JP2014094445A - Holding device and robot device - Google Patents

Holding device and robot device Download PDF

Info

Publication number
JP2014094445A
JP2014094445A JP2013212604A JP2013212604A JP2014094445A JP 2014094445 A JP2014094445 A JP 2014094445A JP 2013212604 A JP2013212604 A JP 2013212604A JP 2013212604 A JP2013212604 A JP 2013212604A JP 2014094445 A JP2014094445 A JP 2014094445A
Authority
JP
Japan
Prior art keywords
rotating member
gripping
elastic
rotating
gripping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013212604A
Other languages
Japanese (ja)
Inventor
Masamichi Ueno
真路 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013212604A priority Critical patent/JP2014094445A/en
Publication of JP2014094445A publication Critical patent/JP2014094445A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a holding device which has a simple structure and holds a holing object with an accurate holding force and holds the objects at the same position.SOLUTION: A holding device body 101 comprises: a rotary member 118 which rotates in conjunction with rotations of a gear 104; and a rotary member 119 which is coaxially disposed with the rotary member 118 and is integrally formed with a cam member 105. The holding device body 101 includes elastic members 114to 114which connect the rotary member 118 with the rotary member 119 and transmit rotary motion of the rotary member 118 to the rotary member 119. A magnetic flux generating source 115 and a magnetoelectric conversion element 116 are respectively provided at the rotary member 118 and the rotary member 119. The structure enables the elastic deformation volume of the elastic member 114to 114, which results from rotations of the rotary member 118 relative to the rotary member 119, to be detected.

Description

本発明は、複数の把持爪を互いに移動させて物体を把持する把持装置、及び把持装置を備えたロボット装置に関する。   The present invention relates to a gripping device that grips an object by moving a plurality of gripping claws to each other, and a robot apparatus including the gripping device.

把持装置は、複数の把持爪を有し、例えば、部品の組立を行う組立装置などに用いられる。把持装置は、多関節のロボットに取り付けられ、物体を把持し、搬送や組みつけを行うものである。これら把持爪の駆動には、ステッピングモータやサーボモータ等の電動アクチュエータが用いられる。アクチュエータから得られた回転運動を、ラックギアやカム、ボールねじ等の動力伝達機構を介して直動運動に変換することで、複数の把持爪を移動させて物体を把持する。   The gripping device has a plurality of gripping claws and is used, for example, in an assembly device for assembling components. The gripping device is attached to an articulated robot, grips an object, and performs transportation and assembly. An electric actuator such as a stepping motor or a servo motor is used to drive these gripping claws. The rotary motion obtained from the actuator is converted into a linear motion via a power transmission mechanism such as a rack gear, a cam, or a ball screw, thereby moving a plurality of gripping claws to grip an object.

従来の把持装置では、把持対象物である物体を所定の把持力で把持する際に、例えばサーボモータを用いた把持装置では、モータを駆動させる電流を所定の値に制御することで把持力を制御する方法が一般的であった。   In a conventional gripping device, when gripping an object that is a gripping object with a predetermined gripping force, for example, in a gripping device using a servo motor, the gripping force is controlled by controlling the current that drives the motor to a predetermined value. The method of control was common.

しかし、この方法では、把持力を直接検出していないため、動力伝達機構の摩擦等の影響により繰り返しで作業を行う際に、電流が所定の値に制御されていても、安定して同じ把持力を出すことは困難であった。さらに、長時間使用していると、経時変化により動力伝達機構の摩擦が変化し、大きくなることがある。そのため、アクチュエータの駆動電流と把持力との関係が初期値から変化してしまい、長期間精度よく把持力を制御することが困難であった。   However, since this method does not directly detect the gripping force, even when the current is controlled to a predetermined value when the work is repeatedly performed due to the influence of the friction of the power transmission mechanism, the same gripping is stably performed. It was difficult to exert power. Furthermore, when used for a long time, the friction of the power transmission mechanism may change and increase with time. For this reason, the relationship between the drive current of the actuator and the gripping force has changed from the initial value, and it has been difficult to accurately control the gripping force for a long period of time.

この問題を解決する対策として、把持爪に力覚センサを搭載し、把持爪に加わる把持力を計測する方法がある。   As a countermeasure for solving this problem, there is a method of mounting a force sensor on the gripping nail and measuring the gripping force applied to the gripping nail.

しかし、力覚センサは把持爪に加わった把持力による把持爪の変位やひずみを検出するものであるため、把持爪を高い剛性で作ることが難しい。そのため、力覚センサにより変位を検出可能な程度に弾性変形する部材で把持爪を形成すると、把持爪毎の剛性のばらつきの影響で、物体を把持した際の把持力毎の変位量にばらつきが生じ、常に同じ位置で物体を把持することができないという問題が生じる。   However, since the force sensor detects displacement and strain of the gripping claw due to the gripping force applied to the gripping claw, it is difficult to make the gripping claw with high rigidity. For this reason, if the gripping claw is formed with a member that is elastically deformed to such an extent that the force sensor can detect the displacement, the displacement amount for each gripping force when the object is gripped varies due to the rigidity variation of each gripping claw. This causes a problem that the object cannot always be gripped at the same position.

この問題を解決するために、2本の把持爪をそれぞれ別のモータで駆動し、力覚センサを搭載した一方の把持爪で把持力を制御し、他方の把持爪で物体の把持位置を決めるという提案がなされている(特許文献1参照)。   To solve this problem, the two gripping claws are driven by different motors, the gripping force is controlled by one gripping claw equipped with a force sensor, and the gripping position of the object is determined by the other gripping claw. (See Patent Document 1).

特開平5−8188号公報JP-A-5-8188

しかしながら、上記特許文献1の方法では、把持力制御を行う把持爪と把持物の位置決めを行う把持爪とをそれぞれ独立して駆動させるために、少なくとも2つのアクチュエータが必要になる。しかも、構造が複雑になるばかりか、把持装置の重量が増加し、把持装置の大型化、コストアップという問題が生じる。   However, in the method of Patent Document 1, at least two actuators are required to independently drive the gripping claw for controlling the gripping force and the gripping claw for positioning the gripped object. Moreover, not only is the structure complicated, but the weight of the gripping device increases, resulting in problems such as an increase in size and cost of the gripping device.

また、力覚センサを把持爪に内蔵する必要があるため、把持爪に力覚センサを内蔵するための容積を持たせる必要がある。そのため、把持爪を設計する際に把持爪の大きさや形状が内蔵する力覚センサに拘束されてしまう。これは、ロボット装置を小型化するために1つの把持装置で多数の工程の組立を行わせようとする際に大きな障害となる。   Moreover, since it is necessary to incorporate a force sensor in the gripping claw, it is necessary to provide a capacity for incorporating the force sensor in the gripping claw. Therefore, when designing a gripping claw, the size and shape of the gripping claw are restricted by a built-in force sensor. This is a big obstacle when trying to assemble a large number of processes with one gripping device in order to reduce the size of the robot apparatus.

そこで、本発明は、簡単な構成で正確な把持力で把持対象物を把持することが可能で、さらに、同じ位置で物体を把持することが可能な把持装置及びロボット装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a gripping apparatus and a robot apparatus that can grip a target object with a simple configuration and an accurate gripping force and that can grip an object at the same position. And

本発明の把持装置は、開閉動作により把持対象物の把持及び把持解放が可能な複数の把持爪と、回転軸を回転駆動する回転駆動部と、前記回転軸の回転に連動して回転する第1回転部材と、前記第1回転部材と同軸に配置された第2回転部材と、前記第1回転部材と前記第2回転部材とを連結し、前記第1回転部材の回転運動を前記第2回転部材に伝達する弾性部材と、前記第2回転部材の回転運動を前記複数の把持爪の開閉動作に変換する変換機構と、前記第2回転部材に対する前記第1回転部材の相対的な回転に伴う前記弾性部材の弾性変形量を検出する検出部と、を備えたことを特徴とする。   A gripping device according to the present invention includes a plurality of gripping claws capable of gripping and releasing a gripping object by an opening / closing operation, a rotation driving unit that rotationally drives a rotation shaft, and a first rotation that rotates in conjunction with the rotation of the rotation shaft. The first rotating member, the second rotating member arranged coaxially with the first rotating member, the first rotating member and the second rotating member are connected, and the second rotating member is rotated by the second rotating member. An elastic member that transmits to the rotating member, a conversion mechanism that converts the rotational movement of the second rotating member into an opening / closing operation of the plurality of gripping claws, and relative rotation of the first rotating member with respect to the second rotating member. And a detector for detecting the amount of elastic deformation of the elastic member.

本発明によれば、回転駆動部が把持爪を互いに移動させ、把持爪で把持対象物を把持した際には、把持力に対応する弾性変形量で弾性部材に弾性変形が生じ、第2回転部材に対して第1回転部材が相対的に回転する。このときの弾性部材の弾性変形量を検出部が検出することで、把持力を求めることができる。これにより、把持力を求めるために把持爪の弾性変形量を検出する必要がないので、把持爪に歪みゲージ等の力覚センサを内蔵させる必要もない。更に、把持爪の剛性を高くすることができるので、各把持爪の撓みのばらつきを抑制することができ、把持対象物を把持したときの把持対象物の位置がばらつくのを抑制することができる。したがって、従来のように、各把持爪を独立して駆動しなくてもよく、装置の小型化及び軽量化を図ることができる。   According to the present invention, when the rotation driving unit moves the gripping claws to each other and grips the gripping object, the elastic member is elastically deformed by the amount of elastic deformation corresponding to the gripping force, and the second rotation The first rotating member rotates relative to the member. The gripping force can be obtained by the detection unit detecting the amount of elastic deformation of the elastic member at this time. Accordingly, since it is not necessary to detect the elastic deformation amount of the gripping claw in order to obtain the gripping force, it is not necessary to incorporate a force sensor such as a strain gauge in the gripping claw. Furthermore, since the rigidity of the gripping claws can be increased, variation in the bending of each gripping claws can be suppressed, and variation in the position of the gripping object when the gripping object is gripped can be suppressed. . Therefore, unlike the prior art, it is not necessary to drive each gripping claw independently, and the apparatus can be reduced in size and weight.

第1実施形態に係るロボット装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the robot apparatus which concerns on 1st Embodiment. 第1実施形態に係る把持装置の把持装置本体を示す断面図である。It is sectional drawing which shows the holding | maintenance apparatus main body of the holding | gripping apparatus which concerns on 1st Embodiment. 図2のA−A線に沿う把持装置本体の断面図である。It is sectional drawing of the holding | gripping apparatus main body which follows the AA line of FIG. 把持爪でワークを把持したときの把持装置本体の要部を示す説明図である。It is explanatory drawing which shows the principal part of a holding | grip apparatus main body when a workpiece | work is hold | gripped with a holding nail. コントローラの制御動作を示す説明図である。It is explanatory drawing which shows the control action of a controller. 第2実施形態に係る把持装置の把持装置本体を示す断面図である。It is sectional drawing which shows the holding device main body of the holding device which concerns on 2nd Embodiment. 図6のB−B線に沿う把持装置本体の断面図である。It is sectional drawing of the holding | gripping apparatus main body which follows the BB line of FIG. 把持爪でワークを把持したときの把持装置本体の要部を示す説明図である。It is explanatory drawing which shows the principal part of a holding | grip apparatus main body when a workpiece | work is hold | gripped with a holding nail. 第3実施形態に係る把持装置の把持装置本体を示す断面図である。It is sectional drawing which shows the holding apparatus main body of the holding apparatus which concerns on 3rd Embodiment. 図9のC−C線に沿う把持装置本体の断面図である。It is sectional drawing of the holding | gripping apparatus main body which follows the CC line of FIG. 把持爪でワークを把持したときの把持装置本体の要部を示す説明図である。It is explanatory drawing which shows the principal part of a holding | grip apparatus main body when a workpiece | work is hold | gripped with a holding nail. 第4実施形態に係る把持装置の把持装置本体の要部を示す説明図である。It is explanatory drawing which shows the principal part of the holding | grip apparatus main body of the holding | gripping apparatus which concerns on 4th Embodiment. 第5実施形態に係る把持装置の把持装置本体の要部を示す説明図である。It is explanatory drawing which shows the principal part of the holding | grip apparatus main body of the holding | grip apparatus which concerns on 5th Embodiment. 第6実施形態に係る把持装置の把持装置本体の要部を示す説明図である。It is explanatory drawing which shows the principal part of the holding | grip apparatus main body of the holding | gripping apparatus which concerns on 6th Embodiment.

以下、本発明を実施するための形態を、図面を参照しながら詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

[第1実施形態]
図1は、本発明の第1実施形態に係るロボット装置の概略構成を示す説明図である。ロボット装置500は、多関節のロボットであるロボットアーム600と、ロボットアーム600の先端600Aに取り付けられた把持装置100と、を備えている。ロボットアーム600は、複数のリンク部材が関節で連結されたものであり、基端が基台に固定されている。
[First Embodiment]
FIG. 1 is an explanatory diagram showing a schematic configuration of the robot apparatus according to the first embodiment of the present invention. The robot apparatus 500 includes a robot arm 600 that is an articulated robot, and a gripping apparatus 100 attached to a tip 600A of the robot arm 600. The robot arm 600 has a plurality of link members connected by joints, and a base end is fixed to the base.

把持装置100は、把持装置本体101と、把持装置本体101に内蔵された制御部としてのコントローラ401と、を備えており、コントローラ401は、メインコントローラ450からの指令に基づいて把持装置本体101の動作を制御する。   The gripping device 100 includes a gripping device main body 101 and a controller 401 as a control unit built in the gripping device main body 101, and the controller 401 is based on an instruction from the main controller 450. Control the behavior.

図2は、本発明の第1実施形態に係る把持装置の把持装置本体を示す断面図であり、図3は、図2のA−A線に沿う把持装置本体の断面図である。   FIG. 2 is a cross-sectional view showing a gripping device main body of the gripping device according to the first embodiment of the present invention, and FIG. 3 is a cross-sectional view of the gripping device main body taken along line AA in FIG.

把持装置本体101は、図2に示すように、筐体113と、開閉動作により把持対象物であるワークW(図1)の把持及び把持解放が可能な複数(本第1実施形態では2つ)の把持爪112,112とを備えている。また、把持装置本体101は、回転軸103と、回転軸103を回転駆動することで把持爪112,112を開閉駆動する回転駆動部としての減速機付きモータ102と、モータ102の回転運動を直線運動に変換する変換機構120と、を備えている。 As shown in FIG. 2, the gripping device main body 101 includes a housing 113 and a plurality of (two in the first embodiment) capable of gripping and releasing the workpiece W (FIG. 1) that is a gripping object by opening and closing operations. ) Holding claws 112 1 and 112 2 . The gripping device main body 101 includes a rotating shaft 103, a motor 102 with a reduction gear as a rotation driving unit that drives the rotating shaft 103 to open and close to open and close the gripping claws 112 1 and 112 2, and rotational movement of the motor 102. And a conversion mechanism 120 that converts the motion into a linear motion.

変換機構120は、2つの可動台107,107と、2つの軸部材108,108と、2つの円筒状のカムフォロア109,109と、カム部材105と、レール110とを有している。 The conversion mechanism 120 has two movable bases 107 1 and 107 2 , two shaft members 108 1 and 108 2 , two cylindrical cam followers 109 1 and 109 2 , a cam member 105, and a rail 110. doing.

把持爪112,112の基端には、可動台107,107がそれぞれ締結され、更に可動台107,107には、軸部材108,108がそれぞれ固定されている。軸部材108,108には、カムフォロア109,109がそれぞれ圧入されている。 Movable bases 107 1 and 107 2 are fastened to the base ends of the gripping claws 112 1 and 112 2 , respectively, and shaft members 108 1 and 108 2 are fixed to the movable bases 107 1 and 107 2 , respectively. Cam followers 109 1 and 109 2 are press-fitted into the shaft members 108 1 and 108 2 , respectively.

カム部材105は、円板状であり、中心に回転軸117が固定されている。カム部材105には、図3に示すように、カムフォロア109,109(つまり、軸部材108,108)がそれぞれ摺動自在に嵌合される2つの円弧状のカム溝106,106が形成されている。図2に示すように、回転軸117の外周には、ベアリング111が設けられており、カム部材105は、ベアリング111を介して筐体113に回転自在に支持されている。 The cam member 105 has a disk shape, and a rotation shaft 117 is fixed at the center. As shown in FIG. 3, the cam member 105 has two arc-shaped cam grooves 106 1 , 109 1 , 109 2 (that is, shaft members 108 1 , 108 2 ) that are slidably fitted. 106 2 is formed. As shown in FIG. 2, a bearing 111 is provided on the outer periphery of the rotating shaft 117, and the cam member 105 is rotatably supported by the housing 113 via the bearing 111.

モータ102に連結された回転軸103には、歯車104が設けられており、図3に示すように、歯車104に噛合する外歯が形成された第1回転部材としての回転部材118が筐体113内に配置されている。この回転部材118は、モータ102により回転駆動された回転軸103の回転運動が歯車104を介して伝達され、回転軸103の回転と連動して回転する。   A rotating shaft 103 connected to the motor 102 is provided with a gear 104. As shown in FIG. 3, a rotating member 118 as a first rotating member on which external teeth meshing with the gear 104 are formed is a housing. 113. The rotating member 118 is rotated in conjunction with the rotation of the rotating shaft 103 by transmitting the rotating motion of the rotating shaft 103 driven to rotate by the motor 102 via the gear 104.

この回転部材118は、リング状に形成されており、回転部材118の内側には、回転部材118と同軸に配置され、カム部材105と一体に形成された第2回転部材としての回転部材119が設けられている。具体的には、カム部材105の外周に回転部材119が一体に形成されている。これにより、カム部材105は、回転部材119と共に回転軸117(図2)を中心に一体に回転する。   The rotating member 118 is formed in a ring shape, and a rotating member 119 as a second rotating member is formed on the inner side of the rotating member 118 so as to be coaxial with the rotating member 118 and formed integrally with the cam member 105. Is provided. Specifically, a rotating member 119 is integrally formed on the outer periphery of the cam member 105. Thereby, the cam member 105 rotates integrally with the rotating member 119 around the rotating shaft 117 (FIG. 2).

回転部材118の内周面と回転部材119の外周面とは、複数(本実施形態では、4つ)の弾性部材114,114,114,114で連結されている。回転部材118の回転運動がこれら弾性部材114〜114を介して回転部材119に伝達される。これら弾性部材114〜114は、回転部材118,119の周方向に等間隔に配置されている。これら弾性部材114〜114は、把持爪112,112によりワークWを把持した際の把持力に応じた弾性変形量で弾性変形する剛性のものである。 The inner peripheral surface of the rotating member 118 and the outer peripheral surface of the rotating member 119 are connected by a plurality (four in this embodiment) of elastic members 114 1 , 114 2 , 114 3 , 114 4 . The rotational motion of the rotating member 118 is transmitted to the rotating member 119 via these elastic members 114 1 to 114 4 . These elastic members 114 1 to 114 4 are arranged at equal intervals in the circumferential direction of the rotating members 118 and 119. These elastic members 114 1 to 114 4 are rigid to be elastically deformed with an elastic deformation amount corresponding to the gripping force when the workpiece W is gripped by the gripping claws 112 1 and 112 2 .

つまり、弾性部材114〜114は、モータ102が発生させた駆動力により、回転部材119に対する回転部材118の回転方向、即ち捩じれ方向に弾性変形を生じさせるように形成されている。 That is, the elastic members 114 1 to 114 4 are formed so as to cause elastic deformation in the rotational direction of the rotating member 118 relative to the rotating member 119, that is, the twisting direction, by the driving force generated by the motor 102.

ここで、把持爪112,112は、ワークWを把持した際に弾性部材114〜114が弾性変形するように、弾性部材114〜114よりも高い剛性の剛体で形成されている。これにより、把持爪112,112を剛性の高い部材で形成したことで、各把持爪112,112はワークWを把持した際にほとんど撓まず、また、撓んだとしても撓み量(弾性変形量)が小さいので撓みのばらつきが抑制される。したがって、把持爪112,112でワークWを把持したときのワークWの位置(座標)がばらつくのを抑制することができ、従来のように、各把持爪を独立して駆動しなくてもよく、把持装置100の小型化及び軽量化を図ることができる。 Here, the gripping claws 112 1, 112 2, as the elastic member 114 1-114 4 when gripping the workpiece W is elastically deformed, and is formed with a high rigidity of the rigid than the elastic member 114 1-114 4 Yes. Accordingly, the gripping claws 112 1, 112 2 that was formed by the member having a high rigidity, the gripping claws 112 1, 112 2 are not bent almost upon gripping the workpiece W, also amount deflection as bent Since the (elastic deformation amount) is small, variation in bending is suppressed. Accordingly, the gripping claws 112 1, 112 2 can be suppressed position of the workpiece W when gripping the workpiece W (coordinates) that varies, as in the prior art, without driving each gripping claws independently In other words, the gripping device 100 can be reduced in size and weight.

なお、本実施形態では弾性部材114〜114を板ばね状に形成しているが、この形状に限定するものではなく、捩じれが生じるのであれば形状も板ばね状でなくともよい。また、弾性部材114〜114の個数も、4つに限らず、3つ以上(少なくとも3つ)、即ち複数であればよい。 In the present embodiment, the elastic members 114 1 to 114 4 are formed in a leaf spring shape, but the shape is not limited to this shape, and the shape may not be a leaf spring shape as long as twisting occurs. Also, the number of the elastic members 114 1 to 114 4 is not limited to four, three or more (at least three), i.e. if more is.

以上の構成により、モータ102が回転軸103を回転駆動することで、歯車104に噛合する回転部材118が回転し、この回転部材118の回転運動が、弾性部材114〜114を介して回転部材119と一体となったカム部材105に伝達される。これにより、カム部材105が回転軸117を中心に回転する。 With the above configuration rotation by the motor 102 is driven to rotate the rotary shaft 103, the rotary member 118 is rotated to mesh with the gear 104, the rotational movement of the rotary member 118 via the elastic member 114 1-114 4 This is transmitted to the cam member 105 integrated with the member 119. As a result, the cam member 105 rotates about the rotation shaft 117.

カム部材105が回転することで、可動台107,107から延びている軸部材108,108に取り付けられたカムフォロア109,109が、それぞれカム部材105に形成されたカム溝106,106に沿って摺動する。これにより、可動台107,107は、レール110に沿って直線摺動し、可動台107,107に取り付けられた把持爪112,112が、それぞれ±X1、±X2方向に直線移動し、ワークWの把持及び把持解放が可能となる。このように、変換機構120は、回転部材119の回転運動を直線運動に変換して複数の把持爪112,112を開閉動作させる。 As the cam member 105 rotates, cam followers 109 1 and 109 2 attached to shaft members 108 1 and 108 2 extending from the movable bases 107 1 and 107 2 are cam grooves 106 formed in the cam member 105, respectively. 1, 106 2 slides along the. As a result, the movable bases 107 1 and 107 2 slide linearly along the rail 110, and the gripping claws 112 1 and 112 2 attached to the movable bases 107 1 and 107 2 are in the ± X1 and ± X2 directions, respectively. It moves linearly, and the workpiece W can be gripped and released. As described above, the conversion mechanism 120 converts the rotational motion of the rotating member 119 into a linear motion, and opens and closes the plurality of gripping claws 112 1 and 112 2 .

本第1実施形態では、把持装置本体101は、図3に示すように、例えば永久磁石等の磁束発生源115と、ホール素子等の磁電変換素子116とを有する検出部125を備えている。磁束発生源115は、回転部材118,119のうち一方の回転部材、本第1実施形態では、回転部材118の内周面に設けられている。また、磁電変換素子116は、回転部材118,119のうち他方の回転部材、本第1実施形態では、回転部材119の外周面に設けられている。磁束発生源115と磁電変換素子116とは、回転部材118と回転部材119との間に相対的な回転がない場合に正対している。   In the first embodiment, the gripping device main body 101 includes a detection unit 125 having a magnetic flux generation source 115 such as a permanent magnet and a magnetoelectric conversion element 116 such as a Hall element, as shown in FIG. The magnetic flux generation source 115 is provided on one of the rotating members 118 and 119, on the inner peripheral surface of the rotating member 118 in the first embodiment. In addition, the magnetoelectric conversion element 116 is provided on the outer peripheral surface of the rotation member 119 of the rotation member 118 or 119 in the first embodiment. The magnetic flux generation source 115 and the magnetoelectric conversion element 116 face each other when there is no relative rotation between the rotating member 118 and the rotating member 119.

弾性部材114〜114に生じた捩じれ方向の弾性変形により、回転部材119と回転部材118との間に相対的な回転が生じた場合、磁束発生源115と磁電変換素子116との間に相対的に変位が生じ、磁電変換素子116を通る磁束密度が変化する。 An elastic member 114 1-114 4 To the resulting twisted direction of the elastic deformation, when the relative rotation between the rotary member 119 and the rotating member 118 has occurred between the magnetic flux generator 115 and electromagnetic conversion element 116 A relative displacement occurs, and the magnetic flux density passing through the magnetoelectric conversion element 116 changes.

これにより、磁電変換素子116は、弾性部材114〜114に生じた弾性変形量、即ち回転部材119に対する回転部材118の相対的な回転角度(回転量)に比例した電圧を、図1に示すコントローラ401へ出力する。このように、検出部125は、弾性部材114〜114に生じた捩じれ方向の弾性変形量、即ち弾性部材114〜114の弾性変形による回転部材119に対する回転部材118の相対的な回転量を検出する。 Accordingly, the magnetoelectric conversion element 116 generates a voltage proportional to the amount of elastic deformation generated in the elastic members 114 1 to 114 4 , that is, the relative rotation angle (rotation amount) of the rotating member 118 with respect to the rotating member 119 in FIG. To the controller 401 shown. As described above, the detection unit 125 is configured to rotate the rotating member 118 relative to the rotating member 119 due to the elastic deformation amount of the torsional direction generated in the elastic members 114 1 to 114 4 , that is, the elastic deformation of the elastic members 114 1 to 114 4. Detect the amount.

なお第1実施形態では、磁束発生源115を回転部材118の内周面、磁電変換素子116を回転部材119の外周面に設けているが、これに限らず、磁束発生源115を回転部材119の外周面、磁電変換素子116を回転部材118の内周面に設けてもよい。   In the first embodiment, the magnetic flux generating source 115 is provided on the inner peripheral surface of the rotating member 118 and the magnetoelectric conversion element 116 is provided on the outer peripheral surface of the rotating member 119. However, the present invention is not limited to this, and the magnetic flux generating source 115 is provided on the rotating member 119. Alternatively, the magnetoelectric conversion element 116 may be provided on the inner peripheral surface of the rotating member 118.

図4は、把持爪112,112でワークWを把持したときの把持装置本体101の要部を示す説明図であり、図4の一点鎖線C1及び一点鎖線C2はそれぞれ、磁束発生源115及び磁電変換素子116の中心線を示している。 Figure 4 is an explanatory view showing an essential part of the gripping device main body 101 when in the gripping claws 112 1, 112 2 to hold the workpiece W, respectively dashed line C1 and the one-dot chain line C2 in Figure 4, magnetic flux generator 115 And the center line of the magnetoelectric conversion element 116 is shown.

把持爪112,112を互いに移動させてワークWを把持させた時、把持爪112,112がワークWに接触することで、把持爪112,112はそれ以上移動しなくなり、カム部材105の回転、即ち回転部材119の回転が停止する。しかし、モータ102はカム部材105を回転させようと駆動力を発生させるために、図4に示すように、弾性部材114〜114に捩じれ方向に弾性変形が生じ、回転部材118が回転部材119に対して相対的に回転する。この時、弾性変形により磁束発生源115と磁電変換素子116との間に相対的に変位Eが生じ、磁電変換素子116が変位量に比例した電圧を出力することで、弾性部材114〜114に生じた捩じれ方向の弾性変形量を検出する。 When allowed to hold the workpiece W by the gripping claws 112 1, 112 2 are moved together, by gripping claws 112 1, 112 2 contacts the workpiece W, the gripping claws 112 1, 112 2 will cease to move any further, The rotation of the cam member 105, that is, the rotation of the rotating member 119 is stopped. However, since the motor 102 generates a driving force to rotate the cam member 105, the elastic members 114 1 to 114 4 are elastically deformed in the torsional direction as shown in FIG. Rotates relative to 119. At this time, due to elastic deformation, a relative displacement E is generated between the magnetic flux generation source 115 and the magnetoelectric conversion element 116, and the magnetoelectric conversion element 116 outputs a voltage proportional to the amount of displacement, whereby the elastic members 114 1 to 114 are output. 4 detects the amount of elastic deformation in the torsional direction generated in FIG.

図5は、コントローラ401の制御動作を示す説明図である。コントローラ401は、検出部125の検出結果、即ち磁電変換素子116の出力電圧の入力を受け、出力電圧の値を把持爪112,112によるワークWの把持力に換算する。コントローラ401は、メインコントローラ450からの目標把持力の入力を受け、演算した把持力と目標把持力との差分を算出し、この差分に基づいて、モータ102を目標把持力にするのに必要な電流値を算出し、駆動電流をモータ102へ供給する。このように、コントローラ401は、把持爪112,112の把持力が目標把持力となるようにモータ102を制御する。 FIG. 5 is an explanatory diagram showing the control operation of the controller 401. The controller 401 receives the detection result of the detection unit 125, that is, the output voltage of the magnetoelectric conversion element 116, and converts the value of the output voltage into the gripping force of the workpiece W by the gripping claws 112 1 and 112 2 . The controller 401 receives the input of the target gripping force from the main controller 450, calculates the difference between the calculated gripping force and the target gripping force, and is necessary for setting the motor 102 to the target gripping force based on this difference. The current value is calculated and the drive current is supplied to the motor 102. Thus, the controller 401, the gripping force of the gripping claws 112 1, 112 2 controls the motor 102 so that the target clamping force.

以上、本第1実施形態によれば、モータ102が把持爪112,112を互いに移動させ、把持爪112,112でワークWを把持した際には、把持力に対応する弾性変形量で弾性部材114〜114に捩じれ方向の弾性変形が生じる。この弾性変形量を検出部125が検出することで、コントローラ401は正確な把持力を求めることができ、把持爪112,112による把持力を正確に目標把持力にすることができる。これにより、従来のように、把持力を求めるために把持爪の弾性変形量を検出する必要がないので、把持爪112,112に歪みゲージ等の力覚センサを内蔵させる必要もない。したがって、把持爪112,112の大きさや形状に拘束条件を持たせず、自由に把持爪112,112を設計できる。 As described above, according to the first embodiment, the motor 102 causes the movement of the gripping claws 112 1, 112 2 together, when gripping the workpiece W by the gripping claws 112 1, 112 2, the elastic deformation corresponding to the gripping force The elastic members 114 1 to 114 4 are elastically deformed in the twisting direction. By detecting the detection portion 125 of the elastic deformation amount, the controller 401 can determine an accurate gripping force can be accurately target gripping force gripping forces by the gripping claws 112 1, 112 2. As a result, it is not necessary to detect the amount of elastic deformation of the gripping claws in order to obtain the gripping force as in the prior art, and therefore it is not necessary to incorporate force sensors such as strain gauges in the gripping claws 112 1 and 112 2 . Therefore, the holding claws 112 1 and 112 2 can be freely designed without restricting the size and shape of the holding claws 112 1 and 112 2 .

また、各把持爪112,112及び把持爪112,112へ力を伝える伝達経路の剛性差が少ない。このため、異なる把持力でも同じ把持位置で把持ができ、把持位置を決めるための別の回転駆動部も必要なく、同一のモータ102で把持爪112,112を駆動することができるので、装置の小型化及び軽量化が図れる。このように、把持装置100が小型化及び軽量化されるので、ロボットアーム600の動作が安定し、組立作業等、あらゆる作業が容易となる。 Also, a small difference in rigidity between the gripping claws 112 1, 112 2 and the gripping claws 112 1, 112 2 to the transmission path for transmitting the force. For this reason, it is possible to grip at the same gripping position even with different gripping forces, and there is no need for a separate rotation drive unit for determining the gripping position, and the gripping claws 112 1 and 112 2 can be driven by the same motor 102. The apparatus can be reduced in size and weight. As described above, since the gripping device 100 is reduced in size and weight, the operation of the robot arm 600 is stabilized, and all operations such as assembly work are facilitated.

さらに、磁束発生源115及び磁電変換素子116を、カム部材105の回転軸117から離れた位置に配置できるため、より大きな変位を得ることができ、把持力検出の分解能をより高く得ることができる。   Furthermore, since the magnetic flux generation source 115 and the magnetoelectric conversion element 116 can be arranged at positions away from the rotation shaft 117 of the cam member 105, a larger displacement can be obtained and a higher resolution of gripping force detection can be obtained. .

[第2実施形態]
次に、本発明の第2実施形態に係る把持装置について説明する。図6は、本発明の第2実施形態に係る把持装置の把持装置本体を示す断面図であり、図7は、図6のB−B線に沿う把持装置本体の断面図である。
[Second Embodiment]
Next, a gripping device according to a second embodiment of the present invention will be described. FIG. 6 is a cross-sectional view showing a gripping device main body of the gripping device according to the second embodiment of the present invention, and FIG. 7 is a cross-sectional view of the gripping device main body taken along line BB in FIG.

本第2実施形態では、把持装置は、把持装置本体201と、上記第1実施形態と同様、制御部としてのコントローラ401(図1参照)とを備えている。   In the second embodiment, the gripping device includes a gripping device main body 201 and a controller 401 (see FIG. 1) as a control unit, as in the first embodiment.

把持装置本体201は、図6に示すように、筐体213と、開閉動作により把持対象物であるワークW(図1)の把持及び把持解放が可能な複数(本第2実施形態では2つ)の把持爪212,212とを備えている。また、把持装置本体201は、回転軸203と、回転軸203を回転駆動することで把持爪212,212を開閉駆動する回転駆動部としての減速機付きモータ202と、モータ202の回転運動を直線運動に変換する変換機構220と、を備えている。 As shown in FIG. 6, the gripping device main body 201 includes a housing 213 and a plurality of (two in the second embodiment) that can grip and release the workpiece W (FIG. 1) that is a gripping object. ) Gripping claws 212 1 , 212 2 . The gripping device main body 201 includes a rotating shaft 203, a motor 202 with a speed reducer as a rotation driving unit that opens and closes the gripping claws 212 1 and 212 2 by rotationally driving the rotating shaft 203, and rotational motion of the motor 202. And a conversion mechanism 220 for converting into a linear motion.

変換機構220は、2つの可動台207,207と、2つの軸部材208,208と、2つの円筒状のカムフォロア209,209と、カム部材205と、レール210とを有している。 The conversion mechanism 220 includes two movable stands 207 1 and 207 2 , two shaft members 208 1 and 208 2 , two cylindrical cam followers 209 1 and 209 2 , a cam member 205, and a rail 210. doing.

把持爪212,212の基端には、可動台207,207がそれぞれ締結され、更に可動台207,207には、軸部材208,208がそれぞれ固定されている。軸部材208,208には、カムフォロア209,209がそれぞれ圧入されている。 Movable bases 207 1 and 207 2 are fastened to the base ends of the gripping claws 212 1 and 212 2 , respectively, and shaft members 208 1 and 208 2 are fixed to the movable bases 207 1 and 207 2 , respectively. Cam followers 209 1 and 209 2 are press-fitted into the shaft members 208 1 and 208 2 , respectively.

カム部材205は、リング状に形成されている。カム部材205には、図7に示すように、カムフォロア209,209(つまり、軸部材208,208)がそれぞれ摺動自在に嵌合される2つの円弧状のカム溝206,206が形成されている。図6及び図7に示すように、カム部材205の外周には、ベアリング211が設けられており、カム部材205は、ベアリング211を介して筐体213に回転自在に支持されている。 The cam member 205 is formed in a ring shape. As shown in FIG. 7, the cam member 205 has two arc-shaped cam grooves 206 1 , 209 1 , 209 2 (that is, shaft members 208 1 , 208 2 ) that are slidably fitted. 206 2 is formed. As shown in FIGS. 6 and 7, a bearing 211 is provided on the outer periphery of the cam member 205, and the cam member 205 is rotatably supported by the housing 213 via the bearing 211.

モータ202に連結された回転軸203には、図7に示すように、第1回転部材としての回転部材218が固定されている。この回転部材218は、モータ202により回転駆動された回転軸203の回転運動が直接伝達され、回転軸203の回転と連動して回転する。   As shown in FIG. 7, a rotating member 218 as a first rotating member is fixed to the rotating shaft 203 connected to the motor 202. The rotating member 218 is directly transmitted with the rotational motion of the rotating shaft 203 driven to rotate by the motor 202 and rotates in conjunction with the rotation of the rotating shaft 203.

この回転部材218は、リング状に形成されている。回転部材218の内側には、回転軸203が嵌入され、回転部材218の外側には、回転部材218と同軸に配置され、カム部材205と一体に形成された第2回転部材としての回転部材219が設けられている。具体的には、カム部材205の内周に回転部材219が一体に形成されている。これにより、カム部材205は、回転部材219と共に回転軸203を中心に一体に回転する。   The rotating member 218 is formed in a ring shape. A rotating shaft 203 is fitted inside the rotating member 218, and a rotating member 219 as a second rotating member is formed on the outside of the rotating member 218 so as to be coaxial with the rotating member 218 and formed integrally with the cam member 205. Is provided. Specifically, a rotating member 219 is integrally formed on the inner periphery of the cam member 205. As a result, the cam member 205 rotates integrally with the rotation member 219 around the rotation shaft 203.

回転部材218の外周面と回転部材219の内周面とは、複数(本実施形態では、4つ)の弾性部材214,214,214,214で連結されている。回転部材218の回転運動がこれら弾性部材214〜214を介して回転部材219に伝達される。これら弾性部材214〜214は、回転部材218,219の周方向に等間隔に配置されている。これら弾性部材214〜214は、把持爪212,212によりワークWを把持した際の把持力に応じた弾性変形量で弾性変形する剛性のものである。 The outer peripheral surface and the inner peripheral surface of the rotary member 219 of the rotary member 218, a plurality (in this embodiment, four) are connected by elastic members 214 1, 214 2, 214 3, 214 4. The rotational motion of the rotating member 218 is transmitted to the rotating member 219 via these elastic members 214 1 to 214 4 . These elastic members 214 1 to 214 4 are arranged at equal intervals in the circumferential direction of the rotary member 218 and 219. These elastic members 214 1 to 214 4 is of rigid elastically deformed by an elastic deformation amount corresponding to the gripping force when the gripping claws 212 1, 212 2 to hold the workpiece W.

つまり、弾性部材214〜214は、モータ202が発生させた駆動力により、回転部材219に対する回転部材218の回転方向、即ち捩じれ方向に弾性変形を生じさせるように形成されている。 That is, the elastic member 214 1-214 4, by the driving force motor 202 caused, the rotation direction of the rotary member 218 with respect to the rotary member 219 is formed so as to cause elastic deformation i.e. twist direction.

ここで、把持爪212,212は、ワークWを把持した際に弾性部材214〜214が弾性変形するように、弾性部材214〜214よりも高い剛性の剛体で形成されている。これにより、把持爪212,212を剛性の高い部材で形成したことで、各把持爪212,212はワークWを把持した際にほとんど撓まず、また、撓んだとしても撓み量(弾性変形量)が小さいので撓みのばらつきが抑制される。したがって、把持爪212,212でワークWを把持したときのワークWの位置(座標)がばらつくのを抑制することができ、従来のように、各把持爪を独立して駆動しなくてもよく、把持装置の小型化及び軽量化を図ることができる。 Here, the gripping claws 212 1, 212 2, as the elastic member 214 1-214 4 when gripping the workpiece W is elastically deformed, and is formed with a high rigidity of the rigid than the elastic member 214 1-214 4 Yes. As a result, the gripping claws 212 1 and 212 2 are formed of a highly rigid member, so that the gripping claws 212 1 and 212 2 hardly bend when gripping the workpiece W, and even if they are bent, the bending amount Since the (elastic deformation amount) is small, variation in bending is suppressed. Therefore, the position (coordinates) of the workpiece W when the workpiece W is gripped by the gripping claws 212 1 and 212 2 can be suppressed, and each gripping claw can be driven independently as in the prior art. In addition, the gripping device can be reduced in size and weight.

なお、本実施形態では弾性部材214〜214を板ばね状に形成しているが、この形状に限定するものではなく、捩じれが生じるのであれば形状も板ばね状でなくともよい。また、弾性部材214〜214の個数も、4つに限らず、3つ以上(少なくとも3つ)、即ち複数であればよい。 In this embodiment, the elastic members 214 1 to 214 4 are formed in a leaf spring shape, but the shape is not limited to this shape, and the shape may not be a leaf spring shape as long as twisting occurs. Also, the number of the elastic members 214 1 to 214 4 is not limited to four, three or more (at least three), i.e. if more is.

以上の構成により、モータ202が回転軸203を回転駆動することで、回転部材218が回転し、この回転部材218の回転運動が、弾性部材214〜214を介して回転部材219と一体となったカム部材205に伝達される。これにより、カム部材205が回転軸203を中心に回転する。 With the above arrangement, since the motor 202 is driven to rotate the rotary shaft 203, the rotary member 218 is rotated, the rotational movement of the rotary member 218, and together with the rotating member 219 via the elastic member 214 1-214 4 It is transmitted to the cam member 205. As a result, the cam member 205 rotates around the rotation shaft 203.

カム部材205が回転することで、可動台207,207から延びている軸部材208,208に取り付けられたカムフォロア209,209が、それぞれカム部材205に形成されたカム溝206,206に沿って摺動する。これにより、可動台207,207は、レール210に沿って直線摺動し、可動台207,207に取り付けられた把持爪212,212が、それぞれ±X1、±X2方向に直線移動し、ワークWの把持及び把持解放が可能となる。このように、変換機構220は、回転部材219の回転運動を直線運動に変換して複数の把持爪212,212を開閉動作させる。 As the cam member 205 rotates, the cam followers 209 1 and 209 2 attached to the shaft members 208 1 and 208 2 extending from the movable bases 207 1 and 207 2 are cam grooves 206 formed in the cam member 205, respectively. 1 , 206 2 . Accordingly, the movable bases 207 1 and 207 2 slide linearly along the rail 210, and the gripping claws 212 1 and 212 2 attached to the movable bases 207 1 and 207 2 are in the ± X1 and ± X2 directions, respectively. It moves linearly, and the workpiece W can be gripped and released. Thus, the conversion mechanism 220 converts the rotational motion of the rotating member 219 into a linear motion, and opens and closes the plurality of gripping claws 212 1 and 212 2 .

本第2実施形態では、把持装置本体201は、図7に示すように、例えば永久磁石等の磁束発生源215と、ホール素子等の磁電変換素子216とを有する検出部225を備えている。磁束発生源215は、回転部材218,219のうち一方の回転部材、本第2実施形態では、回転部材219の内周面に設けられている。また、磁電変換素子216は、回転部材218,219のうち他方の回転部材、本第2実施形態では、回転部材218の外周面に設けられている。磁束発生源215と磁電変換素子216とは、回転部材218と回転部材219との間に相対的な回転がない場合に正対している。   In the second embodiment, the gripping device main body 201 includes a detection unit 225 having a magnetic flux generation source 215 such as a permanent magnet and a magnetoelectric conversion element 216 such as a Hall element, as shown in FIG. The magnetic flux generation source 215 is provided on one of the rotating members 218 and 219, that is, on the inner peripheral surface of the rotating member 219 in the second embodiment. The magnetoelectric conversion element 216 is provided on the outer peripheral surface of the rotating member 218 in the second rotating member of the rotating members 218 and 219, in the second embodiment. The magnetic flux generation source 215 and the magnetoelectric conversion element 216 face each other when there is no relative rotation between the rotating member 218 and the rotating member 219.

弾性部材214〜214に生じた捩じれ方向の弾性変形により、回転部材219と回転部材218との間に相対的な回転が生じた場合、磁束発生源215と磁電変換素子216との間に相対的に変位が生じ、磁電変換素子216を通る磁束密度が変化する。 An elastic member 214 1-214 4 To the resulting twisted direction of the elastic deformation, when the relative rotation between the rotary member 219 and the rotating member 218 has occurred between the magnetic flux generator 215 and electromagnetic conversion element 216 A relative displacement occurs, and the magnetic flux density passing through the magnetoelectric conversion element 216 changes.

これにより、磁電変換素子216は、弾性部材214〜214に生じた弾性変形量、即ち回転部材219に対する回転部材218の相対的な回転角度(回転量)に比例した電圧を、コントローラ401(図1参照)へ出力する。このように、検出部225は、弾性部材214〜214に生じた捩じれ方向の弾性変形量、即ち弾性部材214〜214の弾性変形による回転部材219に対する回転部材218の相対的な回転量を検出する。 Thus, magneto-electric transducer 216, elastic deformation occurring in the elastic member 214 1-214 4, i.e. a voltage proportional to the relative rotation angle of the rotary member 218 (amount of rotation) with respect to the rotary member 219, the controller 401 ( (See FIG. 1). Thus, the detection unit 225, the elastic member 214 1-214 4 To the resulting twisted direction of the elastic deformation, i.e. the relative rotation of the rotary member 218 with respect to the rotary member 219 due to elastic deformation of the elastic member 214 1-214 4 Detect the amount.

なお第2実施形態では、磁束発生源215を回転部材219の内周面、磁電変換素子216を回転部材218の外周面に設けているが、これに限らず、磁束発生源215を回転部材218の外周面、磁電変換素子216を回転部材219の内周面に設けてもよい。   In the second embodiment, the magnetic flux generating source 215 is provided on the inner peripheral surface of the rotating member 219 and the magnetoelectric conversion element 216 is provided on the outer peripheral surface of the rotating member 218. However, the present invention is not limited to this, and the magnetic flux generating source 215 is provided on the rotating member 218. Alternatively, the magnetoelectric conversion element 216 may be provided on the inner peripheral surface of the rotating member 219.

図8は、把持爪212,212でワークWを把持したときの把持装置本体201の要部を示す説明図であり、図8の一点鎖線C21及び一点鎖線C22はそれぞれ、磁束発生源215及び磁電変換素子216の中心線を示している。 FIG. 8 is an explanatory view showing the main part of the gripping device main body 201 when the workpiece W is gripped by the gripping claws 212 1 , 212 2 , and the one-dot chain line C 21 and the one-dot chain line C 22 in FIG. The center line of the magnetoelectric conversion element 216 is shown.

把持爪212,212を互いに移動させてワークWを把持させた時、把持爪212,212がワークWに接触することで、把持爪212,212はそれ以上移動しなくなり、カム部材205の回転、即ち回転部材219の回転が停止する。しかし、モータ202はカム部材205を回転させようと駆動力を発生させるために、図8に示すように、弾性部材214〜214に捩じれ方向に弾性変形が生じ、回転部材218が回転部材219に対して相対的に回転する。この時、弾性変形により磁束発生源215と磁電変換素子216との間に相対的に変位Fが生じ、磁電変換素子216が変位量に比例した電圧を出力することで、弾性部材214〜214に生じた捩じれ方向の弾性変形量を検出する。これにより、コントローラ401(図1参照)は、把持力を制御できる。 When the gripping claws 212 1 , 212 2 are moved relative to each other to grip the workpiece W, the gripping claws 212 1 , 212 2 come into contact with the workpiece W, so that the gripping claws 212 1 , 212 2 do not move any more, The rotation of the cam member 205, that is, the rotation of the rotating member 219 is stopped. However, since the motor 202 generates a driving force tends to rotate the cam member 205, as shown in FIG. 8, the elastic deformation occurs in the torsional direction in the elastic member 214 1-214 4, the rotation member 218 is rotated member Rotate relative to 219. At this time, due to elastic deformation, a relative displacement F is generated between the magnetic flux generation source 215 and the magnetoelectric conversion element 216, and the magnetoelectric conversion element 216 outputs a voltage proportional to the amount of displacement, whereby elastic members 214 1 to 214 are output. 4 detects the amount of elastic deformation in the torsional direction generated in FIG. Accordingly, the controller 401 (see FIG. 1) can control the gripping force.

以上、本第2実施形態によれば、モータ202が把持爪212,212を互いに移動させ、把持爪212,212でワークWを把持した際には、把持力に対応する弾性変形量で弾性部材214〜214に捩じれ方向の弾性変形が生じる。この弾性変形量を検出部225が検出することで、コントローラ401(図1参照)は正確な把持力を求めることができ、把持爪212,212による把持力を正確に目標把持力にすることができる。これにより、従来のように、把持力を求めるために把持爪の弾性変形量を検出する必要がないので、把持爪212,212に歪みゲージ等の力覚センサを内蔵させる必要もない。したがって、把持爪212,212の大きさや形状に拘束条件を持たせず、自由に把持爪212,212を設計できる。 As described above, according to the second embodiment, when the motor 202 moves the gripping claws 212 1 , 212 2 to each other and grips the workpiece W with the gripping claws 212 1 , 212 2 , the elastic deformation corresponding to the gripping force. elastic members 214 1 to 214 4 in the twisting direction of the elastic deformation occurs in the amount. By detecting the detection portion 225 of the elastic deformation amount, the controller 401 (see FIG. 1) can be obtained an accurate gripping force, precisely to the target clamping force gripping forces by the gripping claws 212 1, 212 2 be able to. As a result, it is not necessary to detect the amount of elastic deformation of the gripping claws in order to obtain the gripping force as in the prior art, and therefore it is not necessary to incorporate force sensors such as strain gauges in the gripping claws 212 1 and 212 2 . Therefore, the holding claws 212 1 and 212 2 can be freely designed without restricting the size and shape of the holding claws 212 1 and 212 2 .

また、各把持爪212,212及び把持爪212,212へ力を伝える伝達経路の剛性差が少ない。このため、異なる把持力でも同じ把持位置で把持ができ、把持位置を決めるための別の回転駆動部も必要なく、同一のモータ202で把持爪212,212を駆動することができるので、装置の小型化及び軽量化が図れる。このように、把持装置が小型化及び軽量化されるので、ロボットアームの動作が安定し、組立作業等、あらゆる作業が容易となる。 Further, there is little difference in rigidity of the transmission path for transmitting the force to the gripping claws 212 1 and 212 2 and the gripping claws 212 1 and 212 2 . For this reason, it is possible to grip at the same gripping position even with different gripping forces, and there is no need for a separate rotation drive unit for determining the gripping position, and the gripping claws 212 1 and 212 2 can be driven by the same motor 202. The apparatus can be reduced in size and weight. As described above, since the gripping device is reduced in size and weight, the operation of the robot arm is stabilized and all operations such as assembling work are facilitated.

[第3実施形態]
次に、本発明の第3実施形態に係る把持装置について説明する。図9は、本発明の第3実施形態に係る把持装置の把持装置本体を示す断面図であり、図10は、図9のC−C線に沿う把持装置本体の断面図である。図11は、把持爪でワークを把持したときの把持装置本体の要部を示す説明図である。
[Third Embodiment]
Next, a gripping device according to a third embodiment of the present invention will be described. FIG. 9 is a cross-sectional view showing a gripping device main body of the gripping device according to the third embodiment of the present invention, and FIG. 10 is a cross-sectional view of the gripping device main body taken along line CC in FIG. FIG. 11 is an explanatory diagram showing a main part of the gripping device main body when the workpiece is gripped by the gripping claws.

上記第1及び第2実施形態では変換機構が、カム溝が形成されたカム部材とカム部材のカム溝に嵌合するカムフォロアを有して構成されている場合について説明したが、第3実施形態では、変換機構が、ラックアンドピニオン機構である場合について説明する。   In the first and second embodiments, the case where the conversion mechanism is configured to have a cam member formed with a cam groove and a cam follower that fits into the cam groove of the cam member has been described, but the third embodiment is described. Now, a case where the conversion mechanism is a rack and pinion mechanism will be described.

本第3実施形態では、把持装置は、把持装置本体301と、上記第1実施形態と同様、制御部としてのコントローラ401(図1参照)とを備えている。   In the third embodiment, the gripping device includes a gripping device main body 301 and a controller 401 (see FIG. 1) as a control unit, as in the first embodiment.

把持装置本体301は、図9に示すように、筐体313と、開閉動作により把持対象物であるワークW(図1)の把持及び把持解放が可能な複数(本第3実施形態では2つ)の把持爪312,312とを備えている。また、把持装置本体301は、回転軸303と、回転軸303を回転駆動することで把持爪312,312を開閉駆動する回転駆動部としての減速機付きモータ302と、モータ302の回転運動を直線運動に変換する変換機構320と、を備えている。 As shown in FIG. 9, the gripping device main body 301 includes a housing 313 and a plurality of (two in the third embodiment) capable of gripping and releasing the workpiece W (FIG. 1) that is a gripping object. ) Holding claws 312 1 and 312 2 . Further, the gripping device main body 301 includes a rotation shaft 303, a motor 302 with a speed reducer as a rotation drive unit that drives the rotation of the rotation shaft 303 to open and close the gripping claws 312 1 and 312 2, and rotational movement of the motor 302. And a conversion mechanism 320 for converting the motion into a linear motion.

変換機構320は、2つの可動台307,307と、2つのラックギア309,309と、2つのレール310,310と、ピニオンギア306と、を有している。把持爪312,312の基端には、可動台307,307がそれぞれ締結され、更に可動台307,307には、ラックギア309,309がそれぞれ固定されている。ラックギア309,309には、ピニオンギア306が噛合している。 The conversion mechanism 320 includes two movable stands 307 1 , 307 2 , two rack gears 309 1 , 309 2 , two rails 310 1 , 310 2, and a pinion gear 306. Movable bases 307 1 and 307 2 are fastened to the base ends of the gripping claws 312 1 and 312 2 , respectively, and rack gears 309 1 and 309 2 are fixed to the movable bases 307 1 and 307 2 , respectively. The rack gears 309 1 and 309 2 mesh with the pinion gear 306.

モータ302に連結された回転軸303には、歯車304が設けられており、図10に示すように、歯車304に噛合する外歯が形成された第1回転部材としての回転部材318が筐体313内に配置されている。この回転部材318は、モータ302により回転駆動された回転軸303の回転運動が歯車304を介して伝達され、回転軸303の回転と連動して回転する。   A rotating shaft 303 connected to the motor 302 is provided with a gear 304, and as shown in FIG. 10, a rotating member 318 as a first rotating member on which external teeth meshing with the gear 304 are formed is a housing. 313. The rotating member 318 is rotated in conjunction with the rotation of the rotating shaft 303 by transmitting the rotating motion of the rotating shaft 303 driven by the motor 302 via the gear 304.

この回転部材318は、リング状に形成されており、回転部材318の内側には、回転部材318と同軸に配置された第2回転部材としての回転部材319が設けられている。   The rotating member 318 is formed in a ring shape, and a rotating member 319 as a second rotating member disposed coaxially with the rotating member 318 is provided inside the rotating member 318.

回転部材319は、円板状であり、中心に回転軸317が固定されている。回転軸317の外周には、ベアリング311が設けられており、回転部材319は、ベアリング311を介して筐体313に回転自在に支持されている。   The rotating member 319 has a disk shape, and a rotating shaft 317 is fixed at the center. A bearing 311 is provided on the outer periphery of the rotating shaft 317, and the rotating member 319 is rotatably supported by the housing 313 via the bearing 311.

ピニオンギア306は、回転部材319と同軸上に回転部材319に固定されており、回転部材319と共に回転軸317を中心に一体に回転する。   The pinion gear 306 is fixed to the rotation member 319 coaxially with the rotation member 319 and rotates integrally with the rotation member 319 around the rotation shaft 317.

回転部材318の内周面と回転部材319の外周面とは、複数(本実施形態では、4つ)の弾性部材314,314,314,314で連結されている。回転部材318の回転運動がこれら弾性部材314〜314を介して回転部材319に伝達される。これら弾性部材314〜314は、回転部材318,319の周方向に等間隔に配置されている。これら弾性部材314〜314は、把持爪312,312によりワークWを把持した際の把持力に応じた弾性変形量で弾性変形する剛性のものである。 The inner peripheral surface of the rotating member 318 and the outer peripheral surface of the rotating member 319 are connected by a plurality of (four in this embodiment) elastic members 314 1 , 314 2 , 314 3 , and 314 4 . The rotational motion of the rotating member 318 is transmitted to the rotating member 319 via these elastic members 314 1 to 314 4 . These elastic members 314 1 to 314 4 are arranged at equal intervals in the circumferential direction of the rotating members 318 and 319. These elastic members 314 1 to 314 4 are rigid to be elastically deformed with an elastic deformation amount corresponding to the gripping force when the workpiece W is gripped by the gripping claws 312 1 and 312 2 .

つまり、弾性部材314〜314は、モータ302が発生させた駆動力により、回転部材319に対する回転部材318の回転方向、即ち捩じれ方向に弾性変形を生じさせるように形成されている。 That is, the elastic members 314 1 to 314 4 are formed so as to cause elastic deformation in the rotational direction of the rotating member 318 relative to the rotating member 319, that is, the twisting direction, by the driving force generated by the motor 302.

ここで、把持爪312,312は、ワークWを把持した際に弾性部材314〜314が弾性変形するように、弾性部材314〜314よりも高い剛性の剛体で形成されている。これにより、把持爪312,312を剛性の高い部材で形成したことで、各把持爪312,312はワークWを把持した際にほとんど撓まず、また、撓んだとしても撓み量(弾性変形量)が小さいので撓みのばらつきが抑制される。したがって、把持爪312,312でワークWを把持したときのワークWの位置(座標)がばらつくのを抑制することができ、従来のように、各把持爪を独立して駆動しなくてもよく、把持装置の小型化及び軽量化を図ることができる。 Here, the gripping claws 312 1, 312 2, as the elastic member 314 1-314 4 when gripping the workpiece W is elastically deformed, and is formed with a high rigidity of the rigid than the elastic member 314 1-314 4 Yes. Accordingly, the gripping claws 312 1, 312 2 that was formed by the member having a high rigidity, the gripping claws 312 1, 312 2 are not bent almost upon gripping the workpiece W, also amount deflection as bent Since the (elastic deformation amount) is small, variation in bending is suppressed. Therefore, the position (coordinates) of the workpiece W when the workpiece W is gripped by the gripping claws 312 1 and 312 2 can be suppressed, and the gripping claws can be driven independently as in the prior art. In addition, the gripping device can be reduced in size and weight.

なお、本実施形態では弾性部材314〜314を板ばね状に形成しているが、この形状に限定するものではなく、捩じれが生じるのであれば形状も板ばね状でなくともよい。また、弾性部材314〜314の個数も、4つに限らず、3つ以上(少なくとも3つ)、即ち複数であればよい。 In the present embodiment, the elastic members 314 1 to 314 4 are formed in a leaf spring shape, but the shape is not limited to this shape, and the shape may not be a leaf spring shape as long as twisting occurs. Also, the number of the elastic members 314 1 to 314 4 is not limited to four, three or more (at least three), i.e. if more is.

以上の構成により、モータ302が回転軸303を回転駆動することで、歯車304に噛合する回転部材318が回転し、この回転部材318の回転運動が、弾性部材314〜314を介して回転部材319に固定されたピニオンギア306に伝達される。これにより、ピニオンギア306が回転軸317を中心に回転する。 With the above configuration, when the motor 302 rotationally drives the rotating shaft 303, the rotating member 318 engaged with the gear 304 rotates, and the rotating motion of the rotating member 318 rotates via the elastic members 314 1 to 314 4. It is transmitted to the pinion gear 306 fixed to the member 319. As a result, the pinion gear 306 rotates around the rotation shaft 317.

ピニオンギア306が回転することで、ピニオンギア306に噛み合ったラックギア309,309が直線移動する。これにより、可動台307,307は、レール310,310に沿って直線摺動し、可動台307,307に取り付けられた把持爪312,312が、それぞれ±X1、±X2方向に直線移動し、ワークWの把持及び把持解放が可能となる。このように、変換機構320は、回転部材319の回転運動を直線運動に変換して複数の把持爪312,312を開閉動作させる。 As the pinion gear 306 rotates, the rack gears 309 1 and 309 2 meshed with the pinion gear 306 move linearly. Accordingly, the movable bases 307 1 and 307 2 slide linearly along the rails 310 1 and 310 2 , and the gripping claws 312 1 and 312 2 attached to the movable bases 307 1 and 307 2 are ± X1, respectively. The workpiece W can be linearly moved in the ± X2 direction, and the workpiece W can be gripped and released. Thus, the conversion mechanism 320 converts the rotational motion of the rotating member 319 into a linear motion, and opens and closes the plurality of gripping claws 312 1 and 312 2 .

本第3実施形態では、把持装置本体301は、図10に示すように、例えば永久磁石等の磁束発生源315と、ホール素子等の磁電変換素子316とを有する検出部325を備えている。磁束発生源315は、回転部材318,319のうち一方の回転部材、本第3実施形態では、回転部材318の内周面に設けられている。また、磁電変換素子316は、回転部材318,319のうち他方の回転部材、本第3実施形態では、回転部材319の外周面に設けられている。磁束発生源315と磁電変換素子316とは、回転部材318と回転部材319との間に相対的な回転がない場合に正対している。   In the third embodiment, the gripping device main body 301 includes a detection unit 325 having a magnetic flux generation source 315 such as a permanent magnet and a magnetoelectric conversion element 316 such as a Hall element, as shown in FIG. The magnetic flux generation source 315 is provided on one of the rotating members 318 and 319, on the inner peripheral surface of the rotating member 318 in the third embodiment. In addition, the magnetoelectric conversion element 316 is provided on the outer peripheral surface of the rotation member 319 in the third embodiment, the other rotation member of the rotation members 318 and 319. The magnetic flux generation source 315 and the magnetoelectric conversion element 316 face each other when there is no relative rotation between the rotating member 318 and the rotating member 319.

弾性部材314〜314に生じた捩じれ方向の弾性変形により、回転部材319と回転部材318との間に相対的な回転が生じた場合、磁束発生源315と磁電変換素子316との間に相対的に変位が生じ、磁電変換素子316を通る磁束密度が変化する。 When relative rotation occurs between the rotating member 319 and the rotating member 318 due to elastic deformation in the torsional direction generated in the elastic members 314 1 to 314 4 , between the magnetic flux generation source 315 and the magnetoelectric conversion element 316. A relative displacement occurs, and the magnetic flux density passing through the magnetoelectric conversion element 316 changes.

これにより、磁電変換素子316は、弾性部材314〜314に生じた弾性変形量、即ち回転部材319に対する回転部材318の相対的な回転角度(回転量)に比例した電圧を、コントローラ401(図1参照)へ出力する。このように、検出部325は、弾性部材314〜314に生じた捩じれ方向の弾性変形量、即ち弾性部材314〜314の弾性変形による回転部材319に対する回転部材318の相対的な回転量を検出する。 Accordingly, the magnetoelectric conversion element 316 generates a voltage proportional to the amount of elastic deformation generated in the elastic members 314 1 to 314 4 , that is, the relative rotation angle (rotation amount) of the rotation member 318 with respect to the rotation member 319. (See FIG. 1). As described above, the detecting unit 325 is configured to rotate the rotating member 318 relative to the rotating member 319 by the elastic deformation amount in the torsional direction generated in the elastic members 314 1 to 314 4 , that is, elastic deformation of the elastic members 314 1 to 314 4. Detect the amount.

なお第3実施形態では、磁束発生源315を回転部材318の内周面、磁電変換素子316を回転部材319の外周面に設けているが、これに限らず、磁束発生源315を回転部材319の外周面、磁電変換素子316を回転部材318の内周面に設けてもよい。   In the third embodiment, the magnetic flux generating source 315 is provided on the inner peripheral surface of the rotating member 318 and the magnetoelectric conversion element 316 is provided on the outer peripheral surface of the rotating member 319. However, the present invention is not limited to this, and the magnetic flux generating source 315 is provided on the rotating member 319. Alternatively, the magnetoelectric conversion element 316 may be provided on the inner peripheral surface of the rotating member 318.

次に、図11において、一点鎖線C31及び一点鎖線C32はそれぞれ、磁束発生源315及び磁電変換素子316の中心線を示している。   Next, in FIG. 11, the alternate long and short dash line C31 and the alternate long and short dash line C32 indicate the center lines of the magnetic flux generation source 315 and the magnetoelectric conversion element 316, respectively.

把持爪312,312を互いに移動させてワークWを把持させた時、把持爪312,312がワークWに接触することで、把持爪312,312はそれ以上移動しなくなり、ピニオンギア306の回転、即ち回転部材319の回転が停止する。しかし、モータ302はピニオンギア306を回転させようと駆動力を発生させるために、図11に示すように、弾性部材314〜314に捩じれ方向に弾性変形が生じ、回転部材318が回転部材319に対して相対的に回転する。この時、弾性変形により磁束発生源315と磁電変換素子316との間に相対的に変位Gが生じ、磁電変換素子316が変位量に比例した電圧を出力することで、弾性部材314〜314に生じた捩じれ方向の弾性変形量を検出する。これにより、コントローラ401(図1参照)は、把持力を制御できる。 When allowed to hold the workpiece W by the gripping claws 312 1, 312 2 are moved together, by gripping claws 312 1, 312 2 contacts the workpiece W, the gripping claws 312 1, 312 2 will cease to move any further, The rotation of the pinion gear 306, that is, the rotation of the rotating member 319 is stopped. However, since the motor 302 generates a driving force to rotate the pinion gear 306, as shown in FIG. 11, the elastic members 314 1 to 314 4 are elastically deformed in the torsional direction, and the rotating member 318 is rotated. 319 relative to the rotation. At this time, a displacement G is relatively generated between the magnetic flux generation source 315 and the magnetoelectric conversion element 316 due to elastic deformation, and the magnetoelectric conversion element 316 outputs a voltage proportional to the amount of displacement, whereby the elastic members 314 1 to 314. 4 detects the amount of elastic deformation in the torsional direction generated in FIG. Accordingly, the controller 401 (see FIG. 1) can control the gripping force.

以上、本第3実施形態によれば、モータ302が把持爪312,312を互いに移動させ、把持爪312,312でワークWを把持した際には、把持力に対応する弾性変形量で弾性部材314〜314に捩じれ方向の弾性変形が生じる。この弾性変形量を検出部325が検出することで、コントローラ401(図1参照)は正確な把持力を求めることができ、把持爪312,312による把持力を正確に目標把持力にすることができる。これにより、従来のように、把持力を求めるために把持爪の弾性変形量を検出する必要がないので、把持爪312,312に歪みゲージ等の力覚センサを内蔵させる必要もない。したがって、把持爪312,312の大きさや形状に拘束条件を持たせず、自由に把持爪312,312を設計できる。 As described above, according to the third embodiment, when the motor 302 moves the gripping claws 312 1 , 312 2 to each other and grips the workpiece W with the gripping claws 312 1 , 312 2 , the elastic deformation corresponding to the gripping force. The elastic members 314 1 to 314 4 are elastically deformed in the twisting direction. By detecting the elastic deformation amount by the detection unit 325, the controller 401 (see FIG. 1) can obtain an accurate gripping force, and the gripping force by the gripping claws 312 1 and 312 2 is accurately set to the target gripping force. be able to. As a result, it is not necessary to detect the amount of elastic deformation of the gripping claws in order to obtain the gripping force as in the prior art. Therefore, it is not necessary to incorporate force sensors such as strain gauges in the gripping claws 312 1 and 312 2 . Thus, without having a constraint size and shape of the gripping claws 312 1, 312 2, can be freely designed gripping claws 312 1, 312 2.

また、各把持爪312,312及び把持爪312,312へ力を伝える伝達経路の剛性差が少ない。このため、異なる把持力でも同じ把持位置で把持ができ、把持位置を決めるための別の回転駆動部も必要なく、同一のモータ302で把持爪312,312を駆動することができるので、装置の小型化及び軽量化が図れる。このように、把持装置が小型化及び軽量化されるので、ロボットアームの動作が安定し、組立作業等、あらゆる作業が容易となる。 Further, there is little difference in rigidity of the transmission path for transmitting the force to each gripping claw 312 1 , 312 2 and the gripping claws 312 1 , 312 2 . For this reason, it is possible to grip at the same gripping position even with different gripping forces, and there is no need for a separate rotation drive unit for determining the gripping position, and the gripping claws 312 1 , 312 2 can be driven by the same motor 302. The apparatus can be reduced in size and weight. As described above, since the gripping device is reduced in size and weight, the operation of the robot arm is stabilized and all operations such as assembling work are facilitated.

[第4実施形態]
次に、本発明の第4実施形態に係る把持装置について説明する。図12は、本発明の第4実施形態に係る把持装置の把持装置本体の要部を示す説明図である。図12(a)は、本発明の第4実施形態に係る把持装置の把持装置本体の要部を示す平面図である。また、図12(b)は本発明の第4実施形態に係る把持装置の把持装置本体の要部を示す斜視図である。
[Fourth Embodiment]
Next, a gripping device according to a fourth embodiment of the present invention will be described. FIG. 12 is an explanatory view showing the main part of the gripping device main body of the gripping device according to the fourth embodiment of the present invention. FIG. 12A is a plan view showing the main part of the gripping device main body of the gripping device according to the fourth embodiment of the present invention. Moreover, FIG.12 (b) is a perspective view which shows the principal part of the holding | grip apparatus main body of the holding | grip apparatus which concerns on 4th Embodiment of this invention.

カム部材505には、カムフォロア109,109(図2参照)がそれぞれ摺動自在に嵌合される2つの円弧状のカム溝506,506が形成されている。第1回転部材であるリング状の回転部材518の内側には、回転部材518と同軸に配置され、カム部材505と一体に形成された第2回転部材である回転部材519が配置されている。回転部材518と回転部材519とは、周方向に等間隔に配置された複数(4つ)の弾性部材514〜514で連結されている。 The cam member 505 is formed with two arc-shaped cam grooves 506 1 and 506 2 into which the cam followers 109 1 and 109 2 (see FIG. 2) are slidably fitted. Inside the ring-shaped rotating member 518 that is the first rotating member, a rotating member 519 that is the second rotating member that is disposed coaxially with the rotating member 518 and is formed integrally with the cam member 505 is disposed. A rotary member 518 and the rotating member 519 is coupled by the elastic member 514 1-514 4 a plurality of equally spaced in the circumferential direction (4).

本第4実施形態では、把持装置本体101(図1参照)は、図12(b)に示すように、検出部として、弾性部材514(例えば弾性部材514)の歪量を検出する歪ゲージ515を備えている。歪ゲージ515は弾性部材514〜514の少なくとも1つに貼られ、弾性部材の歪量に応じ抵抗値が変化する。歪ゲージ515の抵抗値の変化をコントローラ401(図5参照)で電圧に変換することで弾性部材514の歪量に比例した電圧を得ることができる。このように、本第4実施形態の把持装置は把持力を検出し、コントローラ401で把持力をコントロールできる。 In the fourth embodiment, as shown in FIG. 12B, the gripping device main body 101 (see FIG. 1) is a strain gauge that detects the strain amount of an elastic member 514 (for example, the elastic member 514 3 ) as a detection unit. 515. The strain gauge 515 is attached to at least one of the elastic members 514 1 to 514 4 , and the resistance value changes according to the amount of strain of the elastic member. It is possible to obtain a voltage proportional to the strain amount of the elastic member 514 3 by converting the change in resistance of the strain gauge 515 to the voltage controller 401 (see FIG. 5). As described above, the gripping device of the fourth embodiment can detect the gripping force, and the controller 401 can control the gripping force.

弾性部材514の変形検出に歪ゲージ515を使用することで、把持力に応じた回転部材の変位を検出する検出部を安価に製作できるという利点がある。 By using the strain gauge 515 to the deformation detection of the elastic member 514 3, it can be advantageously made inexpensively detecting unit for detecting the displacement of the rotary member corresponding to the gripping force.

なお、本第4実施形態では本発明の第1実施形態の回転部材を例に説明しているが、第2実施形態及び第3実施形態の回転部材にも適用できる。   In the fourth embodiment, the rotating member according to the first embodiment of the present invention is described as an example. However, the rotating member according to the second embodiment and the third embodiment can also be applied.

[第5実施形態]
次に、本発明の第5実施形態に係る把持装置について説明する。図13は、本発明の第5実施形態に係る把持装置の把持装置本体の要部を示す平面図である。
[Fifth Embodiment]
Next, a gripping device according to a fifth embodiment of the present invention will be described. FIG. 13: is a top view which shows the principal part of the holding | grip apparatus main body of the holding | grip apparatus which concerns on 5th Embodiment of this invention.

カム部材605には、カムフォロア109,109(図2参照)がそれぞれ摺動自在に嵌合される2つの円弧状のカム溝606,606が形成されている。第1回転部材であるリング状の回転部材618の内側には、回転部材618と同軸に配置され、カム部材605と一体に形成された第2回転部材である回転部材619が配置されている。回転部材618と回転部材619とは、周方向に等間隔に配置された複数(4つ)の弾性部材614〜614で連結されている。 The cam member 605 is formed with two arc-shaped cam grooves 606 1 and 606 2 into which cam followers 109 1 and 109 2 (see FIG. 2) are slidably fitted. A rotating member 619 that is a second rotating member that is disposed coaxially with the rotating member 618 and is formed integrally with the cam member 605 is disposed inside the ring-shaped rotating member 618 that is the first rotating member. A rotary member 618 and the rotating member 619 is coupled by the elastic member 614 1-614 4 a plurality of equally spaced in the circumferential direction (4).

本第5実施形態では、把持装置本体101(図1参照)は、図13に示すように、静電容量センサ615と、回転部材618に設けられた壁面616とを有している。静電容量センサ615は前記壁面616に対し適当な間隔を開け設置され、弾性部材614〜614が変形することにより生じた静電容量センサ615と前記壁面616の距離Dの変化を静電容量センサ615で検出し、コントローラ401へ出力する。このように、本第5実施形態の把持装置は把持力を検出し、コントローラ401で把持力をコントロールできる。 In the fifth embodiment, the gripping device main body 101 (see FIG. 1) includes a capacitance sensor 615 and a wall surface 616 provided on the rotating member 618, as shown in FIG. The electrostatic capacity sensor 615 is installed at an appropriate interval with respect to the wall surface 616, and changes in the distance D between the electrostatic capacity sensor 615 and the wall surface 616 caused by the deformation of the elastic members 614 1 to 614 4 are electrostatically detected. Detected by the capacitance sensor 615 and output to the controller 401. As described above, the gripping device of the fifth embodiment can detect the gripping force, and the controller 401 can control the gripping force.

このように、検出部に静電容量センサ615を使用することで、回転部材自体を測定でき構成が簡単なため、組み立てが容易であり安価で製作できるという利点がある。また、非接触で検出できるため経時変化にも強いという利点がある。   As described above, the use of the capacitance sensor 615 in the detection unit has an advantage that the rotating member itself can be measured and the configuration is simple, so that the assembly is easy and can be manufactured at low cost. In addition, since it can be detected in a non-contact manner, it has the advantage of being resistant to changes with time.

なお、本第5実施形態では本発明の第1実施形態の回転部材を例に説明しているが、第2実施形態及び第3実施形態の回転部材にも適用できる。   In the fifth embodiment, the rotating member according to the first embodiment of the present invention is described as an example. However, the rotating member according to the second embodiment and the third embodiment can also be applied.

[第6実施形態]
次に、本発明の第6実施形態に係る把持装置について説明する。図14は、本発明の第6実施形態に係る把持装置の把持装置本体の要部を示す説明図である。図14(a)は、本発明の第6実施形態に係る把持装置の把持装置本体の要部を示す平面図である。また、図14(b)は本発明の第6実施形態に係る把持装置の把持装置本体の検出部を示す詳細図である。
[Sixth Embodiment]
Next, a gripping device according to a sixth embodiment of the present invention will be described. FIG. 14 is an explanatory diagram showing a main part of a gripping device main body of the gripping device according to the sixth embodiment of the present invention. Fig.14 (a) is a top view which shows the principal part of the holding | grip apparatus main body of the holding | grip apparatus which concerns on 6th Embodiment of this invention. FIG. 14B is a detailed view showing the detection unit of the gripping device main body of the gripping device according to the sixth embodiment of the present invention.

カム部材705には、カムフォロア109,109(図2参照)がそれぞれ摺動自在に嵌合される2つの円弧状のカム溝706,706が形成されている。第1回転部材であるリング状の回転部材718の内側には、回転部材718と同軸に配置され、カム部材705と一体に形成された第2回転部材である回転部材719が配置されている。回転部材718と回転部材719とは、周方向に等間隔に配置された複数(4つ)の弾性部材714〜714で連結されている。 The cam member 705 is formed with two arc-shaped cam grooves 706 1 and 706 2 into which cam followers 109 1 and 109 2 (see FIG. 2) are slidably fitted. Inside the ring-shaped rotating member 718 that is the first rotating member, a rotating member 719 that is a second rotating member that is disposed coaxially with the rotating member 718 and is formed integrally with the cam member 705 is disposed. A rotary member 718 and the rotating member 719 is coupled by the elastic member 714 1-714 4 a plurality of equally spaced in the circumferential direction (4).

本第6実施形態では、把持装置本体101(図1参照)は、検出部として、図14(b)に示すように、光電センサ715と、リニアスケール716とを有している。光電センサ715は、回転部材718、719のうち一方の回転部材、本第6実施形態では回転部材718の内周面に設けられている。また、リニアスケール716は、回転部材718、719のうち他方の回転部材、本第6実施形態では回転部材719の内周面に設けられている。弾性部材に714〜714に生じた捩じれ方向の弾性変形により、回転部材719と回転部材718との間に相対的な回転が生じた場合、この回転角度を光電センサ715が読み取る。このように、本第5実施形態の把持装置は把持力を検出し、コントローラ401で把持力をコントロールできる。この場合、光電センサ715は反射型の光電センサを使用するほうが簡単に構成できるため好ましい。 In the sixth embodiment, the gripping device main body 101 (see FIG. 1) includes a photoelectric sensor 715 and a linear scale 716 as a detection unit, as shown in FIG. The photoelectric sensor 715 is provided on one of the rotating members 718 and 719, that is, on the inner peripheral surface of the rotating member 718 in the sixth embodiment. The linear scale 716 is provided on the other rotating member of the rotating members 718 and 719, that is, on the inner peripheral surface of the rotating member 719 in the sixth embodiment. When relative rotation occurs between the rotating member 719 and the rotating member 718 due to elastic deformation in the twisting direction generated in the elastic members 714 1 to 714 4 , the photoelectric sensor 715 reads the rotation angle. As described above, the gripping device of the fifth embodiment can detect the gripping force, and the controller 401 can control the gripping force. In this case, it is preferable to use a reflective photoelectric sensor as the photoelectric sensor 715 because it can be easily configured.

このように、検出部に光電センサ715を使用することで、熱等の外乱要因に強く高精度に検出でき、さらに、回転部材が磁性体または非金属でも変位検出部に影響をおよぼさず、材料を選ばずに製作できるという利点がある。また、非接触で検出できるため経時変化にも強いという利点がある。   In this way, by using the photoelectric sensor 715 for the detection unit, it is possible to detect with high accuracy against disturbance factors such as heat, and even if the rotating member is a magnetic material or a non-metal, the displacement detection unit is not affected. There is an advantage that it can be manufactured without choosing the material. In addition, since it can be detected in a non-contact manner, it has the advantage of being resistant to changes with time.

なお、本第6実施形態では本発明の第1実施形態の回転部材を例に説明しているが、第2実施形態及び第3実施形態の回転部材にも適用できる。   In the sixth embodiment, the rotating member according to the first embodiment of the present invention is described as an example. However, the rotating member according to the second embodiment and the third embodiment can also be applied.

本発明は、以上説明した実施形態に限定されるものではなく、多くの変形が本発明の技術的思想内で可能である。   The present invention is not limited to the embodiments described above, and many modifications are possible within the technical idea of the present invention.

上記実施形態では、把持装置が2つの把持爪を備えている場合を例に説明したが、これに限定するものではなく、把持爪が2つ以上であればいくつでも構わない。例えば、3本の把持爪が等間隔に配置された把持装置でも同様の効果を得ることができる。   In the above embodiment, the case where the gripping device includes two gripping claws has been described as an example. However, the present invention is not limited to this, and any number of gripping claws may be used as long as there are two or more gripping claws. For example, a similar effect can be obtained with a gripping device in which three gripping claws are arranged at equal intervals.

また、上記実施形態では、制御部としてのコントローラが把持装置本体に設けられている場合について説明したが、例えばメインコントローラがコントローラの機能を有していてもよく、把持装置は、コントローラが省略されていてもよい。   In the above embodiment, the case where the controller as the control unit is provided in the gripping device main body has been described. However, for example, the main controller may have a controller function, and the gripping device omits the controller. It may be.

また、上記実施形態では、変換機構がカム部材を用いた機構あるいはラックアンドピニオン機構の場合について説明したが、これに限定するものではない。例えばボールねじを用いた機構のものであっても本発明は適用可能である。   In the above embodiment, the conversion mechanism is a mechanism using a cam member or a rack and pinion mechanism. However, the present invention is not limited to this. For example, the present invention can be applied to a mechanism using a ball screw.

また、上記実施形態では、変換機構が回転運動を直線運動に変換するものであったが、直線運動に限定するものでなく、複数の把持爪の開閉動作に変換できるものであればよい。例えば、各把持爪が中心軸まわりに周方向に移動しながら半径方向に移動して、開閉動作するように変換するものであってもよい。   Moreover, in the said embodiment, although the conversion mechanism converted a rotational motion into a linear motion, it is not limited to a linear motion, What is necessary is just to be able to convert into the opening / closing operation | movement of several holding claws. For example, the gripping claws may be converted so as to open and close by moving in the radial direction while moving in the circumferential direction around the central axis.

100…把持装置、102…モータ(回転駆動部)、103…回転軸、105…カム部材、112,112…把持爪、114,114,114,114…弾性部材、115…磁束発生源、116…磁電変換素子、118…回転部材(第1回転部材)、119…回転部材(第2回転部材)、120…変換機構、125…検出部 100 ... holding apparatus, 102 ... motor (rotation driving unit), 103 ... rotary shaft, 105 ... cam member, 112 1, 112 2 ... gripping claws, 114 1, 114 2, 114 3, 114 4 ... elastic member, 115 ... Magnetic flux generating source 116 ... Magnetoelectric conversion element 118 ... Rotating member (first rotating member) 119 ... Rotating member (second rotating member) 120 ... Conversion mechanism 125 ... Detection unit

Claims (11)

開閉動作により把持対象物の把持及び把持解放が可能な複数の把持爪と、
回転軸を回転駆動する回転駆動部と、
前記回転軸の回転に連動して回転する第1回転部材と、
前記第1回転部材と同軸に配置された第2回転部材と、
前記第1回転部材と前記第2回転部材とを連結し、前記第1回転部材の回転運動を前記第2回転部材に伝達する弾性部材と、
前記第2回転部材の回転運動を前記複数の把持爪の開閉動作に変換する変換機構と、
前記第2回転部材に対する前記第1回転部材の相対的な回転に伴う前記弾性部材の弾性変形量を検出する検出部と、を備えたことを特徴とする把持装置。
A plurality of gripping claws capable of gripping and releasing the gripping object by opening and closing operations;
A rotational drive unit that rotationally drives the rotational shaft;
A first rotating member that rotates in conjunction with rotation of the rotating shaft;
A second rotating member disposed coaxially with the first rotating member;
An elastic member that connects the first rotating member and the second rotating member, and transmits the rotational motion of the first rotating member to the second rotating member;
A conversion mechanism for converting the rotational movement of the second rotating member into the opening and closing operations of the plurality of gripping claws;
And a detection unit that detects an amount of elastic deformation of the elastic member accompanying relative rotation of the first rotating member with respect to the second rotating member.
前記検出部の検出結果を把持力に換算し、前記把持力が目標把持力となるように前記回転駆動部を制御する制御部を備えたことを特徴とする請求項1に記載の把持装置。   The gripping apparatus according to claim 1, further comprising a control unit that converts a detection result of the detection unit into a gripping force and controls the rotation driving unit so that the gripping force becomes a target gripping force. 前記変換機構は、
前記把持爪の基端に設けられた軸部材と、
前記軸部材が摺動自在に嵌合する円弧状のカム溝が形成され、前記第2回転部材と一体に回転するカム部材と、を有することを特徴とする請求項1又は2に記載の把持装置。
The conversion mechanism is
A shaft member provided at a proximal end of the gripping claw;
The grip according to claim 1, further comprising: a cam member that is formed with an arcuate cam groove into which the shaft member is slidably fitted, and that rotates integrally with the second rotating member. apparatus.
前記第2回転部材と前記カム部材とが一体に形成されていることを特徴とする請求項3に記載の把持装置。   The gripping device according to claim 3, wherein the second rotating member and the cam member are integrally formed. 前記変換機構は、
前記把持爪の基端に設けられたラックギアと、
前記ラックギアに噛み合い、前記第2回転部材と一体に回転するピニオンギアと、を有することを特徴とする請求項1又は2に記載の把持装置。
The conversion mechanism is
A rack gear provided at the proximal end of the gripping claws;
The gripping device according to claim 1, further comprising: a pinion gear that meshes with the rack gear and rotates integrally with the second rotation member.
前記把持爪は、前記弾性部材よりも高い剛性の剛体で形成されていることを特徴とする請求項1乃至5のいずれか1項に記載の把持装置。   The gripping device according to any one of claims 1 to 5, wherein the gripping claw is formed of a rigid body having higher rigidity than the elastic member. 前記検出部は、
前記第1回転部材及び前記第2回転部材のうち一方の回転部材に設けられた磁束発生源と、
前記第1回転部材及び前記第2回転部材のうち他方の回転部材に設けられた磁電変換素子と、を有することを特徴とする請求項1乃至6のいずれか1項に記載の把持装置。
The detector is
A magnetic flux generating source provided on one of the first rotating member and the second rotating member;
The gripping device according to claim 1, further comprising: a magnetoelectric conversion element provided on the other rotating member of the first rotating member and the second rotating member.
前記検出部は、前記弾性部材の歪量を検出する歪ゲージであることを特徴とする請求項1乃至6のいずれか1項に記載の把持装置。   The gripping device according to claim 1, wherein the detection unit is a strain gauge that detects a strain amount of the elastic member. 前記検出部は、
前記第1回転部材及び前記第2回転部材のうち一方の回転部材に設けられた静電容量センサと、前記第1回転部材及び前記第2回転部材のうち他方の回転部材に設けられた壁面と、を有することを特徴とする請求項1乃至6のいずれか1項に記載の把持装置。
The detector is
A capacitance sensor provided on one of the first rotating member and the second rotating member; and a wall surface provided on the other rotating member of the first rotating member and the second rotating member; The gripping device according to claim 1, comprising:
前記検出部は、
前記第1回転部材及び前記第2回転部材のうち一方の回転部材に設けられた光電センサと、前記第1回転部材及び前記第2回転部材のうち他方の回転部材に設けられたリニアスケールと、を有することを特徴とする請求項1乃至6のいずれか1項に記載の把持装置。
The detector is
A photoelectric sensor provided on one of the first rotating member and the second rotating member; a linear scale provided on the other rotating member of the first rotating member and the second rotating member; The gripping device according to claim 1, comprising:
多関節のロボットと、
前記ロボットに設けられた、請求項1乃至10のいずれか1項に記載の把持装置と、を備えたことを特徴とするロボット装置。
With articulated robots,
A robot apparatus comprising: the gripping apparatus according to claim 1 provided on the robot.
JP2013212604A 2012-10-11 2013-10-10 Holding device and robot device Pending JP2014094445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013212604A JP2014094445A (en) 2012-10-11 2013-10-10 Holding device and robot device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012225897 2012-10-11
JP2012225897 2012-10-11
JP2013212604A JP2014094445A (en) 2012-10-11 2013-10-10 Holding device and robot device

Publications (1)

Publication Number Publication Date
JP2014094445A true JP2014094445A (en) 2014-05-22

Family

ID=50937985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013212604A Pending JP2014094445A (en) 2012-10-11 2013-10-10 Holding device and robot device

Country Status (1)

Country Link
JP (1) JP2014094445A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196679A (en) * 2016-04-26 2017-11-02 株式会社Taiyo Electric gripper device
CN108908388A (en) * 2018-08-31 2018-11-30 四川晟实科技有限公司 A kind of miniature gears gripper and its working method
KR102534804B1 (en) * 2023-03-27 2023-05-26 주식회사 테솔로 Parallel gripper of robot arm

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017196679A (en) * 2016-04-26 2017-11-02 株式会社Taiyo Electric gripper device
CN108908388A (en) * 2018-08-31 2018-11-30 四川晟实科技有限公司 A kind of miniature gears gripper and its working method
KR102534804B1 (en) * 2023-03-27 2023-05-26 주식회사 테솔로 Parallel gripper of robot arm

Similar Documents

Publication Publication Date Title
CN105965504B (en) Joint driving device and robot device
US10682771B2 (en) Driving mechanism, robot arm, and robot system
KR102007536B1 (en) Method for detecting a torque and industrial robot
JP6875440B2 (en) Torque sensor device and robot arm
JP5543539B2 (en) Force control electric hand
CN102892559B (en) Link actuation device
WO2010142318A1 (en) A device for measuring torque
JP6743597B2 (en) Deflection angle detector
US20170001304A1 (en) Actuator
KR101503374B1 (en) Actuator module
JP2014094445A (en) Holding device and robot device
JP2016112638A (en) Link operation device
JP2015214003A (en) Robot hand and robot device
ITTO20120743A1 (en) VARIABLE RIGIDITY ACTUATOR WITH PASSIVE DISORDER OF DISORDERS
KR20150078303A (en) Series elastic actuator device
JP5591180B2 (en) Drive joint mechanism
CN110549373B (en) Driving mechanism
JP2006337206A (en) Rotation angle sensor, and deceleration driving mechanism having rotation angle sensor
JP2018036097A (en) Angle position detector
JP6977363B2 (en) Torque detection module, drive device, stage device, robot device, and control device
EP4003663B1 (en) A tendon tension sensing apparatus and a clutch mechanism for a mechanical effector device
JP2020196091A (en) Servo motor device enabling torque control
JP7469523B2 (en) Displacement detection sensor, control device, and control system
EP4043164A1 (en) A combined position and torque sensor unit for a robot joint axis module
US11841286B2 (en) Torque detection device, torque detection method, robot, method of manufacturing product, control device, recording medium, and structure