductive layer surface and the cured resin layer surface) with respect to the evaluation sample which concerns on Example 4. FIG. The results are shown in Table 1.

(ヘイズ)
作製した透明導電性フィルムのヘイズを、JIS K7136(2000年)のヘイズ(濁度)に準じ、ヘイズメーター(村上色彩技術研究所社製 型番「HM−150」)を用いて測定した。結果を表1に示す。
(Haze)
The haze of the produced transparent conductive film was measured using a haze meter (model number “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with the haze (turbidity) of JIS K7136 (2000). The results are shown in Table 1.

(耐ブロッキング性)
作製した透明導電性フィルムについて透明導電層の表面に、表面が平滑なフィルム((株)日本ゼオン製、商品名「ZEONOR フィルム ZF−16」)をそれぞれ指圧にて圧着させ、その際のフィルム同士の貼り付き具合を以下の基準で目視にて確認した(検体数N=10)。結果を表1に示す。
<評価基準>
○:貼りつきが起こらない。
△:一旦貼りつくが、時間が経過するとフィルムが離れる。
×:貼りついたフィルムが、元に戻らない。
(Blocking resistance)
About the produced transparent conductive film, a film having a smooth surface (trade name “ZEONOR film ZF-16” manufactured by Nippon Zeon Co., Ltd.) is pressure-bonded to the surface of the transparent conductive layer with finger pressure. Was visually confirmed according to the following criteria (number of specimens N = 10). The results are shown in Table 1.
<Evaluation criteria>
○: No sticking occurs.
Δ: Sticking once, but the film leaves when time passes.
X: The stuck film does not return to its original state.

Figure 2014095896
Figure 2014095896

実施例で得られた透明導電性フィルムでは、耐ブロッキング性が良好であるとともに、150ppiを超える高精細の液晶表示素子と組み合わせてもギラツキが抑制されていた。また、ヘイズも全てのサンプルで3以下であり、透明性にも優れていた。一方、比較例で得られた透明導電性フィルムでは、耐ブロッキング性及びヘイズは良好な結果であったものの、高精細液晶表示素子との組み合わせではギラツキが生じており、高精細な表示素子に対応することができないという結果となった。   In the transparent conductive films obtained in the examples, the blocking resistance was good and the glare was suppressed even when combined with a high-definition liquid crystal display element exceeding 150 ppi. Moreover, the haze was 3 or less in all samples, and the transparency was excellent. On the other hand, in the transparent conductive film obtained in the comparative example, although the blocking resistance and haze were good results, glare occurred in combination with the high-definition liquid crystal display element, and it corresponds to the high-definition display element. The result is that you can not.

上述のように、実施例1及び2の透明導電性フィルムでは、150ppiを超える高精細の液晶表示素子でもギラツキが抑制されているところ、実施例3〜7の透明導電性フィルムでは、324ppiまでのさらに高精細な液晶表示素子にも対応可能であることが分かった。これにより、ブラックマトリックスの開口部の微細化に対応させて、最表面層における隆起部の裾野付近の最大径を小さくするほど、高精細の表示素子に対応可能であることが分かる。   As described above, in the transparent conductive films of Examples 1 and 2, glare is suppressed even in a high-definition liquid crystal display element exceeding 150 ppi. In the transparent conductive films of Examples 3 to 7, up to 324 ppi. It was also found that it can be applied to high-definition liquid crystal display elements. Accordingly, it can be seen that the smaller the maximum diameter near the bottom of the raised portion in the outermost surface layer corresponding to the miniaturization of the opening of the black matrix, the higher the resolution of the display element can be handled.

1 透明高分子基材
1a 透明高分子基材の第1主面
1b 透明高分子基材の第1主面
2a、2b 硬化樹脂層
3 透明導電層
4 屈折率調整層
5 粒子
10 透明導電性フィルム
11 ブラックマトリックス
21 ベース平坦部
22 ベース隆起部
31 平坦部
32 隆起部
、C 隆起部の断面形状
、d 断面形状の最大径
、L、L 開口部の隣接しない二辺間の距離の最小値
、O、O 開口部
P 平坦部に平行な面
DESCRIPTION OF SYMBOLS 1 Transparent polymer base material 1a 1st main surface of a transparent polymer base material 1b 1st main surface of a transparent polymer base material 2a, 2b Cured resin layer 3 Transparent conductive layer 4 Refractive index adjustment layer 5 Particle 10 Transparent conductive film 11 Black matrix 21 Base flat portion 22 Base raised portion 31 Flat portion 32 Raised portion C 1 , C 2 Cross-sectional shape of raised portion d 1 , d 2 Cross-sectional maximum diameter L 1 , L 2 , L 3 Not adjacent to opening Minimum value of distance between two sides O 1 , O 2 , O 3 openings P A plane parallel to the flat part

Claims (11)

多角形状の開口部を有するブラックマトリックスを備える精細度が150ppi以上の表示素子用の透明導電性フィルムであって、
透明高分子基材と、
前記透明高分子基材の第1主面側に設けられた透明導電層と、
前記透明高分子基材と前記透明導電層との間および前記透明高分子基材の第1主面と反対側の第2主面の少なくとも一方に設けられた硬化樹脂層と
を備え、
前記硬化樹脂層が形成された側の最表面層は、表面に平坦部と隆起部とを有しており、
前記隆起部の高さは前記平坦部から10nmより大きく、
前記平坦部に平行な面が前記平坦部から10nm離れた位置において前記隆起部と交差してなす断面形状の最大径は、前記ブラックマトリックスの開口部の隣接しない二辺間の距離の最小値よりも小さい透明導電性フィルム。
A transparent conductive film for a display element having a black matrix having a polygonal opening and having a definition of 150 ppi or more,
A transparent polymer substrate;
A transparent conductive layer provided on the first main surface side of the transparent polymer substrate;
A cured resin layer provided between the transparent polymer substrate and the transparent conductive layer and on at least one of the second principal surface opposite to the first principal surface of the transparent polymer substrate;
The outermost surface layer on which the cured resin layer is formed has a flat portion and a raised portion on the surface,
The height of the raised portion is larger than 10 nm from the flat portion,
The maximum diameter of the cross-sectional shape formed by intersecting the raised portion at a position parallel to the flat portion at a distance of 10 nm from the flat portion is based on the minimum value of the distance between two non-adjacent sides of the opening of the black matrix. A small transparent conductive film.
前記硬化樹脂層は、表面にベース平坦部とベース隆起部とを有し、
前記最表面層の平坦部は前記ベース平坦部に起因し、前記隆起部は前記ベース隆起部に起因している請求項1に記載の透明導電性フィルム。
The cured resin layer has a base flat portion and a base raised portion on the surface,
The transparent conductive film according to claim 1, wherein the flat portion of the outermost surface layer is caused by the base flat portion, and the raised portion is caused by the base raised portion.
前記硬化樹脂層は粒子を含み、
前記ベース隆起部は前記粒子に起因して形成されている請求項2に記載の透明導電性フィルム。
The cured resin layer includes particles,
The transparent conductive film according to claim 2, wherein the base raised portion is formed due to the particles.
前記硬化樹脂層のベース平坦部の厚さは、前記粒子の最頻粒子径より小さい請求項3に記載の透明導電性フィルム。   The thickness of the base flat part of the said cured resin layer is a transparent conductive film of Claim 3 smaller than the mode particle diameter of the said particle | grain. 前記硬化樹脂層は前記透明高分子基材と前記透明導電層との間に設けられており、
前記硬化樹脂層と前記透明導電層との間に屈折率調整層をさらに備える請求項1〜4のいずれか1項に記載の透明導電性フィルム。
The cured resin layer is provided between the transparent polymer substrate and the transparent conductive layer,
The transparent conductive film according to any one of claims 1 to 4, further comprising a refractive index adjusting layer between the cured resin layer and the transparent conductive layer.
ヘイズが5%以下である請求項1〜5のいずれか1項に記載の透明導電性フィルム。   Haze is 5% or less, The transparent conductive film of any one of Claims 1-5. 前記透明高分子基材の第1主面側とは反対側の第2主面側に設けられた透明導電層をさらに備える請求項1〜6のいずれか1項に記載の透明導電性フィルム。   The transparent conductive film of any one of Claims 1-6 further equipped with the transparent conductive layer provided in the 2nd main surface side on the opposite side to the 1st main surface side of the said transparent polymer base material. 請求項1〜7のいずれか1項に記載の透明導電性フィルムの長尺シートがロール状に巻回された透明導電性フィルム巻回体。   The transparent conductive film winding body by which the elongate sheet | seat of the transparent conductive film of any one of Claims 1-7 was wound by roll shape. 請求項1〜7のいずれか1項に記載の透明導電性フィルムを備えるタッチパネル。   A touch panel provided with the transparent conductive film of any one of Claims 1-7. 請求項1〜7のいずれか1項に記載の透明導電性フィルムを備える精細度が150ppi以上の表示素子。   A display element having a resolution of 150 ppi or more, comprising the transparent conductive film according to claim 1. 精細度が150ppi以上の表示素子と請求項9に記載のタッチパネルとが積層された画像表示装置。   An image display device in which a display element having a definition of 150 ppi or more and the touch panel according to claim 9 are stacked.
JP2013210770A 2012-10-12 2013-10-08 Transparent conductive film and use thereof Active JP6279280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013210770A JP6279280B2 (en) 2012-10-12 2013-10-08 Transparent conductive film and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012227227 2012-10-12
JP2012227227 2012-10-12
JP2013210770A JP6279280B2 (en) 2012-10-12 2013-10-08 Transparent conductive film and use thereof

Publications (2)

Publication Number Publication Date
JP2014095896A true JP2014095896A (en) 2014-05-22
JP6279280B2 JP6279280B2 (en) 2018-02-14

Family

ID=50454229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013210770A Active JP6279280B2 (en) 2012-10-12 2013-10-08 Transparent conductive film and use thereof

Country Status (5)

Country Link
US (1) US20140106131A1 (en)
JP (1) JP6279280B2 (en)
KR (1) KR101555411B1 (en)
CN (1) CN103730193B (en)
TW (1) TWI533332B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036212A (en) * 2013-08-13 2015-02-23 日油株式会社 Color tone correction film and transparent conductive film using the same
JP2016030374A (en) * 2014-07-28 2016-03-07 日東電工株式会社 Transparent conductive laminate and production method of the same, method for producing transparent conductive film, and method for producing transparent conductive film winding body
WO2017104573A1 (en) * 2015-12-16 2017-06-22 日東電工株式会社 Metal layer–laminated transparent conductive film, and touch sensor using same
KR20170086611A (en) 2014-12-05 2017-07-26 닛토덴코 가부시키가이샤 Transparent electroconductive film and touch sensor in which same is used
WO2022225058A1 (en) * 2021-04-22 2022-10-27 凸版印刷株式会社 Transparent substrate for liquid crystal device, and light adjusting sheet
WO2022225051A1 (en) * 2021-04-22 2022-10-27 凸版印刷株式会社 Transparent substrate for liquid crystal device and light control sheet
WO2024034687A1 (en) * 2022-08-12 2024-02-15 大日本印刷株式会社 Light control member, method for producing light control member, and light control body

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575178B (en) * 2014-08-29 2019-09-13 富士胶片株式会社 Manufacturing method, touch sensor film and the touch screen of touch sensor film
WO2016076322A1 (en) 2014-11-14 2016-05-19 凸版印刷株式会社 Optical film, optical barrier film using same, color conversion film, and backlight unit
KR102207876B1 (en) 2014-11-25 2021-01-26 동우 화인켐 주식회사 Windable optical multilayer film
JP6717295B2 (en) * 2015-03-30 2020-07-01 凸版印刷株式会社 Color conversion film
US10351467B2 (en) * 2015-06-01 2019-07-16 Hakko Sangyo Co., Ltd. Glass lining, method for manufacturing glass lining and method for cleaning glass-lined articles
CN109545437B (en) * 2017-09-22 2021-07-30 南昌欧菲显示科技有限公司 Transparent conductive film, touch screen and preparation method thereof
CN107728372B (en) * 2017-10-31 2020-06-09 武汉华星光电技术有限公司 Display module and manufacturing method thereof
CN110904733B (en) * 2019-12-04 2022-03-01 江苏双冠新材料科技有限公司 Preparation method of matte PET release paper
CN116348284B (en) * 2021-08-06 2024-05-24 日东电工株式会社 Laminate body

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000211065A (en) * 1999-01-20 2000-08-02 Jsr Corp Multilayered film
US6592950B1 (en) * 1998-02-12 2003-07-15 Kimoto Co., Ltd. Anti-Newton ring film
JP2007012484A (en) * 2005-06-30 2007-01-18 Tdk Corp Transparent conductor and panel switch
JP2007103348A (en) * 2005-09-12 2007-04-19 Nitto Denko Corp Transparent conductive film, electrode plate for touch panel, and the touch panel
JP2007148007A (en) * 2005-11-28 2007-06-14 Dainippon Printing Co Ltd Substrate for display device with spacer
JP2007304178A (en) * 2006-05-09 2007-11-22 Dainippon Printing Co Ltd Color filter and its manufacturing method
JP2009003331A (en) * 2007-06-25 2009-01-08 Toppan Printing Co Ltd Glare-proof film
JP2009065102A (en) * 2007-09-10 2009-03-26 Fujimori Kogyo Co Ltd Method of manufacturing optical filter for display, and optical filter for display
US20100136288A1 (en) * 2007-05-09 2010-06-03 Toray Industries, Inc. Conductive substrate, electromagnetic wave shielding substrate for plasma display and method for manufacturing conductive substrate
JP2011173362A (en) * 2010-02-25 2011-09-08 Fujimori Kogyo Co Ltd Mold releasing film excelling in transparency
JP2012119163A (en) * 2010-12-01 2012-06-21 Fujifilm Corp Method of producing conductive sheet, conductive sheet and program

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847690A (en) * 1995-10-24 1998-12-08 Lucent Technologies Inc. Integrated liquid crystal display and digitizer having a black matrix layer adapted for sensing screen touch location
JP3688136B2 (en) * 1998-09-24 2005-08-24 尾池工業株式会社 Transparent conductive film
DE60128508D1 (en) * 2000-03-28 2007-07-05 Toyo Boseki Transparent conductive film, transparent conductive sheet and touch-sensitive panel
JP2003045234A (en) * 2001-07-26 2003-02-14 Dainippon Printing Co Ltd Transparent conductive film
JP4059883B2 (en) * 2002-12-20 2008-03-12 帝人株式会社 Transparent conductive laminate, touch panel, and liquid crystal display with touch panel
WO2005052956A1 (en) * 2003-11-28 2005-06-09 Teijin Limited Transparent conductive laminate and transparent touch panel utilizing the same
JP4123208B2 (en) * 2004-09-03 2008-07-23 セイコーエプソン株式会社 Liquid crystal display device, electronic equipment
KR100954309B1 (en) * 2005-09-12 2010-04-21 닛토덴코 가부시키가이샤 Transparent conductive film, electrode sheet for use in touch panel, and touch panel
US20070291363A1 (en) * 2006-06-19 2007-12-20 Fujifilm Corporation Optical Film
JP4667471B2 (en) * 2007-01-18 2011-04-13 日東電工株式会社 Transparent conductive film, method for producing the same, and touch panel provided with the same
US8304265B2 (en) * 2007-09-19 2012-11-06 Sharp Kabushiki Kaisha Color conversion filter and manufacturing method of the organic EL display
JP4966924B2 (en) * 2008-07-16 2012-07-04 日東電工株式会社 Transparent conductive film, transparent conductive laminate and touch panel, and method for producing transparent conductive film
JP5160325B2 (en) * 2008-07-16 2013-03-13 日東電工株式会社 Transparent conductive film and touch panel
JP5193743B2 (en) * 2008-08-22 2013-05-08 株式会社第一興商 Karaoke device that displays recommended song list and accepts requests
JP2010079098A (en) 2008-09-26 2010-04-08 Fujifilm Corp Hard coat film, polarizing plate and image display apparatus
US20120070614A1 (en) * 2009-05-21 2012-03-22 Hiroshi Takahashi Anti-newton-ring film and touch panel
JP4683164B1 (en) * 2009-11-27 2011-05-11 凸版印刷株式会社 Transparent conductive laminate, method for producing the same, and capacitive touch panel
JP5806620B2 (en) * 2011-03-16 2015-11-10 日東電工株式会社 Transparent conductive film and touch panel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6592950B1 (en) * 1998-02-12 2003-07-15 Kimoto Co., Ltd. Anti-Newton ring film
JP2000211065A (en) * 1999-01-20 2000-08-02 Jsr Corp Multilayered film
JP2007012484A (en) * 2005-06-30 2007-01-18 Tdk Corp Transparent conductor and panel switch
JP2007103348A (en) * 2005-09-12 2007-04-19 Nitto Denko Corp Transparent conductive film, electrode plate for touch panel, and the touch panel
JP2007148007A (en) * 2005-11-28 2007-06-14 Dainippon Printing Co Ltd Substrate for display device with spacer
JP2007304178A (en) * 2006-05-09 2007-11-22 Dainippon Printing Co Ltd Color filter and its manufacturing method
US20100136288A1 (en) * 2007-05-09 2010-06-03 Toray Industries, Inc. Conductive substrate, electromagnetic wave shielding substrate for plasma display and method for manufacturing conductive substrate
JP2009003331A (en) * 2007-06-25 2009-01-08 Toppan Printing Co Ltd Glare-proof film
JP2009065102A (en) * 2007-09-10 2009-03-26 Fujimori Kogyo Co Ltd Method of manufacturing optical filter for display, and optical filter for display
JP2011173362A (en) * 2010-02-25 2011-09-08 Fujimori Kogyo Co Ltd Mold releasing film excelling in transparency
JP2012119163A (en) * 2010-12-01 2012-06-21 Fujifilm Corp Method of producing conductive sheet, conductive sheet and program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036212A (en) * 2013-08-13 2015-02-23 日油株式会社 Color tone correction film and transparent conductive film using the same
JP2016030374A (en) * 2014-07-28 2016-03-07 日東電工株式会社 Transparent conductive laminate and production method of the same, method for producing transparent conductive film, and method for producing transparent conductive film winding body
KR20170086611A (en) 2014-12-05 2017-07-26 닛토덴코 가부시키가이샤 Transparent electroconductive film and touch sensor in which same is used
US10217543B2 (en) 2014-12-05 2019-02-26 Nitto Denko Corporation Transparent electroconductive film and touch sensor in which same is used
WO2017104573A1 (en) * 2015-12-16 2017-06-22 日東電工株式会社 Metal layer–laminated transparent conductive film, and touch sensor using same
WO2022225058A1 (en) * 2021-04-22 2022-10-27 凸版印刷株式会社 Transparent substrate for liquid crystal device, and light adjusting sheet
WO2022225051A1 (en) * 2021-04-22 2022-10-27 凸版印刷株式会社 Transparent substrate for liquid crystal device and light control sheet
WO2024034687A1 (en) * 2022-08-12 2024-02-15 大日本印刷株式会社 Light control member, method for producing light control member, and light control body

Also Published As

Publication number Publication date
KR101555411B1 (en) 2015-09-23
CN103730193B (en) 2016-10-05
CN103730193A (en) 2014-04-16
JP6279280B2 (en) 2018-02-14
TWI533332B (en) 2016-05-11
US20140106131A1 (en) 2014-04-17
TW201428777A (en) 2014-07-16
KR20140047530A (en) 2014-04-22

Similar Documents

Publication Publication Date Title
JP6279280B2 (en) Transparent conductive film and use thereof
JP6328984B2 (en) Double-sided transparent conductive film and touch panel
JP6297846B2 (en) Double-sided transparent conductive film, wound body thereof, and touch panel
JP6199605B2 (en) Hard coat film and hard coat film roll
KR100954309B1 (en) Transparent conductive film, electrode sheet for use in touch panel, and touch panel
KR101488559B1 (en) Transparent conductive film and touch panel
JP5847562B2 (en) Transparent conductive film and touch panel
JP6234798B2 (en) Transparent conductive film and use thereof
JP2013097562A (en) Laminate for capacitive touch panel electrode
JP6858503B2 (en) Transparent conductive film
JP2016177186A (en) Antireflection film, display unit using antireflection film and selection method of antireflection film
JP6458445B2 (en) Transparent conductive laminate, touch panel using the transparent conductive laminate, a method for producing the transparent conductive laminate, and a method for producing a touch panel using the transparent conductive laminate
JP6361462B2 (en) Method for selecting transparent conductive laminate, and method for producing transparent conductive laminate
JP7484098B2 (en) Method for producing conductive film, conductive film, sensor, touch panel, and image display device
JP2016150578A (en) Light transmitting conductive film, method for production thereof and use thereof
KR20150015222A (en) Transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180117

R150 Certificate of patent or registration of utility model

Ref document number: 6279280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250