JP2014092112A - Surface inspection method for gas turbine member - Google Patents

Surface inspection method for gas turbine member Download PDF

Info

Publication number
JP2014092112A
JP2014092112A JP2012244057A JP2012244057A JP2014092112A JP 2014092112 A JP2014092112 A JP 2014092112A JP 2012244057 A JP2012244057 A JP 2012244057A JP 2012244057 A JP2012244057 A JP 2012244057A JP 2014092112 A JP2014092112 A JP 2014092112A
Authority
JP
Japan
Prior art keywords
gas turbine
turbine member
elemental analysis
difference
thermal barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012244057A
Other languages
Japanese (ja)
Other versions
JP6004899B2 (en
Inventor
Takeshi Izumi
岳志 泉
Hideyuki Arikawa
秀行 有川
Yoshiyuki Kojima
慶享 児島
Teru Mehata
輝 目幡
Tadashi Kasuya
忠 粕谷
Shinya Konno
晋也 今野
Koji Miyamoto
耕爾 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012244057A priority Critical patent/JP6004899B2/en
Publication of JP2014092112A publication Critical patent/JP2014092112A/en
Application granted granted Critical
Publication of JP6004899B2 publication Critical patent/JP6004899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface inspection method for a gas turbine member, which enables accurate discrimination of a member surface during TBC recoating of the gas turbine member.SOLUTION: In a surface inspection method for a gas turbine member, an elemental analysis for a member surface is performed after removal of a thermal barrier coating of the gas turbine member surface; a premeasured elemental analysis value of the uncoated gas turbine member surface of the same shape is compared with differences; and the presence or absence of the remaining thermal barrier coating is determined from the differences.

Description

本発明は、ガスタービン部材上の遮熱コーティング(TBC: Thermal Barrier Coating)を除去し、再度、遮熱コーティングする際に、除去後に残存するコーティングの有無を判定する表面検査方法に関する。 The present invention relates to a surface inspection method for determining the presence or absence of a coating remaining after removal when removing a thermal barrier coating (TBC) on a gas turbine member and performing thermal barrier coating again.

近年、ガスタービンでは、高効率化を目指し燃焼ガス温度の高温化が進んでいる。現在、既に燃焼ガス温度はタービン動翼、静翼等の耐熱合金部材の融点を超えており、各種の冷却技術に加え、タービン動翼、静翼の表面への遮熱コーティング(TBC : Thermal Barrier Coating)の施工が普及してきた。
遮熱コーティングは、遮熱のためのトップコートと、耐酸化性、耐食性の確保のためのボンドコートから構成され、燃焼ガスから耐熱合金基材への熱流束を減少させ、耐熱合金基材の表面温度を低減する効果が得られる。ボンドコート表面には高温での暴露中に熱成長酸化物(Thermal Grown Oxide: TGO)が形成し酸化性、腐食性ガスを遮断し、耐酸化性、耐食性を確保している。
In recent years, in gas turbines, the combustion gas temperature has been increased to achieve higher efficiency. Currently, the combustion gas temperature has already exceeded the melting point of heat-resistant alloy members such as turbine blades and stationary blades. In addition to various cooling technologies, thermal barrier coating (TBC: Thermal Barrier on the surfaces of turbine blades and stationary blades) Coating) has become popular.
The thermal barrier coating is composed of a top coat for thermal barrier and a bond coat for ensuring oxidation resistance and corrosion resistance, reducing the heat flux from the combustion gas to the heat resistant alloy substrate, The effect of reducing the surface temperature is obtained. Thermally grown oxide (Thermal Grown Oxide: TGO) is formed on the bond coat surface during high-temperature exposure, blocking oxidative and corrosive gases, ensuring oxidation resistance and corrosion resistance.

しかし、ガスタービンでは、定常的に高温に暴露されるほか、起動停止の際、加熱冷却に伴う熱応力の変化が大きく、トップコートの剥離・脱落、またボンドコートの酸化・腐食を生じてしまう。このため、ガスタービンの高温部材は、定期的に交換される。ガスタービンの高温部材は、高価であり、また資源の有効利用の点から、交換後の部材を補修し再利用することが通例である。TBCを施した高温部材の場合は、劣化したTBCの除去後、再度TBCが施工される。その際、健全性と信頼性向上を目指す上で、劣化したTBCが残存しない、健全な部材表面に、新たなTBCを施工することが重要である。   However, in gas turbines, in addition to being constantly exposed to high temperatures, when starting and stopping, the change in thermal stress due to heating and cooling is large, leading to peeling and dropping of the top coat, and oxidation and corrosion of the bond coat. . For this reason, the high temperature member of a gas turbine is replaced | exchanged regularly. The high-temperature member of the gas turbine is expensive, and from the viewpoint of effective use of resources, it is common to repair and reuse the member after replacement. In the case of a high-temperature member subjected to TBC, TBC is applied again after removing the deteriorated TBC. At that time, in order to improve soundness and reliability, it is important to construct a new TBC on the surface of a healthy member where no deteriorated TBC remains.

従って、部材表面の残存コーティングの有無を判定する表面検査法が望まれるが、従来、残存コーティングの有無は、表面の色調、光沢等の外観を目視により評価する手法がとられている。なお、残存コーティングの有無の判別の目的以外では、TBCに関する非破壊検査法としては、特許文献1に、赤外線、渦電流、蛍光X線による方法が記載されている。
特許文献1では、赤外線、渦電流、蛍光X線を使用しており、目視では判定不可能な残存コーティングを検出できる効果があるものの、赤外線は温度分布の相違から、コーティングの剥離を判定するものであり、残存コーティングの判定には測定原理が適さない。また、渦電流による方法は、残存コーティングと部材の電気伝導度が近い場合は検出が困難である。蛍光X線による表面元素分析は、原理的に部材と残存コーティングの判別を、成分により定量的に行える利点がある。しかし、ガスタービン部材の様に、端部や曲面を含む複雑な形状では、蛍光X線分析で用いる分析器と測定箇所が適切な位置関係とならず、実際には存在しない元素を検出する場合や、特定の元素が過大又は過小に測定され分析精度に劣るといった課題があった。
Therefore, a surface inspection method for determining the presence or absence of the remaining coating on the surface of the member is desired. Conventionally, the presence or absence of the remaining coating has been a method of visually evaluating the appearance of the surface such as color tone and gloss. Except for the purpose of determining the presence or absence of the remaining coating, Patent Document 1 describes a method using infrared rays, eddy currents, and fluorescent X-rays as a nondestructive inspection method relating to TBC.
In Patent Document 1, infrared rays, eddy currents, and fluorescent X-rays are used, and although there is an effect that a remaining coating that cannot be visually determined can be detected, infrared rays are used to determine coating peeling from the difference in temperature distribution. Therefore, the measurement principle is not suitable for determining the remaining coating. Also, the eddy current method is difficult to detect when the electrical conductivity of the remaining coating and the member is close. Surface elemental analysis using fluorescent X-rays has the advantage that, in principle, the component and the remaining coating can be distinguished quantitatively by component. However, in the case of complex shapes that include edges and curved surfaces, such as gas turbine members, the analyzer and measurement location used in fluorescent X-ray analysis are not in an appropriate positional relationship, and elements that do not actually exist are detected. In addition, there is a problem that a specific element is measured too much or too little to be inferior in analysis accuracy.

特開2004-156444号公報JP 2004-156444 A

本発明の目的は、ガスタービン部材のTBC再コーティング時に、部材表面を精度良く判別することが可能なガスタービン部材の表面検査方法を提供することにある。 An object of the present invention is to provide a gas turbine member surface inspection method capable of accurately discriminating a member surface during TBC recoating of a gas turbine member.

本発明者は上記課題を解決するべく鋭意検討した結果、予め同一形状を有するコーティング未施工部材の表面元素分析を実施し、コーティング除去後の部材の表面元素分析と比較する事で、形状による分析への影響を抑制できることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventor conducted surface element analysis of a non-coated member having the same shape in advance and compared it with the surface element analysis of the member after coating removal, thereby analyzing the shape. As a result, the present invention has been completed.

すなわち、本発明は、ガスタービン部材表面の遮熱コーティングを除去した後に、前記部材表面を元素分析し、予め測定した同一形状の未コーティングのガスタービン部材表面の元素分析値と差分を比較し、その差分から前記遮熱コーティングの残存の有無を判断することを特徴とする。   That is, the present invention, after removing the thermal barrier coating on the surface of the gas turbine member, elemental analysis of the surface of the member, compare the difference between the elemental analysis value of the surface of the uncoated gas turbine member of the same shape measured in advance, The presence or absence of the thermal barrier coating is determined from the difference.

本発明によれば、迅速に、外観から判断が困難なコーティングの残存を、定量的に精度良く判別する、検査法を提供でき、再度施工したTBCの耐久性、信頼性を確保することができる。 According to the present invention, it is possible to provide an inspection method for quickly and quantitatively determining the remaining coating that is difficult to judge from the appearance, and to ensure the durability and reliability of the re-installed TBC. .

本発明における検査方法の手順を示した図。The figure which showed the procedure of the inspection method in this invention. 本発明において元素分析に用いる蛍光X線分析を説明する図。The figure explaining the fluorescent X ray analysis used for elemental analysis in this invention. ガスタービン翼の断面の一例を示す図。The figure which shows an example of the cross section of a gas turbine blade. 本発明において元素分析に用いる検査装置の一例を示す図。The figure which shows an example of the test | inspection apparatus used for elemental analysis in this invention. 本発明における分析位置と元素分析結果の一例を示す図。The figure which shows an example of the analysis position and elemental analysis result in this invention.

以下、図面を参照して、本発明に係る実施形態を説明する。
本発明における表面検査法は、図1に示すように下記の手順で行われる。
まず、TBC未施工部材の表面元素分析を行う(標準データ取得工程)。次に、TBC施工部材のトップコートを除去する(トップコート除去工程)。次に、TBC施工部材のボンドコートを除去する(ボンドコート除去工程)。次に、TBC施工部材のボンドコート除去後の表面元素分析を行う(表面元素分析工程)。TBC未施工部材の表面元素分析結果とTBC施工部材のボンドコート除去後の表面元素分析を比較し、コーティングの残存を判定する(判定工程)。
以下、それぞれの工程について説明する。
(標準データ取得工程)
本実施形態では、先ずTBC未施工の部材を用意し、その表面元素分析を行う。 部材には、ガスタービンに好適な高温でのクリープ強度、疲労強度などに優れたNi基耐熱合金、Co基合金などが使用され、当該分野で超合金として知られているものも好適である。
Embodiments according to the present invention will be described below with reference to the drawings.
The surface inspection method in the present invention is performed in the following procedure as shown in FIG.
First, surface elemental analysis of TBC-untreated members is performed (standard data acquisition process). Next, the topcoat of the TBC construction member is removed (topcoat removal step). Next, the bond coat of the TBC construction member is removed (bond coat removal process). Next, surface element analysis is performed after removing the bond coat of the TBC construction member (surface element analysis step). Compare the surface element analysis result of the TBC non-worked member with the surface element analysis after removing the bond coat of the TBC work member, and determine the remaining coating (determination process).
Hereinafter, each process will be described.
(Standard data acquisition process)
In the present embodiment, first, a TBC-untreated member is prepared, and the surface element analysis is performed. As the member, a Ni-base heat-resistant alloy, a Co-base alloy, or the like excellent in creep strength and fatigue strength at a high temperature suitable for a gas turbine is used, and those known as superalloys in this field are also suitable.

後工程での判定を行うために必要な標準データをTBC未施工の部材の元素分析を行い取得する。その際、部材表面の測定箇所と元素分析に用いる分析器との距離と角度の関係を記録す
る。
Standard data necessary for the determination in the post-process is obtained by conducting elemental analysis of the TBC-untreated member. At that time, the relationship between the measurement point on the member surface and the distance and angle between the analyzer used for elemental analysis is recorded.

元素分析の特性上、例えば図2に示す蛍光X線4を用いる場合には、測定箇所と蛍光X線分析器2との位置関係により、同一組成の部材を測定しても異なる測定結果が得られる。従って、図3に示す平面と曲面で構成されるガスタービン部材の測定においては、部材表面の測定箇所と蛍光X線分析器2の位置関係とを対応させておくことが、分析精度を向上させる上で極めて重要である。   Due to the characteristics of elemental analysis, for example, when the fluorescent X-ray 4 shown in FIG. It is done. Therefore, in the measurement of the gas turbine member constituted by the plane and the curved surface shown in FIG. 3, it is possible to improve the analysis accuracy by making the measurement location on the member surface correspond to the positional relationship of the fluorescent X-ray analyzer 2. It is extremely important above.

分析は携帯型の分析装置を用いて検査員が手動で移動させて行っても良いが、前述の通り、測定箇所と蛍光X線分析器2の位置関係とを正確に記録しておくことが重要である為、図4に一例を示した制御・記録部8を備えた装置で自動的に行う事が望ましい。   The analysis may be performed manually by an inspector using a portable analyzer, but as described above, the measurement location and the positional relationship between the fluorescent X-ray analyzer 2 may be recorded accurately. Since it is important, it is desirable to automatically perform it with an apparatus including the control / recording unit 8 shown in FIG.

自動的に測定を行う方式としては、部材をステージ9に固定し、蛍光X線分析器2を分析器駆動装置10により移動させる方法、蛍光X線分析器2を固定して部材を設置したステージ9を駆動させる方法、またその両方を組み合わせた方法が有り、部材の形状、サイズにより適宜選択する。   As a method for automatically measuring, a method in which a member is fixed to the stage 9 and the X-ray fluorescence analyzer 2 is moved by the analyzer driving device 10, a stage in which the X-ray fluorescence analyzer 2 is fixed and the member is installed. There is a method of driving 9 or a method of combining both, and the method is appropriately selected depending on the shape and size of the member.

このように、元素分析に及ぼす部材の形状の影響を考慮した点が、本発明の利点であり、平面部と曲面部で構成されるガスタービン部材の表面元素分析の精度の向上に寄与する。
(トップコート除去工程)
再生を行う使用後のTBC施工部材について、トップコートの除去を行う。トップコートには、例えば、Y23,MgO,CaO,CeO2,Sc23,Er23,Gd23,Yb23,Al23,SiO2、La23から選ばれた少なくとも1種を含む部分安定化ジルコニアが好ましい。より好ましくは、イットリア安定化ジルコニア(YSZ ZrO2-6〜8Y2O)が使用され、通常、約300〜500μm程度成膜されている。トップコートは、酸化物であり脆いため、ショットブラスト等の硬質粒子を衝突させる方法で、物理的に容易に除去できる。また、色調が金属とは異なるため、目視でも容易に残存が判断できる。

(ボンドコート除去工程)
トップコート除去後、ボンドコートの除去を行う。ボンドコートとしては、例えば、優れた耐食性、耐酸化性を発揮するMCrAlY合金(MはNi、Co、Feのうち1つ以上)、Ni-Al, Ni-Al-Pt等のアルミナイドが使用され、厚さは、通常約100〜200μm程度である。ボンドコートは、ショットブラスト等の機械的な方法の他、酸又はアルカリの薬品を用い溶解させる、化学的な除去方法も使用可能である。

(表面元素分析工程)
TBC施工部材のボンドコート除去後の表面元素分析を行う。分析の際、測定箇所と分析器との位置関係を、先の標準データ取得工程と同一にすることで、形状による影響を排除する事ができる。

(判定工程)
表面元素分析工程において得られた、ボンドコート除去後の部材の表面元素分析の結果と、予め求めたコーティング未施工部材の表面元素分析の結果を比較する。比較に基づきボンドコートの有無を判定する。TBC未施工材の元素分析値の差分が基準値内に有る場合に、コーティング残存が無く部材表面が健全と判断して再コーティングに進む。基準値は、注目する元素についての表面元素分析の測定精度を勘案して任意に決定する。表面元素分析での精度が低い元素では大きく、逆に精度が高い元素では小さく設定する。元素分析の差分が基準値外となった場合はコーティング残存が有ると判定し、再度ボンドコート除去工程に戻す。
Thus, the point which considered the influence of the shape of the member which acts on elemental analysis is the advantage of this invention, and it contributes to the improvement of the precision of the surface elemental analysis of the gas turbine member comprised by a plane part and a curved surface part.
(Topcoat removal process)
The topcoat is removed from the used TBC construction member that is recycled. For the top coat, for example, Y 2 O 3 , MgO, CaO, CeO 2 , Sc 2 O 3 , Er 2 O 3 , Gd 2 O 3 , Yb 2 O 3 , Al 2 O 3 , SiO 2 , La 2 O Partially stabilized zirconia containing at least one selected from 3 is preferred. More preferably, yttria-stabilized zirconia (YSZ ZrO 2 -6 to 8Y 2 O) is used, and the film is usually formed to a thickness of about 300 to 500 μm. Since the top coat is an oxide and is brittle, it can be physically easily removed by a method of colliding hard particles such as shot blast. Further, since the color tone is different from that of metal, it can be easily determined visually.

(Bond coat removal process)
After the top coat is removed, the bond coat is removed. As the bond coat, for example, MCrAlY alloy (M is one or more of Ni, Co, Fe) that exhibits excellent corrosion resistance and oxidation resistance, aluminides such as Ni-Al, Ni-Al-Pt are used. The thickness is usually about 100 to 200 μm. In addition to mechanical methods such as shot blasting, the bond coat can be removed by chemical removal using acid or alkali chemicals.

(Surface element analysis process)
Perform surface element analysis after removing the bond coat of TBC construction members. At the time of analysis, the influence of the shape can be eliminated by making the positional relationship between the measurement location and the analyzer the same as in the previous standard data acquisition process.

(Judgment process)
The result of the surface element analysis of the member after the bond coat removal obtained in the surface element analysis process is compared with the result of the surface element analysis of the uncoated member obtained in advance. The presence or absence of a bond coat is determined based on the comparison. When the difference in the elemental analysis values of the TBC-untreated material is within the reference value, it is determined that there is no remaining coating and the surface of the member is healthy, and the process proceeds to recoating. The reference value is arbitrarily determined in consideration of the measurement accuracy of the surface element analysis for the element of interest. For elements with low accuracy in surface elemental analysis, the value is large. If the difference in elemental analysis is outside the reference value, it is determined that there is a coating remaining, and the process returns to the bond coat removal process again.

判定の基準は上述の様に元素分析値の差分を用いる方法もあるが、コーティングのみに存在する特定元素がある場合、その特定元素が検出された場合、コーティング残存ありと判定する。また、部材のみに含まれる特定元素がある場合は、その特定元素が検出された部分は、コーティングの残存無し、と判定する。   Although there is a method of using the difference between the elemental analysis values as described above as a criterion for determination, if there is a specific element existing only in the coating, it is determined that the coating remains if the specific element is detected. Further, when there is a specific element contained only in the member, it is determined that the portion where the specific element is detected has no remaining coating.

以上により、本発明による遮熱コーティング検査法が実施されるが、本検査法は従来の目視による検査と組み合わせて実施する事も可能であり、その精度をさらに向上させることができる。
As described above, the thermal barrier coating inspection method according to the present invention is performed. However, the present inspection method can be performed in combination with the conventional visual inspection, and the accuracy can be further improved.

本発明の実施例を示す。 The Example of this invention is shown.

ガスタービン部材に好適なNi基合金(Ni-7.2Cr-1.0Co-8.8Ta-8.8W-1.4Re-0.8Nb-0.9Mo-5.0Al mass.%)を機械加工し、ガスタービン動翼部材とした。   Machining a Ni-based alloy (Ni-7.2Cr-1.0Co-8.8Ta-8.8W-1.4Re-0.8Nb-0.9Mo-5.0Al mass.%) Suitable for gas turbine components, did.

TBC未施工動翼部材を図4に示すステージ9に固定し、携帯型の蛍光X線分析器(InnovX社製)を分析器駆動装置10とした産業用ロボットのアーム部分に取り付けた。測定は蛍光X線分析器2を動翼表面と一定の間隔を保ち、移動させながら行い、測定箇所の間隔は15mm間隔とした。移動の際に、蛍光X線分析器2の位置と角度を記憶させ、再現が可能なようにした。   The TBC-uninstalled moving blade member was fixed to the stage 9 shown in FIG. 4, and a portable fluorescent X-ray analyzer (manufactured by InnovX) was attached to the arm portion of an industrial robot having the analyzer driving device 10. The measurement was performed while moving the X-ray fluorescence analyzer 2 while keeping a certain distance from the moving blade surface, and the distance between the measurement points was 15 mm. During the movement, the position and angle of the fluorescent X-ray analyzer 2 were memorized so that they could be reproduced.

次に、TBC施工動翼部材を用意し、使用後の状態を模擬するため、1100℃での暴露を実施し、その後、トップコート(イットリア安定化ジルコニア(ZrO2-8wt%Y2O3))をショットブラストにより除去した。 Next, TBC construction blade members are prepared and exposed at 1100 ° C to simulate the condition after use, and then the topcoat (yttria stabilized zirconia (ZrO 2 -8wt% Y 2 O 3 )) ) Was removed by shot blasting.

トップコート除去後、塩酸を使用して、ボンドコート(CoNiCrAl合金(Co-32%Ni-21%Cr-8%Al))を化学的に除去した。洗浄、乾燥後、目視により表面検査を行ったが、光沢、色調の差は認められず、目視ではコーティングの残存無し、と判定した。   After removing the top coat, the bond coat (CoNiCrAl alloy (Co-32% Ni-21% Cr-8% Al)) was chemically removed using hydrochloric acid. After cleaning and drying, the surface was visually inspected, but no difference in gloss and color tone was observed, and it was determined that there was no remaining coating visually.

次に、目視検査後のTBC施工動翼部材をステージ9に固定し、蛍光X線による表面元素分析を行った。その際、TBC未施工動翼部材の分析時に記憶させた蛍光X線分析器2の位置と角度を再現した。   Next, the TBC construction blade member after visual inspection was fixed to the stage 9, and surface elemental analysis was performed using fluorescent X-rays. At that time, the position and angle of the fluorescent X-ray analyzer 2 memorized at the time of analyzing the TBC non-constructed blade member were reproduced.

測定の結果、図5に示す分析位置において、予めTBC未施工動翼部材で測定した元素分析値と異なる結果が得られた。この分析位置は曲率が大きく、蛍光X線分析では、平面上で同一のNi基合金を分析した場合と分析値が異なる。従って、得られた分析結果が、形状によるか、コーティングの残存によるものかの判断が困難であった。   As a result of the measurement, a result different from the elemental analysis value measured in advance with the TBC non-working blade member was obtained at the analysis position shown in FIG. This analysis position has a large curvature, and in the X-ray fluorescence analysis, the analysis value is different from the case where the same Ni-based alloy is analyzed on a plane. Therefore, it is difficult to judge whether the obtained analysis result is due to the shape or the remaining coating.

本実施例では、予め同一の箇所で測定を行うため、形状の影響を低減する事が可能である。図5の分析位置におけるTBC未施工動翼部材の測定値はNi-9.6Cr-2.7Co-3.3Ta-3.5W-2.0Re-0.5Nb-0.9Mo mass.%であり、平面上で同一のNi基合金を測定した値(Ni-6.6Cr-1.0Co-9.6Ta-9.6W-1.6Re-0.8Nb-0.9Mo mass.%)に比べ主要元素のCr、Coが多く、逆にTa、Wは少なく測定され、この違いを形状の影響として見積もることで、正確な判断が可能となる。   In this embodiment, since the measurement is performed at the same location in advance, the influence of the shape can be reduced. The measured value of the non-TBC blade member at the analysis position in Fig. 5 is Ni-9.6Cr-2.7Co-3.3Ta-3.5W-2.0Re-0.5Nb-0.9Mo mass.%. Compared to the measured value of the base alloy (Ni-6.6Cr-1.0Co-9.6Ta-9.6W-1.6Re-0.8Nb-0.9Mo mass.%), The main elements Cr and Co are more, and conversely Ta and W are It is possible to make an accurate judgment by measuring a small amount and estimating this difference as an influence of the shape.

ボンドコート除去後のTBC施工動翼部材の測定値はNi-8.1Cr-0.7Co-1.0Ta-1.7W-26.8Re-0.2Nb-0.4Mo mass.%となった。TBC未施工動翼部材の測定値を参照した結果、形状による影響以上にReが優位に大きいことが分かる。TBC未施工動翼部材の元素分析値との差分が、24.8%であり、事前に表面元素分析の精度を勘案し決定したReに関する濃度の差分の基準値を超えたことからコーティングの残存有りと判定した。   The measured value of TBC construction blade member after bond coat removal was Ni-8.1Cr-0.7Co-1.0Ta-1.7W-26.8Re-0.2Nb-0.4Mo mass.%. As a result of referring to the measured values of the TBC unprocessed blade member, it can be seen that Re is larger than the influence of the shape. The difference from the elemental analysis value of the TBC non-working blade member was 24.8%, which exceeded the reference value of the difference in concentration related to Re determined in consideration of the accuracy of the surface elemental analysis in advance. Judged.

当該部分にコーティングが残存しているかを確認する為、断面観察を行った。その結果、この測定部分では部材表面に10μm程度のコーティングが残存している事が判明した。   In order to confirm whether the coating remained in the portion, cross-sectional observation was performed. As a result, it was found that a coating of about 10 μm remained on the surface of the member in this measurement part.

以上の説明の通り、本発明の検査法によれば、外観から判断が困難なコーティングの残存を表面元素分析により判定する際、平面部と曲面部で構成されるガスタービン部材の形状の影響を抑制し、その精度を向上させる事が可能となり、再度施工したTBCの耐久性、信頼性を確保する事ができる。
As described above, according to the inspection method of the present invention, the effect of the shape of the gas turbine member composed of the flat surface portion and the curved surface portion is determined when the remaining surface of the coating that is difficult to judge from the appearance is determined by surface element analysis. It is possible to suppress and improve the accuracy, and to ensure the durability and reliability of the re-installed TBC.

1…基材、2…蛍光X線分析器、3…入射X線、4…蛍光X線、5…ガスタービン動翼、6…ガスタービン動翼表面、7…冷却空気通路、8…制御・記憶部、9…ステージ、10…分析器駆動装置、11…記録部。 DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... Fluorescent X-ray analyzer, 3 ... Incident X-ray, 4 ... Fluorescent X-ray, 5 ... Gas turbine blade, 6 ... Gas turbine blade surface, 7 ... Cooling air passage, 8 ... Control Storage unit, 9 ... stage, 10 ... analyzer driving device, 11 ... recording unit.

Claims (6)

ガスタービン部材表面の遮熱コーティングを除去した後に、前記ガスタービン部材表面を元素分析し、予め測定した同一形状の未コーティングのガスタービン部材表面の元素分析値と差分を比較し、その差分から前記遮熱コーティングの残存の有無を判断することを特徴とするガスタービン部材の表面検査方法。   After removing the thermal barrier coating on the surface of the gas turbine member, elemental analysis of the surface of the gas turbine member is performed, the difference between the elemental analysis value of the surface of the uncoated gas turbine member of the same shape measured in advance is compared, and the difference is calculated from the difference. A method for inspecting a surface of a gas turbine member, comprising determining whether or not a thermal barrier coating remains. 請求項1において、前記遮熱コーティングが、前記ガスタービン部材上に形成されたMCrAlY(MはCo、Ni及びFeからなるグループから選ばれた少なくとも1種)合金からなるボンドコートと、前記ボンドコート上に形成され、部分安定化ジルコニアからなるトップコートを備えており、
前記トップコートを除去し、ボンドコートを除去した後、前記ガスタービン部材表面の元素分析を行うことを特徴とするガスタービン部材の表面検査方法。
2. The bond coat according to claim 1, wherein the thermal barrier coating is an MCrAlY (M is at least one selected from the group consisting of Co, Ni and Fe) alloy formed on the gas turbine member, and the bond coat. It has a top coat made of partially stabilized zirconia,
A method for inspecting a surface of a gas turbine member, wherein after the top coat is removed and the bond coat is removed, elemental analysis of the surface of the gas turbine member is performed.
請求項1または2において、前記未コーティングのガスタービン部材表面の元素分析値と差分を比較して、基準値内の場合に、再度、遮熱コーティングすることを特徴とするガスタービン部材の表面検査方法。   3. The surface inspection of a gas turbine member according to claim 1, wherein the difference between the elemental analysis value of the surface of the uncoated gas turbine member and the difference is compared, and if the difference is within the reference value, the thermal barrier coating is performed again. Method. 請求項1または2において、前記未コーティングのガスタービン部材表面の元素分析値と差分を比較して、基準値外の場合に、残存する遮熱コーティングを除去して、再度、記未コーティングのガスタービン部材表面の元素分析値と差分を比較することを特徴とするガスタービン部材の表面検査方法。   3. The difference between the elemental analysis value on the surface of the uncoated gas turbine member according to claim 1 or 2, and if the difference is outside the reference value, the remaining thermal barrier coating is removed, and the uncoated gas is again removed. A method for inspecting a surface of a gas turbine member, wherein the difference is compared with an elemental analysis value on the surface of the turbine member. 請求項1乃至4のいずれかにおいて、前記ガスタービン部材が、ガスタービン動翼であることを特徴とするガスタービン部材の表面検査方法。   5. The surface inspection method for a gas turbine member according to claim 1, wherein the gas turbine member is a gas turbine rotor blade. 請求項1乃至5のいずれかに記載の表面検査方法に用いる検査装置であって、
被測定物を保持するステージと、
前記被測定物表面の元素分析を行う分析器と、
前記分析器を駆動させる分析器駆動装置と、
前記分析器駆動装置を制御し、動作を記憶する制御・記憶部と、
前記元素分析の結果を記録する記録部と
を備えた検査装置。
An inspection apparatus used for the surface inspection method according to claim 1,
A stage for holding an object to be measured;
An analyzer for performing elemental analysis of the surface of the object to be measured;
An analyzer driving device for driving the analyzer;
A control / storage unit for controlling the analyzer driving device and storing the operation;
An inspection apparatus comprising: a recording unit that records a result of the elemental analysis.
JP2012244057A 2012-11-06 2012-11-06 Gas turbine member surface inspection method Active JP6004899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012244057A JP6004899B2 (en) 2012-11-06 2012-11-06 Gas turbine member surface inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012244057A JP6004899B2 (en) 2012-11-06 2012-11-06 Gas turbine member surface inspection method

Publications (2)

Publication Number Publication Date
JP2014092112A true JP2014092112A (en) 2014-05-19
JP6004899B2 JP6004899B2 (en) 2016-10-12

Family

ID=50936379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244057A Active JP6004899B2 (en) 2012-11-06 2012-11-06 Gas turbine member surface inspection method

Country Status (1)

Country Link
JP (1) JP6004899B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052685A (en) * 2015-06-26 2017-03-16 ゼネラル・エレクトリック・カンパニイ Methods for treating field operated components
JP2017141798A (en) * 2016-02-12 2017-08-17 三菱日立パワーシステムズ株式会社 Detection method for residual coating layer
JP2022503722A (en) * 2018-09-20 2022-01-12 シーメンス エナジー インコーポレイテッド Methods for caring for components with thermal barrier coatings

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246619A (en) * 1997-03-03 1998-09-14 Mitsubishi Heavy Ind Ltd Measuring method for thickness of coating on ni-based or co-based alloy
JP2001303903A (en) * 2000-04-24 2001-10-31 Toshiba Corp Repairing method for gas turbine blade
US20030167616A1 (en) * 2002-03-08 2003-09-11 General Electric Crd Inspection and sorting system and method for part repair
JP2004156444A (en) * 2002-11-01 2004-06-03 Mitsubishi Heavy Ind Ltd Thermal barrier coating degradation diagnosing method
JP2005147149A (en) * 2003-11-13 2005-06-09 General Electric Co <Ge> Method for repairing covering part
JP2006328499A (en) * 2005-05-27 2006-12-07 Mitsubishi Heavy Ind Ltd Thermal barrier coating, gas turbine high-temperature component, and gas turbine
JP2009282020A (en) * 2008-04-23 2009-12-03 Central Res Inst Of Electric Power Ind Method, apparatus and program for evaluating heat shielding performance of coating layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246619A (en) * 1997-03-03 1998-09-14 Mitsubishi Heavy Ind Ltd Measuring method for thickness of coating on ni-based or co-based alloy
JP2001303903A (en) * 2000-04-24 2001-10-31 Toshiba Corp Repairing method for gas turbine blade
US20030167616A1 (en) * 2002-03-08 2003-09-11 General Electric Crd Inspection and sorting system and method for part repair
JP2004156444A (en) * 2002-11-01 2004-06-03 Mitsubishi Heavy Ind Ltd Thermal barrier coating degradation diagnosing method
JP2005147149A (en) * 2003-11-13 2005-06-09 General Electric Co <Ge> Method for repairing covering part
JP2006328499A (en) * 2005-05-27 2006-12-07 Mitsubishi Heavy Ind Ltd Thermal barrier coating, gas turbine high-temperature component, and gas turbine
JP2009282020A (en) * 2008-04-23 2009-12-03 Central Res Inst Of Electric Power Ind Method, apparatus and program for evaluating heat shielding performance of coating layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052685A (en) * 2015-06-26 2017-03-16 ゼネラル・エレクトリック・カンパニイ Methods for treating field operated components
JP2017141798A (en) * 2016-02-12 2017-08-17 三菱日立パワーシステムズ株式会社 Detection method for residual coating layer
JP2022503722A (en) * 2018-09-20 2022-01-12 シーメンス エナジー インコーポレイテッド Methods for caring for components with thermal barrier coatings
JP7361104B2 (en) 2018-09-20 2023-10-13 シーメンス エナジー インコーポレイテッド Method for caring for components with thermal barrier coatings
US11839951B2 (en) 2018-09-20 2023-12-12 Siemens Energy, Inc. Method of cleaning a component having a thermal barrier coating

Also Published As

Publication number Publication date
JP6004899B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
Liu et al. Effect of substrate curvature on residual stresses and failure modes of an air plasma sprayed thermal barrier coating system
US7010987B2 (en) Non-destructive method of detecting defects in braze-repaired cracks
JP2004156444A (en) Thermal barrier coating degradation diagnosing method
JP6004899B2 (en) Gas turbine member surface inspection method
JP4716329B2 (en) Life management method of thermal barrier coating
Szczepankowski et al. Health and durability of protective and thermal barrier coatings monitored in service by visual inspection
Sampath Durability of plasma sprayed thermal barrier coatings with controlled properties part I: For planar disk substrates
Tejedor et al. Maintenance and repair of gas turbine components
JP2004012390A (en) Quality evaluation method of heat barrier coating material of high-temperature component
Seraffon et al. Performance of thermal barrier coatings in industrial gas turbine conditions
US7175720B2 (en) Non-destructive testing method of determining the depletion of a coating
JP2017106446A (en) Components with embedded strain sensors and methods for monitoring those components
JP4716328B2 (en) Life management method of thermal barrier coating
JP5384540B2 (en) Thermal barrier coating inspection method
Torkashvand et al. Experimental and numerical study of TGO-induced stresses of plasma-sprayed thermal barrier coating
US7150798B2 (en) Non-destructive testing method of determining the service metal temperature of a component
Yang et al. Characterization of isothermal and cyclic thermal damage of EB‐PVD TBCs with the help of the 3D‐DIC technique
Simms et al. Performance of candidate gas turbine abradeable seal materials in high temperature combustion atmospheres
JP2003004549A (en) Method of estimating temperature of high-temperature member
Schmidt et al. Influence of bond coat roughness on life time of APS thermal barrier coating systems under thermo-mechanical load
Ogawa et al. In situ NDT of degradation of thermal barrier coatings using impedance spectroscopy
Brodin et al. Thermal barrier coating fatigue life assessment
JP3714413B2 (en) Method and system for predicting remaining life of high temperature components
Ohtake Investigation of Damage Prediction of Thermal Barrier Coating
Sun et al. Gas Turbine Materials Life Assessment and Nondestructive Evaluation

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151105

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6004899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250