JP2014095032A - Conductive polymer composition - Google Patents

Conductive polymer composition Download PDF

Info

Publication number
JP2014095032A
JP2014095032A JP2012247188A JP2012247188A JP2014095032A JP 2014095032 A JP2014095032 A JP 2014095032A JP 2012247188 A JP2012247188 A JP 2012247188A JP 2012247188 A JP2012247188 A JP 2012247188A JP 2014095032 A JP2014095032 A JP 2014095032A
Authority
JP
Japan
Prior art keywords
formula
sulfated
sulfonic acid
carbon atoms
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012247188A
Other languages
Japanese (ja)
Other versions
JP6172492B2 (en
Inventor
Maki Horikawa
真希 堀川
Shoji Nagaoka
昭二 永岡
Tomohiro Shirosaki
智洋 城崎
Hirotaka Ihara
博隆 伊原
Makoto Takato
誠 高藤
Hideo Sakurai
英夫 櫻井
Katsumasa Yamamoto
勝政 山本
Hidehiko Akemi
秀彦 明見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Kumamoto University NUC
Kumamoto Prefecture
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Kumamoto University NUC
Kumamoto Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd, Kumamoto University NUC, Kumamoto Prefecture filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2012247188A priority Critical patent/JP6172492B2/en
Publication of JP2014095032A publication Critical patent/JP2014095032A/en
Application granted granted Critical
Publication of JP6172492B2 publication Critical patent/JP6172492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive material that can be formed into a film by a simple method and also has good conductivity.SOLUTION: A complex obtained by complexing of polythiophene having a repeating unit represented by the formula (1), and anionic polysaccharide is superior in film forming properties and conductivity, and can be used as conductive materials.

Description

本発明は、簡易な手法で製膜可能で、しかも優れた導電性を有する導電性材料、及びその製造方法に関する。   The present invention relates to a conductive material that can be formed by a simple technique and has excellent conductivity, and a method for manufacturing the same.

近年、太陽電池や有機EL等の「光電変換デバイス」の発展とともに、導電性と透明性を併せ持つ透明電極のニーズが高まっている。現在、一般的には酸化インジウムスズ(ITO)の電極が多く使用されているが、ITO電極は、真空スパッタリングによってつくられるため、コストが高く、大面積には不適であり、さらに柔軟性も欠けており、フレキシブルな電極をつくることが難しかった。   In recent years, with the development of “photoelectric conversion devices” such as solar cells and organic EL, there is an increasing need for transparent electrodes having both conductivity and transparency. Currently, indium tin oxide (ITO) electrodes are commonly used. However, since ITO electrodes are made by vacuum sputtering, they are expensive, unsuitable for large areas, and lack flexibility. It was difficult to make flexible electrodes.

また、主原料のインジウムは資源枯渇や価格高騰等の問題をもつレアメタルであるため、代替材料として、導電性高分子の開発が精力的に行われている。持続可能な社会の実現のためには、環境負荷の低減も考慮しなければならず、高機能化特性とともに、環境親和性等の機能を有する導電材料が望まれている。導電性高分子は、常圧塗布法が可能であり、コストを抑えて、大面積でフレキシブルな電極をつくることができる。   In addition, indium, the main raw material, is a rare metal that has problems such as resource depletion and price increases, and therefore, conductive polymers have been vigorously developed as an alternative material. In order to realize a sustainable society, it is necessary to consider the reduction of environmental load, and a conductive material having functions such as environmental compatibility as well as high performance characteristics is desired. The conductive polymer can be applied by atmospheric pressure, and a flexible electrode having a large area can be produced at low cost.

従来、導電性高分子の中でも、ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)に、電気を流すためのドーパントとしてポリスチレンスルホン酸(PSS)を加えたPEDOT/PSSが注目されている。3,4−エチレンジオキシチオフェン(EDOT)は、水への溶解度が20℃で2.1 g/Lと低いため、ポリスチレンスルホン酸を溶解させた水溶媒中で、酸化剤を用いて重合することにより、水分散性のPEDOT/PSS錯体の状態で得られる。PEDOT/PSSは、比較的安定で耐久性が良好である反面、既存のITO電極と比較して導電性が低いため、簡単な操作で、より高い導電性をもつ導電性材料の開発が望まれていた。   Conventionally, among conductive polymers, PEDOT / PSS in which polystyrene sulfonic acid (PSS) is added to poly (3,4-ethylenedioxythiophene) (PEDOT) as a dopant for flowing electricity has attracted attention. Since 3,4-ethylenedioxythiophene (EDOT) has a low water solubility of 2.1 g / L at 20 ° C., it is polymerized using an oxidizing agent in an aqueous solvent in which polystyrenesulfonic acid is dissolved. Thus, it is obtained in the state of a water dispersible PEDOT / PSS complex. PEDOT / PSS is relatively stable and has good durability, but it has low conductivity compared to existing ITO electrodes. Therefore, it is desirable to develop a conductive material with higher conductivity by simple operation. It was.

これまでに、PEDOT/PSSの導電性を向上させる改良技術についても幾つか報告されている。例えば、特許文献1では、PEDOT/PSSの水分散溶液にスルホキシド溶剤あるいは多価アルコール、ポリオール等を添加することによって、膜を作成した場合に導電性が向上することが開示されている。しかしながら、特許文献1の技術でも、PEDOT/PSSに十分な導電性を付与できていない。   So far, several improved techniques for improving the conductivity of PEDOT / PSS have been reported. For example, Patent Document 1 discloses that conductivity is improved when a film is formed by adding a sulfoxide solvent, a polyhydric alcohol, a polyol, or the like to an aqueous dispersion of PEDOT / PSS. However, even the technique of Patent Document 1 cannot provide sufficient conductivity to PEDOT / PSS.

また、特許文献2では、PEDOT/PSSに糖アルコールを添加して、導電性能を向上させている例が開示されている。しかしなから、特許文献2の技術では、PSS存在下、酸化剤を用いてEDOTを重合させることによってPEDOT/PSS複合体を調製して、更にPEDOT/PSSの固形分に対して糖アルコール(アラビトール)を60%も添加して乾燥後に加熱する工程が必要であり、製膜する工程が煩雑で工業的製造には不適であった。   Patent Document 2 discloses an example in which a sugar alcohol is added to PEDOT / PSS to improve the conductive performance. However, in the technique of Patent Document 2, a PEDOT / PSS complex is prepared by polymerizing EDOT using an oxidizing agent in the presence of PSS, and a sugar alcohol (arabitol is further added to the solid content of PEDOT / PSS. ) Is added and 60% is required to dry and heat, and the film forming process is complicated and unsuitable for industrial production.

このように従来の導電性材料では、導電性が低い、バインダー等の成分を多量に混合する必要がある等の欠点があり、商業的に実用化する上で障壁があった。   As described above, the conventional conductive material has drawbacks such as low conductivity and the necessity of mixing a large amount of components such as a binder, and there are barriers to commercialization.

特表2006−520994号公報Special table 2006-520994 gazette 特開2012−46605号公報JP 2012-46605 A

本発明の目的は、簡易な手法で製膜可能で、しかも優れた導電性を有する導電性材料を提供するものである。   An object of the present invention is to provide a conductive material that can be formed by a simple technique and has excellent conductivity.

本発明者らは、かかる事情を鑑み鋭意研究を重ねた結果、式(1)で表される繰り返し単位を有するポリチオフェン(以下、単に「ポリチオフェン」と表記することもある)とアニオン性多糖類を複合化することにより得られた複合体は、製膜性及び導電性に優れており、導電性材料として好適に使用できることを見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。   As a result of intensive studies in view of such circumstances, the present inventors have found that a polythiophene having a repeating unit represented by the formula (1) (hereinafter sometimes simply referred to as “polythiophene”) and an anionic polysaccharide It has been found that the composite obtained by combining is excellent in film-forming property and conductivity, and can be suitably used as a conductive material. The present invention has been completed by further studies based on such knowledge.

即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 式(1)で表される繰り返し単位を有するポリチオフェンと、
[式(1)中、R1及びR2は、それぞれ独立に水素原子、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表すか、R1とR2は連結して、炭素数1〜8のジオキシアルキレン基、芳香環又は3〜7員環の脂環式環を表す。]
アニオン性多糖類との複合体からなる導電性材料。
項2. 前記アニオン性多糖類が、硫酸化多糖である、項1に記載の導電性材料。
項3. 前記アニオン性多糖類が、式(2)で表される繰り返し単位を有する硫酸化セルロース、
[式(2)中、R3〜R8は、それぞれ独立に水素原子、スルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表し、且つ少なくとも1つはスルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表す。]
式(3)で表される繰り返し単位を有する硫酸化デンプン、
[式(3)中、R9〜R14は、それぞれ独立に水素原子、スルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表し、且つ少なくとも1つはスルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表す。]
及び式(4)で表される繰り返し単位を有する硫酸化デンプン
[式(4)中、R15〜R22は、それぞれ独立に水素原子、スルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表し、且つ少なくとも1つはスルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表す。]
からなる群より選ばれた少なくとも1種の硫酸化多糖である、項1又は2に記載の導電性材料。
項4. 前記アニオン性多糖類におけるアニオン性基の導入数が、構成単糖1残基当たり0.3〜3である、項1〜3のいずれかに記載の導電性材料。
項5. アニオン性多糖類、溶媒及び酸化剤の存在下、式(5)で表されるチオフェン
[式(5)中、R1及びR2は、前記と同じ。]
を酸化重合することを特徴とする、ポリチオフェンと硫酸化多糖との複合体の製造方法。
項6. 項1〜4のいずれかに記載の導電性材料を含む導電膜。
項7. 項1〜4のいずれかに記載の導電性材料を基板上に製膜してなる、導電性部材。
That is, this invention provides the invention of the aspect hung up below.
Item 1. Polythiophene having a repeating unit represented by the formula (1);
[In formula (1), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, R 1 and R 2 linked And a C 1-8 dioxyalkylene group, an aromatic ring or a 3-7 membered alicyclic ring. ]
A conductive material comprising a complex with an anionic polysaccharide.
Item 2. Item 2. The conductive material according to Item 1, wherein the anionic polysaccharide is a sulfated polysaccharide.
Item 3. The sulfated cellulose in which the anionic polysaccharide has a repeating unit represented by the formula (2),
[In Formula (2), R < 3 > -R < 8 > represents a hydrogen atom, a sulfonic acid group, or a C1-C6 alkylsulfonic acid group each independently, and at least 1 is a sulfonic acid group or C1-C1. 6 alkylsulfonic acid groups are represented. ]
Sulfated starch having a repeating unit represented by formula (3),
Wherein (3), R 9 ~R 14 each independently represent a hydrogen atom, a sulfonic acid group or alkyl sulfonic acid having 1 to 6 carbon atoms and at least one sulfonic acid group or 1 carbon atoms 6 alkylsulfonic acid groups are represented. ]
And sulfated starch having a repeating unit represented by formula (4)
Wherein (4), R 15 ~R 22 each independently represent a hydrogen atom, a sulfonic acid group or alkyl sulfonic acid having 1 to 6 carbon atoms, and at least one sulfonic acid group or 1 carbon atoms 6 alkylsulfonic acid groups are represented. ]
Item 3. The conductive material according to Item 1 or 2, which is at least one sulfated polysaccharide selected from the group consisting of:
Item 4. Item 4. The conductive material according to any one of Items 1 to 3, wherein the number of introduced anionic groups in the anionic polysaccharide is 0.3 to 3 per residue of the constituent monosaccharide.
Item 5. Thiophene represented by formula (5) in the presence of an anionic polysaccharide, a solvent and an oxidizing agent
[In Formula (5), R < 1 > and R < 2 > are the same as the above. ]
A method for producing a complex of polythiophene and a sulfated polysaccharide, characterized by subjecting oxidative polymerization of
Item 6. Item 5. A conductive film containing the conductive material according to any one of Items 1 to 4.
Item 7. Item 5. A conductive member obtained by forming the conductive material according to any one of Items 1 to 4 on a substrate.

本発明の導電性材料は、優れた導電性を備えており、太陽電池や有機EL等の光電変換デバイスにおける電極材料や配線材料として有用である。また、本発明の導電性材料は、優れた製膜性を備えており、バインダー等の成分を多量に混合せずとも簡易な手法で製膜できるので、電極や配線等に使用される導電性部材を容易な方法で作製することが可能になる。   The conductive material of the present invention has excellent conductivity, and is useful as an electrode material or a wiring material in a photoelectric conversion device such as a solar cell or an organic EL. In addition, the conductive material of the present invention has excellent film forming properties, and can be formed by a simple method without mixing a large amount of components such as a binder. The member can be manufactured by an easy method.

また、本発明の製造方法によれば、ポリチオフェンとアニオン性多糖類の複合体が分散体の状態で得られるので、当該分散体を塗膜して製膜するという簡単な方法で、高導電性の導電性部材を作製することが可能になる。   In addition, according to the production method of the present invention, since a complex of polythiophene and anionic polysaccharide is obtained in the state of dispersion, high conductivity can be obtained by a simple method of coating the dispersion and forming a film. It becomes possible to produce the conductive member.

実施例1〜2で使用した硫酸化セルロースI及びIIをFT−IR測定した結果を示す図である。It is a figure which shows the result of having carried out FT-IR measurement of the sulfated cellulose I and II used in Examples 1-2. 実施例3で使用した硫酸化デンプンをFT−IR測定した結果を示す図である。It is a figure which shows the result of having carried out FT-IR measurement of the sulfated starch used in Example 3. FIG.

本発明の導電性材料は、式(1)で表される繰り返し単位を有するポリチオフェンとアニオン性多糖類との複合体(以下、「ポリチオフェン/アニオン性多糖類複合体」と表記することもある)からなることを特徴とする。以下、本発明の導電性材料について詳述する。   The conductive material of the present invention is a complex of a polythiophene having a repeating unit represented by formula (1) and an anionic polysaccharide (hereinafter sometimes referred to as “polythiophene / anionic polysaccharide complex”). It is characterized by comprising. Hereinafter, the conductive material of the present invention will be described in detail.

ポリチオフェン
本発明で用いられるポリチオフェンは、下式(1)で表される繰り返し単位を有している。
Polythiophene The polythiophene used in the present invention has a repeating unit represented by the following formula (1).

式(1)中、R1及びR2は、それぞれ独立に水素原子、炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基を表すか、R1とR2は連結して、炭素数1〜8のジオキシアルキレン基、芳香環又は3〜7員環の脂環式環を表す。 In formula (1), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, or R 1 and R 2 are linked, It represents a C 1-8 dioxyalkylene group, an aromatic ring or a 3-7 membered alicyclic ring.

前記炭素数1〜8のアルキル基としては、直鎖状又は分岐状のいずれであってもよい。前記炭素数1〜8のアルキル基として、好ましくは炭素数1〜6のアルキル基が挙げられる。   The alkyl group having 1 to 8 carbon atoms may be linear or branched. As said C1-C8 alkyl group, Preferably a C1-C6 alkyl group is mentioned.

また、前記炭素数1〜8のアルコキシ基としては、直鎖状又は分岐状のいずれであってもよい。前記炭素数1〜8のアルコキシ基として、好ましくは炭素数1〜6のアルコキシ基が挙げられる。   Moreover, as said C1-C8 alkoxy group, either linear or branched may be sufficient. As said C1-C8 alkoxy group, Preferably a C1-C6 alkoxy group is mentioned.

また、R1とR2が連結して炭素数1〜8のジオキシアルキレン基を形成している場合、当該ジオキシアルキレン基の炭素数として、好ましくは炭素数1〜6、更に好ましくは2〜4が挙げられる。 In addition, when R 1 and R 2 are linked to form a dioxyalkylene group having 1 to 8 carbon atoms, the carbon number of the dioxyalkylene group is preferably 1 to 6 carbon atoms, more preferably 2 carbon atoms. ~ 4.

また、R1とR2が連結して3〜7員環の脂環式環を形成している場合、当該脂環式環として、好ましくは4〜7員環、更に好ましくは5〜6員環が挙げられる。 In addition, when R 1 and R 2 are connected to form a 3- to 7-membered alicyclic ring, the alicyclic ring is preferably a 4- to 7-membered ring, more preferably a 5- to 6-membered ring. A ring is mentioned.

ポリチオフェンを形成する式(1)で表される繰り返し単位の数については、特に制限されないが、例えば、2〜50程度が挙げられる。   Although it does not restrict | limit especially about the number of the repeating units represented by Formula (1) which forms polythiophene, For example, about 2-50 is mentioned.

式(1)で表される繰り返し単位を構成する単量体化合物としては、好ましくは、チオフェン骨格の3位及び4位に、それぞれ独立に、炭素数1〜8のアルキル基及び/又は炭素数1〜8のアルコキシ基が置換した化合物;チオフェン骨格の3位と4位に炭素数1〜8のジオキシアルキレン基が形成された3,4−ジ置換チオフェンが挙げられる。より具体的には、3,4−ジアルキルチオフェン、3,4−ジアルコキシチオフェン、3,4−アルキレンジオキシチオフェン等が挙げられる。これらの中でも、3,4−アルキレンジオキシチオフェンが好ましい。   As a monomer compound which comprises the repeating unit represented by Formula (1), Preferably, the C1-C8 alkyl group and / or carbon number are respectively independently in 3rd-position and 4th-position of a thiophene skeleton. Compounds having 1 to 8 alkoxy groups substituted; 3,4-disubstituted thiophenes in which dioxyalkylene groups having 1 to 8 carbon atoms are formed at the 3rd and 4th positions of the thiophene skeleton. More specifically, 3,4-dialkylthiophene, 3,4-dialkoxythiophene, 3,4-alkylenedioxythiophene and the like can be mentioned. Among these, 3,4-alkylenedioxythiophene is preferable.

式(1)で表される繰り返し単位を構成する単量体化合物の好適な具体例としては、例えば、3,4−ジヘキシルチオフェン、3,4−ジエチルチオフェン、3,4−ジプロピルチオフェン、3,4−ジメトキシチオフェン、3,4−ジエトキシチオフェン、3,4−ジプロポキシチオフェン、3,4−ジブトキシチオフェン、3,4−メチレンジオキシチオフェン、3,4−エチレンジオキシチオフェン、3,4−プロピレンジオキシチオフェン等が挙げられる。これらの中でも、3,4−エチレンジオキシチオフェンが好ましい。   Preferable specific examples of the monomer compound constituting the repeating unit represented by the formula (1) include, for example, 3,4-dihexylthiophene, 3,4-diethylthiophene, 3,4-dipropylthiophene, 3 , 4-dimethoxythiophene, 3,4-diethoxythiophene, 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-methylenedioxythiophene, 3,4-ethylenedioxythiophene, 3, 4-propylene dioxythiophene etc. are mentioned. Among these, 3,4-ethylenedioxythiophene is preferable.

アニオン性多糖類
本発明で用いられるアニオン性多糖類とは、アニオン性基が導入された多糖類である。当該アニオン性基としては、例えば、スルホン酸基、炭素数1〜6のアルキルスルホン酸基、カルボキシル基、リン酸基等が挙げられる。これらのアニオン性基の中でも、好ましくはスルホン酸基、炭素数1〜6のアルキルスルホン酸基が挙げられる。
Anionic polysaccharide The anionic polysaccharide used in the present invention is a polysaccharide into which an anionic group has been introduced. Examples of the anionic group include a sulfonic acid group, an alkyl sulfonic acid group having 1 to 6 carbon atoms, a carboxyl group, and a phosphoric acid group. Among these anionic groups, a sulfonic acid group and an alkylsulfonic acid group having 1 to 6 carbon atoms are preferable.

アニオン性多糖類において、前記アニオン性基が導入される多糖類としては、例えば、デンプン類、アルギン酸類、セルロース類、ガム類等が挙げられる。   In the anionic polysaccharide, examples of the polysaccharide into which the anionic group is introduced include starches, alginic acids, celluloses, and gums.

本発明で用いられるアニオン性多糖類は、天然において既にアニオン性基を有している多糖類であってもよく、また人為的にアニオン性基を付加させた多糖類であってもよい。   The anionic polysaccharide used in the present invention may be a polysaccharide that already has an anionic group in nature, or may be a polysaccharide to which an anionic group has been artificially added.

アニオン性多糖類における構成単糖の数については、特に制限されないが、前記ポリチオフェンとの複合体を安定に形成させて、より一層導電性及び製膜性を高めるという観点から、例えば、10〜15000、好ましくは20〜2000が挙げられる。   The number of constituent monosaccharides in the anionic polysaccharide is not particularly limited, but from the viewpoint of further stably forming a complex with the polythiophene and further improving conductivity and film-forming property, for example, 10 to 15000. , Preferably 20-2000 is mentioned.

アニオン性多糖類におけるアニオン性基の数としては、特に制限されないが、より一層優れた導電性を備えさせるという観点から、構成単糖1残基当たり0.3〜3、好ましくは0.4〜2.8、更に好ましくは1〜2.5が挙げられる。   The number of anionic groups in the anionic polysaccharide is not particularly limited, but from the viewpoint of providing even more excellent conductivity, 0.3 to 3, preferably 0.4 to 1 residue per constituent monosaccharide. 2.8, more preferably 1 to 2.5.

アニオン性多糖類として、導電性及び製膜性をより一層向上させるという観点から、好ましくは硫酸化多糖類(即ち、スルホン酸基及び/又は炭素数1〜6のアルキルスルホン酸基を有する多糖類)が挙げられる。硫酸化多糖類としては、具体的には、キチン、キトサン、デンプン、セルロース、グアガム、アラビアガム、グルコマンナン、寒天アガロース、アミロース、アミロペクチン、アルギン酸等の硫酸化物;フコイダン、コンドロイチン硫酸、ポルフィラン等の天然硫酸化多糖類等が挙げられる。これらの硫酸化多糖類の中でも、好ましくは、硫酸化セルロース、硫酸化デンプンが挙げられ、より具体的には、下式(2)で表される繰り返し単位を有する硫酸化セルロース、下式(3)又は(4)で表される繰り返し単位を有する硫酸化デンプンが例示される。なお、デンプンは、アミロースとアミロペクチンの混合物であるため、デンプンを硫酸化したものは、下式(3)で表される繰り返し単位を有する硫酸化アミロースと下式(4)で表される繰り返し単位を有する硫酸化アミロペクチンの混合物となる。   As the anionic polysaccharide, from the viewpoint of further improving the conductivity and film-forming property, it is preferably a sulfated polysaccharide (that is, a polysaccharide having a sulfonic acid group and / or an alkylsulfonic acid group having 1 to 6 carbon atoms). ). Specific examples of sulfated polysaccharides include sulfates such as chitin, chitosan, starch, cellulose, guar gum, gum arabic, glucomannan, agar agarose, amylose, amylopectin, alginic acid, etc .; natural fucoidan, chondroitin sulfate, porphyran And sulfated polysaccharides. Among these sulfated polysaccharides, preferred are sulfated cellulose and sulfated starch. More specifically, sulfated cellulose having a repeating unit represented by the following formula (2), the following formula (3 ) Or sulfated starch having a repeating unit represented by (4) is exemplified. In addition, since starch is a mixture of amylose and amylopectin, what sulfated starch is the sulfated amylose which has a repeating unit represented by the following Formula (3), and the repeating unit represented by the following Formula (4) A mixture of sulfated amylopectin having

式(2)中、R3〜R8は、それぞれ独立に水素原子、スルホン酸基、又は炭素数1〜6のアルキルスルホン酸基を表し、且つ少なくとも1つはスルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表す。当該アルキルスルホン酸基の炭素数としては、好ましくは1〜5、更に好ましくは1〜4、特に好ましくは1〜3が挙げられる。 In formula (2), R 3 to R 8 each independently represent a hydrogen atom, a sulfonic acid group, or an alkylsulfonic acid group having 1 to 6 carbon atoms, and at least one of them is a sulfonic acid group or 1 to carbon atoms. 6 alkylsulfonic acid groups are represented. As carbon number of the said alkylsulfonic acid group, Preferably it is 1-5, More preferably, it is 1-4, Most preferably, 1-3 is mentioned.

式(3)中、R9〜R14は、それぞれ独立に水素原子、スルホン酸基、又は炭素数1〜6のアルキルスルホン酸基を表し、且つ少なくとも1つはスルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表す。当該アルキルスルホン酸基の炭素数としては、好ましくは1〜5、更に好ましくは1〜4、特に好ましくは1〜3が挙げられる。 In formula (3), R 9 to R 14 each independently represent a hydrogen atom, a sulfonic acid group, or an alkylsulfonic acid group having 1 to 6 carbon atoms, and at least one of them is a sulfonic acid group or 1 to carbon atoms. 6 alkylsulfonic acid groups are represented. As carbon number of the said alkylsulfonic acid group, Preferably it is 1-5, More preferably, it is 1-4, Most preferably, 1-3 is mentioned.

式(4)中、R15〜R22は、それぞれ独立に水素原子、スルホン酸基、又は炭素数1〜6のアルキルスルホン酸基を表し、且つ少なくとも1つはスルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表す。当該アルキルスルホン酸基の炭素数としては、好ましくは1〜5、更に好ましくは1〜4、特に好ましくは1〜3が挙げられる。 In the formula (4), R 15 to R 22 each independently represent a hydrogen atom, a sulfonic acid group, or an alkylsulfonic acid group having 1 to 6 carbon atoms, and at least one of them is a sulfonic acid group or 1 to carbon atoms. 6 alkylsulfonic acid groups are represented. As carbon number of the said alkylsulfonic acid group, Preferably it is 1-5, More preferably, it is 1-4, Most preferably, 1-3 is mentioned.

なお、式(4)で表される繰り返し単位を有する硫酸化デンプンでは、式(4)で表される繰り返し単位は分岐構造部分を形成し、式(4)で表される繰り返し単位の間には、式(3)で表される繰り返し単位が1個以上挿入されている構造を採り得る。   In addition, in the sulfated starch which has a repeating unit represented by Formula (4), the repeating unit represented by Formula (4) forms a branched structure part, and is between the repeating units represented by Formula (4). May adopt a structure in which one or more repeating units represented by the formula (3) are inserted.

これらのアニオン性多糖類は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   These anionic polysaccharides may be used individually by 1 type, and may be used in combination of 2 or more type.

アニオン性多糖類は、市販品を使用してもよく、また公知の製造方法に従って得ることもできる。例えば、多糖類にスルホン酸基を導入するには、例えばスルファミン酸、ハロゲノスルホン酸等を多糖類と反応させればよく、また多糖類に炭素数1〜6のアルキルスルホン酸基を導入するには、例えば炭素数1〜6のハロゲン化アルキルスルホン酸等を多糖類と反応させればよい。   As the anionic polysaccharide, a commercially available product may be used, or it may be obtained according to a known production method. For example, in order to introduce a sulfonic acid group into a polysaccharide, for example, sulfamic acid, halogenosulfonic acid or the like may be reacted with the polysaccharide, and an alkylsulfonic acid group having 1 to 6 carbon atoms may be introduced into the polysaccharide. For example, a halogenated alkylsulfonic acid having 1 to 6 carbon atoms may be reacted with a polysaccharide.

ポリチオフェン/アニオン性多糖類複合体
ポリチオフェン/アニオン性多糖類複合体は、アニオン性多糖類、溶媒及び酸化剤の存在下で、下式(5)で表されるチオフェンを酸化重合することにより製造される。
Polythiophene / anionic polysaccharide complex The polythiophene / anionic polysaccharide complex is produced by oxidative polymerization of thiophene represented by the following formula (5) in the presence of an anionic polysaccharide, a solvent and an oxidizing agent. The

式(5)中、R1及びR2は、前記と同じである。 In formula (5), R 1 and R 2 are the same as described above.

具体的には、予めアニオン性多糖類を溶媒に溶解させた溶液に、式(5)で表されるチオフェンと酸化剤を加えてチオフェンを重合させることにより、ポリチオフェン/アニオン性多糖類複合体が分散溶液の状態で取得される。斯して得られるポリチオフェン/アニオン性多糖類複合体において、ポリチオフェンとアニオン性多糖類複合体の結合様式については、限定的な解釈を望むものではないが、重合反応により生成したポリチオフェンとアニオン性多糖類のアニオンがドープした状態で複合化されていると考えられる。   Specifically, a polythiophene / anionic polysaccharide complex is obtained by polymerizing thiophene by adding a thiophene represented by the formula (5) and an oxidizing agent to a solution in which an anionic polysaccharide is previously dissolved in a solvent. Obtained in the state of a dispersion solution. In the polythiophene / anionic polysaccharide complex thus obtained, the binding mode between the polythiophene and the anionic polysaccharide complex is not desired to be limited, but the polythiophene / anionic polysaccharide complex formed by the polymerization reaction is not desired. It is thought that it is complexed in a state in which the saccharide anion is doped.

式(5)で表されるチオフェンとしては、好ましくは、チオフェン骨格の3位及び4位に、それぞれ独立に、炭素数1〜8のアルキル基及び/又は炭素数1〜8のアルコキシ基が置換したチオフェン;チオフェン骨格の3位と4位に炭素数1〜8のジオキシアルキレン基が形成された3,4−ジ置換チオフェンが挙げられる。より具体的には、3,4−ジアルキルチオフェン、3,4−ジアルコキシチオフェン、3,4−アルキレンジオキシチオフェン等が挙げられる。これらの中でも、3,4−アルキレンジオキシチオフェンが好ましい。   As the thiophene represented by the formula (5), preferably, an alkyl group having 1 to 8 carbon atoms and / or an alkoxy group having 1 to 8 carbon atoms is independently substituted at the 3-position and 4-position of the thiophene skeleton. Thiophene; 3,4-disubstituted thiophene in which a dioxyalkylene group having 1 to 8 carbon atoms is formed at the 3rd and 4th positions of the thiophene skeleton. More specifically, 3,4-dialkylthiophene, 3,4-dialkoxythiophene, 3,4-alkylenedioxythiophene and the like can be mentioned. Among these, 3,4-alkylenedioxythiophene is preferable.

式(5)で表されるチオフェンの好適な具体例としては、例えば、3,4−ジヘキシルチオフェン、3,4−ジエチルチオフェン、3,4−ジプロピルチオフェン、3,4−ジメトキシチオフェン、3,4−ジエトキシチオフェン、3,4−ジプロポキシチオフェン、3,4−ジブトキシチオフェン、3,4−メチレンジオキシチオフェン、3,4−エチレンジオキシチオフェン、3,4−プロピレンジオキシチオフェン等が挙げられる。これらの中でも、3,4−エチレンジオキシチオフェンが好ましい。   As preferable specific examples of the thiophene represented by the formula (5), for example, 3,4-dihexylthiophene, 3,4-diethylthiophene, 3,4-dipropylthiophene, 3,4-dimethoxythiophene, 3, 4-diethoxythiophene, 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-methylenedioxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, etc. Can be mentioned. Among these, 3,4-ethylenedioxythiophene is preferable.

ポリチオフェン/アニオン性多糖類複合体において、ポリチオフェンとアニオン性多糖類の比率は、特に制限されないが、ポリチオフェンの比率が高い程、導電性は高くなるが、分散性が低下する傾向を示すため、これらを勘案した上でポリチオフェンやアニオン性多糖類の種類等に応じて適宜設定される。具体的には、ポリチオフェンとアニオン性多糖類の質量比として、1:0.5〜1:8、好ましくは1:1〜1:4が挙げられる。このような質量比を充足することにより、より優れた導電性を備えさせつつ、溶媒中での分散性を良好にできる。   In the polythiophene / anionic polysaccharide complex, the ratio of polythiophene and anionic polysaccharide is not particularly limited, but the higher the ratio of polythiophene, the higher the conductivity, but the tendency to decrease dispersibility. Is appropriately set according to the type of polythiophene or anionic polysaccharide. Specifically, the mass ratio of polythiophene and anionic polysaccharide is 1: 0.5 to 1: 8, preferably 1: 1 to 1: 4. By satisfying such a mass ratio, the dispersibility in the solvent can be improved while providing more excellent conductivity.

ポリチオフェン/アニオン性多糖類複合体の製造において、原料化合物として使用される式(5)で表されるチオフェンとアニオン性多糖類の使用量については、前述するポリチオフェンとアニオン性多糖類の比率を充足できる範囲に適宜設定すればよい。具体的には、アニオン性多糖類100質量部当たり、式(5)で表されるチオフェンが12.5〜400質量部、好ましくは25〜200質量部が挙げられる。   In the production of the polythiophene / anionic polysaccharide complex, the amount of the thiophene and the anionic polysaccharide represented by the formula (5) used as the raw material compound satisfies the above-mentioned ratio of the polythiophene and the anionic polysaccharide. What is necessary is just to set suitably in the possible range. Specifically, the thiophene represented by the formula (5) is 12.5 to 400 parts by mass, preferably 25 to 200 parts by mass, per 100 parts by mass of the anionic polysaccharide.

ポリチオフェン/アニオン性多糖類複合体の製造に使用される酸化剤としては、式(5)で表されるチオフェンを酸化重合可能であることを限度として特に制限されないが、例えば、ペルオキソ二硫酸、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、無機酸化第二鉄塩、有機酸化第二鉄塩、過酸化水素、過マンガン酸カリウム、二クロム酸カリウム、過ホウ酸アルカリ塩、硫酸鉄(III)、塩化鉄(III)等が挙げられる。これらの中でも、好ましくは、ペルオキソ二硫酸、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)、塩化鉄(III)が挙げられる。これらの酸化剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   The oxidizing agent used in the production of the polythiophene / anionic polysaccharide complex is not particularly limited as long as the thiophene represented by the formula (5) can be oxidatively polymerized, and examples thereof include peroxodisulfuric acid, peroxo Sodium disulfate, potassium peroxodisulfate, ammonium peroxodisulfate, inorganic ferric oxide, organic ferric oxide, hydrogen peroxide, potassium permanganate, potassium dichromate, alkali perborate, iron sulfate ( III), iron chloride (III) and the like. Among these, Preferably, peroxodisulfuric acid, sodium peroxodisulfate, potassium peroxodisulfate, ammonium peroxodisulfate, iron (III) sulfate, and iron (III) chloride are mentioned. These oxidizing agents may be used individually by 1 type, and may be used in combination of 2 or more type.

ポリチオフェン/アニオン性多糖類複合体の製造において、酸化剤の使用量については、特に制限されないが、例えば、式(5)で表されるチオフェン1モル当たり、0.1〜5当量、好ましくは0.3〜2当量が挙げられる。   In the production of the polythiophene / anionic polysaccharide complex, the amount of the oxidizing agent used is not particularly limited, but for example, 0.1 to 5 equivalents, preferably 0, per 1 mol of thiophene represented by the formula (5). 3 to 2 equivalents.

ポリチオフェン/アニオン性多糖類複合体の製造に使用される溶媒については、アニオン性多糖類複合体を溶解でき、チオフェンの重合反応を行い得るものであればよく、具体的には、水系溶媒が挙げられ、好ましくは水が挙げられる。また、当該溶媒には、メタノール、エタノール等の低級アルコールや、アセトン、アセトニトリル等の極性有機溶媒を水と混合した水系溶媒を用いてもよい。これらの溶媒は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。   The solvent used for the production of the polythiophene / anionic polysaccharide complex is not particularly limited as long as it can dissolve the anionic polysaccharide complex and can carry out the polymerization reaction of thiophene. Preferably, water is used. Further, as the solvent, an aqueous solvent obtained by mixing a lower alcohol such as methanol or ethanol or a polar organic solvent such as acetone or acetonitrile with water may be used. These solvents may be used individually by 1 type, and may be used in combination of 2 or more type.

ポリチオフェン/アニオン性多糖類複合体の製造において、前記溶媒の使用量については、特に制限されないが、例えば、式(5)で表されるチオフェン1モル当たり、1000〜50000ml、好ましくは3000〜30000mlが挙げられる。   In the production of the polythiophene / anionic polysaccharide complex, the amount of the solvent used is not particularly limited, but is, for example, 1000 to 50000 ml, preferably 3000 to 30000 ml per mole of thiophene represented by the formula (5). Can be mentioned.

ポリチオフェン/アニオン性多糖類複合体の製造における反応時間及び反応温度については、原料化合物として使用するチオフェンやアニオン性多糖類の種類、酸化剤の種類等に応じて適宜設定されるが、例えば、10〜90℃、好ましくは20〜80℃で、1〜96時間、好ましくは5〜48時間が挙げられる。   The reaction time and reaction temperature in the production of the polythiophene / anionic polysaccharide complex are appropriately set according to the type of thiophene or anionic polysaccharide used as the raw material compound, the type of oxidizing agent, etc. It is -90 degreeC, Preferably it is 20-80 degreeC, 1 to 96 hours, Preferably it is 5 to 48 hours.

上記のようにしてアニオン性多糖類の存在下で式(5)で表されるチオフェンを重合させることにより、ポリチオフェン/硫酸化多糖複合体の分散溶液が得られる。斯して得られる、ポリチオフェン/硫酸化多糖複合体は、反応後に得られる分散液の状態で、又は必要に応じてポリチオフェン/硫酸化多糖複合体を分離、精製した後に、導電膜の製造に供することができる。   By polymerizing the thiophene represented by the formula (5) in the presence of the anionic polysaccharide as described above, a polythiophene / sulfated polysaccharide complex dispersion solution can be obtained. The polythiophene / sulfated polysaccharide complex thus obtained is used for the production of a conductive film in the state of a dispersion obtained after the reaction, or after separation and purification of the polythiophene / sulfated polysaccharide complex as necessary. be able to.

ポリチオフェン/硫酸化多糖複合体を用いた導電膜
ポリチオフェン/アニオン性多糖類複合体は、優れた導電性及び製膜性を備えているので、基板上に製膜することにより、導電膜として使用することができる。
Conductive film using polythiophene / sulfated polysaccharide complex Polythiophene / anionic polysaccharide complex has excellent conductivity and film-forming properties, so it can be used as a conductive film by forming a film on a substrate. be able to.

具体的には、ポリチオフェン/アニオン性多糖類複合体を用いた導電膜は、ポリチオフェン/アニオン性多糖類複合体を含む分散液を基板上の全面に又は所定形状になるように塗布した後に、乾燥して溶媒を除去することによって製造される。   Specifically, a conductive film using a polythiophene / anionic polysaccharide complex is dried after a dispersion containing the polythiophene / anionic polysaccharide complex is applied on the entire surface of the substrate or in a predetermined shape. And is produced by removing the solvent.

ポリチオフェン/アニオン性多糖類複合体を含む分散液を基板に塗布する方法については、特に制限されないが、例えば、スプレーコート法、スピンコート法、ブレードコート法、デイップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法等の塗布による方法;印刷やインクジェット等のパターニングによる方法等のウェットプロセスが挙げられる。これらの中でも、好ましくはスピンコート法及びキャスト法が挙げられる。   The method for applying the dispersion containing the polythiophene / anionic polysaccharide complex to the substrate is not particularly limited. For example, spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method. And wet processes such as a method by coating such as a bar coating method and a die coating method; a method by patterning such as printing and inkjet. Among these, a spin coating method and a casting method are preferable.

乾燥方法については、特に制限されないが、例えば、加熱乾燥、凍結乾燥、減圧乾燥、熱風乾燥、超臨界乾燥等が挙げられる。乾燥温度は、乾燥方法に応じて適宜設定されるが、例えば、?50℃〜250℃、好ましくは60℃〜150℃が挙げられる。乾燥温度を250℃以下に設定することにより、乾燥時にポリチオフェン/アニオン性多糖類複合体の導電性が低下するのを効果的に抑制することができる。   The drying method is not particularly limited, and examples thereof include heat drying, freeze drying, reduced pressure drying, hot air drying, and supercritical drying. The drying temperature is appropriately set according to the drying method. 50 to 250 degreeC, Preferably 60 to 150 degreeC is mentioned. By setting the drying temperature to 250 ° C. or lower, it is possible to effectively suppress the decrease in the conductivity of the polythiophene / anionic polysaccharide complex during drying.

ポリチオフェン/アニオン性多糖類複合体の製膜に使用される基板としては、例えば、ガラス板、プラスチックシート、プラスチックフィルム等が挙げられる。プラスチックとしては、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイミド、ポリアミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、エポキシ樹脂、塩素系樹脂、シリコン系樹脂、及びこれらをブレンドしたもの等が挙げられる。   Examples of the substrate used for forming the polythiophene / anionic polysaccharide complex include a glass plate, a plastic sheet, and a plastic film. Examples of the plastic include polyester, polyethylene, polypropylene, polystyrene, polyimide, polyamide, polyethylene terephthalate, polyethylene naphthalate, epoxy resin, chlorine resin, silicon resin, and blends thereof.

ポリチオフェン/アニオン性多糖類複合体を製膜させて得られる導電膜、及び当該導電膜を設けた基材は、帯電防止フィルム、有機ELや太陽電池に代表される電子デバイスの配線や電極材料等の導電性部材として使用される。   A conductive film obtained by forming a polythiophene / anionic polysaccharide complex, and a substrate provided with the conductive film include an antistatic film, wiring for an electronic device typified by an organic EL or a solar cell, an electrode material, etc. Used as a conductive member.

以下に実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明は、これら実施例に よって何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

1.ポリチオフェン/硫酸化多糖類複合体の製造
(実施例1)
セルロース(商品名「Cellulose, fibers」、シグマ社製)2.00gをN,N−ジメチルホルムアミド(DMF)100mlに加え、14時間以上かき混ぜた。次いで、クロロスルホン酸1.85mlをDMF30mlに溶解した溶液を30分かけゆっくりと加えた。50℃で5時間かき混ぜた。反応液を飽和酢酸ナトリウムエタノール溶液に加え、沈殿物を回収し、エタノールで洗浄した。沈殿物を水に溶解し透析を行った後、凍結乾燥し、硫酸化セルロース1.4g(硫酸化セルロースI)を得た。FT−IR測定の結果を図1に示す。元素分析の結果、グルコース単位当たりのスルホン基導入率(DS値)は1.28であった。
1. Production of polythiophene / sulfated polysaccharide complex (Example 1)
2.00 g of cellulose (trade name “Cellulose, fibers”, manufactured by Sigma) was added to 100 ml of N, N-dimethylformamide (DMF) and stirred for 14 hours or more. Next, a solution obtained by dissolving 1.85 ml of chlorosulfonic acid in 30 ml of DMF was slowly added over 30 minutes. Stir at 50 ° C. for 5 hours. The reaction solution was added to a saturated sodium acetate ethanol solution, and the precipitate was collected and washed with ethanol. The precipitate was dissolved in water and dialyzed, and then lyophilized to obtain 1.4 g of sulfated cellulose (sulfated cellulose I). The result of FT-IR measurement is shown in FIG. As a result of elemental analysis, the sulfone group introduction rate (DS value) per glucose unit was 1.28.

硫酸化セルロースI0.20gを水20mlに溶解し、EDOT0.10g、ペルオキソ二硫酸カリウム0.13g、硫酸鉄(III)0.50mgを加え、室温で24時間かき混ぜて反応を行った。次いで、透析及び濃縮を順次行い、固形分が1.30質量%のPEDOT/硫酸化セルロースI複合体の分散液を得た。   Sulfated cellulose I (0.20 g) was dissolved in water (20 ml), EDOT (0.10 g), potassium peroxodisulfate (0.13 g) and iron (III) sulfate (0.50 mg) were added, and the mixture was stirred at room temperature for 24 hours to carry out the reaction. Subsequently, dialysis and concentration were sequentially performed to obtain a dispersion of PEDOT / sulfated cellulose I complex having a solid content of 1.30% by mass.

(実施例2)
ACROS製の硫酸セルロース(硫酸化セルロースII)の元素分析を行ったところ、DS値は2.75であった。FT−IR測定の結果を図1に示す。
(Example 2)
When an elemental analysis of cellulose sulfate (sulfated cellulose II) manufactured by ACROS was performed, the DS value was 2.75. The result of FT-IR measurement is shown in FIG.

硫酸化セルロースII0.20gを水20mlに溶解し、EDOT0.10g、ペルオキソ二硫酸カリウム0.13g、硫酸鉄(III)0.50mgを加え、室温で24時間かき混ぜて反応を行った。次いで透析及び濃縮を順次行い、固形分が1.30質量%のPEDOT/硫酸化セルロースII複合体の分散液を得た。   Sulfated cellulose II (0.20 g) was dissolved in water (20 ml), EDOT (0.10 g), potassium peroxodisulfate (0.13 g) and iron (III) sulfate (0.50 mg) were added, and the mixture was stirred at room temperature for 24 hours to carry out the reaction. Subsequently, dialysis and concentration were sequentially performed to obtain a dispersion of PEDOT / sulfated cellulose II composite having a solid content of 1.30% by mass.

(実施例3)
デンプン(商品名「でんぷん(溶性)」、和光純薬社製)2.00gをDMF100mlに加え、14時間以上かき混ぜた。クロロスルホン酸3.70mlをDMF30mlに溶解した溶液を30分かけゆっくりと加えた。その後、50℃で5時間かき混ぜて反応を行った。反応液を飽和酢酸ナトリウムエタノール溶液に加え、沈殿物を回収し、エタノールで洗浄した。沈殿物を水に溶解し透析を行った後、凍結乾燥し、硫酸化デンプン1.6gを得た。元素分析の結果、DS値は1.89であった。FT−IR測定の結果を図2に示す。
(Example 3)
2.00 g of starch (trade name “starch (soluble)”, manufactured by Wako Pure Chemical Industries, Ltd.) was added to 100 ml of DMF and stirred for 14 hours or more. A solution prepared by dissolving 3.70 ml of chlorosulfonic acid in 30 ml of DMF was slowly added over 30 minutes. Then, it reacted by stirring for 5 hours at 50 degreeC. The reaction solution was added to a saturated sodium acetate ethanol solution, and the precipitate was collected and washed with ethanol. The precipitate was dissolved in water and dialyzed, and then freeze-dried to obtain 1.6 g of sulfated starch. As a result of elemental analysis, the DS value was 1.89. The result of FT-IR measurement is shown in FIG.

硫酸化デンプン 0.20gを水20mlに溶解し、EDOT0.10g、ペルオキソ二硫酸カリウム0.13g、硫酸鉄(III)0.50mgを加え、室温で24時間かき混ぜて反応を行った。次いで、透析及び濃縮を順次行い、固形分が1.30重量%のPEDOT/硫酸化デンプン複合体の分散液を得た。   0.20 g of sulfated starch was dissolved in 20 ml of water, 0.10 g of EDOT, 0.13 g of potassium peroxodisulfate and 0.50 mg of iron (III) sulfate were added, and the mixture was stirred at room temperature for 24 hours to carry out the reaction. Subsequently, dialysis and concentration were sequentially performed to obtain a dispersion of PEDOT / sulfated starch complex having a solid content of 1.30% by weight.

2.ポリチオフェン/硫酸化多糖類複合体を用いた導電膜の作成
実施例1〜3で得られたPEDOT/硫酸化多糖類の分散液300μlをガラス上にキャストし、80℃で1時間加熱して乾燥させることによりPEDOT/硫酸化多糖複合体の導電膜を作製した。また、比較のため、市販のPEDOT/PSS複合体の水分散液(Aldrich製)(比較例1)を用いて、同様の方法で導電膜の作製を行った。
2. Preparation of conductive film using polythiophene / sulfated polysaccharide composite 300 μl of PEDOT / sulfated polysaccharide dispersion obtained in Examples 1 to 3 was cast on glass and dried by heating at 80 ° C. for 1 hour. By doing so, a conductive film of PEDOT / sulfated polysaccharide complex was produced. For comparison, a conductive film was prepared in the same manner using a commercially available aqueous dispersion of PEDOT / PSS composite (manufactured by Aldrich) (Comparative Example 1).

3.導電膜の性能評価
作製した導電膜についてシート抵抗を測定した。具体的には、シート抵抗は、抵抗率計(ロレスタGP、三菱化学製)に4探針プローブ(PSP、三菱化学製)を接続して、膜を4探針プローブに押し当てることによって測定した。シート抵抗の測定結果を表1に示す。
3. Performance Evaluation of Conductive Film Sheet resistance was measured for the produced conductive film. Specifically, the sheet resistance was measured by connecting a 4-probe probe (PSP, manufactured by Mitsubishi Chemical) to a resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical) and pressing the membrane against the 4-probe probe. . Table 1 shows the sheet resistance measurement results.

以上の結果から、実施例1〜3のPEDOT/硫酸化多糖複合体を用いた導電膜では、従来のPEDOT/PSS複合体を使用した導電膜に比して、格段に高い導電性を有することが明らかとなった。また、実施例1〜3のPEDOT/硫酸化多糖複合体は、容易に導電膜に成形でき、製膜性も非常に良好であった。   From the above results, the conductive film using the PEDOT / sulfated polysaccharide complex of Examples 1 to 3 has much higher conductivity than the conductive film using the conventional PEDOT / PSS complex. Became clear. Moreover, the PEDOT / sulfated polysaccharide complex of Examples 1 to 3 could be easily formed into a conductive film, and the film forming property was very good.

Claims (7)

式(1)で表される繰り返し単位を有するポリチオフェンと、
[式(1)中、R1及びR2は、それぞれ独立に水素原子、炭素数1〜8のアルキル基、又は炭素数1〜8のアルコキシ基を表すか、R1とR2は連結して、炭素数1〜8のジオキシアルキレン基、芳香環又は3〜7員環の脂環式環を表す。]
アニオン性多糖類との複合体からなる導電性材料。
Polythiophene having a repeating unit represented by the formula (1);
[In formula (1), R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, R 1 and R 2 linked And a C 1-8 dioxyalkylene group, an aromatic ring or a 3-7 membered alicyclic ring. ]
A conductive material comprising a complex with an anionic polysaccharide.
前記アニオン性多糖類が、硫酸化多糖である、請求項1に記載の導電性材料。   The conductive material according to claim 1, wherein the anionic polysaccharide is a sulfated polysaccharide. 前記アニオン性多糖類が、式(2)で表される繰り返し単位を有する硫酸化セルロース、
[式(2)中、R3〜R8は、それぞれ独立に水素原子、スルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表し、且つ少なくとも1つはスルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表す。]
式(3)で表される繰り返し単位を有する硫酸化デンプン、
[式(3)中、R9〜R14は、それぞれ独立に水素原子、スルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表し、且つ少なくとも1つはスルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表す。]
及び式(4)で表される繰り返し単位を有する硫酸化デンプン
[式(4)中、R15〜R22は、それぞれ独立に水素原子、スルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表し、且つ少なくとも1つはスルホン酸基又は炭素数1〜6のアルキルスルホン酸基を表す。]
からなる群より選ばれた少なくとも1種の硫酸化多糖である、請求項1又は2に記載の導電性材料。
The sulfated cellulose in which the anionic polysaccharide has a repeating unit represented by the formula (2),
[In Formula (2), R < 3 > -R < 8 > represents a hydrogen atom, a sulfonic acid group, or a C1-C6 alkylsulfonic acid group each independently, and at least 1 is a sulfonic acid group or C1-C1. 6 alkylsulfonic acid groups are represented. ]
Sulfated starch having a repeating unit represented by formula (3),
Wherein (3), R 9 ~R 14 each independently represent a hydrogen atom, a sulfonic acid group or alkyl sulfonic acid having 1 to 6 carbon atoms, and at least one sulfonic acid group or 1 carbon atoms 6 alkylsulfonic acid groups are represented. ]
And sulfated starch having a repeating unit represented by formula (4)
Wherein (4), R 15 ~R 22 each independently represent a hydrogen atom, a sulfonic acid group or alkyl sulfonic acid having 1 to 6 carbon atoms, and at least one sulfonic acid group or 1 carbon atoms 6 alkylsulfonic acid groups are represented. ]
The conductive material according to claim 1 or 2, which is at least one sulfated polysaccharide selected from the group consisting of:
前記アニオン性多糖類におけるアニオン性基の導入数が、構成単糖1残基当たり0.3〜3である、請求項1〜3のいずれかに記載の導電性材料。   The conductive material according to claim 1, wherein the number of introduced anionic groups in the anionic polysaccharide is 0.3 to 3 per residue of the constituent monosaccharide. アニオン性多糖類、溶媒及び酸化剤の存在下、式(5)で表されるチオフェン
[式(5)中、R1及びR2は、前記と同じ。]
を酸化重合することを特徴とする、ポリチオフェンと硫酸化多糖との複合体の製造方法。
Thiophene represented by formula (5) in the presence of an anionic polysaccharide, a solvent and an oxidizing agent
[In Formula (5), R < 1 > and R < 2 > are the same as the above. ]
A method for producing a complex of polythiophene and a sulfated polysaccharide, characterized by subjecting oxidative polymerization of
請求項1〜4のいずれかに記載の導電性材料を含む導電膜。   The electrically conductive film containing the electroconductive material in any one of Claims 1-4. 請求項1〜4のいずれかに記載の導電性材料を基板上に製膜してなる、導電性部材。   The electroconductive member formed by forming the electroconductive material in any one of Claims 1-4 on a board | substrate.
JP2012247188A 2012-11-09 2012-11-09 Conductive polymer composition Expired - Fee Related JP6172492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247188A JP6172492B2 (en) 2012-11-09 2012-11-09 Conductive polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012247188A JP6172492B2 (en) 2012-11-09 2012-11-09 Conductive polymer composition

Publications (2)

Publication Number Publication Date
JP2014095032A true JP2014095032A (en) 2014-05-22
JP6172492B2 JP6172492B2 (en) 2017-08-02

Family

ID=50938379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247188A Expired - Fee Related JP6172492B2 (en) 2012-11-09 2012-11-09 Conductive polymer composition

Country Status (1)

Country Link
JP (1) JP6172492B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013276A1 (en) * 2017-07-12 2019-01-17 熊本県 Electroconductive material
JP2020111747A (en) * 2019-01-11 2020-07-27 熊本県 Heat ray absorption material and method for producing the same, and heat ray absorption film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093993A (en) * 2009-10-28 2011-05-12 Marubishi Oil Chem Co Ltd Electrically-conductive poly(3,4-ethylenedioxy thiophene) colloidal aqueous solution and method for producing the same
JP2012158736A (en) * 2011-02-01 2012-08-23 Samsung Electro-Mechanics Co Ltd Conductive polymer composition, and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093993A (en) * 2009-10-28 2011-05-12 Marubishi Oil Chem Co Ltd Electrically-conductive poly(3,4-ethylenedioxy thiophene) colloidal aqueous solution and method for producing the same
JP2012158736A (en) * 2011-02-01 2012-08-23 Samsung Electro-Mechanics Co Ltd Conductive polymer composition, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013276A1 (en) * 2017-07-12 2019-01-17 熊本県 Electroconductive material
JPWO2019013276A1 (en) * 2017-07-12 2020-04-30 熊本県 Conductive material
JP2020111747A (en) * 2019-01-11 2020-07-27 熊本県 Heat ray absorption material and method for producing the same, and heat ray absorption film
JP7378066B2 (en) 2019-01-11 2023-11-13 熊本県 Heat ray absorbing material and its manufacturing method, heat ray absorbing film

Also Published As

Publication number Publication date
JP6172492B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
Karlsson et al. Iron-catalyzed polymerization of alkoxysulfonate-functionalized 3, 4-ethylenedioxythiophene gives water-soluble poly (3, 4-ethylenedioxythiophene) of high conductivity
Lay et al. Smart nanopaper based on cellulose nanofibers with hybrid PEDOT: PSS/polypyrrole for energy storage devices
TWI300419B (en) Process for the preparation of neutral polyethylenedioxythiophene, and corresponding polyethlenedioxythiophenes
JP5435436B2 (en) Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
JP5869880B2 (en) Composite conductive polymer solution and method for producing the same
Feng et al. Novel PEDOT dispersion by in-situ polymerization based on sulfated nanocellulose
Yang et al. Water-dispersed conductive polypyrroles doped with lignosulfonate and the weak temperature dependence of electrical conductivity
Khan et al. Bio-hybrid blended transparent and conductive films PEDOT: PSS: Chitosan exhibiting electro-active and antibacterial properties
WO2010095649A1 (en) Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition
Pyshkina et al. Poly (3, 4-ethylenedioxythiophene): synthesis and properties
AU2020356808B2 (en) Terpolymer based on 2,5-bis(2-thienyl)thiazolo[5,4-d]thiazolyl
CN102604334A (en) Self-supporting transparent highly-conductive poly-3,4-ethylenedioxythiophene (PEDOT) film and preparation method of the film
Hussin et al. Synthesis of water-soluble polyaniline by using different types of cellulose derivatives
CN106750282A (en) Water miscible nano silver wire/polyaniline hybridized material and preparation method thereof
CN104672786A (en) Water-soluble PEDOT-PSS dispersion and homogeneous polymerization preparation method thereof
JP6172492B2 (en) Conductive polymer composition
JP2010090397A (en) Method for manufacturing water dispersion of composite of poly(3,4-dialkoxy-thiophene) and poly-anions
Vega-Rios et al. Synthesis and electrical properties of polyaniline/iota-carrageenan biocomposites
Soganci et al. An eco-friendly method to enhance optical and electrical properties of conducting polymers by means of carboxymethyl cellulose
Wang et al. One-step electropolymerized thieno [3, 2-b] thiophene-based bifunctional electrode with controlled color conversion for electrochromic energy storage application
Lv et al. Fabrication of poly (3, 4‐ethylenedioxythiophene)‐polysaccharide composites
TW201307428A (en) Novel polyvinyl sulfonic acid, method for producing same, and use of same
JP2014214245A (en) Novel thiophene compound and method for producing the same
Atifi et al. Structure, polymerization kinetics, and performance of poly (3, 4-ethylenedioxythiophene): Cellulose nanocrystal nanomaterials
Nielsen et al. Structure− Property Relations of Regiosymmetrical 3, 4-Dioxy-Functionalized Polythiophenes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170621

R150 Certificate of patent or registration of utility model

Ref document number: 6172492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees