JP2014092501A - Device, method and program for measuring reflectance - Google Patents

Device, method and program for measuring reflectance Download PDF

Info

Publication number
JP2014092501A
JP2014092501A JP2012244269A JP2012244269A JP2014092501A JP 2014092501 A JP2014092501 A JP 2014092501A JP 2012244269 A JP2012244269 A JP 2012244269A JP 2012244269 A JP2012244269 A JP 2012244269A JP 2014092501 A JP2014092501 A JP 2014092501A
Authority
JP
Japan
Prior art keywords
light
measuring
equation
brdf
target object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012244269A
Other languages
Japanese (ja)
Other versions
JP6135096B2 (en
Inventor
Koichi Takase
紘一 高瀬
Ayana Sasaki
彩奈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2012244269A priority Critical patent/JP6135096B2/en
Publication of JP2014092501A publication Critical patent/JP2014092501A/en
Application granted granted Critical
Publication of JP6135096B2 publication Critical patent/JP6135096B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device, method, and program for measuring BRDFs at spatially different points on a measurement object surface without arranging a plurality of measuring instruments or moving a measuring instrument.SOLUTION: The device for measuring reflectance is provided for measuring a bidirectional reflectance distribution function BRDF at each point of an object surface in a plane area of the object surface. The device for measuring reflectance includes: means for illuminating a surface of an object; means for moving and rotating the illuminating means; means which has a prescribed aperture and shields reflected light from the object in different direction, in a part other than the aperture; means for changing the shape and size of the prescribed aperture; means for condensing the reflected light passing the aperture; means for measuring irradiance of condensed light; and means which fits a prescribed BRDF model to the value of irradiance obtained by the measurement to acquire a BRDF model parameter.

Description

本発明は、計測対象物体面の反射率を計測する装置に関する。   The present invention relates to an apparatus for measuring the reflectance of a measurement target object surface.

デジタルアーカイブでは物体の情報を正確に記録することが求められる。対象物体表面の色や光沢特性、形状などの情報を記録することで、所望の照明・観察環境下における対象物体の見えを画像化することができる。色や光沢特性は照明・観察方向に依存し、対象物体表面の各点の双方向反射率分布関数(Bidirectional Reflectance Distribution Function、以下BRDF)で表される。非特許文献1では複数の光源とカメラを任意の位置に配置し、それぞれの光源位置から対象物体を照明し、各カメラで撮影することで、画像群の画素値から対象物体表面の各点のBRDFを取得した。   Digital archives require that object information be recorded accurately. By recording information such as the color, gloss characteristics, and shape of the target object surface, the appearance of the target object in a desired illumination / observation environment can be imaged. The color and gloss characteristics depend on the illumination / observation direction, and are represented by a bidirectional reflectance distribution function (hereinafter referred to as BRDF) at each point on the surface of the target object. In Non-Patent Document 1, a plurality of light sources and cameras are arranged at arbitrary positions, a target object is illuminated from each light source position, and captured by each camera, so that each point on the surface of the target object is determined from the pixel values of the image group. Obtained BRDF.

「Time-varying surface appearance: acquisition, modeling and rendering」,Gu, Jinwei and Tu, Chien-I and Ramamoorthi, Ravi and Belhumeur, Peter and Matusik, Wojciech and Nayar, Shree, ACM Trans. Graph., Vol. 25, No. 3 (2006) 762-771`` Time-varying surface appearance: acquisition, modeling and rendering '', Gu, Jinwei and Tu, Chien-I and Ramamoorthi, Ravi and Belhumeur, Peter and Matusik, Wojciech and Nayar, Shree, ACM Trans.Graph., Vol. 25, No. 3 (2006) 762-771

しかしながら、上記非特許文献1の方法では複数のカメラを異なる位置に配置する手段、もしくは一つのカメラを用いて移動する手段が必要であり、装置が複雑になる問題がある。   However, the method of Non-Patent Document 1 requires a means for arranging a plurality of cameras at different positions, or a means for moving using a single camera, and there is a problem that the apparatus becomes complicated.

本発明は、上述の問題に鑑みてなされたもので、複数の計測機器を配置する、または計測機器を移動することなく、計測対象物体面上の空間的に異なる点のBRDFを計測する装置、方法およびプログラムを提供することを目的とする。   The present invention has been made in view of the above-described problems, and an apparatus for measuring BRDF at spatially different points on a measurement target object plane without arranging a plurality of measurement devices or moving the measurement devices, An object is to provide a method and a program.

本発明に於いて上記課題を達成するために、まず請求項1の発明は、
対象物体表面の平面領域において対象物体表面の各点の双方向反射率分布関数(Bidirectional Reflectance Distribution Function、以下BRDF)を計測する装置であって、
対象物体の表面を照明する手段と、
前記照明する手段を移動・回転する手段と、
既定の開口部を有し、前記対象物体から異なる方向への反射光を前記開口部以外の部分で遮光する手段と、
前記既定の開口部の形状・大きさを変更する手段と、
前記開口部を通過した反射光を集光する手段と、
前記集光光の放射照度を計測する手段と、
前記計測によって得られた放射照度の値に既定のBRDFモデルをフィッティングし、BRDFモデルパラメータを取得する手段と、を有することを特徴とする反射率計測装置である。
In order to achieve the above object in the present invention, first, the invention of claim 1
An apparatus for measuring a bi-directional reflectance distribution function (hereinafter referred to as BRDF) of each point on the surface of the target object in a planar region of the target object surface,
Means for illuminating the surface of the target object;
Means for moving and rotating the illumination means;
Means having a predetermined opening, and shielding light reflected from the target object in different directions by a portion other than the opening;
Means for changing the shape and size of the predetermined opening;
Means for collecting the reflected light that has passed through the opening;
Means for measuring the irradiance of the condensed light;
And a means for fitting a predetermined BRDF model to the irradiance value obtained by the measurement to obtain a BRDF model parameter.

請求項2の発明は、
前記請求項1に記載の反射率計測装置を用いてBRDFモデルパラメータを取得することを特徴とする反射率計測方法である。
The invention of claim 2
A BRDF model parameter is obtained using the reflectance measuring apparatus according to claim 1.

請求項3の発明は、
前記請求項1に記載の反射率計測装置に備えられ、BRDFモデルパラメータを取得することを特徴とする反射率計測プログラムである。
The invention of claim 3
A reflectance measurement program that is provided in the reflectance measurement apparatus according to claim 1 and that acquires a BRDF model parameter.

本発明によれば、複数の計測機器を配置する、もしくは計測機器を移動することなく、計測対象物体の表面のBRDFを計測することができる。   According to the present invention, it is possible to measure the BRDF on the surface of the measurement target object without arranging a plurality of measurement devices or moving the measurement devices.

本発明の反射率計測装置の概略構成の一例を示す図。The figure which shows an example of schematic structure of the reflectance measuring device of this invention. 本発明の反射率計測装置の一例を模式的に示す図。The figure which shows typically an example of the reflectance measuring apparatus of this invention. 本発明に係る遮光板の開口部の形状を示す図。(a)は円形(b)は正方形(c)は長方形(d)は環形を示す。The figure which shows the shape of the opening part of the light-shielding plate which concerns on this invention. (A) is a circle (b) is a square (c) is a rectangle (d) is a ring. 本発明の反射率計測装置の処理の流れを示すステップ図。The step figure which shows the flow of a process of the reflectance measuring device of this invention.

以下、図面を参考にして本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態における反射率計測装置の概略構成の一例を示す図である。本発明の反射率計測装置は、対象物101(以下、計測対象物体と同じ)の表面を照明する手段である光照明部103と、照明する手段を移動・回転する手段である光照明部移動部102と、既定の開口部を有し前記対象物体から異なる方向への反射光を前記開口部以外の部分で遮光する手段である遮光板104と、前記既定の開口部の形状・大きさを変更する手段である開口部形状変更部104aと、前記開口部を通過した反射光を集光する手段である反射光集光部105と、集光光の放射照度を計測する手段である反射光計測部106と、によって得られた放射照度の値に既定のBRDFモデルをフィッティングし、BRDFモデルパラメータを取得する手段であるコンピュータ107で構成される。   FIG. 1 is a diagram illustrating an example of a schematic configuration of a reflectance measurement apparatus according to an embodiment of the present invention. The reflectance measurement apparatus of the present invention includes a light illumination unit 103 that is a means for illuminating the surface of an object 101 (hereinafter, the same as a measurement target object), and a light illumination unit movement that is a means for moving and rotating the illumination means. Part 102, light shielding plate 104 which has a predetermined opening and shields reflected light in a different direction from the target object at a part other than the opening, and the shape and size of the predetermined opening An opening shape changing unit 104a that is a means for changing, a reflected light collecting unit 105 that is a means for collecting the reflected light that has passed through the opening, and a reflected light that is a means for measuring the irradiance of the collected light A measurement unit 106 and a computer 107 which is a means for fitting a predetermined BRDF model to the irradiance value obtained by the measurement unit 106 and acquiring a BRDF model parameter.

光照明部103は、計測対象物体101の表面を照明する手段であって、計測対象物体101に対して平行光を照射できるものであれば、どのような照明でもよい。また平行光を照射できない場合は、BRDF計測点への入射光の方向や、放射輝度が既知、かつ複数方向から同時に光が入射しなければよい。   The light illumination unit 103 is a means for illuminating the surface of the measurement target object 101 and may be any illumination as long as it can irradiate the measurement target object 101 with parallel light. If parallel light cannot be irradiated, the direction of incident light to the BRDF measurement point and the radiance are known and light does not have to be incident simultaneously from a plurality of directions.

光照明部移動部102は、所定の方向から計測対象物体101を照明するために光照明部103を移動・回転する手段である。光照明部移動部102は移動機構や回転モーター等を有する。   The light illumination unit moving unit 102 is a means for moving and rotating the light illumination unit 103 to illuminate the measurement target object 101 from a predetermined direction. The light illumination unit moving unit 102 includes a moving mechanism, a rotary motor, and the like.

遮光板104は計測対象物体101からの反射光のうち、反射方向の異なる光を開口部で通光し、開口部以外では遮光するものである。   The light shielding plate 104 transmits light having a different reflection direction from the reflected light from the measurement target object 101 through the opening and shields light other than the opening.

反射光集光部105は計測対象物体101からの反射光を集光させるための手段であり、レンズなどを有する。   The reflected light condensing unit 105 is a means for condensing the reflected light from the measurement target object 101 and includes a lens or the like.

反射光計測部106は反射光集光部105を使用して計測対象物体101からの反射光を集光させた光の放射照度を計測するための手段であり、光電変換素子などを有する。   The reflected light measuring unit 106 is a means for measuring the irradiance of light obtained by collecting reflected light from the measurement target object 101 using the reflected light condensing unit 105, and includes a photoelectric conversion element and the like.

コンピュータ107は記録部108、演算部109、制御部110を備えるコンピュータである。尚、コンピュータ107には上記反射光計測部106によって得られた放射照度の値に既定のBRDFモデルをフィッティングし、BRDFモデルパラメータを取得するためのプログラムが備えられている。   A computer 107 is a computer including a recording unit 108, a calculation unit 109, and a control unit 110. The computer 107 is provided with a program for fitting a predetermined BRDF model to the irradiance value obtained by the reflected light measuring unit 106 and acquiring a BRDF model parameter.

記録部108はコンピュータ107に備えられており、反射光計測部106による計測結果と演算部109による演算結果を記録する手段である。記録部108は計測結果と演算結果のデータを記録するためのハードディスク、フラッシュメモリなどを備える。   The recording unit 108 is provided in the computer 107 and is means for recording the measurement result by the reflected light measurement unit 106 and the calculation result by the calculation unit 109. The recording unit 108 includes a hard disk, a flash memory, and the like for recording data of measurement results and calculation results.

演算部109はコンピュータ107に備えられており、記録部108に記録されている計測値のデータから計測対象物体101のBRDFを計測する。計測値から計測対象物体のBRDFを計測する方法は後述する。   The calculation unit 109 is provided in the computer 107 and measures the BRDF of the measurement target object 101 from the measurement value data recorded in the recording unit 108. A method of measuring the BRDF of the measurement target object from the measurement value will be described later.

制御部110はコンピュータ107に備えられており、光照明部移動部102、光照明部103、反射光計測部106、記録部108、演算部109の動作を制御する。制御部110は各種制御プログラムが格納されたROMなどを備える。   The control unit 110 is provided in the computer 107 and controls operations of the light illumination unit moving unit 102, the light illumination unit 103, the reflected light measurement unit 106, the recording unit 108, and the calculation unit 109. The control unit 110 includes a ROM that stores various control programs.

入力部111は制御部110に対し、ユーザーが指示を送るための手段である。入力部111はマウスやキーボードなどを有する。   The input unit 111 is a means for a user to send an instruction to the control unit 110. The input unit 111 includes a mouse, a keyboard, and the like.

出力部112は演算部109、記録部108のデータを出力する。出力部112は、演算部109、記録部108のデータを表示するためのモニタやプリンタなどを有する。   The output unit 112 outputs data from the calculation unit 109 and the recording unit 108. The output unit 112 includes a monitor, a printer, and the like for displaying the data of the calculation unit 109 and the recording unit 108.

図2は本発明の反射率計測装置の一例を模式的に示す図である。201は計測対象物体表面の平面領域、202は集光光学素子、203は遮光板、204は光電変換素子群である。   FIG. 2 is a diagram schematically showing an example of the reflectance measuring apparatus of the present invention. 201 is a planar area on the surface of the measurement target object, 202 is a condensing optical element, 203 is a light shielding plate, and 204 is a photoelectric conversion element group.

BRDF計測において平面領域201、集光光学素子202、光電変換素子群204が平行になるようにそれらを設置する。   In the BRDF measurement, the planar region 201, the condensing optical element 202, and the photoelectric conversion element group 204 are installed so as to be parallel to each other.

本発明では遮光板203の開口部の形状203aを限定しない。図3は本発明に係る遮光板の開口部の形状を示す図である。平面領域201からの反射方向の異なる光を部分的に通光できれば円形(図3(a))、正方形(図3(b))、長方形(図3(c))、環形(図3(d))のいずれでも使用することができる。また、遮光板203の設置位置は集光光学素子202の前方でも後方でもよい。   In the present invention, the shape 203a of the opening of the light shielding plate 203 is not limited. FIG. 3 is a diagram showing the shape of the opening of the light shielding plate according to the present invention. If light having different reflection directions from the planar region 201 can be partially transmitted, a circular shape (FIG. 3A), a square shape (FIG. 3B), a rectangular shape (FIG. 3C), and a ring shape (FIG. 3D) Any of)) can be used. In addition, the installation position of the light shielding plate 203 may be in front of or behind the condensing optical element 202.

光電変換素子群204は、集光光学素子202により集光された光を受光し、信号値へ変換する素子である。フォトダイオードや撮像カメラに用いられるCCD素子などがこれにあたる。   The photoelectric conversion element group 204 is an element that receives the light collected by the condensing optical element 202 and converts it into a signal value. A CCD element used for a photodiode or an imaging camera corresponds to this.

Xoは計測対象物体表面の平面領域201における任意の一点であり、その位置を(数1)とする。集光光学素子202は点Xoからの反射光のうち、集光光学素子202に入射する光を点Xpへ集光する。点Xpは集光された光を受光する光電変換素子の位置であり、その位置(数2)は位置(数1)に依存する。   Xo is an arbitrary point in the planar region 201 on the surface of the measurement target object, and its position is represented by (Equation 1). The condensing optical element 202 condenses the light incident on the condensing optical element 202 out of the reflected light from the point Xo to the point Xp. The point Xp is the position of the photoelectric conversion element that receives the collected light, and the position (Equation 2) depends on the position (Equation 1).

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

次に図4を用いて、本実施形態における反射率計測装置の処理の流れを説明する。図4は本実施形態における反射率計測装置の処理の流れを示すステップ図である。   Next, the flow of processing of the reflectance measurement apparatus according to this embodiment will be described with reference to FIG. FIG. 4 is a step diagram showing the flow of processing of the reflectance measuring apparatus in the present embodiment.

(ステップS300)ステップS300では、ユーザーが計測対象物体表面の平面領域201を照明する方向(ステップS301で使用)、及び遮光板203の開口部の形状(ステップS303で使用)を指定する。開口部の形状や照明方向については後述する。開口部の形状と照明方向のインデックスをそれぞれiとjとし、それぞれを1に初期化する。 (Step S300) In step S300, the user designates the direction in which the planar area 201 on the surface of the measurement target object is illuminated (used in step S301) and the shape of the opening of the light shielding plate 203 (used in step S303). The shape of the opening and the illumination direction will be described later. The aperture shape and the illumination direction index are i and j, respectively, and are initialized to 1.

(ステップS301)ステップS301では、ユーザーがj番目に指定した方向からの照明を行うために光照明部移動部102が光照明部103を移動・回転する。 (Step S301) In step S301, the light illumination unit moving unit 102 moves and rotates the light illumination unit 103 in order to perform illumination from the direction designated by the user in the jth.

(ステップS302)ステップS302では、光照明部103が平面領域201を照明する。ステップS302からステップS306まで照明を実施する。 (Step S302) In step S302, the light illumination unit 103 illuminates the planar area 201. Illumination is performed from step S302 to step S306.

ユーザーがj番目に指定した方向からの照明における平面領域201内の位置(数1)への入射光の方向を(数3)とする。また、照明による反射光の方向を(数4)とする。入射光の放射輝度を(数5)とし、(数3)方向からの照明における(数4)方向への反射光の放射輝度を(数6)とする。反射光の放射輝度は(数6)で表される。   The direction of the incident light to the position (Equation 1) in the plane area 201 in illumination from the direction designated by the user is assumed to be (Equation 3). Further, the direction of reflected light by illumination is assumed to be (Equation 4). Let radiance of incident light be (Equation 5), and radiance of reflected light in the (Equation 4) direction in illumination from the (Equation 3) direction is (Equation 6). The radiance of the reflected light is expressed by (Equation 6).

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

ただし、(数7)は位置(数1)に対する入射光方向成分を表す半球状の方向領域、(数8)は位置(数1)におけるBRDF、(数9)は位置(数1)における法線である。   Where (Equation 7) is a hemispherical direction region representing the incident light direction component with respect to the position (Equation 1), (Equation 8) is the BRDF at the position (Equation 1), and (Equation 9) is the method at the position (Equation 1). Is a line.

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

(ステップS303)ステップS303では、遮光板203を用いてユーザーがi番目に指定した開口部の形状で反射方向(数4)の異なる光を部分的に通光・遮光する。   (Step S303) In step S303, the light having a different reflection direction (Equation 4) in the shape of the i-th opening designated by the user is partially transmitted / shielded using the light shielding plate 203.

(ステップS304)ステップS304では、通光した反射光のうち、集光光学素子202によって集光された光の放射照度を点Xpの光電変換素子で計測する。集光光学素子202による集光とは光の方向積分であり、計測される光の放射照度は(数10)で表される。   (Step S304) In step S304, the irradiance of the light condensed by the condensing optical element 202 out of the transmitted reflected light is measured by the photoelectric conversion element at the point Xp. Condensing by the condensing optical element 202 is the direction integration of light, and the irradiance of the measured light is expressed by (Equation 10).

Figure 2014092501
Figure 2014092501

ただし、(数11)は位置(数1)からの反射光のうち、遮光されずに集光する光の方向領域、(数12)は位置(数1)から(数4)方向へ反射した光の点Xpの光電変換素
子への入射方向、(数13)は位置(数2)における法線である。
However, (Equation 11) is the direction area of the light collected from the position (Equation 1) without being blocked, and (Equation 12) is reflected from the position (Equation 1) to the (Equation 4) direction. The incident direction of the light point Xp to the photoelectric conversion element, (Equation 13) is a normal line at the position (Equation 2).

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

(ステップS305)ステップS305では、iをインクリメントし、iがユーザーの指定した開口部形状数N以下であればステップS303を実施する。iがNより大きければ(S305のYES)ステップS306を実施する。   (Step S305) In step S305, i is incremented, and if i is equal to or less than the number N of opening shapes designated by the user, step S303 is performed. If i is larger than N (YES in S305), step S306 is performed.

(ステップS306)ステップS306では、jをインクリメントし、jがユーザーの指定した照明方向数M以下(S306のNO)であればステップS301を実施する。jがMより大きければ(S306のYES)ステップS307を実施する。   (Step S306) In step S306, j is incremented, and if j is not more than the number M of illumination directions designated by the user (NO in S306), step S301 is performed. If j is larger than M (YES in S306), step S307 is performed.

以上により、所定の方向への反射光の放射輝度情報を取得する。非特許文献1で反射光の放射輝度情報を取得するためには、本発明の計測装置における集光光学素子202や光電変換素子群204を複数設置、もしくは移動しなければならない。それに比べ、本発明の反射率計測装置では、遮光板203の開口部の形状を変更するだけで異なる方向への反射光の放射輝度情報を取得することができる。   As described above, the radiance information of the reflected light in the predetermined direction is acquired. In order to acquire radiance information of reflected light in Non-Patent Document 1, a plurality of condensing optical elements 202 and photoelectric conversion element groups 204 in the measurement apparatus of the present invention must be installed or moved. In contrast, in the reflectance measuring apparatus of the present invention, it is possible to acquire radiance information of reflected light in different directions only by changing the shape of the opening of the light shielding plate 203.

(ステップS307)ステップS307では、計測値にBRDFモデルをフィッティングし、BRDFモデルパラメータを取得する。得られたBRDFモデルパラメータを用いることで位置(数1)のBRDFを表すことができる。   (Step S307) In step S307, the BRDF model is fitted to the measured value, and the BRDF model parameter is acquired. By using the obtained BRDF model parameters, the BRDF at the position (Equation 1) can be expressed.

S個のモデルパラメータ(数14)を引数とするBRDFモデル(数15)によって位置(数1)のBRDFを近似できると仮定し、入射光の放射輝度が(数5)のときの反射光の放射輝度は(数16)で表される。   Assuming that the BRDF at the position (Equation 1) can be approximated by the BRDF model (Equation 15) with S model parameters (Equation 14) as arguments, the reflected light when the radiance of the incident light is (Equation 5) The radiance is expressed by (Equation 16).

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

ここで、遮光板203で遮光されずに点Xpの光電変換素子によって計測される光の放射照度を(数17)で計算する。   Here, the irradiance of light measured by the photoelectric conversion element at the point Xp without being shielded by the light shielding plate 203 is calculated by (Equation 17).

Figure 2014092501
Figure 2014092501

ただし、(数18)は(数11)を均等にQ個にサンプリングした反射光方向領域、(数19)はk番目のサンプリングした方向、W は(数11)の立体角である。 However, (Equation 18) is the reflected light direction region in which (Equation 11) is evenly sampled, (Equation 19) is the k-th sampled direction, and Wi is the solid angle of (Equation 11).

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

ここで位置(数1)におけるBRDFモデル(数15)のパラメータAを(数20)で求める。   Here, the parameter A of the BRDF model (Equation 15) at the position (Equation 1) is obtained by (Equation 20).

Figure 2014092501
Figure 2014092501

ただし、cは点Xpの光電変換素子における放射照度から信号値への変換係数(数21)は点Xpの光電変換素子への光の放射照度(数22)の信号値、||は引数の絶対値を出力する関数、(数23)はLevenberg−Marquardt法等の非線形最適化手法を用いて引数を最小化するパラメータAを出力する関数である。   However, c is a conversion coefficient (Equation 21) from the irradiance to the signal value at the photoelectric conversion element at the point Xp, the signal value of the irradiance (Equation 22) of the light to the photoelectric conversion element at the point Xp, and || A function that outputs an absolute value, (Equation 23) is a function that outputs a parameter A that minimizes an argument using a non-linear optimization method such as the Levenberg-Marquardt method.

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

変換係数cを取得する手段としては、所定のジオメトリでBRDFが既知の物体の計測を行い、反射光の放射照度と信号値の比を計算する方法などが挙げられる。   Examples of means for obtaining the conversion coefficient c include a method of measuring an object whose BRDF is known with a predetermined geometry and calculating a ratio between the irradiance of reflected light and a signal value.

(数15)にはTorrance−SparrowモデルやWardモデルなどのパラメータによってBRDFを決定するモデルであれば、どのBRDFモデルでもよい。 (Equation 15) may be any BRDF model as long as the BRDF is determined by parameters such as a Torrance-Sparrow model and a Ward model.

計測装置は、(数10)に示したように任意の方向領域内のすべての光の放射輝度を点Xpの光電変換素子で1つの信号値として計測する。計測後、(数20)において、複数の信号値から光の放射照度を基に位置(数1)のBRDFのモデルパラメータを求める。信号値の数がモデルパラメータ数に比べ少ない場合には(数20)の最適化が不安定になる場合がある。より安定に最適化を行うためには遮光板203の開口サイズを小さくするか、通光パターン数を多くすればよい。   As shown in (Equation 10), the measuring device measures the radiance of all the light in an arbitrary direction region as one signal value by the photoelectric conversion element at the point Xp. After the measurement, in (Equation 20), the BRDF model parameter at the position (Equation 1) is obtained from a plurality of signal values based on the irradiance of light. When the number of signal values is smaller than the number of model parameters, the optimization of (Expression 20) may become unstable. In order to optimize more stably, the opening size of the light shielding plate 203 may be reduced or the number of light transmission patterns may be increased.

遮光板203の開口サイズを小さくする代わりにフィッティングにおいて次の手順を行うことでより小さな開口サイズの時の情報が得られる。(数24)のとき、それぞれの方向領域における計測による信号値の差分を(数25)で計算し、その信号値に対してフィッティングを行う。   By performing the following procedure in the fitting instead of reducing the opening size of the light shielding plate 203, information at a smaller opening size can be obtained. In the case of (Equation 24), the difference between the signal values obtained by measurement in each direction region is calculated by (Equation 25), and fitting is performed on the signal value.

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

ただし、xorは排他的論理和である。   However, xor is an exclusive OR.

その差分は(数27)の放射照度に対する信号値であり、方向領域(数26)を計測したときに得られる値である。   The difference is a signal value with respect to the irradiance of (Equation 27), and is a value obtained when the direction area (Equation 26) is measured.

Figure 2014092501
Figure 2014092501

Figure 2014092501
Figure 2014092501

以上のステップS300からステップS307の処理により、計測対象物体表面の平面領域201の位置(数1)のBRDFを取得できる。   The BRDF of the position (Equation 1) of the planar region 201 on the surface of the measurement target object can be acquired by the processing from step S300 to step S307.

<実施手順>
(実施例1)
被写体となる平面物体と、絞りをF4、F5.6、F8、F11と調節できる撮像カメラと、キセノンランプを用意する。
<Implementation procedure>
Example 1
A plane object as a subject, an imaging camera capable of adjusting the aperture to F4, F5.6, F8, and F11, and a xenon lamp are prepared.

Fとは絞りのサイズを表す値である。F値が大きくなるほど絞られる。この場合は、この絞りがパターンの形状は同じで大きさを変更する手段である開口部形状変更部104aである。   F is a value representing the aperture size. The larger the F value, the smaller the aperture. In this case, the diaphragm is an opening shape changing portion 104a which is a means for changing the size of the pattern having the same shape.

カメラのセンサ面に平行になるように被写体を設置する。   Place the subject so that it is parallel to the sensor surface of the camera.

被写体を照明する方向を指定し、その照明方向に合わせてキセノンランプを設置する。被写体をキセノンランプで照明する。このとき、被写体とカメラの間にキセノンランプを設置しないよう注意する。また、カメラと被写体の間には何も設置しない。   Specify the direction to illuminate the subject, and install the xenon lamp according to the illumination direction. Illuminate the subject with a xenon lamp. Be careful not to install a xenon lamp between the subject and the camera. Also, nothing is installed between the camera and the subject.

絞りをF4に設定した状態で被写体を撮影する。   The subject is photographed with the aperture set to F4.

絞りをF5.6に変更し、絞り以外の設定を変更せずに被写体を撮影する。以下、同様に絞りの値をF8、F11と設定し、絞り以外の設定を変更せずにそれぞれの撮影を行う。   The aperture is changed to F5.6, and the subject is photographed without changing settings other than the aperture. Hereinafter, similarly, the aperture values are set to F8 and F11, and the respective images are taken without changing settings other than the aperture.

キセノンランプから被写体への照明方向を変更するためにキセノンランプを移動する。   Move the xenon lamp to change the illumination direction from the xenon lamp to the subject.

絞りをF4、F5.6、F8、F11に設定した撮影(計4回)を行う。   Shooting (four times in total) with the aperture set to F4, F5.6, F8, and F11 is performed.

指定したすべての方向からの照明が終わるまで、キセノンランプの移動と撮影を行う。   Move and shoot the xenon lamp until illumination from all specified directions is complete.

撮影画像から得られた計測値を用いてBRDFのフィッティングを行い、モデルパラメータを取得する。フィッティングに用いるBRDFモデルはTorrance-Sparrowモデルである。   Using the measured values obtained from the captured image, BRDF fitting is performed to obtain model parameters. The BRDF model used for fitting is a Torrance-Sparrow model.

以上のように本発明による反射率計測装置及び反射率計測方法及び反射率計測プログラムによれば、複数の計測機器を配置したり、または計測機器を移動することなく、計測対象物体面上の空間的に異なる点のBRDFを計測することが可能となる。   As described above, according to the reflectance measuring device, the reflectance measuring method, and the reflectance measuring program according to the present invention, the space on the measurement target object plane can be obtained without arranging a plurality of measuring devices or moving the measuring devices. It is possible to measure BRDF at different points.

101…計測対象物体
102…光照明部移動部
103…光照明部
104…遮光板
104a…開口部形状変更部
105…反射光集光部
106…反射光計測部
107…コンピュータ
108…記録部
109…演算部
110…制御部
111…入力部
112…出力部
201…計測対象物体表面
202…集光光学素子
203…遮光板
203a…開口部
204…光電変換素子群
Xo…計測対象物体面上の一点
Xp…光電変換素子
DESCRIPTION OF SYMBOLS 101 ... Measurement object 102 ... Light illumination part moving part 103 ... Light illumination part 104 ... Light-shielding plate 104a ... Opening shape change part 105 ... Reflected light condensing part 106 ... Reflected light measuring part 107 ... Computer 108 ... Recording part 109 ... Calculation unit 110 ... control unit 111 ... input unit 112 ... output unit 201 ... measurement target object surface 202 ... condensing optical element 203 ... light shielding plate 203a ... opening 204 ... photoelectric conversion element group Xo ... one point Xp on the measurement target object surface ... Photoelectric conversion element

Claims (3)

対象物体表面の平面領域において対象物体表面の各点の双方向反射率分布関数(Bidirectional Reflectance Distribution Function、以下BRDF)を計測する装置であって、
対象物体の表面を照明する手段と、
前記照明する手段を移動・回転する手段と、
既定の開口部を有し、前記対象物体から異なる方向への反射光を前記開口部以外の部分で遮光する手段と、
前記既定の開口部の形状・大きさを変更する手段と、
前記開口部を通過した反射光を集光する手段と、
前記集光光の放射照度を計測する手段と、
前記計測によって得られた放射照度の値に既定のBRDFモデルをフィッティングし、BRDFモデルパラメータを取得する手段と、を有することを特徴とする反射率計測装置。
An apparatus for measuring a bi-directional reflectance distribution function (hereinafter referred to as BRDF) of each point on the surface of the target object in a planar region of the target object surface,
Means for illuminating the surface of the target object;
Means for moving and rotating the illumination means;
Means having a predetermined opening, and shielding light reflected from the target object in different directions by a portion other than the opening;
Means for changing the shape and size of the predetermined opening;
Means for collecting the reflected light that has passed through the opening;
Means for measuring the irradiance of the condensed light;
And a means for fitting a predetermined BRDF model to the irradiance value obtained by the measurement and obtaining a BRDF model parameter.
前記請求項1に記載の反射率計測装置を用いてBRDFモデルパラメータを取得することを特徴とする反射率計測方法。   A BRDF model parameter is acquired using the reflectance measuring apparatus according to claim 1. 前記請求項1に記載の反射率計測装置に備えられ、BRDFモデルパラメータを取得することを特徴とする反射率計測プログラム。   A reflectance measurement program that is provided in the reflectance measurement device according to claim 1 and that acquires a BRDF model parameter.
JP2012244269A 2012-11-06 2012-11-06 Reflectance measuring device, reflectance measuring method, and reflectance measuring program Expired - Fee Related JP6135096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012244269A JP6135096B2 (en) 2012-11-06 2012-11-06 Reflectance measuring device, reflectance measuring method, and reflectance measuring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012244269A JP6135096B2 (en) 2012-11-06 2012-11-06 Reflectance measuring device, reflectance measuring method, and reflectance measuring program

Publications (2)

Publication Number Publication Date
JP2014092501A true JP2014092501A (en) 2014-05-19
JP6135096B2 JP6135096B2 (en) 2017-05-31

Family

ID=50936656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244269A Expired - Fee Related JP6135096B2 (en) 2012-11-06 2012-11-06 Reflectance measuring device, reflectance measuring method, and reflectance measuring program

Country Status (1)

Country Link
JP (1) JP6135096B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080357A1 (en) * 2000-11-15 2002-06-27 Dana Kristin J. Apparatus and method for measuring spatially varying bidirectional reflectance distribution function
JP2004510972A (en) * 2000-10-03 2004-04-08 アクセント オプティカル テクノロジーズ,インク. Differential numerical aperture method and device
JP2006153846A (en) * 2004-10-29 2006-06-15 Sharp Corp Specular gloss simulation device, specular gloss simulation method, control program for specular gloss simulation device and storage medium thereof
JP2007026049A (en) * 2005-07-15 2007-02-01 Ritsumeikan Image processing apparatus using reference anisotropic reflection distribution, image processing program, recording medium where same program is recorded, and image processing method
JP2009500851A (en) * 2005-07-05 2009-01-08 マットソン テクノロジー インコーポレイテッド Method and system for determining optical properties of a semiconductor wafer
JP2009020080A (en) * 2007-07-13 2009-01-29 Kao Corp Device for measuring surface reflection characteristics
JP2012172982A (en) * 2011-02-17 2012-09-10 Toppan Printing Co Ltd Bidirectional reflectance distribution function acquisition apparatus and control program therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510972A (en) * 2000-10-03 2004-04-08 アクセント オプティカル テクノロジーズ,インク. Differential numerical aperture method and device
US20020080357A1 (en) * 2000-11-15 2002-06-27 Dana Kristin J. Apparatus and method for measuring spatially varying bidirectional reflectance distribution function
JP2006153846A (en) * 2004-10-29 2006-06-15 Sharp Corp Specular gloss simulation device, specular gloss simulation method, control program for specular gloss simulation device and storage medium thereof
JP2009500851A (en) * 2005-07-05 2009-01-08 マットソン テクノロジー インコーポレイテッド Method and system for determining optical properties of a semiconductor wafer
JP2007026049A (en) * 2005-07-15 2007-02-01 Ritsumeikan Image processing apparatus using reference anisotropic reflection distribution, image processing program, recording medium where same program is recorded, and image processing method
JP2009020080A (en) * 2007-07-13 2009-01-29 Kao Corp Device for measuring surface reflection characteristics
JP2012172982A (en) * 2011-02-17 2012-09-10 Toppan Printing Co Ltd Bidirectional reflectance distribution function acquisition apparatus and control program therefor

Also Published As

Publication number Publication date
JP6135096B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106416225B (en) Remote visual inspection image capture system and method
US10739130B2 (en) Optical measuring device generating point cloud data
US10168215B2 (en) Color measurement apparatus and color information processing apparatus
US10415958B2 (en) Measuring device
US9635283B2 (en) Thermal imager with large dynamic range and improved signal-to-noise ratio
EP3381015B1 (en) Systems and methods for forming three-dimensional models of objects
JP2004309240A (en) Three-dimensional shape measuring apparatus
IL202498A (en) Contactless multispectral biometric capture
JP2018151832A (en) Information processing device, information processing method, and, program
EP4003155A1 (en) Variable polarization and skin depth analysis methods and apparatuses
JP2022033250A (en) Optical spectrum measurement system and optical spectrum measurement method
US8334908B2 (en) Method and apparatus for high dynamic range image measurement
JP2015172556A (en) Measuring apparatus and measuring method
JP6135096B2 (en) Reflectance measuring device, reflectance measuring method, and reflectance measuring program
JP7118776B2 (en) IMAGING DEVICE, IMAGE PROCESSING METHOD, IMAGE PROCESSING PROGRAM AND RECORDING MEDIUM
JP2009236696A (en) Three-dimensional image measurement method, measurement system, and measurement program for subject
JP2017211313A5 (en)
CN104182579B (en) Modeling method for coded mask optical imaging system
JP7306673B2 (en) Evaluation system and evaluation method
JP2017026466A (en) Optical characteristics measuring apparatus
CN111479097B (en) Scattering lens imaging system based on deep learning
JP2013096784A (en) Surface characteristic measuring device and computer program
JP2018159671A (en) Measuring device and program
TWM543370U (en) Test sample and light box for lens inspection
KR102022836B1 (en) Apparatus for measuring light, system and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6135096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees