JP2014095657A - Microwave Doppler detection device - Google Patents

Microwave Doppler detection device Download PDF

Info

Publication number
JP2014095657A
JP2014095657A JP2012248251A JP2012248251A JP2014095657A JP 2014095657 A JP2014095657 A JP 2014095657A JP 2012248251 A JP2012248251 A JP 2012248251A JP 2012248251 A JP2012248251 A JP 2012248251A JP 2014095657 A JP2014095657 A JP 2014095657A
Authority
JP
Japan
Prior art keywords
signal
doppler
product
sensor
rain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012248251A
Other languages
Japanese (ja)
Other versions
JP5996385B2 (en
Inventor
Kazuo Oikawa
和夫 及川
Satoshi Sasaki
理志 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2012248251A priority Critical patent/JP5996385B2/en
Publication of JP2014095657A publication Critical patent/JP2014095657A/en
Application granted granted Critical
Publication of JP5996385B2 publication Critical patent/JP5996385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microwave Doppler detection device which is less affected by rain, water drops, and water film and enables even inexpensive microcomputers or the like to successfully detect moving objects.SOLUTION: A flat cover is installed in parallel with an antenna surface in front of a microwave Doppler sensor. In a sensor circuit section 14, a quadrature detection circuit generates two Doppler signals with a 90-degree phase difference, an I signal and Q signal, which are fed to high-pass filters 15a, 15b to attenuate low frequency components corresponding to movement of rain, water drops, and water film. I-Q signal multiplication/moving average processing is performed on the I and Q signals sampled at a predetermined interval, in which a product of one of the signals, shifted by approximately a quarter of a period of a center frequency of the Doppler signal, and the other signal is obtained and a moving average of the product is computed. The flat cover described above may be replaced by a spherical cover or a cylindrical cover.

Description

本発明はマイクロ波ドップラー検出装置、特に屋外に設置され、直接、雨がかかる可能性のある装置・機器に組み込まれ、ドップラー信号により人等の移動体の接近を検知する検出装置の構成に関する。   The present invention relates to a microwave Doppler detection device, and more particularly to a configuration of a detection device that is installed outdoors and is directly incorporated into a device / apparatus that may be rained, and detects the approach of a moving body such as a person using a Doppler signal.

従来から、マイクロ波を用い、ドップラー効果によって移動体を検知する装置が用いられており、この種の検出装置では、降雨による誤検知を低減すること等の雨の影響の軽減や、環境雑音レベルの変動の影響の軽減に関し、下記の特許文献の技術が提案されている。   Conventionally, devices that use microwaves to detect moving objects using the Doppler effect have been used. With this type of detection device, the effects of rain, such as reducing false detection due to rainfall, and environmental noise levels are reduced. Regarding the mitigation of the influence of fluctuations, the techniques of the following patent documents have been proposed.

特許文献1(特許第4799173号公報)のセキュリティ装置では、雨がドップラーセンサに対し常に遠ざかる方向となるように、このドップラーセンサをプラスチック窓に対し45度の角度を持たせて設置し、また直交ミキサ出力を用いることで、接近と離反を判定し、雨の流れる方向をセンサから離反方向として無視し、接近する人等だけを検知する。
特許文献2(特開2006−71499号公報)のセンシング手段及び接近警告システムでは、ドップラー検出部(電波発信部及び電波受信部)を斜め下方に向けることで、重力によって下方に向けて進行する雨滴や雪粒を検出部から全て遠ざかる方向に進行させ、これを検知対象から排除することにより、雨滴や雪粒により生じる誤検知の発生頻度を低減する。
In the security device of Patent Document 1 (Japanese Patent No. 4799173), the Doppler sensor is installed at an angle of 45 degrees with respect to the plastic window so that rain always moves away from the Doppler sensor. By using the mixer output, the approach and separation are determined, the direction in which the rain flows is ignored as the separation direction from the sensor, and only the approaching person is detected.
In the sensing means and approach warning system disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2006-71499), raindrops traveling downward by gravity are caused by directing the Doppler detector (radio wave transmitter and radio wave receiver) obliquely downward. And by moving all the snow particles away from the detection unit and excluding them from the detection target, the frequency of occurrence of false detection caused by raindrops or snow particles is reduced.

また、特許文献3(特開2006−275885号公報)の障害物検知センサでは、ドップラー信号を出力周波数毎に異なる増幅率で伝達し、状況に応じて、適切に感度を調節しながら、障害物の有無を検知する。   Moreover, in the obstacle detection sensor of patent document 3 (Unexamined-Japanese-Patent No. 2006-275858), a Doppler signal is transmitted with a different amplification factor for every output frequency, and an obstacle is adjusted appropriately adjusting a sensitivity according to the situation. The presence or absence of is detected.

特許第4799173号公報Japanese Patent No. 4799173 特開2006−71499号公報JP 2006-71499 A 特開2006−275885号公報JP 2006-275895 A

しかしながら、従来のドップラー検出装置では、降雨等によって窓(保護カバー)に水滴が集まって流れる雫や水膜ができると、この雫や水膜の流れによって良好な移動体検知ができないという問題があった。例えば、自動販売機等の装置で人(購入者)等をマイクロ波ドップラーセンサで検知する場合、その検知範囲が狭く、人体等で反射される電波が比較的大きいため、ドップラーセンサ及びそれを組み込んだ装置に雨が直接かからなければ、降雨等の影響はあまり問題とはならない。しかし、雨が直接、装置にかかり、マイクロ波を放射するためのプラスチック製の窓(保護カバー)や筐体等に水滴、水膜ができるときは、それによって反射される電波が非常に大きくなり、センサ出力を増幅するアンプが飽和することで、検知状態が持続してしまうという問題が発生する。   However, the conventional Doppler detection device has a problem in that if a raindrop or the like causes water droplets to collect and flow in the window (protective cover), a good moving body cannot be detected due to the flow of the raindrops or water film. It was. For example, when a person (purchaser) or the like is detected by a microwave Doppler sensor using a device such as a vending machine, the detection range is narrow and the radio wave reflected by the human body is relatively large. If the device is not directly exposed to rain, the effects of rain will not be a problem. However, when rain is directly applied to the device and water droplets or water films are formed on the plastic window (protective cover) or case for radiating microwaves, the radio wave reflected by the water becomes very large. When the amplifier that amplifies the sensor output is saturated, a problem that the detection state is sustained occurs.

また、上述した特許文献1及び2では、角度を持ってセンサを斜めに配置し、雨を離反として接近する人等を見分けようとするが、雫や水膜による雑音レベルは大きく、またプラスチック製窓にセンサを斜めに配置することで、マイクロ波の大半が反射されてしまい、人等の検知が良好にできないという問題がある。   Further, in Patent Documents 1 and 2 described above, sensors are arranged obliquely at an angle to try to distinguish people approaching with rain as a separation, but the noise level due to drought and water film is large, and plastic is also used. By arranging the sensors diagonally in the window, most of the microwaves are reflected, and there is a problem that it is difficult to detect people and the like.

本発明は上記問題点に鑑みてなされたものであり、その目的は、雨、雫や水膜の影響を軽減し、安価なマイコン等でも移動体の検知を良好に行うことができるマイクロ波ドップラー検出装置を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to reduce the influence of rain, hail and water film, and to detect a moving object satisfactorily even with an inexpensive microcomputer or the like. It is to provide a detection device.

上記目的を達成するために、請求項1の発明に係るマイクロ波ドップラー検出装置は、アンテナ面を有し、移動体を検知するためのマイクロ波ドップラーセンサと、このドップラーセンサの前方に配置され、上記アンテナ面に平行な略平面又は少なくとも垂直方向で上記アンテナ面から略同一距離に形成された曲面を有する保護カバー(検出窓)と、90度位相の異なる2つのドップラー信号を出力するための直交検波回路と、この直交検波回路の出力を入力し、雨、雫、水膜の動きに対応する低い周波数を減衰させるハイパスフィルタと、このハイパスフィルタの出力を増幅するアンプと、を有してなることを特徴とする。
請求項2の発明は、上記ハイパスフィルタの出力に基づき、90度位相の異なる2つのI,Q信号を所定の間隔でサンプリングし、これらI信号又はQ信号のいずれかをドップラー信号の中心周波数において略1/4周期ずらした信号ともう一方の信号の積を求め、かつこの積の移動平均を算出するIQ信号積/移動平均処理を実行し、このIQ信号積/移動平均処理によって移動体の検知を行うことを特徴とする。
請求項3の発明は、上記ハイパスフィルタのフィルタ特性を可変とし、上記ドップラーセンサの出力に基づき検知状態が所定の時間(期間)以上継続したとき、このハイパスフィルタの低域カットオフ周波数を高く設定するように制御することを特徴とする。
In order to achieve the above object, a microwave Doppler detection device according to the invention of claim 1 has an antenna surface and is disposed in front of the microwave Doppler sensor for detecting a moving object, A protective cover (detection window) having a substantially flat surface parallel to the antenna surface or a curved surface formed at substantially the same distance from the antenna surface in at least a vertical direction, and orthogonal to output two Doppler signals having a phase difference of 90 degrees A detection circuit; a high-pass filter that inputs an output of the quadrature detection circuit and attenuates a low frequency corresponding to the movement of rain, hail, and water film; and an amplifier that amplifies the output of the high-pass filter. It is characterized by that.
According to a second aspect of the present invention, two I and Q signals having a phase difference of 90 degrees are sampled at a predetermined interval based on the output of the high-pass filter, and either the I signal or the Q signal is sampled at the center frequency of the Doppler signal. An IQ signal product / moving average process for obtaining a product of a signal shifted by approximately ¼ period and the other signal and calculating a moving average of the product is executed, and the IQ signal product / moving average process is performed by the IQ signal product / moving average process. It is characterized by detecting.
According to a third aspect of the present invention, the filter characteristic of the high-pass filter is variable, and when the detection state continues for a predetermined time (period) or more based on the output of the Doppler sensor, the low-pass cutoff frequency of the high-pass filter is set high. It controls to do.

請求項4の発明は、上記ドップラーセンサの出力に基づき検知状態が所定の時間以上継続したとき、上記IQ信号積/移動平均処理を実行するように制御することを特徴とする。
請求項5の発明は、上記保護カバーを、球面状又は円筒面状の形状としたことを特徴とする。
請求項6の発明は、上記保護カバーの上方に、水よけのひさし(屋根)を設けたことを特徴とする。
According to a fourth aspect of the present invention, when the detection state continues for a predetermined time or more based on the output of the Doppler sensor, the IQ signal product / moving average process is controlled to be executed.
The invention according to claim 5 is characterized in that the protective cover has a spherical or cylindrical shape.
The invention of claim 6 is characterized in that a water eaves (roof) is provided above the protective cover.

上記の構成によれば、保護カバー(検出窓)をドップラーセンサのアンテナ面に平行な平面又は少なくとも垂直方向でセンサから略同一距離に形成された曲面(例えば球面状又は円筒面状)としたので、雨等により形成される雫(水滴)、水膜においては、センサに対するマイクロ波伝搬方向と直角方向に流れる成分が主となる。これにより、水の流れによるセンサ出力は、周波数が0Hz付近に偏り、近接と離反が同時に存在するため方向性を持たないランダム雑音として検知される。そして、このセンサ出力は低周波側が急峻に減衰するハイパスフィルタを通過させた後、増幅することで、雨、雫、水膜による雑音成分の大半が除去されるので、アンプ(増幅器)の飽和が防止される。   According to the above configuration, the protective cover (detection window) is a plane parallel to the antenna surface of the Doppler sensor or a curved surface (for example, a spherical surface or a cylindrical surface) formed at substantially the same distance from the sensor in at least the vertical direction. In the soot (water droplets) and water film formed by rain or the like, the component that flows in the direction perpendicular to the microwave propagation direction with respect to the sensor is mainly used. As a result, the sensor output due to the flow of water is detected as random noise having no directivity because the frequency is biased near 0 Hz and proximity and separation exist simultaneously. This sensor output is amplified after passing through a high-pass filter that sharply attenuates on the low frequency side, so that most of the noise components due to rain, hail, and water film are removed. Is prevented.

請求項2の構成によれば、直交検波回路から得られたI,Q信号につき、ドップラー信号の中心周波数におけるIQ信号積/移動平均処理が実行されることで、移動体の動きを良好に検知することができる。即ち、請求項1のようなセンサと保護カバーの構成の場合、水の流れによるI,Q信号は、信号間に相関のないランダム雑音として検出されるが、一方の人の動きによるドップラー信号(I,Q信号)は、位相が90度異なった相関のある信号として観測される。このI又はQ信号のいずれかをドップラー信号の中心周波数において略1/4周期ずらした信号ともう一方の信号との積は、I,Q信号間に相関があり、約90度の位相差がある信号の場合、図4(B),(C)に示すように、位相をずらす方向によりプラス又はマイナスの値だけとなるため、移動平均を求めることで、プラス又はマイナスの値が得られるが、ランダム雑音で相関がない場合は、一方をずらして積をとってもその結果はプラスとマイナスがランダムに含まれるため、移動平均は0に近い値となる。このような処理によって、雨、雫や水膜等による雑音は低減し、人の動きが良好な感度で検知される。   According to the configuration of the second aspect, the IQ signal product / moving average processing at the center frequency of the Doppler signal is executed on the I and Q signals obtained from the quadrature detection circuit, so that the movement of the moving body can be detected well. can do. That is, in the case of the configuration of the sensor and the protective cover as in claim 1, the I and Q signals due to the flow of water are detected as random noise having no correlation between the signals, but the Doppler signal ( I, Q signals) are observed as correlated signals having phases different by 90 degrees. The product of the signal obtained by shifting either the I or Q signal by approximately ¼ period at the center frequency of the Doppler signal and the other signal has a correlation between the I and Q signals, and there is a phase difference of about 90 degrees. In the case of a certain signal, as shown in FIGS. 4B and 4C, only a positive or negative value is obtained depending on the direction of shifting the phase. Therefore, a positive or negative value can be obtained by obtaining a moving average. When there is no correlation due to random noise, even if the product is shifted by shifting one of the results, plus and minus are included at random, and the moving average becomes a value close to zero. By such processing, noise due to rain, hail, water film, etc. is reduced, and human movement is detected with good sensitivity.

上記の1/4周期をずらす操作は、サンプリングがドップラー信号の中心周波数において1/8周期以下の時間間隔で行われている場合には、I,Q信号の一方を略1/4周期前にサンプリングされたデータを用い、もう一方のデータとの積をとることで行えるため、メモリの少ないマイコン等でも容易に実現することができる。   When the sampling is performed at a time interval of 1/8 period or less at the center frequency of the Doppler signal, one of the I and Q signals is moved approximately 1/4 period before the operation for shifting the 1/4 period. Since it can be performed by using the sampled data and taking the product with the other data, it can be easily realized even with a microcomputer having a small memory.

請求項3、4の構成によれば、検知が継続する状態のとき(降雨状態等が判定されるとき)に、ハイパスフィルタの低域カットオフ周波数を高くしたり、IQ信号積/移動平均処理を実行したりすることで、雑音を低減し安定した検知が可能となる。   According to the configuration of claims 3 and 4, when the detection is in a continuous state (when a rainy state or the like is determined), the low-pass cutoff frequency of the high-pass filter is increased, or IQ signal product / moving average processing is performed. By performing the above, it is possible to reduce noise and perform stable detection.

また、特に、保護カバーを例えば半球面状又は半円筒面状とし、少なくとも垂直方向でセンサから略同一距離に配置した場合は、保護カバーの表面を流れる水は常にセンサからの距離が変わらないので、平面の保護カバーに比べると、水の流れによる信号成分が低周波側に集中することになる。従って、ハイパスフィルタによる雫、水膜成分(雑音成分)の除去効果が高くなる。   In particular, when the protective cover has a hemispherical shape or a semicylindrical shape and is disposed at substantially the same distance from the sensor at least in the vertical direction, the water flowing on the surface of the protective cover does not always change the distance from the sensor. Compared with a flat protective cover, signal components due to the flow of water are concentrated on the low frequency side. Therefore, the effect of removing soot and water film components (noise components) by the high-pass filter is enhanced.

本発明のマイクロ波ドップラー検出装置によれば、降雨による雫や水膜の影響を軽減すると共に、センサを保護カバーに対し斜めに配置する場合に比べてマイクロ波の反射も少なくなり、移動体の検知を良好に行うことができる。従って、自動販売機等の各種装置では、購入者、使用者等が近づいた時に、表示灯、電灯を点灯させる等、必要な動作を実行することで、省エネ等を図ることが可能となり、また検知演算に安価なマイコン等を使用することができ、コストの低減を図ることも可能となる。   According to the microwave Doppler detection device of the present invention, the influence of raindrops and water films can be reduced, and the reflection of microwaves can be reduced compared to the case where the sensor is arranged obliquely with respect to the protective cover. Detection can be performed satisfactorily. Therefore, in various devices such as vending machines, it is possible to save energy by performing necessary operations such as turning on the indicator lamp and electric light when the purchaser, user, etc. approach. An inexpensive microcomputer or the like can be used for the detection calculation, and the cost can be reduced.

本発明の実施例に係るマイクロ波ドップラー検出装置の信号処理回路を示すブロック図である。It is a block diagram which shows the signal processing circuit of the microwave Doppler detection apparatus which concerns on the Example of this invention. 実施例のドップラー検出装置の設置例(自動販売機等)を示す側面図(断面ハッチ省略)である。It is a side view (section hatch abbreviation) showing the example of installation (the vending machine etc.) of the Doppler detection device of an example. 実施例における移動体の入射角とドップラー周波数の関係を説明するための図である。It is a figure for demonstrating the relationship between the incident angle of the mobile body in an Example, and a Doppler frequency. 実施例におけるIQ信号の一方を1/4周期ずらした信号ともう一方の信号の積を相関のある信号とランダム信号で説明するための波形図である。It is a wave form diagram for demonstrating the product of the signal which shifted one quarter of IQ signal in an Example by 1/4 period, and the other signal with a correlated signal and a random signal. 実施例のセンサ回路部で得られるドップラー信号を示し、図(A)は実施例の構成図、図(B)は直交検波回路からの出力(IQ信号)波形図、図(C)は周波数成分の図である。The Doppler signal obtained in the sensor circuit unit of the embodiment is shown. FIG. (A) is a configuration diagram of the embodiment, FIG. (B) is a waveform diagram of an output (IQ signal) from the quadrature detection circuit, and FIG. FIG. センサが45度の角度で配置された場合に得られるドップラー信号を示し、図(A)はその構成図、図(B)は直交検波回路からの出力(IQ信号)波形図、図(C)は周波数成分の図である。The Doppler signal obtained when the sensor is arranged at an angle of 45 degrees is shown. FIG. (A) is a configuration diagram thereof, FIG. (B) is a waveform diagram of an output (IQ signal) from the quadrature detection circuit, and FIG. Is a diagram of frequency components. 実施例のハイパスフィルタを通過させたときの出力(IQ信号)波形図[図(A)]と、その周波数成分を示す図[図(B)]である。FIG. 3 is an output (IQ signal) waveform diagram [FIG. (A)] when passing through the high-pass filter of the embodiment, and a diagram (FIG. (B)) showing frequency components thereof. 実施例の直交検波回路からの出力(IQ信号)を示し、図(A)は人の動きによるドップラー波形図、図(B)は雨、雫、水膜による波形図である。The output (IQ signal) from the quadrature detection circuit of the embodiment is shown, FIG. (A) is a Doppler waveform diagram due to human movement, and FIG. (B) is a waveform diagram due to rain, hail and water film. 実施例において、雨、雫、水膜の雑音と同時に人の動きが検知された場合のセンサ回路部からの出力(IQ信号)波形図[図(A)]と、このセンサ回路部出力に対し信号処理を施した後の波形図[図(B)]である。In the embodiment, an output (IQ signal) waveform diagram [FIG. (A)] from the case where a human movement is detected simultaneously with rain, hail and water film noise, It is a wave form diagram [figure (B)] after performing signal processing. 実施例のマイクロ波ドップラー検出装置で保護カバーを球面状としたときの構成を示し、図(A)は側面図(断面ハッチ省略)、図(B)は正面図である。The structure when a protective cover is made into spherical shape by the microwave Doppler detection apparatus of an Example is shown, A figure (A) is a side view (a cross-sectional hatch is abbreviate | omitted), and a figure (B) is a front view. 実施例のマイクロ波ドップラー検出装置で保護カバーを円筒面状としたときの構成を示し、図(A)は側面図(断面ハッチ省略)、図(B)は正面図である。The structure when a protective cover is made into a cylindrical surface shape by the microwave Doppler detection apparatus of an Example is shown, A figure (A) is a side view (a cross-sectional hatch is abbreviate | omitted), and a figure (B) is a front view. 実施例の保護カバーを平面にした場合と球面状/円筒状にした場合で、雨、雫、水膜により生じる雑音の周波数成分を示すグラフ図である。It is a graph which shows the frequency component of the noise produced by rain, hail, and a water film in the case where the protective cover of the embodiment is flat and in the case of a spherical / cylindrical shape. 実施例のマイクロ波ドップラー検出装置でひさしを設けたときの構成を示し、図(A)は側面図(断面ハッチ省略)、図(B)は正面図である。The structure when an eaves is provided in the microwave Doppler detection apparatus of an Example is shown, A figure (A) is a side view (a cross-sectional hatch is abbreviate | omitted), and a figure (B) is a front view.

図1及び図2には、本発明の実施例に係るマイクロ波ドップラー検出装置の構成が示されており、図2は、自動販売機等に取り付けられた例である。図2に示されるように、自動販売機10の前面に、電波を透過させるプラスチック製等の平面カバー(保護カバー、平面板)11が設けられ、この平面カバー11の内側に、ドップラーセンサ12が取り付けられており、このドップラーセンサ12の前面のアンテナ面(検出面)12Aは、平面カバー11に平行となるように配置される。   1 and 2 show a configuration of a microwave Doppler detection device according to an embodiment of the present invention, and FIG. 2 shows an example attached to a vending machine or the like. As shown in FIG. 2, a flat cover (protective cover, flat plate) 11 made of plastic or the like that transmits radio waves is provided on the front surface of the vending machine 10, and a Doppler sensor 12 is provided inside the flat cover 11. The antenna surface (detection surface) 12 </ b> A on the front surface of the Doppler sensor 12 is disposed so as to be parallel to the flat cover 11.

図1には、実施例の信号処理回路が示されており、図1のセンサ回路部14は、上記ドップラーセンサ12を含むと共に、直交検波(ミキサ)回路等を備えることにより、センサ12で受信した信号から90度位相の異なるI信号とQ信号を出力する。このセンサ回路部14の後段に、2つのIQ信号出力に対応して、雨、雫や水膜の動きに対応する低い周波数を減衰させるハイパスフィルタ(HPF)15a,15bが設けられており、実施例のハイパスフィルタ15a,15bは、低域カットオフ周波数を例えば50Hz程度に設定している。このハイパスフィルタ15a,15bには、アンプ(増幅器)16a,16b、AD(アナログ/デジタル)変換器17a,17b、そしてメモリを持つマイコン18が接続される。   FIG. 1 shows a signal processing circuit of the embodiment. The sensor circuit unit 14 of FIG. 1 includes the Doppler sensor 12 and includes a quadrature detection (mixer) circuit and the like, so that the sensor 12 receives the signal. The I signal and the Q signal having a phase difference of 90 degrees are output from the obtained signal. High-pass filters (HPF) 15a and 15b for attenuating low frequencies corresponding to the movement of rain, hail, and water film are provided at the subsequent stage of the sensor circuit unit 14 in response to two IQ signal outputs. In the example high-pass filters 15a and 15b, the low-frequency cut-off frequency is set to about 50 Hz, for example. The high-pass filters 15a and 15b are connected to amplifiers (amplifiers) 16a and 16b, AD (analog / digital) converters 17a and 17b, and a microcomputer 18 having a memory.

即ち、上記アンプ16a,16bでは、雫や水膜等の動きに対応する低周波域を除去したIQ信号を増幅し、上記AD変換器17a,17bでは、増幅後のIQ信号を例えばドップラー信号中心周波数の1/8周期以下のサンプリング時間でサンプリングし、マイコン18では、サンプリングしたIQ信号のそれぞれにつき、ドップラー信号中心周波数の略1/4周期に相当する時間毎の複数の(時系列)データを所定時間分だけ、データ列としてメモリに記憶し、このIQ信号の各データ列に基づいてIQ信号積/移動平均処理を実行する。   That is, the amplifiers 16a and 16b amplify the IQ signal from which the low-frequency region corresponding to the movement of the ridge or water film is removed, and the AD converters 17a and 17b convert the amplified IQ signal to, for example, the center of the Doppler signal. Sampling is performed at a sampling time of 1/8 cycle or less of the frequency, and the microcomputer 18 obtains a plurality of (time series) data for each time corresponding to approximately 1/4 cycle of the Doppler signal center frequency for each sampled IQ signal. The data is stored in the memory as a data string for a predetermined time, and the IQ signal product / moving average process is executed based on each data string of the IQ signal.

実施例は以上の構成からなり、ドップラーセンサ12のアンテナ面(検出面)12Aを平面カバー11に平行に配置することで、このカバー11の表面を流れる雨、雫や水膜はセンサアンテナ面12Aに対して略平行に流れるため、この雨、雫、水膜の流れは、センサ12より上側では(センサ12に対して)近接する方向、センサ12より下側では離反する方向となる。   The embodiment is configured as described above, and the antenna surface (detection surface) 12A of the Doppler sensor 12 is arranged in parallel to the flat cover 11, so that rain, hail and water film flowing on the surface of the cover 11 are the sensor antenna surface 12A. Therefore, the rain, hail, and water film flow in a direction closer to the sensor 12 (to the sensor 12) and a direction away from the sensor 12.

図3には、センサと移動体の動きとの関係が示されており、図示されるように、センサ12のドップラー出力周波数fdは、移動体50の速度vとセンサ12に対する移動体の角度αから、次の数式1で表される。
[数1]
fd = 2・f(v/C)・cosα
ここで、Cは光速、fはドップラーセンサ12の送信周波数である。
上記のようにアンテナ面12Aに平行に水が流れる場合は、角度αが90度に近いためドップラー出力の周波数成分は低い周波数側に集中する。
FIG. 3 shows the relationship between the sensor and the movement of the moving body. As shown, the Doppler output frequency fd of the sensor 12 is the speed v of the moving body 50 and the angle α of the moving body with respect to the sensor 12. From the above, it is expressed by the following formula 1.
[Equation 1]
fd = 2 · f 0 (v / C 0 ) · cos α
Here, C 0 is the speed of light, and f 0 is the transmission frequency of the Doppler sensor 12.
As described above, when water flows parallel to the antenna surface 12A, the frequency component of the Doppler output is concentrated on the lower frequency side because the angle α is close to 90 degrees.

図5には、アンテナ面12Aと平面カバー11(水の流れ)が平行の場合[図(A)]のドップラー信号出力波形[図(B)]とその周波数成分[図(C)]が示され、図6には、アンテナ面12Aと平面カバー11の角度が45度の場合[図(A)]のドップラー信号出力波形[図(B)]とその周波数成分[図(C)]が示されており、図5(C)と図6(C)を比較すると、アンテナ面12Aと平面カバー11が平行、即ち水の流れが平行の場合の方が、周波数成分はより低い周波数に集中していることが分かる。   FIG. 5 shows the Doppler signal output waveform [figure (B)] and its frequency component [figure (C)] of [figure (A)] when the antenna surface 12A and the flat cover 11 (flow of water) are parallel. FIG. 6 shows the Doppler signal output waveform [FIG. (B)] and its frequency component [FIG. (C)] when the angle between the antenna surface 12A and the flat cover 11 is 45 degrees [FIG. (A)]. 5C and FIG. 6C, when the antenna surface 12A and the flat cover 11 are parallel, that is, when the water flow is parallel, the frequency components are concentrated at a lower frequency. I understand that

そこで、実施例では、ハイパスフィルタ15a,15bを設け、上記ドップラー信号の低周波成分を除去しており、これによって、雨、雫や水膜による雑音成分が大幅に減衰し、後段のアンプ16a,16bの飽和も防ぐことができる。
図7には、センサ回路部14から出力された信号[図5(B)の信号]をハイパスフィルタ15a,15b(例えばカットオフ周波数80Hz)を通過させた信号波形[図(A)]とその周波数成分[図(B)]が示されており、ハイパスフィルタ15a,15bを通すことで、図7(B)のように、低周波域側が減衰する結果となる。
Therefore, in the embodiment, high-pass filters 15a and 15b are provided to remove the low-frequency components of the Doppler signal, whereby noise components due to rain, hail and water film are greatly attenuated, and the amplifiers 16a, 16a, Saturation of 16b can also be prevented.
FIG. 7 shows a signal waveform [FIG. (A)] obtained by passing the signal [signal of FIG. 5 (B)] output from the sensor circuit section 14 through high-pass filters 15a and 15b (for example, a cut-off frequency of 80 Hz) and its The frequency component [FIG. (B)] is shown. By passing through the high-pass filters 15a and 15b, the low frequency region side is attenuated as shown in FIG. 7 (B).

次に、実施例では、上記ハイパスフィルタ15a,15bを介してアンプ16a,16bから出力されたIQ信号につき、IQ信号積/移動平均処理が施される。即ち、上記のハイパスフィルタ15a,15bを用いることで、水の流れにより雑音をある程度減衰できるが、例えば24GHzのセンサ12を用いた場合、時速2kmで近づいて来た人の動きによるドップラー周波数は、約80Hzとなるため、雨、雫や水膜による雑音をフィルタで完全に消すことはできない。また、マイクロ波は雨、雫や水膜で減衰されるため人の動きのドップラー信号は検知レベルも小さくなり、雨が強い場合には結果として人の動きの信号が雨の影響による雑音に埋もれてしまい、検知のための閾値が設定できなくなる。そこで、実施例では、IQ信号積/移動平均処理を実行し、強い雨、雫や水膜の影響を良好に軽減し、人の動きによる検知をし易くしている。   Next, in the embodiment, IQ signal product / moving average processing is performed on the IQ signals output from the amplifiers 16a and 16b via the high-pass filters 15a and 15b. That is, by using the high-pass filters 15a and 15b, the noise can be attenuated to some extent by the flow of water. For example, when the sensor 12 of 24 GHz is used, the Doppler frequency due to the movement of the person approaching at 2 km / h is Since the frequency is about 80 Hz, noise due to rain, hail and water film cannot be completely eliminated by a filter. Also, since microwaves are attenuated by rain, hail and water film, the human motion Doppler signal has a low detection level, and when rain is strong, the human motion signal is buried in the noise caused by rain. As a result, the threshold for detection cannot be set. Therefore, in the embodiment, IQ signal product / moving average processing is executed to favorably reduce the influence of heavy rain, hail and water film, and to easily detect by human movement.

図8には、人の動きによるドップラー信号(IQ信号)波形[図(A)]と、雨、雫や水膜によるIQ信号波形[図(B)]を比較したものが示されており、この波形図から明らかなように、人の動きに対するドップラー信号波形は、Q信号がI信号に対し90度の位相遅れを示しているが、I,Q信号で相似の形となっている。これに対し、雨、雫や水膜による出力は、I,Q信号間に相関性のないランダムな波形となる。このことを利用し、雨の影響を軽減し、人の動きを検知しやすいような処理を行う。   FIG. 8 shows a comparison between a Doppler signal (IQ signal) waveform [Figure (A)] due to human movement and an IQ signal waveform [Figure (B)] due to rain, hail or water film, As is apparent from this waveform diagram, the Doppler signal waveform with respect to the movement of the person shows a phase lag of 90 degrees with respect to the I signal, but the I and Q signals have similar shapes. On the other hand, the output by rain, hail or water film has a random waveform with no correlation between the I and Q signals. Utilizing this fact, processing that reduces the effects of rain and makes it easier to detect human movements is performed.

実施例では、I信号とQ信号の間の位相差が90度であることと、人の動きの速度範囲があまり広くないことに着目し、上記ハイパスフィルタ15a,15bによって低周波側の信号を減衰させ、ドップラー周波数の範囲を制限した上で、効率的にIQ信号積/移動平均処理を行っている。   In the embodiment, paying attention to the fact that the phase difference between the I signal and the Q signal is 90 degrees and the speed range of human movement is not so wide, the high-pass filters 15a and 15b are used to convert the low frequency side signal. The IQ signal product / moving average processing is efficiently performed after attenuation and limiting the range of the Doppler frequency.

まず、上記アンプ16a,16bからのI,Q信号出力の各々がAD変換器17a,17bへ入力され、ドップラー中心周波数(fd0)の例えば1/8周期以下のサンプリング時間でサンプリングされる。人の動きのドップラー周波数は、ある範囲に限定できるので、サンプリング時間は取得したいドップラー周波数の中心周波数で、1/8周期より短い間隔とすることが好ましい。 First, each of the I and Q signal outputs from the amplifiers 16a and 16b is input to the AD converters 17a and 17b, and is sampled with a sampling time of, for example, 1/8 period or less of the Doppler center frequency (f d0 ). Since the Doppler frequency of human movement can be limited to a certain range, the sampling time is preferably the center frequency of the Doppler frequency to be acquired, and an interval shorter than 1/8 period.

次に、AD変換されたデジタルデータが所定の時間分、マイコン18のメモリに保存され、IQ信号の一方の信号の現時点からドップラー中心周波数(fd0)の1/4周期に相当する時間分前に取得されデータ(例えばIデータ)と、他方の信号の現時点のデータ(例えばQデータ)との積の値を時系列で求め、これをデータ列(複数の積データ)としてメモリに保存する。そして、上記データ列において現在の時刻から一定時間前までのデータの平均値(移動平均値)を計算し、これを検知データとする。この結果、IQ信号に相関性のない雨、雫や水膜の雑音成分が低減され、相関性のある人(移動体)のドップラー信号が抽出される。 Next, the AD-converted digital data is stored in the memory of the microcomputer 18 for a predetermined time, and the time corresponding to ¼ period of the Doppler center frequency (f d0 ) from the current time of one of the IQ signals. Are obtained in time series, and stored in a memory as a data string (a plurality of product data). Then, an average value (moving average value) of data from the current time to a certain time before in the data string is calculated and used as detection data. As a result, noise components of rain, hail, and water film that are not correlated with the IQ signal are reduced, and a Doppler signal of a correlated person (moving body) is extracted.

図4(A)には、90度位相差のあるI信号とQ信号の波形とその現時点での値同士の積の波形が示されており、この積の値はプラスとマイナスが交互に存在するため、このまま移動平均をとると値は0に近くなってしまう。図4(B),(C)には、I信号或いはQ信号のいずれか一方の略1/4周期前の時間に相当する信号と、もう一方の現在時刻の信号との積の波形が示される。I信号とQ信号のいずれを1/4周期前に相当する時間の信号として用いるかで、図4(B),(C)のように、積の値はプラス側かマイナス側のいずれかの値だけになる。そのため、この値の移動平均はプラスかマイナスのある大きさの値となる。   FIG. 4A shows the waveform of the product of the waveforms of the I signal and the Q signal having a phase difference of 90 degrees and their current values. The product values are alternately positive and negative. Therefore, if the moving average is taken as it is, the value becomes close to zero. 4B and 4C show the waveform of the product of the signal corresponding to the time approximately ¼ period before either the I signal or the Q signal and the signal at the other current time. It is. Which of the I signal and the Q signal is used as a signal corresponding to the time before ¼ period, the product value is either the positive side or the negative side as shown in FIGS. Only the value. Therefore, the moving average of this value is a positive or negative value.

一方、図4(D)に示すようなランダム雑音の場合は、I信号またはQ信号のいずれかを1/4周期前の時間を用いてもう一方の現在時刻との積を求めても、相関性がないため積の結果はプラスとマイナスの値がランダムに現れる。この結果を移動平均した場合は0に近い値となるため、本実施例の処理で雨、雫や水膜のランダム雑音成分を減衰し、人の動きのようなI信号、Q信号に相関のある信号のみが抽出される。なお、人が近づく場合と遠ざかる場合でI信号、Q信号の位相は180度異なるため、この処理では積の結果のプラスとマイナスが反転する。このことから、人が近づいているか、遠ざかっているかの判定も同時に可能となる。   On the other hand, in the case of random noise as shown in FIG. 4D, even if the product of the I signal or the Q signal and the other current time is obtained by using the time before ¼ period, the correlation is obtained. Because there is no sex, positive and negative values appear randomly in the product result. When this result is a moving average, it becomes a value close to 0. Therefore, the random noise component of rain, hail, and water film is attenuated by the processing of this embodiment, and the correlation between the I signal and the Q signal such as human movement is obtained. Only certain signals are extracted. Since the phases of the I signal and the Q signal differ by 180 degrees when a person approaches and moves away, the positive and negative results of the product are inverted in this process. This makes it possible to determine whether a person is approaching or moving away.

図9には、平面カバー11に雨、雫や水膜が流れている状態で、接近した後、離反していく人の動きを測定した場合のハイパスフィルタ15a,15bの出力波形[図(A)]と、IQ信号積/移動平均の信号処理を施した場合の出力[図(B)]が示されており、図示されるように、信号処理を施すことで、雨、雫や水膜の雑音に埋もれた人の動き(接近及び離反)を明瞭に識別することが可能となる。   FIG. 9 shows the output waveforms of the high-pass filters 15a and 15b when the movement of a person who moves away from the plane cover 11 in the state where rain, raindrops, and a water film are flowing is measured. )] And the output [Fig. (B)] when the IQ signal product / moving average signal processing is performed. As shown in FIG. It is possible to clearly identify the movement (approach and separation) of a person buried in the noise.

また、上述したハイパスフィルタ15a,15bにて除去される周波数と、IQ信号積/移動平均処理は、降雨状態、検知状態で変えるようにしてもよい。即ち、上記ハイパスフィルタ15a,15bのフィルタ特性を可変とし、かつ図1に示されるように、ハイパスフィルタ15a,15bの低域カットオフ周波数を変化させるためのフィルタ制御信号をマイコン18から出力するように構成し、降雨状態が判定されるとき、このハイパスフィルタの低域カットオフ周波数を高い方へ設定する。   Further, the frequency removed by the high-pass filters 15a and 15b and the IQ signal product / moving average process may be changed depending on the rainfall state and the detection state. That is, the filter characteristics of the high-pass filters 15a and 15b are variable, and the filter control signal for changing the low-frequency cutoff frequency of the high-pass filters 15a and 15b is output from the microcomputer 18 as shown in FIG. When the rain condition is determined, the low-pass cut-off frequency of the high-pass filter is set higher.

例えば、ハイパスフィルタ15a,15bのカットオフ周波数を比較的低い周波数faに設定したとき、検知状態が所定時間以上継続する場合に、降雨状態であると判定し、ハイパスフィルタ15a,15bのカットオフ周波数をfaよりも高い周波数fbに設定するようなアルゴリズムを用いることで、降雨状態のときは、雨、雫や水膜の影響を除去した検知が実行され、降雨状態でないときは、人等の本来の移動体を良好な感度で検知される。   For example, when the cut-off frequency of the high-pass filters 15a and 15b is set to a relatively low frequency fa, if the detection state continues for a predetermined time or longer, it is determined that the rain state is present, and the cut-off frequency of the high-pass filters 15a and 15b. By using an algorithm that sets the frequency fb to be higher than fa, detection is performed in the rainy state to remove the influence of rain, hail and water film, and when it is not raining, Can be detected with good sensitivity.

また、上述したIQ信号積/移動平均処理は、演算量が少なく安価なマイコン等で実行可能であるが、この演算を行うことで、マイコンの消費電流は増え、人等の検知に対する反応時間も移動平均処理により長くなる。このような不都合を避けるため、初期状態では上記信号処理を行わず、検知状態が一定時間以上継続した場合に、IQ信号積/移動平均処理を行うようなアルゴリズムを用いてもよい。なお、以上の処置を適用しても、集中豪雨などの場合の誤検知発生は完全には回避できないことから、上記の対応をしても、所定の検知が一定時間以上継続する場合は、検知出力を停止するようにしてもよい。   In addition, the IQ signal product / moving average processing described above can be executed by a low-cost microcomputer or the like with a small amount of calculation. However, by performing this calculation, the current consumption of the microcomputer increases and the reaction time for detection of a person or the like also increases. Longer due to moving average processing. In order to avoid such inconvenience, an algorithm may be used in which the signal processing is not performed in the initial state, and IQ signal product / moving average processing is performed when the detection state continues for a certain time or more. Even if the above measures are applied, the occurrence of false detections in the case of torrential rains cannot be completely avoided. The output may be stopped.

図10には、センサ前方の保護カバー形状を球面状にした例の構成が示されており、図10の例では、ドップラーセンサ12のアンテナ面12Aの中心に対して同心円となる半球面に形成した球面カバー20が設けられる。上記平面カバー11の場合は、センサ正面から上下に離れることによりドップラー周波数が少し高い周波数になるが、この球面カバー20によれば、降雨によりその表面を流れる雨、雫や水膜とアンテナ面12Aとの相対距離が常に変わらないため、そのドップラー成分は平面カバー11と比べて更に低周波側に集中する。従って、ハイパスフィルタ15a,15bによる雫や水膜等のノイズ信号の除去効果が高まることになる。しかも、雨が斜めに吹き付けた場合や風などによって雨が横に流れた場合でも、これらはセンサから等距離で移動するので、安定した特性が得られる。   FIG. 10 shows a configuration of an example in which the shape of the protective cover in front of the sensor is spherical. In the example of FIG. 10, the protective cover is formed on a hemispherical surface that is concentric with the center of the antenna surface 12A of the Doppler sensor 12. A spherical cover 20 is provided. In the case of the flat cover 11, the Doppler frequency becomes slightly higher by moving up and down from the front of the sensor. However, according to the spherical cover 20, rain, hail, water film and antenna surface 12 </ b> A flowing on the surface due to rainfall. Therefore, the Doppler component is more concentrated on the low frequency side than the flat cover 11. Accordingly, the effect of removing noise signals such as soot and water films by the high-pass filters 15a and 15b is enhanced. Moreover, even when the rain is blown obliquely or when the rain flows sideways by wind or the like, they move at an equal distance from the sensor, so that stable characteristics can be obtained.

図11には、センサ前方の保護カバー形状を円筒面状にした例の構成が示されており、図11の例では、地面に対して垂直な方向において、アンテナ面12Aの中心に対して同心円となる半円筒面に形成した円筒面カバー21が設けられる。この円筒面カバー21によっても、その表面の垂直方向に流れる雨、雫や水膜が常にアンテナ面12Aに対して同一の距離にあり、そのドップラー成分は平面カバー11と比べて低周波側に集中する。   FIG. 11 shows a configuration of an example in which the shape of the protective cover in front of the sensor is a cylindrical surface. In the example of FIG. 11, a concentric circle with respect to the center of the antenna surface 12A in a direction perpendicular to the ground. A cylindrical surface cover 21 formed on the semi-cylindrical surface is provided. Also with this cylindrical surface cover 21, rain, hail and water film flowing in the direction perpendicular to the surface are always at the same distance from the antenna surface 12 A, and the Doppler component is concentrated on the low frequency side compared to the flat cover 11. To do.

図12には、雨、雫や水膜に関するドップラー周波数成分の変化を、平面の保護カバーと球面状及び円筒面状の保護カバーとで比較したものが示されており、この図12からも分かるように、雨、雫や水膜の動きによるドップラー周波数成分は、球面状及び円筒面状のカバー(20,21)の方が低い周波数へシフトする。従って、球面カバー20や円筒面カバー21を適用した場合は、ハイパスフィルタ15a,15bによる雨、雫や水膜の雑音成分の除去効果を高めることができる。   FIG. 12 shows a comparison of a change in Doppler frequency components for rain, hail and water film between a flat protective cover and a spherical and cylindrical protective cover, which can also be seen from FIG. As described above, the Doppler frequency component due to the movement of rain, hail and water film shifts to a lower frequency in the spherical and cylindrical covers (20, 21). Therefore, when the spherical cover 20 and the cylindrical cover 21 are applied, the effect of removing noise components from rain, hail and water film by the high-pass filters 15a and 15b can be enhanced.

上記球面カバー20及び円筒面カバー21の雑音除去効果は、垂直な方向において同様となるが、特に球面カバー20の方は、斜めに吹き付ける雨であってもカバー表面を流れる雨、雫や水膜とセンサ12との相対距離が常に変わらないため、より効果的である。   The noise removal effect of the spherical cover 20 and the cylindrical surface cover 21 is the same in the vertical direction. In particular, the spherical cover 20 has rain, hail, and water film that flows on the cover surface even when it is raining obliquely. Since the relative distance between the sensor 12 and the sensor 12 does not always change, it is more effective.

図13には、保護カバーの上方に雨よけのひさしを設けた例の構成が示されており、この例では、図13のように、球面カバー20の上側に、雨を左右方向へ流すひさし(屋根)23が配置される。例えば、自動販売機等のように高さのある装置では、カバー表面に当たった雨がその表面の下方へ流れるため、常に雫や水膜が形成されてしまうが、上記ひさし23を設けることで、球面カバー20に流れ込む雫や水の膜の量が減り、雑音を低減する効果がある。即ち、雨の大半、又は風により斜めに吹き付ける雨が保護カバーに当たらないようにするために、幅の広い長いひさしを設けることも可能であるが、外観上からも、自動販売機等で幅広で長いひさしを付けることは好ましくない。   FIG. 13 shows a configuration of an example in which a rain eave is provided above the protective cover. In this example, as shown in FIG. (Roof) 23 is arranged. For example, in a device with a high height such as a vending machine, rain hitting the cover surface flows downward from the surface, so that a hail or a water film is always formed. The amount of soot and water film that flows into the spherical cover 20 is reduced, and noise is reduced. In other words, a wide eaves can be provided to prevent most of the rain or rain that is blown at an angle from the wind from hitting the protective cover. A long eaves is not preferable.

そこで、本実施例では、球面カバー20より上側に当たった雨による雫、水膜の流れが球面カバー20部分に流れ込まないよう、中心から左右に傾斜をもたせた幅狭の短めのひさしを形成することにより、上方から水が流れてくる状態をなくし、球面カバー20に雫や水の膜が流れ込むことを防ぐことで雑音を大幅に減らすことができる。斜めに吹き付ける雨であっても、球面カバー20に直接当たった雨粒によるものだけとなるため、上面からの雨が集まって流れてくる雫等に比べれば流れる水の量は少なく、雑音の発生も低く抑えられるので、雫、水膜の影響を極力軽減することができる。特に、球面カバー20の場合は、斜めに吹き付ける雨の場合、下方のみでなく球面上を左右にも流れるため、水膜の厚さは薄くなり、マイクロ波の反射による減衰が軽減される。   Therefore, in this embodiment, a short eave with a narrow width inclined from the center to the left and right is formed so that the raindrops hitting the upper side of the spherical cover 20 and the flow of the water film do not flow into the spherical cover 20 portion. Thus, the state in which water flows from above is eliminated, and the noise can be significantly reduced by preventing the soot and water film from flowing into the spherical cover 20. Even if it is raining obliquely, it is only due to raindrops that hit the spherical cover 20 directly, so the amount of flowing water is less than that of raindrops that gather and flow from the upper surface, and noise is also generated. Since it can be kept low, the influence of drought and water film can be reduced as much as possible. In particular, in the case of the spherical cover 20, in the case of rain sprayed obliquely, the water film flows not only downward but also on the spherical surface to the left and right, so that the thickness of the water film is reduced and attenuation due to reflection of microwaves is reduced.

上記実施例では、センサ12のアンテナ面12Aから略同一距離に形成された保護カバー(20,21)の曲面として、(半)球面状、(半)円筒面状を採用したが、アンテナ面12Aの前方の保護カバー(20,21)のアンテナ面12Aと略同一面積の中心領域を平面とし、その他の面を球面又は円筒面としてもよい。   In the above embodiment, a (semi) spherical surface and a (semi) cylindrical surface are used as the curved surface of the protective cover (20, 21) formed at substantially the same distance from the antenna surface 12A of the sensor 12, but the antenna surface 12A is used. A central region having substantially the same area as the antenna surface 12A of the front protective cover (20, 21) may be a flat surface, and the other surface may be a spherical surface or a cylindrical surface.

10…自動販売機、 11…平面カバー、
12…ドップラーセンサ、 12A…アンテナ面(検出面)、
14…センサ回路部、
15a,15b…ハイパスフィルタ(HPF)、
16a,16b…アンプ、 17a,17b…AD変換器、
18…マイコン、 20…球面カバー、
21…円筒面カバー、 23…ひさし。
10 ... Vending machine, 11 ... Flat cover,
12 ... Doppler sensor, 12A ... antenna surface (detection surface),
14 ... sensor circuit part,
15a, 15b ... high pass filter (HPF),
16a, 16b ... amplifier, 17a, 17b ... AD converter,
18 ... Microcomputer, 20 ... Spherical cover,
21 ... Cylindrical cover, 23 ... Eaves.

Claims (6)

アンテナ面を有し、移動体を検知するためのマイクロ波ドップラーセンサと、
このドップラーセンサの前方に配置され、上記アンテナ面に平行な略平面又は少なくとも垂直方向で上記アンテナ面から略同一距離に形成された曲面を有する保護カバーと、
90度位相の異なる2つのドップラー信号を出力するための直交検波回路と、
この直交検波回路の出力を入力し、雫、水膜の動きに対応する低い周波数を減衰させるハイパスフィルタと、
このハイパスフィルタの出力を増幅するアンプと、を有してなるマイクロ波ドップラー検出装置。
A microwave Doppler sensor for detecting a moving object having an antenna surface;
A protective cover disposed in front of the Doppler sensor and having a substantially flat surface parallel to the antenna surface or a curved surface formed at least approximately the same distance from the antenna surface in the vertical direction;
A quadrature detection circuit for outputting two Doppler signals having different phases by 90 degrees;
A high-pass filter that inputs the output of this quadrature detection circuit and attenuates the low frequency corresponding to the movement of the water film,
A microwave Doppler detection device comprising: an amplifier that amplifies the output of the high-pass filter.
上記ハイパスフィルタの出力に基づき、90度位相の異なる2つのI,Q信号を所定の間隔でサンプリングし、これらI信号又はQ信号のいずれかをドップラー信号の中心周波数において略1/4周期ずらした信号ともう一方の信号との積を求め、かつこの積の移動平均を算出するIQ信号積/移動平均処理を実行し、このIQ信号積/移動平均処理によって移動体の検知を行うことを特徴とする請求項1記載のマイクロ波ドップラー検出装置。   Based on the output of the high-pass filter, two I and Q signals having a phase difference of 90 degrees are sampled at a predetermined interval, and either the I signal or the Q signal is shifted by approximately ¼ period at the center frequency of the Doppler signal. An IQ signal product / moving average process for obtaining a product of the signal and the other signal and calculating a moving average of the product is executed, and a moving object is detected by the IQ signal product / moving average process. The microwave Doppler detection device according to claim 1. 上記ハイパスフィルタのフィルタ特性を可変とし、上記ドップラーセンサの出力に基づき検知状態が所定の時間以上継続したとき、このハイパスフィルタの低域カットオフ周波数を高く設定するように制御することを特徴とする請求項1又は2記載のマイクロ波ドップラー検出装置。   The filter characteristic of the high-pass filter is variable, and when the detection state continues for a predetermined time or more based on the output of the Doppler sensor, control is performed to set the low-pass cutoff frequency of the high-pass filter high. The microwave Doppler detection apparatus according to claim 1 or 2. 上記ドップラーセンサの出力に基づき検知状態が所定の時間以上継続したとき、上記IQ信号積/移動平均処理を実行するように制御することを特徴とする請求項2又は3記載のマイクロ波ドップラー検出装置。   4. The microwave Doppler detection device according to claim 2, wherein the IQ signal product / moving average process is controlled to be executed when a detection state continues for a predetermined time or more based on an output of the Doppler sensor. . 上記保護カバーを、球面状又は円筒面状の形状としたことを特徴とする請求項1乃至4のいずれかに記載のマイクロ波ドップラー検出装置。   The microwave Doppler detection device according to any one of claims 1 to 4, wherein the protective cover has a spherical shape or a cylindrical shape. 上記保護カバーの上方に、水よけのひさしを設けたことを特徴とする請求項1乃至5のいずれかに記載のマイクロ波ドップラー検出装置。   6. The microwave Doppler detection device according to claim 1, further comprising a water eaves provided above the protective cover.
JP2012248251A 2012-11-12 2012-11-12 Microwave Doppler detector Active JP5996385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248251A JP5996385B2 (en) 2012-11-12 2012-11-12 Microwave Doppler detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248251A JP5996385B2 (en) 2012-11-12 2012-11-12 Microwave Doppler detector

Publications (2)

Publication Number Publication Date
JP2014095657A true JP2014095657A (en) 2014-05-22
JP5996385B2 JP5996385B2 (en) 2016-09-21

Family

ID=50938831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248251A Active JP5996385B2 (en) 2012-11-12 2012-11-12 Microwave Doppler detector

Country Status (1)

Country Link
JP (1) JP5996385B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170754A1 (en) * 2014-05-08 2015-11-12 株式会社光波 Mobile body detection device and automatic vending machine
JP2019128615A (en) * 2018-01-19 2019-08-01 株式会社近藤建装 Invasion detection device and crime prevention system using invasion detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6391229B2 (en) * 2013-10-03 2018-09-19 新日本無線株式会社 Microwave Doppler detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283448A (en) * 2004-03-30 2005-10-13 Toto Ltd Human body sensor
JP2006275943A (en) * 2005-03-30 2006-10-12 Seiko Precision Inc Human body detection apparatus and control apparatus
JP2007179167A (en) * 2005-12-27 2007-07-12 Yupiteru Ind Co Ltd Security device
JP2008096136A (en) * 2006-10-06 2008-04-24 Mitsubishi Electric Corp Radar system and stain determination method
JP2009300390A (en) * 2008-06-17 2009-12-24 Denso Corp Waterproof structure for millimeter wave radar device
JP2011223343A (en) * 2010-04-09 2011-11-04 Furuno Electric Co Ltd Antenna apparatus and radar device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283448A (en) * 2004-03-30 2005-10-13 Toto Ltd Human body sensor
JP2006275943A (en) * 2005-03-30 2006-10-12 Seiko Precision Inc Human body detection apparatus and control apparatus
JP2007179167A (en) * 2005-12-27 2007-07-12 Yupiteru Ind Co Ltd Security device
JP2008096136A (en) * 2006-10-06 2008-04-24 Mitsubishi Electric Corp Radar system and stain determination method
JP2009300390A (en) * 2008-06-17 2009-12-24 Denso Corp Waterproof structure for millimeter wave radar device
JP2011223343A (en) * 2010-04-09 2011-11-04 Furuno Electric Co Ltd Antenna apparatus and radar device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170754A1 (en) * 2014-05-08 2015-11-12 株式会社光波 Mobile body detection device and automatic vending machine
JP2015215194A (en) * 2014-05-08 2015-12-03 株式会社光波 Moving body detection device and vending machine
JP2019128615A (en) * 2018-01-19 2019-08-01 株式会社近藤建装 Invasion detection device and crime prevention system using invasion detection device

Also Published As

Publication number Publication date
JP5996385B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
TWI504916B (en) Signal processing method and device for frequency-modulated continuous waveform radar system
US20020060639A1 (en) Intrusion detection radar system
JP5996385B2 (en) Microwave Doppler detector
KR101505044B1 (en) Radar apparatus and blind zone rejection method thereof
US20090051529A1 (en) Intrusion Detection Sensor
CN1938733A (en) Device for detecting a fall into a swimming pool
WO2014108889A1 (en) A method for mitigating rain clutter interference in millimeter-wave radar detection
JP2012002636A5 (en) Radar apparatus and detection method
JP5992574B1 (en) Object detection device
GB2453369A (en) Radar detection apparatus for controlling a traffic light
CN102032883A (en) Arm support collision detection system and method for detecting collision between arm support and obstacle
JP2015075387A (en) Electric wave sensor and detection method
JP6391229B2 (en) Microwave Doppler detector
JP6126472B2 (en) Microwave Doppler detector
JP5328976B2 (en) Intruder identification device
JP2015148537A (en) Detector, detection method, and detection program
JP6745489B2 (en) Detector
JP6798164B2 (en) Radio sensor and detection program
KR101786039B1 (en) Radar apparatus and blockage detection method thereof
KR102036033B1 (en) Apparatus and method for motion sensing using doppler radar
JP4128896B2 (en) Intrusion detection device
JP5637416B1 (en) Height pattern countermeasure sensor
RU2334276C1 (en) Capacitive burglar alarm device
JP6718651B2 (en) Environmental change sensor
KR101827509B1 (en) Invasion Detection and Reducing Detection error System by Using Clutter Signal and Method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250