JP2014094936A - Purification method of antibody - Google Patents

Purification method of antibody Download PDF

Info

Publication number
JP2014094936A
JP2014094936A JP2013211959A JP2013211959A JP2014094936A JP 2014094936 A JP2014094936 A JP 2014094936A JP 2013211959 A JP2013211959 A JP 2013211959A JP 2013211959 A JP2013211959 A JP 2013211959A JP 2014094936 A JP2014094936 A JP 2014094936A
Authority
JP
Japan
Prior art keywords
antibody
washing
solution
added
sodium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211959A
Other languages
Japanese (ja)
Other versions
JP6303379B2 (en
Inventor
Toru Tanaka
亨 田中
Teruhiko Ide
輝彦 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2013211959A priority Critical patent/JP6303379B2/en
Publication of JP2014094936A publication Critical patent/JP2014094936A/en
Application granted granted Critical
Publication of JP6303379B2 publication Critical patent/JP6303379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for purifying an antibody with high purity by effectively removing an impurity included in a solution containing the antibody when purifying the antibody using affinity chromatography from the solution containing the antibody.SOLUTION: A purification method comprises: a step of adding a solution containing an antibody to an equilibrated column filled with carriers for affinity chromatography; a first washing step of washing with the solution used in equilibration of the column; a second washing step of washing with a neutral or alkali buffer containing sodium chloride having the final concentration of 0.2 M or more; and a step of washing an impurity included in the solution containing the antibody. Alternatively, the purification method comprises the steps of: adding sodium chloride to the solution containing the antibody so that the concentration of sodium chloride is 0.2 M or more; adding the solution containing the antibody to the column; washing the impurity included in the solution containing the antibody using the solution used in equilibration of the column; and eluting the antibody using an elution liquid.

Description

本発明は、アフィニティークロマトグラフィーを用いて、抗体を含む溶液から前記抗体を高純度に精製する方法に関する。   The present invention relates to a method for purifying the antibody with high purity from a solution containing the antibody using affinity chromatography.

近年、ガンや感染症等の治療に抗体を含む医薬品(抗体医薬)が用いられている。抗体医薬に用いる抗体は、遺伝子工学的手法により得られた、当該抗体を発現可能な細胞(たとえば、CHO(チャイニーズハムスター卵巣)細胞等)を培養後、カラムクロマトグラフィー等を用いて高純度に精製し製造する。   In recent years, pharmaceuticals containing antibodies (antibody drugs) have been used for the treatment of cancer and infectious diseases. The antibody used for the antibody drug is purified to high purity using column chromatography after culturing cells capable of expressing the antibody (eg, CHO (Chinese hamster ovary) cells) obtained by genetic engineering techniques. And manufacture.

カラムクロマトグラフィーのうち、アフィニティークロマトグラフィーは、吸着対象物質に対し特異的に結合可能な物質(リガンド)を不溶性の担体に固定化することで得られる吸着剤(以下、アフィニティークロマトグラフィー用担体ともいう)を用いたクロマトグラフィーである。吸着対象物質に対する特異的な結合力は、通常、イオン相互作用、疎水相互作用、水素結合、弱い共有結合、金属とのキレート結合などの形成が複合的かつ立体的に行なわれることで得られている。アフィニティークロマトグラフィーは、吸着対象物質を含む被精製溶液に含まれる夾雑物(例えば、培養細胞由来のタンパク質(Host Cell Protein、HCP)、核酸、膜成分や代謝物質、培養液由来の成分、アフィニティークロマトグラフィー用担体を構成するリガンドや担体が剥離したもの)を除去し、前記吸着対象物質を特異的に吸着させることができる。そのため、前記吸着対象物質を高純度に精製可能である。しかしながらアフィニティークロマトグラフィー用担体が吸着対象物質と特異的な結合力で吸着される一方で、被精製溶液に含まれる夾雑物も弱い結合力ながら前記担体に吸着してしまい、このことが前記吸着対象物質の精製純度が低下する要因となっていた。   Among column chromatography, affinity chromatography is an adsorbent obtained by immobilizing a substance (ligand) capable of specifically binding to a substance to be adsorbed on an insoluble carrier (hereinafter also referred to as a carrier for affinity chromatography). ). The specific binding force for the substance to be adsorbed is usually obtained by complex and steric formation of ionic interaction, hydrophobic interaction, hydrogen bond, weak covalent bond, chelate bond with metal, etc. Yes. Affinity chromatography is performed by using impurities contained in the solution to be adsorbed (for example, proteins derived from cultured cells (Host Cell Protein, HCP), nucleic acids, membrane components and metabolites, components derived from culture broth, affinity chromatography). And the adsorbed substance can be adsorbed specifically. Therefore, the adsorption target substance can be purified with high purity. However, while the affinity chromatography carrier is adsorbed to the substance to be adsorbed with a specific binding force, impurities contained in the solution to be purified are also adsorbed to the carrier with a weak binding force, which is the object of adsorption. This was a factor in reducing the purification purity of the substance.

特にアフィニティークロマトグラフィーは多くの場合、精製工程の最初の段階であるキャプチャー工程に採用されるため、アフィニティークロマトグラフィー用担体を充填したカラムに添加される溶液は、全精製工程の中で最も多くの夾雑物を含んでいる。したがって、たとえ特異性の高いアフィニティークロマトグラフィー用担体を用いたとしても、吸着対象物質以外の夾雑物が当該担体に非特異的に吸着することで、吸着対象物質の精製純度が低下してしまう問題があった。   In particular, affinity chromatography is often employed in the capture process, which is the first stage of the purification process, so the solution added to the column packed with the support for affinity chromatography is the most common in the entire purification process. Contains impurities. Therefore, even if a carrier for affinity chromatography with high specificity is used, there is a problem that the purification purity of the substance to be adsorbed decreases due to non-specific adsorption of impurities other than the substance to be adsorbed on the carrier. was there.

抗体を精製するためのアフィニティークロマトグラフィー用担体として一般的には、プロテインAをリガンドとして固定化した担体が用いられている。プロテインAを固定化した担体を充填したカラムを用いて抗体を精製する際は、通常、中性付近で抗体を含む溶液(例えば、抗体を発現可能な細胞の培養液)を添加して当該抗体を担体に吸着させた後、カラムの平衡化に用いた緩衝液で担体を洗浄し、最後に酸性の緩衝液で担体に吸着した抗体を溶出させることで、抗体を高純度に精製する。前述したクロマトグラフィー操作を1回行なうことで、抗体の純度を90%以上まで向上させることができる。しかしながら、前記操作で得られた抗体溶液中には、培養細胞由来タンパク質(HCP)が数百から数千ppmの濃度で混入しており(非特許文献1)、他にも、培養細胞に由来する核酸成分、膜成分、代謝成分や、培養液に由来する成分などの混入が問題となっている。前記問題を解決するために、カラムの平衡化に用いた緩衝液で洗浄後、抗体を溶出させる前に、尿素やイソプロパノールを含んだ緩衝液で追加の洗浄を行なうことで、HCPなどの夾雑成分の除去効果を高める方法が開示されている(非特許文献2)。しかしながら、非特許文献2で開示の方法をもってしても、HCPの除去率は最大でも60%程度であり、残りのHCPは精製抗体溶液に混入したままである。   In general, a carrier in which protein A is immobilized as a ligand is used as a carrier for affinity chromatography for purifying an antibody. When purifying an antibody using a column packed with a carrier on which protein A is immobilized, the antibody is usually added by adding a solution containing the antibody near neutrality (for example, a culture solution of cells capable of expressing the antibody). Is adsorbed on the carrier, and then the carrier is washed with a buffer used for equilibration of the column, and finally the antibody adsorbed on the carrier is eluted with an acidic buffer to purify the antibody with high purity. By performing the chromatography operation described above once, the purity of the antibody can be improved to 90% or more. However, the antibody solution obtained by the above operation contains a protein derived from cultured cells (HCP) at a concentration of several hundred to several thousand ppm (Non-patent Document 1). Ingredients such as nucleic acid components, membrane components, metabolic components, and components derived from the culture solution are problematic. In order to solve the above problem, after washing with a buffer used for equilibration of the column and before eluting the antibody, additional washing with a buffer containing urea or isopropanol is performed, so that impurities such as HCP are contained. A method for enhancing the effect of removing water is disclosed (Non-Patent Document 2). However, even with the method disclosed in Non-Patent Document 2, the removal rate of HCP is about 60% at the maximum, and the remaining HCP remains mixed in the purified antibody solution.

プロテインAを固定化した担体以外の抗体を精製するためのアフィニティークロマトグラフィー用担体として、IgG抗体のFc領域に結合する一群のタンパク質分子であるFc受容体やFc領域結合能を有したFc受容体の部分領域(以下、合わせてFc結合性タンパク質という)をリガンドとして固定化した担体が実用化されている(特許文献1)。Fc結合性タンパク質を固定化した担体も、プロテインAを固定化した担体と同様の高い抗体精製純度を達成することが可能であるが、数千から数万ppmのHCPが精製した抗体溶液に混入する問題があった。   Fc receptors that are a group of protein molecules that bind to the Fc region of IgG antibodies and Fc receptors that have Fc region binding ability as carriers for affinity chromatography to purify antibodies other than the carrier on which protein A is immobilized A carrier in which a partial region (hereinafter collectively referred to as Fc-binding protein) is immobilized as a ligand has been put into practical use (Patent Document 1). The carrier immobilized with the Fc-binding protein can achieve the same high antibody purification purity as the carrier immobilized with protein A, but thousands to tens of thousands of ppm of HCP are mixed in the purified antibody solution. There was a problem to do.

特開2011−206046号公報JP 2011-206046 A

Journal of Chromatogr. A,1102,224−231,2006Journal of Chromatogr. A, 1102, 224-231, 2006 Biotechnol. Prog.24,1115−1121,2008Biotechnol. Prog. 24,1115-11121,2008

本発明の目的は、抗体を含む溶液からアフィニティークロマトグラフィーを用いて前記抗体を精製する際、前記溶液に含まれる夾雑物を効率的に除去し、前記抗体を高純度に精製する方法を提供することにある。   An object of the present invention is to provide a method for purifying the antibody with high purity by efficiently removing impurities contained in the solution when the antibody is purified from the solution containing the antibody using affinity chromatography. There is.

本願発明者らは前記課題を解決すべく鋭意検討した結果、抗体を含む溶液に含まれる夾雑物を効率的に除去可能な洗浄成分を特定し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have identified a cleaning component capable of efficiently removing impurities contained in a solution containing an antibody, and have completed the present invention.

すなわち、本発明の第一の態様は、
アフィニティークロマトグラフィー用担体を充填したカラムを平衡化する工程と、前記平衡化したカラムに抗体を含む溶液を添加する工程と、前記抗体を含む溶液に含まれる夾雑物を洗浄する工程と、溶出液を用いて前記抗体を溶出させる工程とを含む、抗体の精製方法であって、
前記夾雑物を洗浄する工程が、前記カラムの平衡化に用いた溶液で洗浄する第一の洗浄工程と、終濃度0.2M以上の塩化ナトリウムを含む中性または塩基性の緩衝液で洗浄する第二の洗浄工程とからなる、前記精製方法である。
That is, the first aspect of the present invention is:
A step of equilibrating a column packed with a carrier for affinity chromatography, a step of adding a solution containing an antibody to the equilibrated column, a step of washing impurities contained in the solution containing the antibody, and an eluent Elution of the antibody using a method for purifying an antibody,
The step of washing the contaminants is a first washing step of washing with the solution used for equilibration of the column, and a neutral or basic buffer containing sodium chloride having a final concentration of 0.2 M or more. It is the said purification method which consists of a 2nd washing | cleaning process.

また本発明の第二の態様は、抗体を含む溶液に対し0.2M以上となるよう塩化ナトリウムを添加後、平衡化したカラムに抗体を含む溶液を添加する工程を行なう、第一の態様に記載の精製方法である。   The second aspect of the present invention is the first aspect wherein the step of adding the antibody-containing solution to the equilibrated column is performed after adding sodium chloride so as to be 0.2 M or more to the antibody-containing solution. The purification method described.

また本発明の第三の態様は、第二の洗浄工程で用いる緩衝液が、水溶性有機溶媒、非イオン性界面活性剤、疎水性アミノ酸、終濃度0.3M以上の尿素のうちいずれか一つ以上をさらに含む、前記第一または第二の態様に記載の精製方法である。   In the third aspect of the present invention, the buffer used in the second washing step is any one of a water-soluble organic solvent, a nonionic surfactant, a hydrophobic amino acid, and urea having a final concentration of 0.3 M or more. The purification method according to the first or second aspect, further comprising one or more.

また本発明の第四の態様は、水溶性有機溶媒がイソプロパノール、アセトニトリル、エタノールのいずれかである、前記第三の態様に記載の精製方法である。   The fourth aspect of the present invention is the purification method according to the third aspect, wherein the water-soluble organic solvent is any one of isopropanol, acetonitrile, and ethanol.

また本発明の第五の態様は、疎水性アミノ酸がバリン、ロイシン、イソロイシンのいずれかである、前記第三の態様に記載の精製方法である。   The fifth aspect of the present invention is the purification method according to the third aspect, wherein the hydrophobic amino acid is any one of valine, leucine and isoleucine.

さらに本発明の第六の態様は、
アフィニティークロマトグラフィー用担体を充填したカラムを平衡化する工程と、
抗体を含む溶液に対し0.2M以上となるよう塩化ナトリウムを添加する工程と、
前記平衡化したカラムに前記抗体を含む溶液を添加する工程と、
前記カラムの平衡化に用いた溶液で前記抗体を含む溶液に含まれる夾雑物を洗浄する工程と、
溶出液を用いて前記抗体を溶出させる工程とを含む、
抗体の精製方法である。
Furthermore, the sixth aspect of the present invention provides
Equilibrating a column packed with a carrier for affinity chromatography;
Adding sodium chloride so as to be 0.2 M or more with respect to the solution containing the antibody;
Adding a solution containing the antibody to the equilibrated column;
Washing impurities contained in the solution containing the antibody with the solution used for equilibration of the column;
Elution of the antibody with an eluate.
This is a method for purifying antibodies.

また本発明の第七の態様は、アフィニティクロマトグラフィー用担体が、Fc結合性タンパク質またはプロテインAを固定化した担体である、前記第一から第六の態様のいずれかに記載の精製方法である。   The seventh aspect of the present invention is the purification method according to any one of the first to sixth aspects, wherein the affinity chromatography carrier is a carrier on which an Fc-binding protein or protein A is immobilized. .

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の精製方法の一態様は、アフィニティークロマトグラフィー用担体を充填したカラムを平衡化する工程と、前記平衡化したカラムに抗体を含む溶液を添加する工程と、前記抗体を含む溶液に含まれる夾雑物を洗浄する工程と、溶出液を用いて前記抗体を溶出させる工程とを含み、かつ前記夾雑物を洗浄する工程が、前記カラムの平衡化に用いた溶液で洗浄する第一の洗浄工程と、終濃度0.2M以上の塩化ナトリウムを含む中性または塩基性の緩衝液で洗浄する第二の洗浄工程とからなることを特徴としている。   One aspect of the purification method of the present invention is included in the step of equilibrating a column packed with a carrier for affinity chromatography, the step of adding a solution containing an antibody to the equilibrated column, and the solution containing the antibody A first washing step including a step of washing impurities and a step of eluting the antibody using an eluate, wherein the step of washing the impurities is washed with the solution used for equilibration of the column. And a second washing step of washing with a neutral or basic buffer solution containing sodium chloride having a final concentration of 0.2 M or more.

前記カラムを平衡化する工程および第一の洗浄工程で用いる溶液は、一般には、pHが中性付近の緩衝液(緩衝液の濃度は数十mMから100mM程度)やPBS(Phosphate Buffered Saline)が用いられる。   The solution used in the step of equilibrating the column and the first washing step is generally a buffer solution having a pH near neutral (the concentration of the buffer solution is several tens to 100 mM) or PBS (phosphate buffered saline). Used.

第二の洗浄工程で用いる緩衝液は、終濃度0.2M(0.2mol/L)以上の塩化ナトリウムを含むことを特徴としている。PBSに含まれる塩化ナトリウム濃度が0.137Mであるため、第二の洗浄工程ではPBSよりも高い塩化ナトリウム濃度を含む緩衝液で洗浄することになる。第二の洗浄工程で用いる緩衝液に含まれる塩化ナトリウム濃度に特に上限はないものの、好ましくは終濃度0.2Mから1.2Mの範囲、さらに好ましくは終濃度0.3Mから1.0Mの範囲、最も好ましくは終濃度0.35Mから0.6Mの範囲である。第二の洗浄工程で用いる緩衝液のpHは7以上であればよいが、極端にpHが高いと(極端な塩基性だと)アフィニティークロマトグラフィー用担体を構成するリガンドが変性する可能性があるため、好ましくはpH7からpH12の範囲、より好ましくはpH8からpH10の範囲である。緩衝液を構成する緩衝剤は、使用するpHに応じて当業者が通常用いる緩衝剤の中から適宜選択すればよく、リン酸塩、トリスヒドロキシアミノメタン(Tris)、ホウ酸、炭酸ナトリウム、重炭酸ナトリウムが例示できる。また、MES(2−Morpholinoethanesulfonic acid)やHEPES(2−[4−(2−Hydroxyethyl)−1−piperazinyl]ethanesulfonic acid)といったグッドバッファー系緩衝剤を用いてもよい。   The buffer solution used in the second washing step is characterized by containing sodium chloride having a final concentration of 0.2 M (0.2 mol / L) or more. Since the sodium chloride concentration contained in PBS is 0.137M, the second washing step involves washing with a buffer solution containing a sodium chloride concentration higher than that of PBS. Although there is no particular upper limit to the sodium chloride concentration contained in the buffer used in the second washing step, it is preferably in the final concentration range of 0.2M to 1.2M, more preferably in the final concentration range of 0.3M to 1.0M. Most preferably, the final concentration ranges from 0.35M to 0.6M. The pH of the buffer used in the second washing step may be 7 or more, but if the pH is extremely high (extremely basic), the ligand constituting the affinity chromatography carrier may be denatured. Therefore, it is preferably in the range of pH 7 to pH 12, more preferably in the range of pH 8 to pH 10. The buffer constituting the buffer may be appropriately selected from those commonly used by those skilled in the art depending on the pH to be used. Phosphate, trishydroxyaminomethane (Tris), boric acid, sodium carbonate, heavy An example is sodium carbonate. Also, a good buffer type buffer such as MES (2-Morpholinoethane acid) or HEPES (2- [4- (2-Hydroxyethyl) -1-piperazinyl] etheric acid) may be used.

第二の洗浄工程で用いる緩衝液に、疎水性を高める水溶性有機溶媒、非イオン系界面活性剤、疎水性アミノ酸のうちいずれか一つ以上をさらに含む(添加する)と、物質とアフィニティークロマトグラフィー用担体との疎水的な相互作用をコントロールできるため好ましい。水溶性有機溶媒の一例としては、メタノール、エタノール、1−プロパノール、2−プロパノール(イソプロパノール)、ブタノール、アセトニトリル、アセトン、ベンジルアルコールがあげられる。水溶性有機溶媒の添加量は、抗体とアフィニティークロマトグラフィー用担体の吸着力が弱くならない程度に添加すればよく、好ましくは0.1%(v/v)から25%(v/v)の範囲、より好ましくは5%(v/v)から20%(v/v)の範囲である。非イオン系界面活性剤の一例としては、ポリソルベート(Tween 20、Tween 40、Tween 60、Tween 80(以上商品名)等)やTriton X−100(商品名)があげられる。界面活性剤の添加量は臨界ミセル濃度以上の常用濃度となるように添加すればよく、好ましくは0.01%(v/v)から1%(v/v)の範囲である。疎水性アミノ酸の一例としては、ロイシン、イソロイシン、バリンがあげられる。疎水性アミノ酸の添加量は溶解可能な濃度域であれば良く、好ましくは100mMから1Mの範囲、より好ましくは200mMから400mMの範囲である。   If the buffer used in the second washing step further contains (adds) any one or more of a water-soluble organic solvent that increases hydrophobicity, a nonionic surfactant, and a hydrophobic amino acid, the substance and affinity chromatography This is preferable because the hydrophobic interaction with the photographic support can be controlled. Examples of the water-soluble organic solvent include methanol, ethanol, 1-propanol, 2-propanol (isopropanol), butanol, acetonitrile, acetone, and benzyl alcohol. The addition amount of the water-soluble organic solvent may be added so that the adsorptive power of the antibody and the carrier for affinity chromatography does not become weak, and is preferably in the range of 0.1% (v / v) to 25% (v / v). More preferably, it is in the range of 5% (v / v) to 20% (v / v). Examples of the nonionic surfactant include polysorbate (Tween 20, Tween 40, Tween 60, Tween 80 (trade name) and the like) and Triton X-100 (trade name). The addition amount of the surfactant may be added so as to have a normal concentration higher than the critical micelle concentration, and is preferably in the range of 0.01% (v / v) to 1% (v / v). Examples of hydrophobic amino acids include leucine, isoleucine, and valine. The amount of the hydrophobic amino acid added may be in a concentration range in which it can be dissolved, and is preferably in the range of 100 mM to 1M, more preferably in the range of 200 mM to 400 mM.

第二の洗浄工程で用いる緩衝液に、水素結合の形成を阻害する物質をさらに含む(添加する)と、水素結合の強さをコントロールできるため好ましい。好ましい水素結合の形成を阻害する物質としては尿素があげられ、その他グアニジン塩酸塩などのグアニジウム塩が使用できる。添加量は尿素の場合、少なくとも終濃度で0.3M(0.3mol/L)以上添加する必要があり、好ましくは終濃度0.5M以上、より好ましくは終濃度0.5Mから3Mの範囲である。   It is preferable that the buffer used in the second washing step further contains (adds) a substance that inhibits the formation of hydrogen bonds because the strength of hydrogen bonds can be controlled. A preferable substance that inhibits the formation of hydrogen bonds is urea, and other guanidinium salts such as guanidine hydrochloride can be used. In the case of urea, it is necessary to add at least 0.3 M (0.3 mol / L) or more at a final concentration, preferably 0.5 M or more, more preferably a final concentration in the range of 0.5 M to 3 M. is there.

第二の洗浄工程で用いる緩衝液に、前述した水溶性有機溶媒と前述した水素結合の形成を阻害する物質とを組み合わせた形で含んでも(添加しても)よく、これにより第二の洗浄工程による夾雑物の除去効果をさらに高めることができる。組み合わせの態様は、アフィニティークロマトグラフィー用担体と抗体との結合力が充分保持される範囲で適宜検討すればよい。   The buffer solution used in the second washing step may contain (add to) the above-described water-soluble organic solvent and the above-described substance that inhibits the formation of hydrogen bonds, whereby the second washing The effect of removing impurities by the process can be further enhanced. What is necessary is just to examine suitably the aspect of a combination in the range by which the binding force of the support | carrier for affinity chromatography and an antibody is fully hold | maintained.

また本発明の精製方法では、アフィニティークロマトグラフィー用担体を充填した平衡化済のカラムに抗体を含む溶液を添加する工程を行なう際、あらかじめ抗体を含む溶液に対して0.2M(0.2mol/L)以上となるよう塩化ナトリウムを添加してから前記工程を行なってもよく、これまで説明した精製方法と同様、抗体を含む溶液に含まれる夾雑物を効率的に除去することができる。なお本方法を採用する場合は、前述した第二の洗浄工程を省略してもよい。   In the purification method of the present invention, when the step of adding the antibody-containing solution to the equilibrated column packed with the carrier for affinity chromatography is performed, 0.2 M (0.2 mol / 0.2 mol / ml) of the antibody-containing solution is performed in advance. L) The above step may be performed after sodium chloride is added so that the concentration is greater than or equal to that, and impurities contained in the solution containing the antibody can be efficiently removed as in the purification method described so far. In addition, when employ | adopting this method, you may abbreviate | omit the 2nd washing | cleaning process mentioned above.

本発明の精製方法で使用するアフィニティークロマトグラフィー用担体は、抗体への特異的吸着能を有するリガンドを有した担体であれば特に限定なく、一例としてプロテインAを固定化した担体やFc結合性タンパク質を固定化した担体が例示できる。Fc結合性タンパク質の例としては、特開2011−206046号公報に開示のFc結合性タンパク質や、配列番号1に記載のアミノ酸配列のうち34番目から307番目までのアミノ酸配列を含むFc結合性タンパク質や、配列番号1に記載のアミノ酸配列のうち34番目から307番目までのアミノ酸配列を含み、かつ当該34番目から307番目までのアミノ酸配列において以下の(1)から(34)のうち少なくともいずれか1つのアミノ酸置換が生じている、Fc結合性タンパク質(特願2012−145850号)があげられる。
(1)配列番号1の37番目のスレオニンがイソロイシンに置換
(2)配列番号1の38番目のプロリンがセリンに置換
(3)配列番号1の53番目のロイシンがグルタミンに置換
(4)配列番号1の62番目のグルタミン酸がバリンに置換
(5)配列番号1の63番目のバリンがアラニンまたはグルタミン酸に置換
(6)配列番号1の66番目のロイシンがグルタミンまたはプロリンに置換
(7)配列番号1の67番目のセリンがプロリンに置換
(8)配列番号1の69番目のアラニンがバリンまたはスレオニンに置換
(9)配列番号1の71番目のセリンがスレオニンまたはロイシンに置換
(10)配列番号1の78番目のアスパラギン酸がグルタミン酸に置換
(11)配列番号1の81番目のイソロイシンがバリンに置換
(12)配列番号1の84番目のセリンがスレオニンに置換
(13)配列番号1の88番目のフェニルアラニンがチロシンに置換
(14)配列番号1の95番目のグルタミン酸がアスパラギン酸に置換
(15)配列番号1の119番目のヒスチジンがグルタミンに置換
(16)配列番号1の127番目のバリンがアラニンに置換
(17)配列番号1の146番目のアルギニンがリジンに置換
(18)配列番号1の147番目のアスパラギン酸がアスパラギンに置換
(19)配列番号1の151番目のヒスチジンがチロシンに置換
(20)配列番号1の178番目のスレオニンがアラニンに置換
(21)配列番号1の191番目のアルギニンがリジンに置換
(22)配列番号1の199番目のスレオニンがアラニンに置換
(23)配列番号1の200番目のロイシンがメチオニンに置換
(24)配列番号1の213番目のスレオニンがアラニンに置換
(25)配列番号1の216番目のバリンがアラニンに置換
(26)配列番号1の221番目のロイシンがアルギニンに置換
(27)配列番号1の229番目のセリンがアスパラギンに置換
(28)配列番号1の236番目のイソロイシンがリジンに置換
(29)配列番号1の244番目のチロシンがヒスチジンに置換
(30)配列番号1の253番目のスレオニンがアラニンに置換
(31)配列番号1の290番目のアルギニンがグルタミンに置換
(32)配列番号1の293番目のリジンがアスパラギンに置換
(33)配列番号1の297番目のリジンがグルタミン酸に置換
(34)配列番号1の306番目のプロリンがスレオニンに置換
The carrier for affinity chromatography used in the purification method of the present invention is not particularly limited as long as it is a carrier having a ligand capable of specific adsorption to an antibody. For example, a carrier on which protein A is immobilized or an Fc binding protein Examples of the carrier on which is immobilized. Examples of the Fc-binding protein include an Fc-binding protein disclosed in JP2011-206046, and an Fc-binding protein containing the amino acid sequence from the 34th to the 307th amino acid sequence of the amino acid sequence described in SEQ ID NO: 1. Or an amino acid sequence from 34th to 307th of the amino acid sequence described in SEQ ID NO: 1 and at least one of the following (1) to (34) in the 34th to 307th amino acid sequence: An Fc-binding protein (Japanese Patent Application No. 2012-145850) in which one amino acid substitution has occurred can be mentioned.
(1) 37th threonine of SEQ ID NO: 1 is replaced with isoleucine (2) 38th proline of SEQ ID NO: 1 is replaced with serine (3) 53rd leucine of SEQ ID NO: 1 is replaced with glutamine (4) SEQ ID NO: 1st 62nd glutamic acid is replaced with valine (5) 63rd valine of SEQ ID NO: 1 is replaced with alanine or glutamic acid (6) 66th leucine of SEQ ID NO: 1 is replaced with glutamine or proline (7) SEQ ID NO: 1 67 of serine is replaced with proline (8) 69th alanine of SEQ ID NO: 1 is replaced with valine or threonine (9) 71st serine of SEQ ID NO: 1 is replaced with threonine or leucine (10) 78th aspartic acid is replaced with glutamic acid (11) 81st isoleucine of SEQ ID NO: 1 is replaced with valine (12) 84th serine of No. 1 was replaced with threonine (13) 88th phenylalanine of SEQ ID NO: 1 was replaced with tyrosine (14) 95th glutamic acid of SEQ ID NO: 1 was replaced with aspartic acid (15) 119 of SEQ ID NO: 1 The histidine is replaced with glutamine (16) The 127th valine of SEQ ID NO: 1 is replaced with alanine (17) The 146th arginine of SEQ ID NO: 1 is replaced with lysine (18) The 147th aspartic acid of SEQ ID NO: 1 is Substitute asparagine (19) Replace 151st histidine of SEQ ID NO: 1 with tyrosine (20) Replace 178th threonine of SEQ ID NO: 1 with alanine (21) Replace 191st arginine of SEQ ID NO: 1 with lysine (22 ) The 199th threonine of SEQ ID NO: 1 is substituted with alanine (23) The 200th position of SEQ ID NO: 1 Isine replaced with methionine (24) 213 threnin of SEQ ID NO: 1 replaced with alanine (25) 216th valine of SEQ ID NO: 1 replaced with alanine (26) 221th leucine of SEQ ID NO: 1 replaced with arginine (27) 229th serine of SEQ ID NO: 1 is replaced with asparagine (28) 236th isoleucine of SEQ ID NO: 1 is replaced with lysine (29) 244th tyrosine of SEQ ID NO: 1 is replaced with histidine (30) SEQ ID NO: 1 253rd threonine is replaced with alanine (31) 290th arginine of SEQ ID NO: 1 is replaced with glutamine (32) 293rd lysine of SEQ ID NO: 1 is replaced with asparagine (33) 297th position of SEQ ID NO: 1 Lysine replaced with glutamic acid (34) 306th proline of SEQ ID NO: 1 replaced with threonine

本発明の精製方法は、0.2M(0.2mol/L)以上の塩化ナトリウムを、抗体を含む溶液および/または洗浄液に添加することで、抗体とアフィニティークロマトグラフィー用担体との結合力を維持しながら前記担体と夾雑物との結合力を弱めて、抗体を含む溶液に含まれる夾雑物の洗浄を効果的に行なえる。したがって従来の精製方法と比較し、抗体の精製純度を向上させることができる。本発明の精製方法により、後段の精製プロセス負荷を大きく軽減させることができるため、結果として純度の高い抗体を安価に製造することができる。   The purification method of the present invention maintains the binding force between the antibody and the carrier for affinity chromatography by adding 0.2 M (0.2 mol / L) or more sodium chloride to the antibody-containing solution and / or washing solution. However, the binding force between the carrier and the contaminants is weakened, and the contaminants contained in the antibody-containing solution can be effectively washed. Therefore, the purification purity of the antibody can be improved as compared with the conventional purification method. Since the purification process load of the latter stage can be greatly reduced by the purification method of the present invention, high-purity antibodies can be produced at low cost as a result.

本発明の抗体の精製方法の一例を示すプロトコールである。It is a protocol which shows an example of the purification method of the antibody of this invention. 本発明の抗体の精製方法における、第二の洗浄で用いる緩衝液を検討した結果を示す図である(Fc結合性タンパク質固定化ゲルを使用)。It is a figure which shows the result of having examined the buffer used by the 2nd washing | cleaning in the purification method of the antibody of this invention (use Fc binding protein fixed gel). 本発明の抗体の精製方法における、第二の洗浄で用いる緩衝液に添加する塩化ナトリウム濃度を検討した結果を示す図である(Fc結合性タンパク質固定化ゲルを使用)。It is a figure which shows the result of having examined the sodium chloride density | concentration added to the buffer used by the 2nd washing | cleaning in the purification method of the antibody of this invention (use Fc binding protein fixed gel). 本発明の抗体の精製方法における、第二の洗浄で用いる緩衝液に添加する水溶性有機溶媒を検討した結果を示す図である(Fc結合性タンパク質固定化ゲルを使用)。iPrOHはイソプロパノールを指す。It is a figure which shows the result of having examined the water-soluble organic solvent added to the buffer solution used by the 2nd washing | cleaning in the purification method of the antibody of this invention (use Fc binding protein fixed gel). iPrOH refers to isopropanol. 本発明の抗体の精製方法における、第二の洗浄で用いる緩衝液に添加する尿素濃度を検討した結果を示す図である(Fc結合性タンパク質固定化ゲルを使用)。It is a figure which shows the result of having examined the urea density | concentration added to the buffer solution used by the 2nd washing | cleaning in the purification method of the antibody of this invention (use Fc binding protein fixed gel). 本発明の抗体の精製方法における、第二の洗浄で用いる緩衝液を検討した結果を示す図である(Fc結合性タンパク質固定化ゲルを使用)。It is a figure which shows the result of having examined the buffer used by the 2nd washing | cleaning in the purification method of the antibody of this invention (use Fc binding protein fixed gel). 参考例1の結果を示す図である。It is a figure which shows the result of the reference example 1. 本発明の抗体の精製方法における、第二の洗浄で用いる緩衝液を検討した結果を示す図である(プロテインA固定化ビニルポリマーゲル使用)。It is a figure which shows the result of having examined the buffer solution used by the 2nd washing | cleaning in the purification method of the antibody of this invention (use protein A fixed vinyl polymer gel). 本発明の抗体の精製方法の別の例を示すプロトコールである。It is a protocol which shows another example of the purification method of the antibody of this invention. 本発明の抗体の精製方法における、被精製溶液に添加する成分を検討した結果を示す図である(Fc結合性タンパク質固定化ゲル使用)。It is a figure which shows the result of having examined the component added to the to-be-purified solution in the purification method of the antibody of this invention (use Fc binding protein fixed gel). 本発明の抗体の精製方法における、被精製溶液に添加する成分を検討した結果を示す図である(プロテインA固定化ビニルポリマーゲル使用)。It is a figure which shows the result of having examined the component added to the to-be-purified solution in the purification method of the antibody of this invention (use protein A fixed vinyl polymer gel). 本発明の抗体の精製方法を、抗体を高濃度含む溶液に対して適用したときの結果を示す図である(Fc結合性タンパク質固定化ゲル使用)。It is a figure which shows a result when the purification method of the antibody of this invention is applied with respect to the solution containing a high concentration of antibody (use Fc binding protein fixed gel). 本発明の抗体の精製方法を、抗体を高濃度含む溶液に対して適用したときの結果を示す図である(プロテインA固定化アガロースゲル使用)。It is a figure which shows a result when the purification method of the antibody of this invention is applied with respect to the solution containing an antibody high concentration (use of protein A fixed agarose gel). 本発明の抗体の精製方法を、抗体を高濃度含む溶液に対して適用したときの結果を示す図である(Fc結合性タンパク質固定化ゲル使用)。It is a figure which shows a result when the purification method of the antibody of this invention is applied with respect to the solution containing a high concentration of antibody (use Fc binding protein fixed gel). 本発明の抗体の精製方法を、抗体を高濃度含む溶液に対して適用したときの結果を示す図である(Fc結合性タンパク質固定化ゲル使用)。It is a figure which shows a result when the purification method of the antibody of this invention is applied with respect to the solution containing a high concentration of antibody (use Fc binding protein fixed gel).

以下、実施例および参考例を用いて本発明をさらに詳細に説明するが、本発明は当該例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example and a reference example, this invention is not limited to the said example.

実施例1 Fc結合性タンパク質固定化ゲルによる抗体精製
(1)配列番号1に記載のアミノ酸配列からなるFc結合性タンパク質をコードするポリヌクレオチドを含むプラスミドDNAで大腸菌を形質転換して形質転換体を得た。得られた形質転換体を培養し、さらに得られた菌体から前記Fc結合性タンパク質を精製することによって、前記Fc結合性タンパク質を得た。
(2)分離剤用ビニルポリマーゲル(トヨパール、東ソー社製)にある水酸基に1,6−ヘキサンジオールジグリシジルエーテルおよびエチレンジアミンを順次反応させることによってアミノ基を導入後、3−マレイミドプロピオン酸N−スクシンイミジルを反応させて、マレイミド基にて活性化されたトヨパールを得た。得られた前記活性化トヨパールに(1)で調製したFc結合性タンパク質を反応させることにより、Fc結合性タンパク質固定化ゲルを得た。
(3)Fc結合性タンパク質固定化ゲル0.1mLを、Tricorn 5/20カラム(GEヘルスケア社製)に充填し、液体クロマトグラフ装置に設置した。
(4)抗IL−8抗体を生産するCHO細胞(ATCC No.CRL−12445)を培養し、培養上清を清澄化して得られた、前記抗体を含むCHO細胞培養上清(以下、単に「CHO細胞培養上清」という)1mLを、あらかじめPBS(Phosphate Buffered Saline)で洗浄、平衡化したFc結合性タンパク質固定化ゲルを充填したカラムに添加した。
(5)PBSを10分間(50CV(Column Volume))通液することでカラムを洗浄後、50mMのグリシン−塩酸緩衝液(pH3.0)を3分間(15CV)流すことで、ゲルに吸着した抗体を溶出させ回収した。
(6)回収した抗体溶液に含まれる培養細胞由来タンパク質(HCP)を、CHO Host Cell Protein 3rd Generation(CYGNUS Technologies社製)を用いたELISA法にて添付のプロトコールに従い定量した。
Example 1 Purification of antibody using Fc-binding protein-immobilized gel (1) Escherichia coli was transformed with plasmid DNA containing a polynucleotide encoding an Fc-binding protein consisting of the amino acid sequence of SEQ ID NO: 1 to transform the transformant. Obtained. The obtained Fc binding protein was obtained by culturing the obtained transformant and further purifying the Fc binding protein from the obtained bacterial cells.
(2) After introducing an amino group by sequentially reacting 1,6-hexanediol diglycidyl ether and ethylenediamine with a hydroxyl group in a vinyl polymer gel for separation agent (Toyopearl, manufactured by Tosoh Corporation), 3-maleimidopropionic acid N- Succinimidyl was reacted to obtain Toyopearl activated with a maleimide group. The obtained activated Toyopearl was reacted with the Fc-binding protein prepared in (1) to obtain an Fc-binding protein-immobilized gel.
(3) A Tricorn 5/20 column (manufactured by GE Healthcare) was filled with 0.1 mL of an Fc-binding protein-immobilized gel and placed in a liquid chromatograph.
(4) CHO cell culture supernatant (hereinafter simply referred to as “the CHO cell containing the antibody” obtained by culturing CHO cells (ATCC No. CRL-12445) producing anti-IL-8 antibody and clarifying the culture supernatant). 1 mL (referred to as “CHO cell culture supernatant”) was added to a column packed with an Fc-binding protein-immobilized gel previously washed and equilibrated with PBS (Phosphate Buffered Saline).
(5) After washing the column by passing PBS for 10 minutes (50 CV (Column Volume)), 50 mM glycine-hydrochloric acid buffer (pH 3.0) was passed for 3 minutes (15 CV) to adsorb to the gel. The antibody was eluted and collected.
(6) The cultured cell-derived protein (HCP) contained in the recovered antibody solution was quantified according to the attached protocol by ELISA using CHO Host Cell Protein 3rd Generation (manufactured by CYGNUS Technologies).

結果、回収した抗体溶液中には6998ngのHCPが含まれていた。   As a result, the recovered antibody solution contained 6998 ng of HCP.

実施例2 Fc結合性タンパク質固定化ゲルによる抗体精製における第二の洗浄の検討
図1に示す、第二の洗浄を入れたプロトコールによる、Fc結合性タンパク質固定化ゲルによる抗体精製を検討した。
(1)実施例1(3)で作製したFc結合性タンパク質固定化ゲルを充填したカラムをPBSにて洗浄、平衡化した後、実施例1(4)で得られたCHO細胞培養上清1mLを添加した。
(2)PBSを10分間(50CV)カラムに通液することで第一の洗浄を行なった後、洗浄液を3分間(15CV)カラムに通液することで第二の洗浄を行ない、最後に50mMのグリシン−塩酸緩衝液(pH3.0)を3分間(15CV)カラムに通液することで、ゲルに吸着した抗体を溶出させ回収した。
(3)実施例1(6)に記載の方法で回収した抗体溶液中のHCPを定量した。
Example 2 Examination of Second Washing in Antibody Purification Using Fc-Binding Protein Immobilized Gel Antibody purification using an Fc-binding protein-immobilized gel as shown in FIG.
(1) After washing and equilibrating the column filled with the Fc-binding protein-immobilized gel prepared in Example 1 (3) with PBS, 1 mL of the CHO cell culture supernatant obtained in Example 1 (4) Was added.
(2) The first washing was performed by passing PBS through the column for 10 minutes (50 CV), then the second washing was performed by passing the washing solution through the column for 3 minutes (15 CV), and finally 50 mM. The glycine-hydrochloric acid buffer (pH 3.0) was passed through a column for 3 minutes (15 CV) to elute and collect the antibody adsorbed on the gel.
(3) HCP in the antibody solution recovered by the method described in Example 1 (6) was quantified.

まず第二の洗浄で用いる洗浄液のpHの検討を行なった。その結果、pH8以上の緩衝液で洗浄することで、第二の洗浄を行なわないときと比較し、抗体溶液中のHCP量が減少した(図2)。また前記緩衝液に塩化ナトリウムを添加すると、抗体溶液中のHCP量がさらに減少した(図2)。   First, the pH of the cleaning solution used in the second cleaning was examined. As a result, the amount of HCP in the antibody solution decreased by washing with a buffer solution of pH 8 or higher compared to when the second washing was not performed (FIG. 2). Further, when sodium chloride was added to the buffer solution, the amount of HCP in the antibody solution was further reduced (FIG. 2).

そこで緩衝液に添加する塩化ナトリウム濃度を検討した。ホウ酸緩衝液(pH9)に対し様々な濃度の塩化ナトリウムを添加した洗浄液を用いて第二の洗浄を行なった結果、塩化ナトリウムを終濃度で0.2M以上添加すると、塩化ナトリウム無添加の緩衝液で第二の洗浄を行なったときと比較し、抗体溶液中のHCP量が減少していた。特に塩化ナトリウムを終濃度で0.4Mから0.5M添加した緩衝液で第二の洗浄を行なったとき、抗体溶液中のHCP量がより減少していた(図3)。   Therefore, the concentration of sodium chloride added to the buffer was examined. As a result of the second washing using the washing solution in which various concentrations of sodium chloride were added to the borate buffer (pH 9), when sodium chloride was added in a final concentration of 0.2 M or more, the buffer without addition of sodium chloride The amount of HCP in the antibody solution was reduced compared to when the second washing was performed with the solution. In particular, when the second washing was performed with a buffer solution to which sodium chloride was added at a final concentration of 0.4 M to 0.5 M, the amount of HCP in the antibody solution was further reduced (FIG. 3).

次に塩化ナトリウムを終濃度で0.5M添加したホウ酸緩衝液(pH9)にさらに有機溶媒を添加した洗浄液によるCHO細胞培養上清からの抗体精製を検討した。結果、イソプロパノールやアセトニトリルといった水溶性有機溶媒をさらに添加した洗浄液で第二の洗浄を行なうことで、水溶性有機溶媒無添加時と比較し、抗体溶液中のHCP量がさらに減少した(図4)。なお水溶性有機溶媒のうちイソプロパノールについて、添加量を変えて検討したところ、イソプロパノール添加量の増加に伴い抗体溶液中のHCP量が減少し、5%(v/v)以上添加すると、水溶性有機溶媒無添加時と比較し、抗体溶液中のHCP量が約3分の1以下となった(図4)。   Next, antibody purification from the CHO cell culture supernatant was examined using a washing solution in which an organic solvent was further added to a borate buffer solution (pH 9) containing 0.5 M sodium chloride at a final concentration. As a result, the amount of HCP in the antibody solution was further reduced by performing the second washing with a washing liquid to which a water-soluble organic solvent such as isopropanol or acetonitrile was further added as compared with the case where no water-soluble organic solvent was added (FIG. 4). . In addition, when isopropanol was added in the water-soluble organic solvent and examined, the amount of HCP in the antibody solution decreased as the amount of isopropanol added increased, and when 5% (v / v) or more was added, water-soluble organic solvent was added. Compared to when no solvent was added, the amount of HCP in the antibody solution was about one-third or less (FIG. 4).

次に塩化ナトリウムを終濃度で0.5M添加したホウ酸緩衝液(pH9)にさらに尿素を添加した洗浄液によるCHO細胞培養上清からの抗体精製を検討した。結果、尿素を終濃度で0.5M以上添加した洗浄液で第二の洗浄を行なうと、尿素無添加時と比較し、抗体溶液中のHCP量がさらに減少した(図5)。一方、尿素の添加量が終濃度で0.1Mのときは効果が認められなかった(図5)。   Next, antibody purification from the CHO cell culture supernatant using a washing solution in which urea was further added to a borate buffer solution (pH 9) added with 0.5 M sodium chloride at a final concentration was examined. As a result, when the second washing was performed with a washing solution to which urea was added at a final concentration of 0.5 M or more, the amount of HCP in the antibody solution was further reduced as compared with the case where urea was not added (FIG. 5). On the other hand, no effect was observed when the amount of urea added was 0.1 M in the final concentration (FIG. 5).

図6は図2から図5の結果をまとめたものである。なお塩化ナトリウムを終濃度で0.5M添加したホウ酸緩衝液(pH9)に、水溶性有機溶媒であるイソプロパノールおよび尿素を添加した洗浄液を用いて第二の洗浄を行なうと、イソプロパノールまたは尿素のみを添加した洗浄液を用いて第二の洗浄を行なったときと比較し、抗体溶液中のHCP量がさらに減少した(図6)。   FIG. 6 summarizes the results of FIGS. In addition, when a second wash is performed using a wash solution in which isopropanol and urea, which are water-soluble organic solvents, are added to a borate buffer solution (pH 9) containing 0.5 M sodium chloride at a final concentration, only isopropanol or urea is obtained. The amount of HCP in the antibody solution was further reduced compared to when the second washing was performed using the added washing solution (FIG. 6).

実施例3 プロテインA固定化アガロースゲルによる抗体精製
(1)プロテインA固定化アガロースゲルであるMabSelect SuRe(GEヘルスケア社製)0.1mLを、Tricorn 5/20カラム(GEヘルスケア社製)に充填し、液体クロマトグラフ装置に設置した。
(2)実施例1(4)で得られたCHO細胞培養上清1mLを、あらかじめPBSで洗浄、平衡化したプロテインA固定化アガロースゲルを充填したカラムに添加した。
(3)実施例1(5)および(6)に記載の方法で抗体の精製およびHCPの定量を行なった。
Example 3 Antibody Purification by Protein A-Immobilized Agarose Gel (1) 0.1 mL of MabSelect SuRe (manufactured by GE Healthcare), a protein A-immobilized agarose gel, was added to a Tricorn 5/20 column (manufactured by GE Healthcare). Packed and placed in a liquid chromatograph.
(2) 1 mL of the CHO cell culture supernatant obtained in Example 1 (4) was added to a column packed with protein A-immobilized agarose gel that had been washed and equilibrated in advance with PBS.
(3) Antibody purification and HCP quantification were carried out by the methods described in Example 1 (5) and (6).

結果、回収した抗体溶液中には558ngのHCPが含まれていた。   As a result, the recovered antibody solution contained 558 ng of HCP.

参考例1 プロテインA固定化アガロースゲルによる抗体精製における第二の洗浄の検討
図1に示す、第二の洗浄を入れたプロトコールによる、プロテインA固定化アガロースゲルによる抗体精製を検討した。
(1)実施例3(1)で作製したプロテインA固定化アガロースゲルを充填したカラムをPBSにて洗浄、平衡化した後、実施例1(4)で得られたCHO細胞培養上清1mLを添加した。
(2)実施例2(2)に記載の方法で抗体の精製を行ない、実施例1(6)に記載の方法でHCPの定量を行なった。なお洗浄液は、50mMのクエン酸緩衝液(pH4.4)、または10%(v/v)のイソプロパノールと1.0M(終濃度)の尿素を添加したTris緩衝液(pH9)を用いた。
Reference Example 1 Examination of Second Washing in Antibody Purification by Protein A-Immobilized Agarose Gel Antibody purification by protein A-immobilized agarose gel according to the protocol with the second washing shown in FIG. 1 was examined.
(1) After washing and equilibrating the column filled with the protein A-immobilized agarose gel prepared in Example 3 (1) with PBS, 1 mL of the CHO cell culture supernatant obtained in Example 1 (4) was used. Added.
(2) The antibody was purified by the method described in Example 2 (2), and HCP was quantified by the method described in Example 1 (6). As the washing solution, a 50 mM citrate buffer (pH 4.4) or a Tris buffer (pH 9) containing 10% (v / v) isopropanol and 1.0 M (final concentration) urea was used.

結果を図7に示す。洗浄液による第二の洗浄を行なうことで、第二の洗浄を行なわなかったときと比較し、抗体溶液中のHCP量が減少していた。しかしながら、クエン酸緩衝液を洗浄液として用いた場合は、ゲルに吸着した抗体の一部が洗浄液中にリークしたことによる、抗体溶液中への抗体回収率の減少が確認され、塩化ナトリウムは添加せずイソプロパノールと尿素のみを添加した緩衝液を洗浄液として用いた場合のHCP量減少率は15%程度にとどまった。   The results are shown in FIG. By performing the second washing with the washing liquid, the amount of HCP in the antibody solution was reduced as compared with the case where the second washing was not performed. However, when citrate buffer was used as the washing solution, it was confirmed that a part of the antibody adsorbed on the gel leaked into the washing solution, and the antibody recovery rate in the antibody solution decreased. When the buffer solution containing only isopropanol and urea was used as the washing solution, the decrease rate of the HCP amount was only about 15%.

実施例4 プロテインA固定化ビニルポリマーゲルによる抗体精製
(1)プロテインA固定化ビニルポリマーゲルであるTOYOPEARL AF−rProtein A−650F(東ソー社製)0.1mLを、Tricorn 5/20カラム(GEヘルスケア社製)に充填し、液体クロマトグラフ装置に設置した。
(2)実施例1(4)で得られたCHO細胞培養上清1mLを、あらかじめPBSで洗浄、平衡化したプロテインA固定化ビニルポリマーゲルを充填したカラムに添加した。
(3)実施例1(5)および(6)に記載の方法で抗体の精製およびHCPの定量を行なった。
Example 4 Antibody Purification with Protein A-Immobilized Vinyl Polymer Gel (1) 0.1 mL of TOYOPEARL AF-rProtein A-650F (Tosoh Corp.), which is a protein A-immobilized vinyl polymer gel, was added to a Tricorn 5/20 column (GE Health). And manufactured in a liquid chromatograph.
(2) 1 mL of the CHO cell culture supernatant obtained in Example 1 (4) was added to a column packed with a protein A-immobilized vinyl polymer gel that had been previously washed and equilibrated with PBS.
(3) Antibody purification and HCP quantification were carried out by the methods described in Example 1 (5) and (6).

結果、回収した抗体溶液中には1001ngのHCPが含まれていた。   As a result, the collected antibody solution contained 1001 ng of HCP.

実施例5 プロテインA固定化ビニルポリマーゲルによる抗体精製における第二の洗浄の検討
図1に示す、第二の洗浄を入れたプロトコールによる、プロテインA固定化ビニルポリマーゲルによる抗体精製を検討した。
(1)実施例4(1)で作製したプロテインA固定化ビニルポリマーゲルを充填したカラムをPBSにて洗浄、平衡化した後、実施例1(4)で得られたCHO細胞培養上清1mLを添加した。
(2)実施例2(2)に記載の方法で抗体の精製を行ない、実施例1(6)に記載の方法でHCPの定量を行なった。なお洗浄液は、10%(v/v)のイソプロパノールと1.0Mの尿素を添加したTris緩衝液(pH9)、または10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したホウ酸緩衝液(pH9)を用いた。
Example 5 Examination of Second Washing in Antibody Purification with Protein A-Immobilized Vinyl Polymer Gel Antibody purification with protein A-immobilized vinyl polymer gel was examined according to the protocol with the second washing shown in FIG.
(1) After washing and equilibrating the column filled with the protein A-immobilized vinyl polymer gel prepared in Example 4 (1) with PBS, 1 mL of the CHO cell culture supernatant obtained in Example 1 (4) Was added.
(2) The antibody was purified by the method described in Example 2 (2), and HCP was quantified by the method described in Example 1 (6). The washing solution was Tris buffer (pH 9) to which 10% (v / v) isopropanol and 1.0 M urea were added, or 10% (v / v) isopropanol and 0.5 M (final concentration) sodium chloride. A borate buffer solution (pH 9) to which was added was used.

結果を図8に示す。洗浄液による第二の洗浄を行なうことで、第二の洗浄を行なわなかった場合と比較し、抗体溶液中のHCP量が減少しており、塩化ナトリウムとイソプロパノールを添加した緩衝液を洗浄液として用いた場合は特にHCP量が減少していた(イソプロパノールと尿素を添加したTris緩衝液を用いた場合632ng、塩化ナトリウムとイソプロパノールを添加したホウ酸緩衝液を用いた場合102ng)。   The results are shown in FIG. Compared with the case where the second washing was not performed by performing the second washing with the washing solution, the amount of HCP in the antibody solution was reduced, and a buffer solution containing sodium chloride and isopropanol was used as the washing solution. In particular, the amount of HCP was reduced (632 ng when using a Tris buffer added with isopropanol and urea, and 102 ng when using a borate buffer added with sodium chloride and isopropanol).

実施例6 Fc結合性タンパク質固定化ゲルによる抗体精製における洗浄成分添加の検討
実施例2および5ならびに参考例1では第二の洗浄を追加して抗体の精製を行なったが、本実施例では第二の洗浄の代わりに、第二の洗浄で用いる洗浄液に添加する成分をあらかじめ被精製溶液に添加して抗体の精製を行なった。プロトコールを図9に示す。
(1)実施例1(4)で得られたCHO細胞培養上清1mLに各成分を添加後、あらかじめPBSで洗浄、平衡化したFc結合性タンパク質固定化ゲルを充填したカラム(実施例1(3)で作製)またはプロテインA固定化ビニルポリマーゲルを充填したカラム(実施例4(1)で作製)に添加した。なお添加する成分は、塩化ナトリウム(CHO細胞培養上清に対し0.5M)、イソプロパノール(10%(v/v))、または塩化ナトリウム(CHO細胞培養上清に対し0.5M)+イソプロパノール(10%(v/v))のいずれかである。
(2)PBSを10分間(50CV)カラムに通液することで洗浄後、50mMのグリシン−塩酸緩衝液(pH3.0)を3分間(15CV)カラムに通液することで、ゲルに吸着した抗体を溶出させ回収した。
(3)実施例1(6)に記載の方法でHCPの定量を行なった。
Example 6 Examination of addition of washing components in antibody purification using Fc-binding protein-immobilized gel In Examples 2 and 5 and Reference Example 1, the second washing was added to purify the antibody. Instead of the second washing, components to be added to the washing solution used in the second washing were previously added to the solution to be purified to purify the antibody. The protocol is shown in FIG.
(1) After each component was added to 1 mL of the CHO cell culture supernatant obtained in Example 1 (4), the column was packed with an Fc-binding protein-immobilized gel previously washed and equilibrated with PBS (Example 1 ( 3)) or added to a column packed with protein A-immobilized vinyl polymer gel (prepared in Example 4 (1)). The component to be added is sodium chloride (0.5 M for CHO cell culture supernatant), isopropanol (10% (v / v)), or sodium chloride (0.5 M for CHO cell culture supernatant) + isopropanol ( 10% (v / v)).
(2) After washing by passing PBS through the column for 10 minutes (50 CV), 50 mM glycine-hydrochloric acid buffer (pH 3.0) was passed through the column for 3 minutes (15 CV) to adsorb to the gel. The antibody was eluted and collected.
(3) HCP was quantified by the method described in Example 1 (6).

Fc結合性タンパク質固定化ゲルを用いたときの結果を図10に、プロテインA固定化ビニルポリマーゲルを用いたときの結果を図11に、それぞれ示す。いずれの場合も塩化ナトリウムを被精製溶液(CHO細胞培養上清)にあらかじめ添加してから精製を行なうことで、被精製溶液をそのまま精製するときと比較し、抗体溶液中のHCP量が大きく減少した。なおFc結合性タンパク質固定化ゲルを用いたときは、イソプロパノールをさらに被精製溶液に添加することで、抗体溶液中のHCP量がより減少した(図10)。   FIG. 10 shows the results when using the Fc-binding protein-immobilized gel, and FIG. 11 shows the results when using the protein A-immobilized vinyl polymer gel. In either case, the amount of HCP in the antibody solution is greatly reduced by adding sodium chloride to the solution to be purified (CHO cell culture supernatant) before purification, compared with the case of purifying the solution to be purified as it is. did. When the Fc-binding protein-immobilized gel was used, the amount of HCP in the antibody solution was further reduced by further adding isopropanol to the solution to be purified (FIG. 10).

実施例7 Fc結合性タンパク質固定化ゲルによる、抗体を高濃度含む溶液からの抗体精製(その1)
実施例1(4)で得られたCHO細胞培養上清に含まれる抗体は約0.08mg/mLであるが、近年の抗体生産技術の進歩により、培養上清に含まれる抗体濃度は1mg/mL以上、さらには10mg/mL以上となる例も報告されている。そこで、本発明の抗体の精製方法が、抗体を高濃度含む溶液に対しても適用可能か検討した。
(1)ヒトガンマグロブリン(化学及血清療法研究所製)を終濃度2mg/mLとなるようCHO細胞上清に添加して、抗体を高濃度含むCHO細胞培養上清を作製した。
(2)実施例1(3)で作製したFc結合性タンパク質固定化ゲルを充填したカラムをPBSにて洗浄、平衡化した後、(1)で作製した抗体を高濃度含むCHO細胞培養上清1mLを添加した。
(3)実施例2(2)に記載の方法で抗体の精製を行ない、実施例1(6)に記載の方法でHCPの定量を行なった。なお洗浄液は、10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したリン酸緩衝液(pH7)、または10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したホウ酸緩衝液(pH9)を用いた。
Example 7 Antibody Purification from Solution Containing High Concentration of Antibody Using Fc Binding Protein Immobilized Gel (Part 1)
The antibody contained in the CHO cell culture supernatant obtained in Example 1 (4) is about 0.08 mg / mL, but due to the recent progress in antibody production technology, the antibody concentration contained in the culture supernatant is 1 mg / mL. Examples of more than mL, and further 10 mg / mL or more have been reported. Therefore, it was examined whether the antibody purification method of the present invention can be applied to a solution containing a high concentration of antibody.
(1) Human gamma globulin (manufactured by Chemical and Serum Therapy Laboratories) was added to the CHO cell supernatant to a final concentration of 2 mg / mL to prepare a CHO cell culture supernatant containing a high concentration of antibody.
(2) The column packed with the Fc-binding protein-immobilized gel prepared in Example 1 (3) was washed and equilibrated with PBS, and then the CHO cell culture supernatant containing the antibody prepared in (1) at a high concentration 1 mL was added.
(3) The antibody was purified by the method described in Example 2 (2), and HCP was quantified by the method described in Example 1 (6). The washing solution was phosphate buffer (pH 7) to which 10% (v / v) isopropanol and 0.5M (final concentration) sodium chloride were added, or 10% (v / v) isopropanol and 0.5M (pH). A borate buffer solution (pH 9) to which sodium chloride (final concentration) was added was used.

結果を図12に示す。イソプロパノールと塩化ナトリウムを添加した中性または塩基性緩衝液を用いて第二の洗浄を行なうことで、第二の洗浄を行なわなかった場合と比較し、抗体溶液中のHCP量が10分の1以下まで減少した。   The results are shown in FIG. By performing the second wash using a neutral or basic buffer to which isopropanol and sodium chloride have been added, the amount of HCP in the antibody solution is reduced to 1/10 compared to the case where the second wash is not performed. It decreased to the following.

実施例8 Fc結合性タンパク質固定化ゲルによる、抗体を高濃度含む溶液からの抗体精製(その2)
実施例6において、洗浄液に添加する成分を被精製溶液にあらかじめ添加して精製を行なうと、第二の洗浄を行なわなくても抗体溶液中のHCP量が減少することを確認している。そこで、洗浄液に添加する成分を被精製溶液に添加し、さらに第二の洗浄を行なうことでHCP量がさらに減少するか確認した。
(1)実施例7(1)で作製した抗体を高濃度含むCHO細胞培養上清1mLに対し塩化ナトリウムを0.5M添加後、あらかじめPBSにて洗浄、平衡化したFc結合性タンパク質固定化ゲルを充填したカラム(実施例1(3)で作製)に添加した。
(2)実施例2(2)に記載の方法で抗体の精製を行ない、実施例1(6)に記載の方法でHCPの定量を行なった。なお洗浄液は、10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したリン酸緩衝液(pH7)、10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したTris緩衝液(pH8)、10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したホウ酸緩衝液(pH9)、10%(v/v)のエタノールと0.5M(終濃度)の塩化ナトリウムを添加したホウ酸緩衝液(pH9)、または20%(v/v)のエタノールと0.5M(終濃度)の塩化ナトリウムを添加したホウ酸緩衝液(pH9)を用いた。
Example 8 Antibody Purification from Solution Containing High Concentration of Antibody Using Fc Binding Protein Immobilized Gel (Part 2)
In Example 6, it has been confirmed that the amount of HCP in the antibody solution decreases when the components to be added to the washing solution are added to the solution to be purified in advance and purification is performed without performing the second washing. Therefore, it was confirmed whether the amount of HCP was further reduced by adding the component added to the cleaning solution to the solution to be purified and further performing the second cleaning.
(1) Fc-binding protein-immobilized gel prepared by adding 0.5 M sodium chloride to 1 mL of CHO cell culture supernatant containing a high concentration of the antibody prepared in Example 7 (1), and then washing and equilibrating in advance with PBS Was added to the column (produced in Example 1 (3)).
(2) The antibody was purified by the method described in Example 2 (2), and HCP was quantified by the method described in Example 1 (6). The washing solution was phosphate buffer (pH 7) to which 10% (v / v) isopropanol and 0.5M (final concentration) sodium chloride were added, 10% (v / v) isopropanol and 0.5M (final). Tris buffer (pH 8) to which 10% (v / v) isopropanol and 0.5 M (final concentration) sodium chloride were added (pH 9), 10% (v) Borate buffer (pH 9) with ethanol / v) and 0.5M (final concentration) sodium chloride, or 20% (v / v) ethanol and 0.5M (final concentration) sodium chloride. The borate buffer solution (pH 9) was used.

結果を図12に示す。イソプロパノールやエタノールといった水溶性有機溶媒と塩化ナトリウムとを添加した緩衝液で第二の洗浄を行なうことで、第二の洗浄を行なわなかった場合と比較し、抗体溶液中のHCP量が7分の1以下まで減少した。また被精製溶液を直接カラムに添加する場合(実施例7)と比較し、抗体溶液中のHCP量が減少していることがわかる。すなわち、第二の洗浄を行ない、かつ第二の洗浄に用いる洗浄液に添加する成分を被精製溶液にも添加して精製することで、抗体溶液中のHCP量がさらに減少することがわかる。   The results are shown in FIG. By performing the second washing with a buffer solution to which a water-soluble organic solvent such as isopropanol or ethanol and sodium chloride are added, the amount of HCP in the antibody solution is 7 minutes compared to the case where the second washing is not performed. It decreased to 1 or less. It can also be seen that the amount of HCP in the antibody solution is reduced compared to the case where the solution to be purified is directly added to the column (Example 7). That is, it can be seen that the amount of HCP in the antibody solution is further reduced by performing the second washing and adding the components added to the washing solution used for the second washing to the solution to be purified.

なお洗浄液のpHが高い(塩基性側)ほうが、抗体溶液中のHCP量が減少する点で好ましいといえる。またエタノールもイソプロパノールと同様、添加量の増加に伴い抗体溶液中のHCP量が減少していることがわかる。   In addition, it can be said that it is preferable that the pH of a washing | cleaning liquid is high (basic side) at the point which the amount of HCP in an antibody solution reduces. It can also be seen that the amount of HCP in the antibody solution decreases with increasing amount of ethanol, as with isopropanol.

実施例9 プロテインA固定化アガロースゲルによる、抗体を高濃度含む溶液からの抗体精製(その1)
(1)実施例3(1)で作製したプロテインA固定化アガロースゲルを充填したカラムをPBSにて洗浄、平衡化した後、実施例7(1)で作製した抗体を高濃度含むCHO細胞培養上清1mLを添加した。
(2)実施例2(2)に記載の方法で抗体の精製を行ない、実施例1(6)に記載の方法でHCPの定量を行なった。なお洗浄液は、10%(v/v)のイソプロパノールと1.0M(終濃度)の尿素を添加したTris緩衝液(pH9)、10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したリン酸緩衝液(pH7)、または10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したホウ酸緩衝液(pH9)を用いた。
Example 9 Antibody Purification from Solution Containing High Concentration of Antibody Using Protein A-Immobilized Agarose Gel (Part 1)
(1) After washing and equilibrating the column filled with the protein A-immobilized agarose gel prepared in Example 3 (1) with PBS, CHO cell culture containing the antibody prepared in Example 7 (1) at a high concentration 1 mL of supernatant was added.
(2) The antibody was purified by the method described in Example 2 (2), and HCP was quantified by the method described in Example 1 (6). The washing solution was Tris buffer (pH 9) with 10% (v / v) isopropanol and 1.0M (final concentration) urea added, 10% (v / v) isopropanol and 0.5M (final concentration). A phosphate buffer solution (pH 7) to which sodium chloride was added, or a borate buffer solution (pH 9) to which 10% (v / v) isopropanol and 0.5 M (final concentration) sodium chloride were added was used.

結果を図13に示す。塩化ナトリウムを添加せずイソプロパノールと尿素のみを添加した緩衝液を用いて第二の洗浄を行なった場合、第二の洗浄を行なわなかった場合と比較し、抗体溶液中のHCP量減少率は25%程度であった。一方、塩化ナトリウムとイソプロパノールを添加した緩衝液で第二の洗浄を行なうと抗体溶液中のHCP量は20分の1以下にまで減少した。   The results are shown in FIG. When the second wash was performed using a buffer solution to which only isopropanol and urea were added without adding sodium chloride, the rate of decrease in the amount of HCP in the antibody solution was 25 compared to the case where the second wash was not performed. %. On the other hand, when the second washing was performed with a buffer solution containing sodium chloride and isopropanol, the amount of HCP in the antibody solution decreased to 1/20 or less.

実施例10 プロテインA固定化アガロースゲルによる、抗体を高濃度含む溶液からの抗体精製(その2)
(1)実施例7(1)で作製した抗体を高濃度含むCHO細胞培養上清1mLに対し塩化ナトリウムを0.5Mとなるよう添加後、あらかじめPBSにて洗浄、平衡化したプロテインA固定化アガロースゲルを充填したカラム(実施例3(1)で作製)に添加した。
(2)実施例2(2)に記載の方法で抗体の精製を行ない、実施例1(6)に記載の方法でHCPの定量を行なった。なお洗浄液は、10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したリン酸緩衝液(pH7)、または10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したホウ酸緩衝液(pH9)を用いた。
Example 10 Antibody Purification from a Solution Containing High Concentration of Antibody on Protein A-Immobilized Agarose Gel (Part 2)
(1) After adding sodium chloride to 0.5 M to 1 mL of the CHO cell culture supernatant containing a high concentration of the antibody prepared in Example 7 (1), the protein A was immobilized by washing and equilibrating in advance with PBS. It added to the column (made by Example 3 (1)) filled with the agarose gel.
(2) The antibody was purified by the method described in Example 2 (2), and HCP was quantified by the method described in Example 1 (6). The washing solution was phosphate buffer (pH 7) to which 10% (v / v) isopropanol and 0.5M (final concentration) sodium chloride were added, or 10% (v / v) isopropanol and 0.5M (pH). A borate buffer solution (pH 9) to which sodium chloride (final concentration) was added was used.

塩化ナトリウムとイソプロパノールを添加した緩衝液で第二の洗浄を行なうことで、第二の洗浄を行なわなかった場合と比較し、抗体溶液中のHCP量が減少した(第二の洗浄なし:443ng、リン酸緩衝液使用時:107ng、ホウ酸緩衝液使用時:109ng)。   The amount of HCP in the antibody solution was decreased by performing the second washing with a buffer solution to which sodium chloride and isopropanol had been added, compared to the case without the second washing (without the second washing: 443 ng, When using phosphate buffer: 107 ng, when using borate buffer: 109 ng).

実施例11 プロテインA固定化ビニルポリマーゲルによる、抗体を高濃度含む溶液からの抗体精製(その1)
(1)実施例4(1)で作製したプロテインA固定化ビニルポリマーゲルを充填したカラムをPBSにて洗浄、平衡化した後、実施例7(1)で作製した抗体を高濃度含むCHO細胞培養上清1mLを添加した。
(2)実施例2(2)に記載の方法で抗体の精製を行ない、実施例1(6)に記載の方法でHCPの定量を行なった。なお洗浄液は、10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したリン酸緩衝液(pH7)、または10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したホウ酸緩衝液(pH9)を用いた。
Example 11 Antibody Purification from Solution Containing High Concentration of Antibody with Protein A-Immobilized Vinyl Polymer Gel (Part 1)
(1) The column filled with the protein A-immobilized vinyl polymer gel prepared in Example 4 (1) was washed with PBS and equilibrated, and then CHO cells containing the antibody prepared in Example 7 (1) at a high concentration. 1 mL of culture supernatant was added.
(2) The antibody was purified by the method described in Example 2 (2), and HCP was quantified by the method described in Example 1 (6). The washing solution was phosphate buffer (pH 7) to which 10% (v / v) isopropanol and 0.5M (final concentration) sodium chloride were added, or 10% (v / v) isopropanol and 0.5M (pH). A borate buffer solution (pH 9) to which sodium chloride (final concentration) was added was used.

塩化ナトリウムとイソプロパノールを添加した緩衝液で第二の洗浄を行なうことで、第二の洗浄を行なわなかった場合と比較し、抗体溶液中のHCP量が減少した(第二の洗浄なし:1157ng、リン酸緩衝液使用時:81ng、ホウ酸緩衝液使用時:85ng)。   By performing the second washing with a buffer solution to which sodium chloride and isopropanol had been added, the amount of HCP in the antibody solution was reduced as compared to the case without the second washing (without the second washing: 1157 ng, When using phosphate buffer: 81 ng, when using borate buffer: 85 ng).

実施例12 プロテインA固定化ビニルポリマーゲルによる、抗体を高濃度含む溶液からの抗体精製(その2)
(1)実施例7(1)で作製した抗体を高濃度含むCHO細胞培養上清1mLに対し塩化ナトリウムを終濃度0.5Mとなるよう添加後、あらかじめPBSにて洗浄、平衡化したプロテインA固定化ビニルポリマーゲルを充填したカラム(実施例4(1)で作製)に添加した。
(2)実施例2(2)に記載の方法で抗体の精製を行ない、実施例1(6)に記載の方法でHCPの定量を行なった。なお洗浄液は、10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したリン酸緩衝液(pH7)、または10%(v/v)のイソプロパノールと0.5M(終濃度)の塩化ナトリウムを添加したホウ酸緩衝液(pH9)を用いた。
Example 12 Antibody Purification from a Solution Containing High Concentration of Antibody with Protein A-Immobilized Vinyl Polymer Gel (Part 2)
(1) After adding sodium chloride to a final concentration of 0.5 M to 1 mL of a CHO cell culture supernatant containing a high concentration of the antibody prepared in Example 7 (1), protein A was washed and equilibrated in advance with PBS. It added to the column (made by Example 4 (1)) filled with the fixed vinyl polymer gel.
(2) The antibody was purified by the method described in Example 2 (2), and HCP was quantified by the method described in Example 1 (6). The washing solution was phosphate buffer (pH 7) to which 10% (v / v) isopropanol and 0.5M (final concentration) sodium chloride were added, or 10% (v / v) isopropanol and 0.5M (pH). A borate buffer solution (pH 9) to which sodium chloride (final concentration) was added was used.

塩化ナトリウムとイソプロパノールを添加した緩衝液で第二の洗浄を行なうことで、第二の洗浄を行なわなかった場合と比較し、抗体溶液中のHCP量が減少した(第二の洗浄なし:518ng、リン酸緩衝液使用時:91ng、ホウ酸緩衝液使用時:69ng)。   The amount of HCP in the antibody solution was reduced by performing the second washing with a buffer solution containing sodium chloride and isopropanol compared to the case without the second washing (without the second washing: 518 ng, When using phosphate buffer: 91 ng, when using borate buffer: 69 ng).

実施例13 Fc結合性タンパク質固定化ゲルによる、抗体を高濃度含む溶液からの抗体精製(その3)
(1)実施例1(3)で作製したFc結合性タンパク質固定化ゲルを充填したカラムをPBSにて洗浄、平衡化した後、実施例7(1)で作製した抗体を高濃度含むCHO細胞培養上清1mLを添加した。
(2)実施例2(2)に記載の方法で抗体の精製を行ない、実施例1(6)に記載の方法でHCPの定量を行なった。なお洗浄液は、0.1%(v/v)のTween 20と0.5M(終濃度)の塩化ナトリウムを添加した緩衝液(pH7、pH9またはpH10)、0.5%(v/v)のTween 20と0.5M(終濃度)の塩化ナトリウムを添加した緩衝液(pH7、pH9またはpH10)、または0.5%(v/v)のTween80と0.5M(終濃度)の塩化ナトリウムを添加した緩衝液(pH7、pH9またはpH10)を用いた。
Example 13 Antibody Purification from Solution Containing High Concentration of Antibody Using Fc Binding Protein Immobilized Gel (Part 3)
(1) The column packed with the Fc-binding protein-immobilized gel prepared in Example 1 (3) was washed and equilibrated with PBS, and then the CHO cells containing the antibody prepared in Example 7 (1) at a high concentration 1 mL of culture supernatant was added.
(2) The antibody was purified by the method described in Example 2 (2), and HCP was quantified by the method described in Example 1 (6). The washing solution was a buffer solution (pH 7, pH 9 or pH 10) containing 0.1% (v / v) Tween 20 and 0.5M (final concentration) sodium chloride, 0.5% (v / v). Tween 20 and 0.5 M (final concentration) sodium chloride buffer (pH 7, pH 9 or pH 10), or 0.5% (v / v) Tween 80 and 0.5 M (final concentration) sodium chloride. The added buffer (pH 7, pH 9 or pH 10) was used.

結果を図14に示す。非イオン系界面活性剤と塩化ナトリウムを添加した中性または塩基性緩衝液を用いて第二の洗浄を行なうことで、第二の洗浄を行なわなかった場合と比較し、抗体溶液中のHCP量が60%から80%減少した。   The results are shown in FIG. The amount of HCP in the antibody solution is obtained by performing the second washing with a neutral or basic buffer solution to which a nonionic surfactant and sodium chloride are added, as compared with the case where the second washing is not performed. Decreased from 60% to 80%.

実施例14 Fc結合性タンパク質固定化ゲルによる、抗体を高濃度含む溶液からの抗体精製(その4)
(1)実施例1(1)で作製したFc結合性タンパク質固定化ゲルを充填したカラムをPBSにて洗浄、平衡化した後、実施例7(1)で作製した抗体を高濃度含むCHO細胞培養上清1mLを添加した。
(2)実施例2(2)に記載の方法で抗体の精製を行ない、実施例1(6)に記載の方法でHCPの定量を行なった。なお洗浄液は、0.5M(終濃度)のL−バリンと0.5Mの塩化ナトリウムを添加した緩衝液(pH10)、0.2M(終濃度)のL−ロイシンと0.5Mの塩化ナトリウムを添加した緩衝液(pH10)、0.4M(終濃度)のL−ロイシンと0.5Mの塩化ナトリウムを添加した緩衝液(pH10)、0.2M(終濃度)のL−イソロイシンと0.5Mの塩化ナトリウムを添加した緩衝液(pH10)、0.4M(終濃度)のL−イソロイシンと0.5Mの塩化ナトリウムを添加した緩衝液(pH10)、0.05M(終濃度)のグリシンと0.5Mの塩化ナトリウムを添加した緩衝液(pH10)、または0.2M(終濃度)のグリシンと0.5Mの塩化ナトリウムを添加した緩衝液(pH10)を用いた。
Example 14 Antibody Purification from Solution Containing High Concentration of Antibody Using Fc Binding Protein Immobilized Gel (Part 4)
(1) After the column packed with the Fc-binding protein-immobilized gel prepared in Example 1 (1) was washed and equilibrated with PBS, the CHO cells containing the antibody prepared in Example 7 (1) at a high concentration 1 mL of culture supernatant was added.
(2) The antibody was purified by the method described in Example 2 (2), and HCP was quantified by the method described in Example 1 (6). The washing solution is a buffer solution (pH 10) to which 0.5 M (final concentration) L-valine and 0.5 M sodium chloride are added, 0.2 M (final concentration) L-leucine and 0.5 M sodium chloride. Added buffer (pH 10), 0.4 M (final concentration) L-leucine and 0.5 M sodium chloride added buffer (pH 10), 0.2 M (final concentration) L-isoleucine and 0.5 M Buffer (pH 10) to which sodium chloride was added, buffer solution (pH 10) to which 0.4 M (final concentration) L-isoleucine and 0.5 M sodium chloride were added, 0.05 M (final concentration) glycine and 0 A buffer solution (pH 10) added with 5 M sodium chloride, or a buffer solution (pH 10) added with 0.2 M (final concentration) glycine and 0.5 M sodium chloride was used.

結果を図15に示す。疎水性アミノ酸(バリン、ロイシン、イソロイシン)と塩化ナトリウムを添加した塩基性緩衝液を用いて第二の洗浄を行なうことで、第二の洗浄を行なわなかった場合やアミノ酸未添加の緩衝液(ホウ酸緩衝液(pH10))で洗浄した場合と比較し、抗体溶液中のHCP量が減少した。一方、グリシンと塩化ナトリウムを添加した塩基性緩衝液を用いて第二の洗浄を行なうと、アミノ酸未添加の緩衝液(ホウ酸緩衝液(pH10))で洗浄した場合と比較し、抗体溶液中のHCP量が増加した。   The results are shown in FIG. Performing the second wash with a basic buffer to which hydrophobic amino acids (valine, leucine, isoleucine) and sodium chloride have been added. Compared with the case of washing with an acid buffer (pH 10)), the amount of HCP in the antibody solution decreased. On the other hand, when the second washing is performed using a basic buffer solution to which glycine and sodium chloride are added, compared with the case of washing with a buffer solution to which no amino acid has been added (borate buffer solution (pH 10)), in the antibody solution. The amount of HCP increased.

本発明の精製方法は、従来のアフィニティークロマトグラフィー用担体を用いた抗体の精製方法と比較し、抗体の精製純度を向上させることができる。本発明の精製方法により後段の精製プロセス負荷を大きく軽減させることができるため、結果として純度の高い抗体を安価に製造することができる。   The purification method of the present invention can improve the purification purity of the antibody as compared with the conventional antibody purification method using the carrier for affinity chromatography. Since the purification process load of the latter stage can be greatly reduced by the purification method of the present invention, high-purity antibodies can be produced at low cost as a result.

Claims (7)

アフィニティークロマトグラフィー用担体を充填したカラムを平衡化する工程と、前記平衡化したカラムに抗体を含む溶液を添加する工程と、前記抗体を含む溶液に含まれる夾雑物を洗浄する工程と、溶出液を用いて前記抗体を溶出させる工程とを含む、抗体の精製方法であって、
前記夾雑物を洗浄する工程が、前記カラムの平衡化に用いた溶液で洗浄する第一の洗浄工程と、終濃度0.2M以上の塩化ナトリウムを含む中性または塩基性の緩衝液で洗浄する第二の洗浄工程とからなる、前記精製方法。
A step of equilibrating a column packed with a carrier for affinity chromatography, a step of adding a solution containing an antibody to the equilibrated column, a step of washing impurities contained in the solution containing the antibody, and an eluent Elution of the antibody using a method for purifying an antibody,
The step of washing the contaminants is a first washing step of washing with the solution used for equilibration of the column, and a neutral or basic buffer containing sodium chloride having a final concentration of 0.2 M or more. The said purification method which consists of a 2nd washing | cleaning process.
抗体を含む溶液に対し0.2M以上となるよう塩化ナトリウムを添加後、平衡化したカラムに抗体を含む溶液を添加する工程を行なう、請求項1に記載の精製方法。 The purification method according to claim 1, wherein the step of adding the solution containing the antibody to the equilibrated column is performed after adding sodium chloride so that the concentration of the solution becomes 0.2 M or more with respect to the solution containing the antibody. 第二の洗浄工程で用いる緩衝液が、水溶性有機溶媒、非イオン性界面活性剤、疎水性アミノ酸、終濃度0.3M以上の尿素のうちいずれか一つ以上をさらに含む、請求項1または2に記載の精製方法。 The buffer used in the second washing step further contains any one or more of a water-soluble organic solvent, a nonionic surfactant, a hydrophobic amino acid, and urea having a final concentration of 0.3 M or more. 2. The purification method according to 2. 水溶性有機溶媒がイソプロパノール、アセトニトリル、エタノールのいずれかである、請求項3に記載の精製方法。 The purification method according to claim 3, wherein the water-soluble organic solvent is any one of isopropanol, acetonitrile, and ethanol. 疎水性アミノ酸がバリン、ロイシン、イソロイシンのいずれかである、請求項3に記載の精製方法。 The purification method according to claim 3, wherein the hydrophobic amino acid is any one of valine, leucine and isoleucine. アフィニティークロマトグラフィー用担体を充填したカラムを平衡化する工程と、
抗体を含む溶液に対し0.2M以上となるよう塩化ナトリウムを添加する工程と、
前記平衡化したカラムに前記抗体を含む溶液を添加する工程と、
前記カラムの平衡化に用いた溶液で前記抗体を含む溶液に含まれる夾雑物を洗浄する工程と、
溶出液を用いて前記抗体を溶出させる工程とを含む、
抗体の精製方法。
Equilibrating a column packed with a carrier for affinity chromatography;
Adding sodium chloride so as to be 0.2 M or more with respect to the solution containing the antibody;
Adding a solution containing the antibody to the equilibrated column;
Washing impurities contained in the solution containing the antibody with the solution used for equilibration of the column;
Elution of the antibody with an eluate.
Antibody purification method.
アフィニティクロマトグラフィー用担体が、Fc結合性タンパク質またはプロテインAを固定化した担体である、請求項1から6のいずれかに記載の精製方法。 The purification method according to any one of claims 1 to 6, wherein the carrier for affinity chromatography is a carrier on which Fc-binding protein or protein A is immobilized.
JP2013211959A 2012-10-10 2013-10-09 Antibody purification method Active JP6303379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211959A JP6303379B2 (en) 2012-10-10 2013-10-09 Antibody purification method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012225421 2012-10-10
JP2012225421 2012-10-10
JP2013211959A JP6303379B2 (en) 2012-10-10 2013-10-09 Antibody purification method

Publications (2)

Publication Number Publication Date
JP2014094936A true JP2014094936A (en) 2014-05-22
JP6303379B2 JP6303379B2 (en) 2018-04-04

Family

ID=50938325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211959A Active JP6303379B2 (en) 2012-10-10 2013-10-09 Antibody purification method

Country Status (1)

Country Link
JP (1) JP6303379B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409765A (en) * 2021-12-23 2022-04-29 苏州创胜医药集团有限公司 Method for purifying antibody

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092691A1 (en) * 2016-11-18 2018-05-24 Jnc株式会社 Method for purifying antibody

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008245580A (en) * 2007-03-30 2008-10-16 Tosoh Corp POLYPEPTIDE CONTAINING EXTRACELLULAR REGION OF Fc RECEPTOR AND METHOD FOR PRODUCING THE SAME
JP2009522580A (en) * 2006-01-06 2009-06-11 ミリポア・コーポレイション Affinity chromatography matrix and its production and use.
JP2012001462A (en) * 2010-06-15 2012-01-05 Kaneka Corp Column for antibody purification
JP2012072091A (en) * 2010-09-29 2012-04-12 Tosoh Corp Purification method for antibody

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009522580A (en) * 2006-01-06 2009-06-11 ミリポア・コーポレイション Affinity chromatography matrix and its production and use.
JP2008245580A (en) * 2007-03-30 2008-10-16 Tosoh Corp POLYPEPTIDE CONTAINING EXTRACELLULAR REGION OF Fc RECEPTOR AND METHOD FOR PRODUCING THE SAME
JP2012001462A (en) * 2010-06-15 2012-01-05 Kaneka Corp Column for antibody purification
JP2012072091A (en) * 2010-09-29 2012-04-12 Tosoh Corp Purification method for antibody

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NAIK A.D. ET AL.: "Performance of hexamer peptide ligands for affinity purification of immunoglobulin G from commercial", J. CHROMATOGR. A, vol. 1218, JPN6017027255, 2010, pages 1691 - 1700, XP028175206, ISSN: 0003604858, DOI: 10.1016/j.chroma.2010.11.071 *
PILCHER J.B. ET AL.: "Optimization of binding capacity and specificity of protein G on various solid matrices for immunogl", J. IMMUNOL. METHODS, vol. 136, JPN6017027249, 1991, pages 279 - 286, XP023974088, ISSN: 0003604860, DOI: 10.1016/0022-1759(91)90014-7 *
SHUKLA A.A. ET AL.: "Host cell protein clearance during protein A chromatography: development of an improved column wash", BIOTECHNOL. PROG., vol. 24, JPN6017027246, 2008, pages 1115 - 1121, XP072292681, ISSN: 0003604859, DOI: 10.1002/btpr.50 *
古谷昌宏: "6. 抗体の精製", 実験医学別冊 タンパク質実験ハンドブック, JPN6017027253, 10 April 2006 (2006-04-10), pages 103 - 105, ISSN: 0003604861 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409765A (en) * 2021-12-23 2022-04-29 苏州创胜医药集团有限公司 Method for purifying antibody

Also Published As

Publication number Publication date
JP6303379B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6092892B2 (en) Antibody purification method
US8470328B2 (en) Purification method which prevents denaturation of an antibody
EP2831096B1 (en) Affinity chromatography matrix
JP2019034963A (en) Novel antibody purification method using cation exchanger
KR20120109506A (en) Wash solution and method for affinity chromatography
CN116731129A (en) Modified kappa light chain-binding polypeptides
JP6335785B2 (en) Mixed-mode antibody affinity separation matrix and purification method and target molecule using the same
JP2015502959A (en) Separation of IgG2 disulfide isoform
Hirano et al. Effects of arginine on multimodal chromatography: experiments and simulations
JP6303379B2 (en) Antibody purification method
Capela et al. Supported ionic liquids as customizable materials to purify immunoglobulin G
WO2014102814A1 (en) Process for the purification of fc fusion proteins
JP2015020955A (en) Eluate for antibody purification and antibody purification method using eluate concerned
Wang et al. Protein renaturation with simultaneous purification by protein folding liquid chromatography: recent developments
JP6451118B2 (en) Antibody separation method
US11697672B2 (en) Process for the purification of recombinant antibody fragments
JP6115126B2 (en) Purification method of human IgG3
JP6136236B2 (en) Purification method of recombinant protein
Lees et al. Purifying a recalcitrant therapeutic recombinant protein with a mixed-mode chromatography sorbent
JP6851109B2 (en) Method of purifying antibody and method of washing carrier
AU2019242986A1 (en) Bordetella pertussis-derived protein-obtaining method including affinity chromatography process
Chollangi et al. ted
JP2007174977A (en) Method for separating and purifying adamts13

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R151 Written notification of patent or utility model registration

Ref document number: 6303379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151