JP2014090203A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
JP2014090203A
JP2014090203A JP2014000987A JP2014000987A JP2014090203A JP 2014090203 A JP2014090203 A JP 2014090203A JP 2014000987 A JP2014000987 A JP 2014000987A JP 2014000987 A JP2014000987 A JP 2014000987A JP 2014090203 A JP2014090203 A JP 2014090203A
Authority
JP
Japan
Prior art keywords
differential
integrated circuit
semiconductor integrated
transmission lines
differential signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014000987A
Other languages
Japanese (ja)
Other versions
JP5660231B2 (en
Inventor
Daisuke Iguchi
大介 井口
Kanji Otsuka
寛治 大塚
Yutaka Akiyama
豊 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2014000987A priority Critical patent/JP5660231B2/en
Publication of JP2014090203A publication Critical patent/JP2014090203A/en
Application granted granted Critical
Publication of JP5660231B2 publication Critical patent/JP5660231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor integrated circuit device in which electrical connection among semiconductor circuit elements which are three-dimensionally integrated can be achieved not by wired connection but by a simple composition.SOLUTION: A semiconductor integrated circuit device 100 comprises: a first semiconductor integrated circuit element 1 which includes a pair of strip-shaped differential transmission lines 12A, 12B which are arranged in the same plane and in parallel with each other, and each has a predetermined length, and includes a differential signal transmission element 11 for outputting differential signals to the first differential transmission lines 12A, 12B; and a second semiconductor integrated circuit element 2 which includes a pair of second differential transmission lines 22A, 22B arranged opposite to the first differential transmission lines 12A, 12B in an overlapping manner and a differential signal reception element 21 connected to one ends of the second differential transmission lines 22A, 22B. The second semiconductor integrated circuit element 2 is stacked on the first semiconductor integrated circuit element 1 via a dielectric substance 4. When signals flow in the first differential transmission lines 12A, 12B, the signals are transmitted to the second differential transmission lines 22A, 22B primarily by capacitive coupling.

Description

本発明は、半導体集積回路装置に関する。   The present invention relates to a semiconductor integrated circuit device.

近年、半導体集積回路の微細化が進んでいるが、さらなる高性能化の要求から一つのパッケージ内に複数の機能ブロックを実装してシステム化することが試みられている。   In recent years, semiconductor integrated circuits have been miniaturized, but due to the demand for higher performance, attempts have been made to implement a system by mounting a plurality of functional blocks in one package.

その代表例として、一つのベアチップに複数の機能ブロックを集約してシステム化するSoC(System on Chip)と呼ばれる方式と、1つのパッケージに複数のベアチップを封入するSiP(System in Package)と呼ばれる方式がある。   As a representative example, a system called SoC (System on Chip) that integrates a plurality of functional blocks into one bare chip to form a system, and a system called SiP (System in Package) that encloses a plurality of bare chips in one package There is.

SoCは、一つのベアチップに異なるプロセスで素子を実現するのが困難であると共に、素子面積の増大による歩留まり低下によりコストが高くなるという問題がある。   SoC has a problem that it is difficult to realize an element by a different process on one bare chip, and the cost is increased due to a decrease in yield due to an increase in element area.

また、SiPは、異なるプロセスで実現される機能を容易に集約できるというメリットがある反面、複数のベアチップ間を相互接続する必要があるため、個々のベアチップの歩留まりが良くてもトータルの歩留まりが悪くなる問題がある。従って、SiPの信頼性は、ベアチップ間の接続が大きな要素になる。   In addition, SiP has the merit that functions realized by different processes can be easily aggregated, but it is necessary to interconnect a plurality of bare chips. Therefore, even if the yield of individual bare chips is good, the total yield is poor. There is a problem. Therefore, the connection between bare chips is a major factor in the reliability of SiP.

ベアチップ間の接続方法の1つにワイヤボンディング法がある。しかし、このワイヤボンディング法は、接続パッド数がワイヤボンディングを使用する単一チップのパッケージ以下となり、通信バンド幅を大きくできない。   One method for connecting the bare chips is a wire bonding method. However, in this wire bonding method, the number of connection pads is less than that of a single chip package using wire bonding, and the communication bandwidth cannot be increased.

また、他の接続方法として、マイクロバンプで接続する方法があるが、上に積むチップを小さくする必要があるなど、実装上の制約が大きい。このマイクロバンプによる方法は、ワイヤボンディング法よりも多数の接続パッド数を確保できるが、多数のバンプを並べて接続する際の信頼性が低くなる。また、多数の素子を実装するには、チップ自体又はビルドアップ基板を貫通する電極等を設ける必要があり、高度なプロセス技術による高い加工精度が要求されるため、高コストとなる。   In addition, as another connection method, there is a method of connecting by micro bumps, but there is a great limitation in mounting, such as a need to make a chip stacked on top small. This method using micro bumps can secure a larger number of connection pads than the wire bonding method, but is less reliable when connecting a large number of bumps side by side. Further, in order to mount a large number of elements, it is necessary to provide an electrode or the like penetrating the chip itself or the build-up substrate, and high processing accuracy by an advanced process technique is required.

上記したベアチップ間の接続法の問題を解決するため、1個のパッケージに複数のチップを搭載し、これら複数のチップの間の信号伝送を電極同士を直接接続するのではなく、チップを対面実装で積層してバンプ間の容量性結合により通信を行う方法が知られている(例えば、非特許文献1参照)。   In order to solve the problem of the connection method between the bare chips described above, a plurality of chips are mounted in one package, and the signal transmission between the plurality of chips is not directly connected to each other, but the chips are mounted face to face. A method of performing communication by capacitive coupling between bumps by stacking (1) is known (for example, see Non-Patent Document 1).

また、それぞれ配線により形成される送信コイル及び受信コイルを持つ複数のLSIチップを、送受信コイルのペアの開口の中心が一致するようにスタックし、誘導性結合を形成させて通信を可能とすることが提案されている(例えば、特許文献1,2参照)。   In addition, a plurality of LSI chips each having a transmission coil and a reception coil formed by wiring are stacked so that the centers of the openings of a pair of transmission and reception coils coincide with each other to form an inductive coupling to enable communication. Has been proposed (see, for example, Patent Documents 1 and 2).

Stephen Mick, Lei Luo, John Wilson and Paul Franzon “Buried Bump and AC Coupled Interconnection Technology” IEEE TRANSACTIONS ON ADVANCED PACKAGING VOL.27,NO.1(2004)Stephen Mick, Lei Luo, John Wilson and Paul Franzon “Buried Bump and AC Coupled Interconnection Technology” IEEE TRANSACTIONS ON ADVANCED PACKAGING VOL.27, NO.1 (2004)

特開2005−228981号公報JP 2005-228981 A 特開2005−203657号公報JP 2005-203657 A

本発明の目的は、半導体回路素子間の電気的干渉を抑制しながら無線接続を可能にした半導体集積回路装置を提供することにある。   An object of the present invention is to provide a semiconductor integrated circuit device that enables wireless connection while suppressing electrical interference between semiconductor circuit elements.

本発明の一態様は、上記目的を達成するため、以下の半導体集積回路装置を提供する。   In order to achieve the above object, one embodiment of the present invention provides the following semiconductor integrated circuit device.

[1]差動信号送信素子及び前記差動信号送信素子からの信号を伝送すると共に同一平面上に配設された一対の第1の差動伝送線路を備えた第1の半導体集積回路素子と、
前記一対の第1の差動伝送線路と互いに容量性結合および誘導性結合による結合線路系(ただし、マイクロストリップラインの線路間結合を除く。)をなすように前記一対の第1の差動伝送線路に所定の距離を有して平行に対向配置された一対の第2の差動伝送線路、及び前記一対の第2の差動伝送線路の終端に接続された差動信号受信素子を備えると共に前記第1の半導体集積回路素子に積層された第2の半導体集積回路素子とを備え、
前記第1及び第2の差動伝送線路は、信号が前記第1及び第2の差動伝送線路を通過する時間をtd、前記差動信号受信素子における受信信号の立ち上がり時間をtrとするとき、前記対向配置により平行する部分の長さがtd≧trに設定されていることを特徴とする半導体集積回路装置。
[1] A first semiconductor integrated circuit element including a differential signal transmitting element and a pair of first differential transmission lines that transmit signals from the differential signal transmitting element and are disposed on the same plane; ,
The pair of first differential transmission lines so as to form a coupled line system by capacitive coupling and inductive coupling with the pair of first differential transmission lines (except for inter-line coupling of microstrip lines). A pair of second differential transmission lines disposed opposite to each other in parallel with a predetermined distance on the lines, and a differential signal receiving element connected to the end of the pair of second differential transmission lines A second semiconductor integrated circuit element stacked on the first semiconductor integrated circuit element,
The first and second differential transmission lines have a time when a signal passes through the first and second differential transmission lines as td and a rise time of a reception signal in the differential signal receiving element as tr. The semiconductor integrated circuit device is characterized in that the length of the parallel portion is set to td ≧ tr by the opposing arrangement.

[2]前記第1及び第2の差動伝送線路は、前記第1及び第2の半導体集積回路素子の積層面の近傍に配置されていることを特徴とする前記[1]に記載の半導体集積回路装置。
[3]前記第1及び第2の差動伝送線路は、終端または前記差動信号受信素子の接続端が前記第1及び第2の差動伝送線路の特性インピーダンスに等しい値の抵抗で終端されていることを特徴とする前記[1]に記載の半導体集積回路装置。
[4]前記第1及び第2の差動伝送線路は、相互に近接して配置した場合に比べ、幅広で十分な長さを有し、相互間の距離が最も遠くなる位置に配設されていることを特徴とする前記[1]に記載の半導体集積回路装置。
[5]前記第1及び第2の差動伝送線路は、それぞれの線幅が50μm以下であると共に前記平行に配設された2つの線路間隔が50μm以下であり、他方の差動伝送線路に対して均一に平行する部分の長さが500μm以下であることを特徴とする前記[1]に記載の半導体集積回路装置。
[6]前記一対の第2の差動伝送線路は、複数からなり、それぞれの一端に差動信号送信素子が接続され、他端に差動信号受信素子が接続されていることを特徴とする前記[1]に記載の半導体集積回路装置。
[7]前記第1の半導体集積回路素子は、前記差動信号送信素子が前記一対の第1の差動伝送線路の一端に接続されると共に他端に差動信号受信素子が接続され、
前記第2の半導体集積回路素子は、前記差動信号受信素子が前記一対の第2の差動伝送線路の一端に接続されると共に他端に差動信号送信素子が接続されていることを特徴とする前記[1]に記載の半導体集積回路装置。
[8]前記第1及び第2の半導体集積回路素子は、前記一対の第1及び第2の差動伝送線路の一端に差動信号送信素子と差動信号受信素子が並列に接続され、他端に終端抵抗が接続されていることを特徴とする前記[1]に記載の半導体集積回路装置。
[9]前記第1及び第2の半導体集積回路素子は、前記一対の第1及び第2の差動伝送線路が配線されたメタル配線層を有し、前記メタル配線層は相互に対向配置されていることを特徴とする前記[1]に記載の半導体集積回路装置。
[10]前記第1の半導体集積回路素子は、前記一対の第1の差動伝送線路と同様に構成された電源供給用の一対の第1の差動伝送線路と、前記電源供給用の一対の第1の差動伝送線路の一端に高周波電流を印加する発振手段とを備え、
前記第2の半導体集積回路素子は、前記一対の第2の差動伝送線路と同様に構成された電源供給用の一対の第2の差動伝送線路と、前記電源供給用の第2の差動伝送線路の終端に接続された整流回路とを備えることを特徴とする前記[1]に記載の半導体集積回路装置。
[11]前記差動信号受信素子は、前記差動入力端子に入力された差動信号の立ち上がり及び立下りのタイミングで論理を反転させることにより前記差動信号を復調するデータ復調回路が接続されていることを特徴とする前記[1]に記載の半導体集積回路装置。
[2] The semiconductor according to [1], wherein the first and second differential transmission lines are arranged in the vicinity of a stacked surface of the first and second semiconductor integrated circuit elements. Integrated circuit device.
[3] The first and second differential transmission lines are terminated or a connection end of the differential signal receiving element is terminated with a resistor having a value equal to the characteristic impedance of the first and second differential transmission lines. The semiconductor integrated circuit device according to [1], wherein the semiconductor integrated circuit device is provided.
[4] The first and second differential transmission lines are wider and have a sufficient length as compared to the case where they are arranged close to each other, and are arranged at positions where the distance between them is farthest. The semiconductor integrated circuit device according to [1], wherein the semiconductor integrated circuit device is provided.
[5] Each of the first and second differential transmission lines has a line width of 50 μm or less and an interval between the two lines arranged in parallel is 50 μm or less. The semiconductor integrated circuit device according to the above [1], wherein the length of the portion that is uniformly parallel to the portion is 500 μm or less.
[6] The pair of second differential transmission lines includes a plurality of differential signal transmitting elements connected to one end and a differential signal receiving element connected to the other end. The semiconductor integrated circuit device according to [1].
[7] In the first semiconductor integrated circuit element, the differential signal transmitting element is connected to one end of the pair of first differential transmission lines, and a differential signal receiving element is connected to the other end.
In the second semiconductor integrated circuit element, the differential signal receiving element is connected to one end of the pair of second differential transmission lines, and a differential signal transmitting element is connected to the other end. The semiconductor integrated circuit device according to [1].
[8] In the first and second semiconductor integrated circuit elements, a differential signal transmitting element and a differential signal receiving element are connected in parallel to one end of the pair of first and second differential transmission lines. The semiconductor integrated circuit device according to [1], wherein a terminal resistor is connected to an end.
[9] The first and second semiconductor integrated circuit elements each have a metal wiring layer to which the pair of first and second differential transmission lines are wired, and the metal wiring layers are arranged to face each other. The semiconductor integrated circuit device according to [1], wherein the semiconductor integrated circuit device is provided.
[10] The first semiconductor integrated circuit element includes a pair of first differential transmission lines for supplying power configured similarly to the pair of first differential transmission lines, and a pair of supplying power. Oscillation means for applying a high-frequency current to one end of the first differential transmission line,
The second semiconductor integrated circuit element includes a pair of second differential transmission lines for supplying power configured similarly to the pair of second differential transmission lines, and a second difference for supplying power. The semiconductor integrated circuit device according to [1], further comprising: a rectifier circuit connected to a terminal end of the dynamic transmission line.
[11] The differential signal receiving element is connected to a data demodulation circuit that demodulates the differential signal by inverting the logic at the rising and falling timings of the differential signal input to the differential input terminal. The semiconductor integrated circuit device according to [1], wherein the semiconductor integrated circuit device is provided.

請求項1の半導体集積回路装置によれば、半導体回路素子間の電気的干渉を抑制しながら無線接続を行うことができる。また、信号受信用の半導体素子が必要とする信号を確実に第1の半導体集積回路素子から第2の半導体集積回路素子へ伝送することができる。
請求項2の半導体集積回路装置によれば、第1の差動伝送線路と第2の差動伝送線路の容量性結合を容易に構成することができる。
請求項3の半導体集積回路装置によれば、伝送線路の特性インピーダンスを所望の値に保持することができる。
請求項4の半導体集積回路装置によれば、第1の差動伝送線路と第2の差動伝送線路を近接させて対向配置することなく電気的に結合させることができる。
請求項5の半導体集積回路装置によれば、周波数特性を有しない状態のもとでデータを伝送ことができる。
請求項6の半導体集積回路装置によれば、1つの伝送線路から複数の伝送線路へデータ伝送することができる。
請求項7の半導体集積回路装置によれば、第1の半導体集積回路素子と第2の半導体集積回路素子との間のいずれからも他方の半導体集積回路装置にデータを伝送することができる。
請求項8の半導体集積回路装置によれば、信号送信用の半導体素子と信号受信用の半導体素子が隣接した構成の半導体集積回路素子にすることができると共に、他端に半導体素子を接続しない構成にすることもできる。
請求項9の半導体集積回路装置によれば、第1及び第2の差動伝送線路を半導体集積回路素子と異なる層に形成できると共に、第1の差動伝送線路と第2の差動伝送線路を容易に近接させることができる。
請求項10の半導体集積回路装置によれば、信号受信用の半導体素子を搭載する半導体集積回路素子に電源を設けることなく、信号受信用の半導体素子を動作させることができる。
請求項11の半導体集積回路装置によれば、2値論理のデータを正確に復調することができる。
According to the semiconductor integrated circuit device of the first aspect, it is possible to perform wireless connection while suppressing electrical interference between the semiconductor circuit elements. In addition, a signal required by the signal receiving semiconductor element can be reliably transmitted from the first semiconductor integrated circuit element to the second semiconductor integrated circuit element.
According to the semiconductor integrated circuit device of the second aspect, the capacitive coupling between the first differential transmission line and the second differential transmission line can be easily configured.
According to the semiconductor integrated circuit device of the third aspect, the characteristic impedance of the transmission line can be maintained at a desired value.
According to the semiconductor integrated circuit device of the fourth aspect, the first differential transmission line and the second differential transmission line can be electrically coupled without being placed in close proximity to each other.
According to the semiconductor integrated circuit device of the fifth aspect, data can be transmitted in a state having no frequency characteristic.
According to the semiconductor integrated circuit device of the sixth aspect, data can be transmitted from one transmission line to a plurality of transmission lines.
According to the semiconductor integrated circuit device of the seventh aspect, data can be transmitted from either the first semiconductor integrated circuit device or the second semiconductor integrated circuit device to the other semiconductor integrated circuit device.
According to the semiconductor integrated circuit device of the eighth aspect, a semiconductor integrated circuit element having a configuration in which a signal transmitting semiconductor element and a signal receiving semiconductor element are adjacent to each other can be formed, and a semiconductor element is not connected to the other end. It can also be.
According to the semiconductor integrated circuit device of the ninth aspect, the first and second differential transmission lines can be formed in different layers from the semiconductor integrated circuit element, and the first differential transmission line and the second differential transmission line. Can be easily brought close together.
According to the semiconductor integrated circuit device of the tenth aspect, the signal receiving semiconductor element can be operated without providing a power source to the semiconductor integrated circuit element on which the signal receiving semiconductor element is mounted.
According to the semiconductor integrated circuit device of the eleventh aspect, binary logic data can be accurately demodulated.

本発明の第1の実施の形態に係る半導体集積回路装置を示す斜視図である。1 is a perspective view showing a semiconductor integrated circuit device according to a first embodiment of the present invention. 差動信号受信素子に接続されるデータ復調回路の回路図である。It is a circuit diagram of the data demodulation circuit connected to a differential signal receiving element. 図2のデータ復調回路の具体的な回路構成を示すブロック図である。FIG. 3 is a block diagram illustrating a specific circuit configuration of the data demodulation circuit of FIG. 2. 差動信号受信素子の動作を示す波形図である。It is a wave form diagram which shows operation | movement of a differential signal receiving element. 本発明の第2の実施の形態に係る半導体集積回路装置を示す断面図である。It is sectional drawing which shows the semiconductor integrated circuit device based on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る半導体集積回路装置を示す断面図である。It is sectional drawing which shows the semiconductor integrated circuit device based on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係る半導体集積回路装置を示す断面図である。It is sectional drawing which shows the semiconductor integrated circuit device based on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る半導体集積回路装置を示す接続図である。FIG. 10 is a connection diagram illustrating a semiconductor integrated circuit device according to a fifth embodiment of the present invention. 本発明の第6の実施の形態に係る半導体集積回路装置を示す接続図である。FIG. 10 is a connection diagram showing a semiconductor integrated circuit device according to a sixth embodiment of the present invention. 本発明の第7の実施の形態に係る半導体集積回路装置を示す接続図である。FIG. 10 is a connection diagram illustrating a semiconductor integrated circuit device according to a seventh embodiment of the present invention. 本発明の第8の実施の形態に係る半導体集積回路装置を示す接続図である。It is a connection diagram which shows the semiconductor integrated circuit device based on the 8th Embodiment of this invention. 本発明の第9の実施の形態に係る半導体集積回路装置を示す接続図であ。It is a connection diagram which shows the semiconductor integrated circuit device based on the 9th Embodiment of this invention. (a)、(b)は、本発明の実施例に係る伝達特性図である。(A), (b) is a transmission characteristic figure concerning the example of the present invention.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る半導体集積回路装置を示す斜視図である。同図においては、内部に配置する各部材の配置をわかり易くするため、内部に配置する各部材を実線で示している。
[First Embodiment]
FIG. 1 is a perspective view showing a semiconductor integrated circuit device according to the first embodiment of the present invention. In the figure, in order to make it easy to understand the arrangement of each member arranged inside, each member arranged inside is shown by a solid line.

(半導体集積回路装置の構成)
この半導体集積回路装置100は、データを送出する差動信号送信素子11を搭載した第1の半導体集積回路素子1と、データを受信する差動信号受信素子21を搭載すると共に薄厚のシリコン等からなる誘電体4を介して第1の半導体集積回路素子1に積層された第2の半導体集積回路素子2とを備えて構成されている。なお、第1および第1の2の半導体集積回路素子1,2との間に誘電体4を設けずに空間としてもよい。
(Configuration of semiconductor integrated circuit device)
The semiconductor integrated circuit device 100 includes a first semiconductor integrated circuit element 1 having a differential signal transmitting element 11 for transmitting data and a differential signal receiving element 21 for receiving data, and is made of thin silicon or the like. And a second semiconductor integrated circuit element 2 stacked on the first semiconductor integrated circuit element 1 with a dielectric 4 formed therebetween. A space may be provided without providing the dielectric 4 between the first and second semiconductor integrated circuit elements 1 and 2.

第1の半導体集積回路素子1は、誘電体4に面して差動信号送信素子11の差動出力端子に接続されると共に平行に配置された所定長の一対の第1の差動伝送線路12A,12Bと、第1の差動伝送線路12A,12Bの終端間に接続された終端抵抗13とを備えて構成されている。   The first semiconductor integrated circuit element 1 is connected to the differential output terminal of the differential signal transmission element 11 so as to face the dielectric 4 and is arranged in parallel with a pair of first differential transmission lines having a predetermined length. 12A and 12B, and a termination resistor 13 connected between the terminations of the first differential transmission lines 12A and 12B.

終端抵抗13は、第1の差動伝送線路12A,12Bの特性インピーダンスに等しい値の抵抗である。これにより、第1の半導体集積回路素子1の差動伝送線路12A,12Bは、擬似空中線のダミーロードと同様の原理で整合終端され、電磁界は近傍界で閉じられ、放射電磁界が生じない構成にできる。   The termination resistor 13 is a resistor having a value equal to the characteristic impedance of the first differential transmission lines 12A and 12B. As a result, the differential transmission lines 12A and 12B of the first semiconductor integrated circuit element 1 are matched and terminated on the same principle as the dummy load of the pseudo antenna, the electromagnetic field is closed in the near field, and no radiated electromagnetic field is generated. Can be configured.

第2の半導体集積回路素子2は、第1の差動伝送線路12A,12Bと同一の長さを有して第1の差動伝送線路12A,12Bに平行に重なる状態で誘電体4に面して配置され、かつ第1の差動伝送線路12A,12Bの終端側に差動信号受信素子21の差動入力端子が接続された一対の第2の差動伝送線路22A,22Bと、差動信号受信素子21の差動入力端子間に接続された終端抵抗23とを備えて構成されている。   The second semiconductor integrated circuit element 2 has the same length as the first differential transmission lines 12A and 12B, and faces the dielectric 4 in a state of overlapping in parallel with the first differential transmission lines 12A and 12B. And a pair of second differential transmission lines 22A and 22B in which the differential input terminal of the differential signal receiving element 21 is connected to the terminal side of the first differential transmission lines 12A and 12B, and the difference A termination resistor 23 connected between the differential input terminals of the dynamic signal receiving element 21 is provided.

終端抵抗23は、第2の差動伝送線路22A,22Bの特性インピーダンスに等しい値の抵抗である。これにより、第2の半導体集積回路素子2の差動伝送線路22A,22Bは、擬似空中線のダミーロードと同様の原理で整合終端され、電磁界は近傍界で閉じられ、放射電磁界が生じない構成にできる。   The termination resistor 23 is a resistor having a value equal to the characteristic impedance of the second differential transmission lines 22A and 22B. As a result, the differential transmission lines 22A and 22B of the second semiconductor integrated circuit element 2 are matched and terminated on the same principle as the dummy load of the pseudo antenna, the electromagnetic field is closed in the near field, and no radiated electromagnetic field is generated. Can be configured.

(データ復調回路の構成)
図2は、差動信号受信素子に接続されるデータ復調回路のブロック図である。データ復調回路30は、差動信号受信素子21の出力端に接続された第1,第2のスレッショルド検出手段31,32と、この第1,第2のスレッショルド検出手段31,32の両出力端に接続された論理反転手段33とを備えて構成されている。
(Configuration of data demodulation circuit)
FIG. 2 is a block diagram of a data demodulating circuit connected to the differential signal receiving element. The data demodulating circuit 30 includes first and second threshold detectors 31 and 32 connected to the output terminal of the differential signal receiving element 21 and both output terminals of the first and second threshold detectors 31 and 32. And a logic inversion means 33 connected to the.

(データ復調回路の具体的構成)
図3は、図2に示したデータ復調回路の具体的な回路構成を示す回路図である。このデータ復調回路30は、第1,第2のスレッショルド検出手段31,32としてのコンパレータ34,35と、論理反転手段33としてのR-S(リセット・セット)フリップフロップ(RS−FF)回路36とを備えて構成されている。
(Specific configuration of data demodulation circuit)
FIG. 3 is a circuit diagram showing a specific circuit configuration of the data demodulation circuit shown in FIG. The data demodulating circuit 30 includes comparators 34 and 35 as first and second threshold detection means 31 and 32, and an RS (reset set) flip-flop (RS-FF) circuit 36 as a logic inversion means 33. And is configured.

コンパレータ34,35は、差動演算増幅器を用いて構成されており、コンパレータ34の−入力端子には図示しない閾値設定回路から閾値VTH1が入力され、コンパレータ35の+入力端子には上記閾値設定回路から閾値VTH2が入力されている。また、コンパレータ34の出力信号はRSフリップフロップ回路36のS入力端子に入力され、コンパレータ35の出力信号はRSフリップフロップ回路36のR入力端子に入力されている。   The comparators 34 and 35 are configured using differential operational amplifiers. A threshold value VTH1 is input to a negative input terminal of the comparator 34 from a threshold setting circuit (not shown), and the threshold value setting circuit is supplied to a positive input terminal of the comparator 35. The threshold value VTH2 is input. The output signal of the comparator 34 is input to the S input terminal of the RS flip-flop circuit 36, and the output signal of the comparator 35 is input to the R input terminal of the RS flip-flop circuit 36.

なお、データ復調回路30は、上記した回路構成に限定されるものではなく、例えば、結合部分の微分特性を元に戻す積分回路を用いて元の台形波を復調する構成も可能である。   The data demodulating circuit 30 is not limited to the circuit configuration described above. For example, the data demodulating circuit 30 may be configured to demodulate the original trapezoidal wave using an integrating circuit that restores the differential characteristics of the coupling portion.

(半導体集積回路装置及びデータ復調回路の動作)
図4は、差動信号受信素子の動作を示す波形図である。図1〜図4を参照して、第1の実施の形態における半導体集積回路装置及びデータ復調回路の動作を説明する。
(Operation of semiconductor integrated circuit device and data demodulation circuit)
FIG. 4 is a waveform diagram showing the operation of the differential signal receiving element. The operation of the semiconductor integrated circuit device and the data demodulation circuit in the first embodiment will be described with reference to FIGS.

差動信号送信素子11から差動データ信号が出力されると、この差動データ信号は第1の差動伝送線路12A,12Bに出力され、その終端に向かって進行し、整合負荷となる終端抵抗13に到達する。   When a differential data signal is output from the differential signal transmission element 11, the differential data signal is output to the first differential transmission lines 12A and 12B, proceeds toward the terminal end, and becomes a matching load. The resistor 13 is reached.

同時に、差動データ信号は、第1の差動伝送線路12A,12Bを伝送する過程で、誘電体4により第2の差動伝送線路22A,22Bとの間に主として存在している静電容量を介して第2の差動伝送線路22A,22Bに伝達し、第2の差動伝送線路22A,22Bを介して差動信号受信素子21に入力すると共に、終端抵抗23により終端される。   At the same time, the capacitance of the differential data signal is mainly present between the second differential transmission lines 22A and 22B by the dielectric 4 in the process of transmitting the first differential transmission lines 12A and 12B. Is transmitted to the second differential transmission lines 22A and 22B, is input to the differential signal receiving element 21 via the second differential transmission lines 22A and 22B, and is terminated by the termination resistor 23.

差動信号受信素子21に入力された差動データ信号は差動信号受信素子21で増幅された後、第1,第2のスレッショルド検出手段31,32に入力される。また、第1,第2のスレッショルド検出手段31,32には、閾値VTH1,VTH2が入力される。   The differential data signal input to the differential signal receiving element 21 is amplified by the differential signal receiving element 21 and then input to the first and second threshold detection means 31 and 32. Further, threshold values VTH1 and VTH2 are input to the first and second threshold detection means 31 and 32, respectively.

図3の構成では、コンパレータ31の+入力端子及びコンパレータ32の−入力端子に差動データ信号が入力され、コンパレータ31の−入力端子及びコンパレータ32の+入力端子に閾値VTH1,VTH2が入力される。   In the configuration of FIG. 3, a differential data signal is input to the + input terminal of the comparator 31 and the − input terminal of the comparator 32, and threshold values VTH <b> 1 and VTH <b> 2 are input to the − input terminal of the comparator 31 and the + input terminal of the comparator 32. .

差動信号受信素子21が受信する信号は、半導体集積回路素子1,2間を結合する差動伝送線路12A,12B,22A,22Bの特性から、送信側からの信号の台形波を微分した形状になる。   The signal received by the differential signal receiving element 21 has a shape obtained by differentiating the trapezoidal wave of the signal from the transmission side from the characteristics of the differential transmission lines 12A, 12B, 22A, and 22B connecting the semiconductor integrated circuit elements 1 and 2. become.

このため、論理Lから論理Hへの変化点を第1のスレッショルド検出手段31で閾値VTH1を超えたことを検出し、また、論理Hから論理Lへの変化点を第2のスレッショルド検出手段32でVTH2を超えたことを検出し、論理反転手段33(RSフリップフロップ回路36)の出力を論理Lから論理Hへの変化点でHに、また、論理Hから論理Lへの変化点でLに変化させることにより、図4に示すように、元の2値論理(送信信号)を復調している。   Therefore, it is detected by the first threshold detection means 31 that the change point from the logic L to the logic H has exceeded the threshold value VTH1, and the change point from the logic H to the logic L is detected by the second threshold detection means 32. VTH2 is detected and the output of the logic inversion means 33 (RS flip-flop circuit 36) is changed to H at the change point from the logic L to the logic H, and to L at the change point from the logic H to the logic L. By changing to, the original binary logic (transmission signal) is demodulated as shown in FIG.

[第2の実施の形態]
図5は、本発明の第2の実施の形態に係る半導体集積回路装置を示す断面図である。
[Second Embodiment]
FIG. 5 is a sectional view showing a semiconductor integrated circuit device according to the second embodiment of the present invention.

(半導体集積回路装置の構成)
本実施の形態は、第1の実施の形態において、第1,第2の半導体集積回路素子1,2のそれぞれに差動信号送信素子及び差動信号受信素子を設ける構成にしたものであり、その他の構成は第1の実施の形態と同様である。なお、第1および第1の2の半導体集積回路素子1,2との間に誘電体4を設けずに空間としてもよい。
(Configuration of semiconductor integrated circuit device)
In the first embodiment, the first and second semiconductor integrated circuit elements 1 and 2 are each provided with a differential signal transmitting element and a differential signal receiving element in the first embodiment. Other configurations are the same as those of the first embodiment. A space may be provided without providing the dielectric 4 between the first and second semiconductor integrated circuit elements 1 and 2.

第1の半導体集積回路素子1は、第1の差動伝送線路12A,12Bが設けられたメタル配線層15と、差動信号送信素子11及び差動信号受信素子14が設けられた半導体集積回路層16とから構成されている。   The first semiconductor integrated circuit element 1 is a semiconductor integrated circuit in which a metal wiring layer 15 provided with first differential transmission lines 12A and 12B, a differential signal transmitting element 11 and a differential signal receiving element 14 are provided. Layer 16.

第2の半導体集積回路素子2は、一端に差動信号受信素子21及び終端抵抗23が接続された第2の差動伝送線路22A,22Bが設けられたメタル配線層25と、差動信号受信素子21と共に第2の差動伝送線路22A,22Bの他端に接続された差動信号送信素子24が設けられた半導体集積回路層26とから構成されている。差動信号送信素子24には、図2、図3に示したデータ復調回路30と同様のデータ復調回路が接続されている。   The second semiconductor integrated circuit element 2 includes a metal wiring layer 25 provided with second differential transmission lines 22A and 22B each having a differential signal receiving element 21 and a terminating resistor 23 connected to one end, and a differential signal receiving. It comprises a semiconductor integrated circuit layer 26 provided with a differential signal transmission element 24 connected to the other end of the second differential transmission lines 22A and 22B together with the element 21. A data demodulating circuit similar to the data demodulating circuit 30 shown in FIGS. 2 and 3 is connected to the differential signal transmitting element 24.

第1の差動伝送線路12A,12Bは、接続用電極17A〜17Dを介して差動信号送信素子11及び差動信号受信素子14に接続されている。   The first differential transmission lines 12A and 12B are connected to the differential signal transmitting element 11 and the differential signal receiving element 14 via connection electrodes 17A to 17D.

第2の差動伝送線路22A,22Bは、接続用電極27A〜27Dを介して差動信号送信素子24及び差動信号受信素子21に接続されている。   The second differential transmission lines 22A and 22B are connected to the differential signal transmitting element 24 and the differential signal receiving element 21 via connection electrodes 27A to 27D.

(半導体集積回路装置の動作)
次に、第2の実施の形態における半導体集積回路装置の動作を説明する。
(Operation of semiconductor integrated circuit device)
Next, the operation of the semiconductor integrated circuit device according to the second embodiment will be described.

(差動信号送信素子11から差動信号受信素子21への伝送)
差動信号送信素子11から差動データ信号が出力されると、この差動データ信号は接続用電極17A,17Bを介して第1の差動伝送線路12A,12Bに出力され、その終端に向かって進行した後、接続用電極17C,17Dを介して終端抵抗13で終端されると共に差動信号受信素子14に入力される。
(Transmission from the differential signal transmitting element 11 to the differential signal receiving element 21)
When a differential data signal is output from the differential signal transmission element 11, the differential data signal is output to the first differential transmission lines 12A and 12B via the connection electrodes 17A and 17B, and toward the terminal. Then, the signal is terminated by the termination resistor 13 through the connection electrodes 17C and 17D and input to the differential signal receiving element 14.

なお、差動信号受信素子14においては、差動信号送信素子11からの差動データ信号を受信することも、受信を拒否することも可能である。   Note that the differential signal receiving element 14 can receive the differential data signal from the differential signal transmitting element 11 or can reject the reception.

同時に、差動信号送信素子11からの差動データ信号は、第1の差動伝送線路12A,12Bを伝送する過程で、誘電体4により第2の差動伝送線路22A,22Bとの間に主として静電容量が存在していることから、第2の差動伝送線路22A,22Bに伝達し、接続用電極27C,27Dを介して差動信号受信素子21に入力する。   At the same time, the differential data signal from the differential signal transmission element 11 is transmitted between the second differential transmission lines 22A and 22B by the dielectric 4 in the process of transmitting the first differential transmission lines 12A and 12B. Since the capacitance is mainly present, the signal is transmitted to the second differential transmission lines 22A and 22B and input to the differential signal receiving element 21 via the connection electrodes 27C and 27D.

差動信号受信素子21に入力した差動データ信号は、差動信号受信素子21で増幅された後、図2、図3に示したデータ復調回路30により第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 21 is amplified by the differential signal receiving element 21 and then processed by the data demodulating circuit 30 shown in FIGS. 2 and 3 according to the first embodiment. Is done.

(差動信号送信素子24から差動信号受信素子14への伝送)
次に、差動信号送信素子24から差動データ信号が出力されると、この差動データ信号は、接続用電極27A,27Bを介して第2の差動伝送線路22A,22Bに出力され、その終端に向かって進行し、接続用電極27C,27Dを介して終端抵抗23で終端されると共に差動信号受信素子21に入力される。
(Transmission from the differential signal transmitting element 24 to the differential signal receiving element 14)
Next, when a differential data signal is output from the differential signal transmission element 24, the differential data signal is output to the second differential transmission lines 22A and 22B via the connection electrodes 27A and 27B. Proceeding toward the termination, the termination resistor 23 is terminated via the connection electrodes 27C and 27D and the differential signal receiving element 21 is input.

なお、差動信号受信素子21においては、差動信号送信素子24からの差動データ信号を受信することも、拒否することも可能である。   The differential signal receiving element 21 can receive or reject the differential data signal from the differential signal transmitting element 24.

同時に、差動信号送信素子24からの差動データ信号は、第2の差動伝送線路22A,22Bを伝送する過程で、誘電体4により第1の差動伝送線路12A,12Bとの間に存在している静電容量を介して第1の差動伝送線路12A,12Bに伝達し、接続用電極17C,17Dを介して差動信号受信素子14に入力する。   At the same time, the differential data signal from the differential signal transmission element 24 is transmitted between the first differential transmission lines 12A and 12B by the dielectric 4 in the process of transmitting the second differential transmission lines 22A and 22B. The signal is transmitted to the first differential transmission lines 12A and 12B via the existing capacitance, and input to the differential signal receiving element 14 via the connection electrodes 17C and 17D.

差動信号受信素子14に入力された差動データ信号は、差動信号受信素子14で増幅された後、図2、図3に示したデータ復調回路30と同様のデータ復調回路により、第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 14 is amplified by the differential signal receiving element 14 and then the first data demodulating circuit similar to the data demodulating circuit 30 shown in FIGS. The processing described in the embodiment is performed.

[第3の実施の形態]
図6は、本発明の第3の実施の形態に係る半導体集積回路装置を示す断面図である。
[Third Embodiment]
FIG. 6 is a sectional view showing a semiconductor integrated circuit device according to the third embodiment of the present invention.

(半導体集積回路装置の構成)
本実施の形態は、第2の実施の形態において、第2の半導体集積回路素子2に誘電体5を介して第3の半導体集積回路素子3を積層すると共に、第1,第2の半導体集積回路素子1,2の層構造及び素子配置を変更し、更に、第2の半導体集積回路素子2に差動信号送信素子、差動伝送線路及び差動信号受信素子を増設したものであり、その他の構成は第2の実施の形態と同様である。なお、第1および第1の2の半導体集積回路素子1,2との間に誘電体4を設けずに空間としてもよく、第2および第3の2の半導体集積回路素子2,3との間に誘電体5を設けずに空間としてもよい。
(Configuration of semiconductor integrated circuit device)
In the present embodiment, in the second embodiment, the third semiconductor integrated circuit element 3 is laminated on the second semiconductor integrated circuit element 2 via the dielectric 5, and the first and second semiconductor integrated circuits are stacked. The layer structure and the element arrangement of the circuit elements 1 and 2 are changed, and further, a differential signal transmitting element, a differential transmission line and a differential signal receiving element are added to the second semiconductor integrated circuit element 2, and others The configuration is the same as that of the second embodiment. A space may be provided without providing the dielectric 4 between the first and first two semiconductor integrated circuit elements 1, 2. It is good also as space without providing the dielectric material 5 in between.

即ち、第1の半導体集積回路素子1は、誘電体4側に配設された背面配線層101と、背面配線層101上に順次設けられた半導体集積回路層102及びメタル配線層103とからなる積層構造になっている。   That is, the first semiconductor integrated circuit element 1 includes a back wiring layer 101 disposed on the dielectric 4 side, and a semiconductor integrated circuit layer 102 and a metal wiring layer 103 sequentially provided on the back wiring layer 101. It has a laminated structure.

背面配線層101は、第1の差動伝送線路12A,12Bを備えている。   The back wiring layer 101 includes first differential transmission lines 12A and 12B.

半導体集積回路層102は、第1の差動伝送線路12A,12Bに一端が接続された貫通電極41A,41B,41C,41Dと、貫通電極41A,41Bの他端に接続された差動信号送信素子11と、貫通電極41C,41Dの他端に接続された差動信号受信素子14及び差動信号受信素子14の差動入力端子間に接続された終端抵抗13を備えている。   The semiconductor integrated circuit layer 102 includes a through electrode 41A, 41B, 41C, 41D having one end connected to the first differential transmission line 12A, 12B, and a differential signal transmission connected to the other end of the through electrode 41A, 41B. An element 11, a differential signal receiving element 14 connected to the other end of the through electrodes 41 </ b> C and 41 </ b> D, and a termination resistor 13 connected between the differential input terminals of the differential signal receiving element 14 are provided.

メタル配線層103には、貫通電極41A〜41Dに接続された接続用電極17A,17B,17C,17Dが設けられている。   The metal wiring layer 103 is provided with connection electrodes 17A, 17B, 17C, and 17D connected to the through electrodes 41A to 41D.

また、第2の半導体集積回路素子2は、誘電体5側に配設された背面配線層201と、背面配線層201上に順次設けられた半導体集積回路層202及びメタル配線層203とからなる積層構造になっている。   The second semiconductor integrated circuit element 2 includes a back wiring layer 201 disposed on the dielectric 5 side, a semiconductor integrated circuit layer 202 and a metal wiring layer 203 sequentially provided on the back wiring layer 201. It has a laminated structure.

背面配線層201は、誘電体5に面して設けられた第3の差動伝送線路42A,42Bを備えている。   The back wiring layer 201 includes third differential transmission lines 42 </ b> A and 42 </ b> B provided facing the dielectric 5.

半導体集積回路層202は、差動信号受信素子21と、差動信号送信素子24,43と、差動信号受信素子44と、貫通電極45A,45B,45C,45Dと、差動信号送信素子21,43の各差動入力端子間に接続された終端抵抗23,46とを備えている。   The semiconductor integrated circuit layer 202 includes a differential signal receiving element 21, differential signal transmitting elements 24 and 43, a differential signal receiving element 44, through electrodes 45A, 45B, 45C and 45D, and a differential signal transmitting element 21. , 43 are provided with termination resistors 23 and 46 connected between the differential input terminals.

メタル配線層203は、第1の差動伝送線路12A,12Bに対向配置された第2の差動伝送線路22A,22Bと、第2の差動伝送線路22A,22Bの両端に接続された接続用電極27A,27B,27C,27Dと、差動信号送信素子43及び差動信号受信素子44に接続された接続用電極47A,47B,47C,47Dとを備えている。   The metal wiring layer 203 is connected to the second differential transmission lines 22A and 22B opposite to the first differential transmission lines 12A and 12B, and to both ends of the second differential transmission lines 22A and 22B. Electrodes 27A, 27B, 27C, and 27D, and connection electrodes 47A, 47B, 47C, and 47D connected to the differential signal transmitting element 43 and the differential signal receiving element 44.

第3の半導体集積回路素子3は、誘電体5側に配設された背面配線層301と、背面配線層301上に積層された半導体集積回路層302とからなる。   The third semiconductor integrated circuit element 3 includes a back wiring layer 301 disposed on the dielectric 5 side and a semiconductor integrated circuit layer 302 stacked on the back wiring layer 301.

背面配線層301には、第3の差動伝送線路42A,42Bに対面配置された第4の差動伝送線路49A,49Bと、この第4の差動伝送線路49A,49Bの両端に接続された接続用電極50A,50B,50C,50Dとを備えている。   The back wiring layer 301 is connected to the fourth differential transmission lines 49A, 49B facing the third differential transmission lines 42A, 42B and to both ends of the fourth differential transmission lines 49A, 49B. Connection electrodes 50A, 50B, 50C, and 50D.

半導体集積回路層302は、接続用電極50A,50Bに接続された差動信号送信素子51と、接続用電極50C,50Dに接続された差動信号受信素子52と、差動信号受信素子52の差動入力端子間に接続された終端抵抗53とを備えている。   The semiconductor integrated circuit layer 302 includes a differential signal transmission element 51 connected to the connection electrodes 50A and 50B, a differential signal reception element 52 connected to the connection electrodes 50C and 50D, and a differential signal reception element 52. And a terminating resistor 53 connected between the differential input terminals.

(半導体集積回路装置の動作)
次に、第3の実施の形態における半導体集積回路装置の動作を説明する。
(Operation of semiconductor integrated circuit device)
Next, the operation of the semiconductor integrated circuit device in the third embodiment will be described.

(差動信号送信素子11から差動信号受信素子21への伝送)
第1の半導体集積回路素子1の差動信号送信素子11から差動データ信号が出力されると、この差動データ信号は接続用電極17A,17B及び貫通電極41A,41Bを介して第1の差動伝送線路12A,12Bに出力され、その終端に向かって進行した後、貫通電極41C,41D及び接続用電極17C,17Dを介して終端抵抗13で終端されると共に、差動信号受信素子14に入力される。
(Transmission from the differential signal transmitting element 11 to the differential signal receiving element 21)
When a differential data signal is output from the differential signal transmitting element 11 of the first semiconductor integrated circuit element 1, the differential data signal is transmitted through the connection electrodes 17A and 17B and the through electrodes 41A and 41B to the first. After being output to the differential transmission lines 12A and 12B and proceeding toward the termination, the differential transmission lines 12A and 12B are terminated by the termination resistor 13 through the through electrodes 41C and 41D and the connection electrodes 17C and 17D, and the differential signal receiving element 14 Is input.

なお、差動信号受信素子14においては、差動信号送信素子11からの差動データ信号を受信することも、受信を拒否することも可能である。   Note that the differential signal receiving element 14 can receive the differential data signal from the differential signal transmitting element 11 or can reject the reception.

同時に、差動信号送信素子11からの差動データ信号は、第1の差動伝送線路12A,12Bを伝送する過程で、誘電体4により第2の差動伝送線路22A,22Bとの間に存在している静電容量を介して第2の差動伝送線路22A,22Bに伝達し、接続用電極27C,27Dを介して差動信号受信素子21に入力する。   At the same time, the differential data signal from the differential signal transmission element 11 is transmitted between the second differential transmission lines 22A and 22B by the dielectric 4 in the process of transmitting the first differential transmission lines 12A and 12B. The signal is transmitted to the second differential transmission lines 22A and 22B via the existing capacitance, and input to the differential signal receiving element 21 via the connection electrodes 27C and 27D.

差動信号受信素子21に入力した差動データ信号は、差動信号受信素子21で増幅された後、図2、図3に示したデータ復調回路30により、第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 21 is amplified by the differential signal receiving element 21 and then explained in the first embodiment by the data demodulation circuit 30 shown in FIGS. Processing is performed.

(差動信号送信素子24から差動信号受信素子14への伝送)
次に、第2の半導体集積回路素子2の差動信号送信素子24から差動データ信号が出力されると、この差動データ信号は、接続用電極27A,27Bを介して第2の差動伝送線路22A,22Bに出力され、終端に向かって進行した後、接続用電極27C,27Dを介して終端抵抗23で終端されると共に、差動信号受信素子21に入力される。
(Transmission from the differential signal transmitting element 24 to the differential signal receiving element 14)
Next, when a differential data signal is output from the differential signal transmission element 24 of the second semiconductor integrated circuit element 2, the differential data signal is transmitted through the connection electrodes 27A and 27B to the second differential signal. After being output to the transmission lines 22A and 22B and proceeding toward the termination, the signal is terminated by the termination resistor 23 via the connection electrodes 27C and 27D and also input to the differential signal receiving element 21.

なお、差動信号受信素子21においては、差動信号送信素子24からの差動データ信号を受信することも、受信を拒否することも可能である。   Note that the differential signal receiving element 21 can receive the differential data signal from the differential signal transmitting element 24 or can reject the reception.

同時に、差動信号送信素子24からの差動データ信号は、第2の差動伝送線路22A,22Bを伝送する過程で、誘電体4により第1の差動伝送線路12A,12Bとの間に主として存在している静電容量を介して第1の差動伝送線路12A,12Bに伝達し、貫通電極41C,41D及び接続用電極17C,17Dを介して差動信号受信素子14に入力する。   At the same time, the differential data signal from the differential signal transmission element 24 is transmitted between the first differential transmission lines 12A and 12B by the dielectric 4 in the process of transmitting the second differential transmission lines 22A and 22B. The signal is transmitted to the first differential transmission lines 12A and 12B mainly through the existing capacitance, and is input to the differential signal receiving element 14 through the through electrodes 41C and 41D and the connection electrodes 17C and 17D.

差動信号受信素子14に入力した差動データ信号は、差動信号受信素子14で増幅された後、図2、図3に示したデータ復調回路30と同様のデータ復調回路により、第1の実施の形態で説明した処理が行われる。   After the differential data signal input to the differential signal receiving element 14 is amplified by the differential signal receiving element 14, the first data demodulating circuit similar to the data demodulating circuit 30 shown in FIGS. The processing described in the embodiment is performed.

(差動信号送信素子43から差動信号受信素子52への伝送)
次に、差動信号送信素子43から差動データ信号が出力されると、この差動データ信号は、接続用電極47A,47B及び貫通電極45A,45Bを介して第3の差動伝送線路42A,42Bに出力され、その終端に向かって進行した後、貫通電極45C,45D及び接続用電極47C,47Dを介して終端抵抗46で終端されると共に、差動信号受信素子44に入力される。
(Transmission from the differential signal transmitting element 43 to the differential signal receiving element 52)
Next, when a differential data signal is output from the differential signal transmitting element 43, the differential data signal is transmitted to the third differential transmission line 42A via the connection electrodes 47A and 47B and the through electrodes 45A and 45B. , 42B and proceeding toward the end thereof, and then terminated by the termination resistor 46 through the through electrodes 45C, 45D and the connection electrodes 47C, 47D, and input to the differential signal receiving element 44.

同時に、差動信号送信素子43からの差動データ信号は、第3の差動伝送線路42A,42Bを伝送する過程で、誘電体5により第4の差動伝送線路49A,49Bとの間に存在している静電容量を介して第4の差動伝送線路49A,49Bに伝達し、接続用電極50C,50Dを介して差動信号受信素子52に入力する。   At the same time, the differential data signal from the differential signal transmission element 43 is transmitted between the fourth differential transmission lines 49A and 49B by the dielectric 5 in the process of transmitting the third differential transmission lines 42A and 42B. The signal is transmitted to the fourth differential transmission lines 49A and 49B through the existing capacitance, and is input to the differential signal receiving element 52 through the connection electrodes 50C and 50D.

差動信号受信素子52に入力した差動データ信号は、差動信号受信素子52で増幅された後、図2、図3に示したデータ復調回路30と同様のデータ復調回路により、第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 52 is amplified by the differential signal receiving element 52 and then the first data demodulating circuit similar to the data demodulating circuit 30 shown in FIGS. The processing described in the embodiment is performed.

(差動信号送信素子51から差動信号受信素子44への伝送)
次に、差動信号送信素子51から差動データ信号が出力されると、この差動データ信号は、接続用電極50A,50Bを介して第4の差動伝送線路49A,49Bに出力され、終端に向かって進行した後、接続用電極50C,50Dを介して終端抵抗53で終端されると共に、差動信号受信素子52に入力される。
(Transmission from the differential signal transmitting element 51 to the differential signal receiving element 44)
Next, when a differential data signal is output from the differential signal transmitting element 51, the differential data signal is output to the fourth differential transmission lines 49A and 49B via the connection electrodes 50A and 50B. After proceeding toward the termination, the termination resistor 53 is terminated via the connection electrodes 50C and 50D and the differential signal receiving element 52 is input.

なお、差動信号受信素子52においては、差動信号送信素子51からの差動データ信号を受信することも、受信を拒否することも可能である。   Note that the differential signal receiving element 52 can receive the differential data signal from the differential signal transmitting element 51 or reject the reception.

同時に、差動信号送信素子51からの差動データ信号は、第4の差動伝送線路49A,49Bを伝送する過程で、誘電体5により第3の差動伝送線路42A,42Bとの間に存在している静電容量を介して第3の差動伝送線路42A,42Bに伝達し、貫通電極45C,45D及び接続用電極47C,47Dを介して差動信号受信素子44に入力する。   At the same time, the differential data signal from the differential signal transmission element 51 is transmitted between the third differential transmission lines 42A and 42B by the dielectric 5 in the process of transmitting the fourth differential transmission lines 49A and 49B. The signal is transmitted to the third differential transmission lines 42A and 42B through the existing capacitance, and is input to the differential signal receiving element 44 through the through electrodes 45C and 45D and the connection electrodes 47C and 47D.

差動信号受信素子44に入力した差動データ信号は、差動信号受信素子44で増幅された後、図2、図3に示したデータ復調回路30と同様のデータ復調回路により、第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 44 is amplified by the differential signal receiving element 44 and then the first data demodulating circuit similar to the data demodulating circuit 30 shown in FIGS. The processing described in the embodiment is performed.

以上のように、半導体集積回路装置100は、半導体集積回路素子が何層になっても、層間で双方向のデータ伝送が行えるようになっている。   As described above, the semiconductor integrated circuit device 100 can perform bidirectional data transmission between layers regardless of the number of semiconductor integrated circuit elements.

[第4の実施の形態]
図7は、本発明の第4の実施の形態に係る半導体集積回路装置を示す断面図である。
[Fourth Embodiment]
FIG. 7 is a sectional view showing a semiconductor integrated circuit device according to the fourth embodiment of the present invention.

(半導体集積回路装置の構成)
この半導体集積回路装置100は、第2の実施の形態と同様に、第1〜第3の半導体集積回路素子1〜3を積層した構成を有するが、メタル配線層が対面する配置にせず、半導体集積回路層とメタル配線層が交互になるように配置したものである。そして、第1〜第3の半導体集積回路素子1〜3のメタル配線層は、共に上側に配置されている。なお、第1および第1の2の半導体集積回路素子1,2との間に誘電体4を設けずに空間としてもよく、第2および第3の2の半導体集積回路素子2,3との間に誘電体5を設けずに空間としてもよい。
(Configuration of semiconductor integrated circuit device)
Similar to the second embodiment, the semiconductor integrated circuit device 100 has a configuration in which the first to third semiconductor integrated circuit elements 1 to 3 are stacked. However, the semiconductor integrated circuit device 100 is not arranged so that the metal wiring layers face each other. The integrated circuit layers and the metal wiring layers are alternately arranged. The metal wiring layers of the first to third semiconductor integrated circuit elements 1 to 3 are both arranged on the upper side. A space may be provided without providing the dielectric 4 between the first and first two semiconductor integrated circuit elements 1, 2. It is good also as space without providing the dielectric material 5 in between.

即ち、第1の半導体集積回路素子1は、差動信号送信素子11及び差動信号受信素子14を備えた半導体集積回路層104と、前記各実施の形態に比べて線幅を大きくし、かつ長さを延ばした第1の差動伝送線路55A,55B、及び第1の差動伝送線路55A,55Bの両端に接続された接続用電極56A,56B,56C,56Dを備えたメタル配線層105とを積層して構成されている。   That is, the first semiconductor integrated circuit element 1 includes a semiconductor integrated circuit layer 104 including the differential signal transmitting element 11 and the differential signal receiving element 14, a line width larger than that of each of the embodiments, and Metal wiring layer 105 including first differential transmission lines 55A and 55B having an extended length and connection electrodes 56A, 56B, 56C and 56D connected to both ends of the first differential transmission lines 55A and 55B. Are laminated.

第2の半導体集積回路素子2は、差動信号受信素子21及び差動信号送信素子24を備えた半導体集積回路層204と、第1の差動伝送線路55A,55Bと同様の形状を有する第2の差動伝送線路57A,57B及び第2の差動伝送線路57A,57Bの両端に接続された接続用電極58A,58B,58C,58Dを備えたメタル配線層205とを積層して構成されている。   The second semiconductor integrated circuit element 2 has the same shape as the semiconductor integrated circuit layer 204 including the differential signal receiving element 21 and the differential signal transmitting element 24 and the first differential transmission lines 55A and 55B. Two differential transmission lines 57A, 57B and a metal wiring layer 205 having connection electrodes 58A, 58B, 58C, 58D connected to both ends of the second differential transmission lines 57A, 57B are laminated. ing.

また、第3の半導体集積回路素子3は、差動信号送信素子52及び差動信号受信素子51を備えた半導体集積回路層303と、第1の差動伝送線路55A,55Bと同様の形状を有する第3の差動伝送線路59A,59B及び第3の差動伝送線路59A,59Bの両端に接続された接続用電極60A,60B,60C,60Dを備えた背面配線層304とを積層して構成されている。   The third semiconductor integrated circuit element 3 has the same shape as the semiconductor integrated circuit layer 303 including the differential signal transmitting element 52 and the differential signal receiving element 51, and the first differential transmission lines 55A and 55B. The third differential transmission line 59A, 59B and the back wiring layer 304 having connection electrodes 60A, 60B, 60C, 60D connected to both ends of the third differential transmission line 59A, 59B are laminated. It is configured.

なお、図7においては、差動信号受信素子14,21,52のそれぞれの差動信号入力端子に接続される各終端抵抗の図示を省略している。   In FIG. 7, illustration of the termination resistors connected to the differential signal input terminals of the differential signal receiving elements 14, 21, 52 is omitted.

(半導体集積回路装置の動作)
次に、第4の実施の形態における半導体集積回路装置の動作を説明する。
(Operation of semiconductor integrated circuit device)
Next, the operation of the semiconductor integrated circuit device according to the fourth embodiment will be described.

(差動信号送信素子11から差動信号受信素子21への伝送)
第1の半導体集積回路素子1の差動信号送信素子11から差動データ信号が出力されると、この差動データ信号は接続用電極56A,56Bを介して第1の差動伝送線路55A,55Bに出力され、その終端に向かって進行した後、接続用電極56C,56Dを介して終端抵抗で終端されると共に差動信号受信素子14に入力される。
(Transmission from the differential signal transmitting element 11 to the differential signal receiving element 21)
When a differential data signal is output from the differential signal transmitting element 11 of the first semiconductor integrated circuit element 1, the differential data signal is transmitted through the connection electrodes 56A and 56B to the first differential transmission line 55A, After being output to 55B and proceeding toward the terminal, it is terminated by a termination resistor via the connection electrodes 56C and 56D and is input to the differential signal receiving element 14.

なお、差動信号受信素子14においては、差動信号送信素子11からの差動データ信号を受信することも、受信を拒否することも可能である。   Note that the differential signal receiving element 14 can receive the differential data signal from the differential signal transmitting element 11 or can reject the reception.

同時に、第1の差動伝送線路55A,55Bと第2の差動伝送線路57A,57Bの間には、主として誘導結合が存在しているため、差動信号送信素子11からの差動データ信号は、第1の差動伝送線路55A,55Bから第2の差動伝送線路57A,57Bに伝達し、接続用電極58C,58Dを介して差動信号受信素子21に伝送される。   At the same time, since there is mainly inductive coupling between the first differential transmission lines 55A and 55B and the second differential transmission lines 57A and 57B, the differential data signal from the differential signal transmission element 11 is present. Is transmitted from the first differential transmission lines 55A and 55B to the second differential transmission lines 57A and 57B, and transmitted to the differential signal receiving element 21 via the connection electrodes 58C and 58D.

第1の差動伝送線路55A,55B及び第2の差動伝送線路57A,57Bとの間の結合を成す電磁界の広がりは、各々の半導体集積回路素子内部の個々の機能素子の動作に関わる電磁界の広がりに対して1桁以上大きいため、半導体集積回路素子1〜3の内部動作に影響を与えることはない。   The spread of the electromagnetic field forming the coupling between the first differential transmission lines 55A and 55B and the second differential transmission lines 57A and 57B relates to the operation of individual functional elements inside each semiconductor integrated circuit element. Since it is larger by one digit or more than the spread of the electromagnetic field, the internal operation of the semiconductor integrated circuit elements 1 to 3 is not affected.

差動信号受信素子21に入力された差動データ信号は、差動信号受信素子21で増幅された後、図2、図3に示したデータ復調回路30により、第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 21 is amplified by the differential signal receiving element 21, and then explained in the first embodiment by the data demodulating circuit 30 shown in FIGS. Processing is performed.

(差動信号送信素子24から差動信号受信素子14への伝送)
次に、第2の半導体集積回路素子2の差動信号送信素子24から差動データ信号が出力されると、この差動データ信号は、接続用電極58A,58Bを介して第2の差動伝送線路57A,57Bに出力され、その終端に向かって進行し、接続用電極58C,58Dを介して差動信号受信素子21に伝送される。
(Transmission from the differential signal transmitting element 24 to the differential signal receiving element 14)
Next, when a differential data signal is output from the differential signal transmission element 24 of the second semiconductor integrated circuit element 2, the differential data signal is supplied to the second differential signal via the connection electrodes 58A and 58B. The signals are output to the transmission lines 57A and 57B, travel toward the terminal ends, and are transmitted to the differential signal receiving element 21 through the connection electrodes 58C and 58D.

なお、差動信号受信素子21においては、差動信号送信素子24からの差動データ信号を受信することも、受信を拒否することも可能である。   Note that the differential signal receiving element 21 can receive the differential data signal from the differential signal transmitting element 24 or can reject the reception.

同時に、第2の差動伝送線路57A,57Bと第1の差動伝送線路55A,55Bの間には、主として誘導結合が存在しているため、差動信号送信素子24からの差動データ信号は、第2の差動伝送線路57A,57Bから第1の差動伝送線路55A,55Bに伝達し、接続用電極56C,56Dを介して差動信号受信素子14に伝送される。   At the same time, since there is mainly inductive coupling between the second differential transmission lines 57A and 57B and the first differential transmission lines 55A and 55B, a differential data signal from the differential signal transmission element 24 is present. Are transmitted from the second differential transmission lines 57A and 57B to the first differential transmission lines 55A and 55B, and transmitted to the differential signal receiving element 14 via the connection electrodes 56C and 56D.

差動信号受信素子14に入力した差動データ信号は、差動信号受信素子14で増幅された後、図2、図3に示したデータ復調回路30と同様のデータ復調回路により、第1の実施の形態で説明した処理が行われる。   After the differential data signal input to the differential signal receiving element 14 is amplified by the differential signal receiving element 14, the first data demodulating circuit similar to the data demodulating circuit 30 shown in FIGS. The processing described in the embodiment is performed.

第2の半導体集積回路素子2と第3の半導体集積回路素子3との間の通信も同様にして行われる。   Communication between the second semiconductor integrated circuit element 2 and the third semiconductor integrated circuit element 3 is performed in the same manner.

なお、第4の実施の形態においては、半導体回路素子の積層数は3個に限定されるものではなく、任意の数にすることができる。   In the fourth embodiment, the number of stacked semiconductor circuit elements is not limited to three, but can be any number.

[第5の実施の形態]
図8は、本発明の第5の実施の形態に係る半導体集積回路装置を示す接続図である。なお、図8においては、メタル配線層、半導体集積回路層及び誘電体の図示を省略している。また、誘電体を設けずに空間としてもよい。
[Fifth Embodiment]
FIG. 8 is a connection diagram showing a semiconductor integrated circuit device according to the fifth embodiment of the present invention. In FIG. 8, the metal wiring layer, the semiconductor integrated circuit layer, and the dielectric are not shown. Moreover, it is good also as space without providing a dielectric material.

図8の半導体集積回路装置100は、図5に示した第2の実施の形態において、差動信号受信素子21と差動信号送信素子24の配置を入れ換えたものである。以下に、信号伝送について説明する。   The semiconductor integrated circuit device 100 of FIG. 8 is obtained by replacing the arrangement of the differential signal receiving element 21 and the differential signal transmitting element 24 in the second embodiment shown in FIG. Below, signal transmission is demonstrated.

(半導体集積回路装置の動作)
(差動信号送信素子11から差動信号受信素子21への伝送)
差動信号送信素子11から差動データ信号が出力されると、この差動データ信号は第1の差動伝送線路12A,12Bに出力され、その終端に向かって進行した後、終端抵抗13で終端されると共に差動信号受信素子14に入力される。
(Operation of semiconductor integrated circuit device)
(Transmission from the differential signal transmitting element 11 to the differential signal receiving element 21)
When a differential data signal is output from the differential signal transmission element 11, this differential data signal is output to the first differential transmission lines 12A and 12B, and proceeds toward the end thereof. The signal is terminated and input to the differential signal receiving element 14.

なお、差動信号受信素子14においては、差動信号送信素子11からの差動データ信号を受信することも、受信を拒否することも可能である。   Note that the differential signal receiving element 14 can receive the differential data signal from the differential signal transmitting element 11 or can reject the reception.

同時に、差動信号送信素子11からの差動データ信号は、第1の差動伝送線路12A,12Bと第2の差動伝送線路22A,22Bの間の静電結合を介して第2の差動伝送線路22A,22Bに伝達し、終端抵抗23で終端されると共に差動信号受信素子21に入力する。   At the same time, the differential data signal from the differential signal transmission element 11 is transmitted through the second difference via the electrostatic coupling between the first differential transmission lines 12A and 12B and the second differential transmission lines 22A and 22B. The signals are transmitted to the dynamic transmission lines 22 </ b> A and 22 </ b> B, terminated by the termination resistor 23, and input to the differential signal receiving element 21.

差動信号受信素子21に入力した差動データ信号は、差動信号受信素子21で増幅された後、図2、図3に示したデータ復調回路30により第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 21 is amplified by the differential signal receiving element 21 and then processed by the data demodulating circuit 30 shown in FIGS. 2 and 3 according to the first embodiment. Is done.

(差動信号送信素子24から差動信号受信素子14への伝送)
次に、差動信号送信素子24から差動データ信号が出力されると、この差動データ信号は、第2の差動伝送線路22A,22Bへ出力され、その終端に向かって進行し、終端抵抗23で終端されると共に差動信号受信素子21に入力される。
(Transmission from the differential signal transmitting element 24 to the differential signal receiving element 14)
Next, when a differential data signal is output from the differential signal transmitting element 24, the differential data signal is output to the second differential transmission lines 22A and 22B, and proceeds toward the end of the differential data signal. The signal is terminated by the resistor 23 and input to the differential signal receiving element 21.

なお、差動信号受信素子21においては、差動信号送信素子24からの差動データ信号を受信することも、拒否することも可能である。   The differential signal receiving element 21 can receive or reject the differential data signal from the differential signal transmitting element 24.

同時に、差動信号送信素子24からの差動データ信号は、第2の差動伝送線路22A,22Bに静電結合された第1の差動伝送線路12A,12Bに伝達し、差動信号受信素子14に入力する。   At the same time, the differential data signal from the differential signal transmission element 24 is transmitted to the first differential transmission lines 12A and 12B that are electrostatically coupled to the second differential transmission lines 22A and 22B, and receives the differential signal. Input to the element 14.

差動信号受信素子14に入力された差動データ信号は、差動信号受信素子14で増幅された後、図2、図3に示したデータ復調回路30と同様のデータ復調回路により、第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 14 is amplified by the differential signal receiving element 14 and then the first data demodulating circuit similar to the data demodulating circuit 30 shown in FIGS. The processing described in the embodiment is performed.

[第6の実施の形態]
図9は、本発明の第6の実施の形態に係る半導体集積回路装置を示す接続図である。なお、図9においては、メタル配線層、半導体集積回路層及び誘電体の図示を省略している。また、誘電体を設けずに空間としてもよい。
[Sixth Embodiment]
FIG. 9 is a connection diagram showing a semiconductor integrated circuit device according to the sixth embodiment of the present invention. In FIG. 9, the metal wiring layer, the semiconductor integrated circuit layer, and the dielectric are not shown. Moreover, it is good also as space without providing a dielectric material.

図9の半導体集積回路装置100は、図8に示す第5の実施の形態の構成において、第1の差動伝送線路12A,12B及び第2の差動伝送線路22A,22Bの各一端間に終端抵抗18,28を接続し、第1の差動伝送線路12A,12Bの他端に差動信号送信素子11と差動信号受信素子14を並列接続すると共に、第2の差動伝送線路22A,22Bの他端に差動信号送信素子24と差動信号受信素子21を並列接続する構成にしたものである。以下に、信号伝送について説明する。   The semiconductor integrated circuit device 100 of FIG. 9 has the configuration of the fifth embodiment shown in FIG. 8 between one end of each of the first differential transmission lines 12A and 12B and the second differential transmission lines 22A and 22B. Terminating resistors 18 and 28 are connected, the differential signal transmitting element 11 and the differential signal receiving element 14 are connected in parallel to the other ends of the first differential transmission lines 12A and 12B, and the second differential transmission line 22A. , 22B, the differential signal transmitting element 24 and the differential signal receiving element 21 are connected in parallel. Below, signal transmission is demonstrated.

(半導体集積回路装置の動作)
(差動信号送信素子11から差動信号受信素子21への伝送)
差動信号送信素子11から差動データ信号が出力されると、この差動データ信号は終端抵抗13及び差動信号受信素子14に印加されると共に、第1の差動伝送線路12A,12Bへ出力され、その終端に向かって進行した後、終端抵抗18で終端される。
(Operation of semiconductor integrated circuit device)
(Transmission from the differential signal transmitting element 11 to the differential signal receiving element 21)
When a differential data signal is output from the differential signal transmitting element 11, the differential data signal is applied to the terminating resistor 13 and the differential signal receiving element 14, and to the first differential transmission lines 12A and 12B. After being output and proceeding toward its end, it is terminated with a termination resistor 18.

なお、差動信号受信素子14においては、差動信号送信素子11からの差動データ信号を受信することも、拒否することも可能である。   The differential signal receiving element 14 can receive or reject the differential data signal from the differential signal transmitting element 11.

同時に、差動信号送信素子11からの差動データ信号は、第1の差動伝送線路12A,12Bに主として静電結合された第2の差動伝送線路22A,22Bへ伝達し、両端に向かって進行する。第2の差動伝送線路22A,22Bの右側端で終端抵抗28により終端され、左側端で終端抵抗23により終端されると共に差動信号受信素子21に入力する。   At the same time, the differential data signal from the differential signal transmission element 11 is transmitted to the second differential transmission lines 22A and 22B mainly electrostatically coupled to the first differential transmission lines 12A and 12B, and directed toward both ends. And proceed. The second differential transmission lines 22 </ b> A and 22 </ b> B are terminated by the termination resistor 28 at the right end and terminated by the termination resistor 23 at the left end and input to the differential signal receiving element 21.

差動信号受信素子21に入力した差動データ信号は、差動信号受信素子21で増幅された後、図2、図3に示したデータ復調回路30により第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 21 is amplified by the differential signal receiving element 21 and then processed by the data demodulating circuit 30 shown in FIGS. 2 and 3 according to the first embodiment. Is done.

(差動信号送信素子24から差動信号受信素子14への伝送)
次に、差動信号送信素子24から出力された差動データ信号は、終端抵抗23及び差動信号受信素子21に印加されると共に、第2の差動伝送線路22A,22Bを介して終端抵抗28で終端される。
(Transmission from the differential signal transmitting element 24 to the differential signal receiving element 14)
Next, the differential data signal output from the differential signal transmitting element 24 is applied to the terminating resistor 23 and the differential signal receiving element 21 and also terminated via the second differential transmission lines 22A and 22B. Terminated at 28.

なお、差動信号受信素子21においては、差動信号送信素子24からの差動データ信号を受信することも、拒否することも可能である。   The differential signal receiving element 21 can receive or reject the differential data signal from the differential signal transmitting element 24.

同時に、差動信号送信素子24からの差動データ信号は、第2の差動伝送線路22A,22Bに主として静電結合された第1の差動伝送線路12A,12Bの両端に向かって進行する。第1の差動伝送線路12A,12Bの右側端で終端抵抗18により終端され、更に、左側端で終端抵抗13により終端されると共に差動信号受信素子14に入力する。   At the same time, the differential data signal from the differential signal transmission element 24 travels toward both ends of the first differential transmission lines 12A and 12B mainly electrostatically coupled to the second differential transmission lines 22A and 22B. . The first differential transmission lines 12 </ b> A and 12 </ b> B are terminated by the termination resistor 18 at the right end and further terminated by the termination resistor 13 at the left end and input to the differential signal receiving element 14.

差動信号受信素子14に入力された差動データ信号は、差動信号受信素子14で増幅された後、図2、図3に示したデータ復調回路30と同様のデータ復調回路により、第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 14 is amplified by the differential signal receiving element 14 and then the first data demodulating circuit similar to the data demodulating circuit 30 shown in FIGS. The processing described in the embodiment is performed.

[第7の実施の形態]
図10は、本発明の第7の実施の形態に係る半導体集積回路装置を示す接続図である。なお、図10においても、メタル配線層、半導体集積回路層及び誘電体の図示を省略している。また、誘電体を設けずに空間としてもよい。
[Seventh Embodiment]
FIG. 10 is a connection diagram showing a semiconductor integrated circuit device according to the seventh embodiment of the present invention. In FIG. 10, the metal wiring layer, the semiconductor integrated circuit layer, and the dielectric are not shown. Moreover, it is good also as space without providing a dielectric material.

図10の半導体集積回路装置100は、図9に示す第6の実施の形態の構成において、差動信号送信素子11、終端抵抗13及び差動信号受信素子14と、終端抵抗18を交換したものである。以下に、信号伝送について説明する。   The semiconductor integrated circuit device 100 of FIG. 10 is obtained by replacing the differential signal transmitting element 11, the terminating resistor 13, the differential signal receiving element 14, and the terminating resistor 18 in the configuration of the sixth embodiment shown in FIG. It is. Below, signal transmission is demonstrated.

(半導体集積回路装置の動作)
(差動信号送信素子11から差動信号受信素子21への伝送)
差動信号送信素子11から差動データ信号が出力されると、この差動データ信号は終端抵抗13及び差動信号受信素子14に印加されると共に、第1の差動伝送線路12A,12Bに出力され、その終端に向かって進行した後、終端抵抗18で終端される。
(Operation of semiconductor integrated circuit device)
(Transmission from the differential signal transmitting element 11 to the differential signal receiving element 21)
When a differential data signal is output from the differential signal transmitting element 11, the differential data signal is applied to the termination resistor 13 and the differential signal receiving element 14, and also to the first differential transmission lines 12A and 12B. After being output and proceeding toward its end, it is terminated with a termination resistor 18.

なお、差動信号受信素子14においては、差動信号送信素子11からの差動データ信号を受信することも、拒否することも可能である。   The differential signal receiving element 14 can receive or reject the differential data signal from the differential signal transmitting element 11.

同時に、差動信号送信素子11からの差動データ信号は、第1の差動伝送線路12A,12Bに主として静電結合された第2の差動伝送線路22A,22Bへ伝達し、両端に向かって進行する。第2の差動伝送線路22A,22Bの右側端で終端抵抗28により終端され、更に、左側端で終端抵抗23により終端されると共に差動信号受信素子21に入力する。   At the same time, the differential data signal from the differential signal transmission element 11 is transmitted to the second differential transmission lines 22A and 22B mainly electrostatically coupled to the first differential transmission lines 12A and 12B, and directed toward both ends. And proceed. The second differential transmission lines 22 </ b> A and 22 </ b> B are terminated by a termination resistor 28 at the right end and further terminated by a termination resistor 23 at the left end and input to the differential signal receiving element 21.

差動信号受信素子21に入力した差動データ信号は、差動信号受信素子21で増幅された後、図2、図3に示したデータ復調回路30により第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 21 is amplified by the differential signal receiving element 21 and then processed by the data demodulating circuit 30 shown in FIGS. 2 and 3 according to the first embodiment. Is done.

(差動信号送信素子24から差動信号受信素子14への伝送)
次に、差動信号送信素子24から差動データ信号が出力されると、この差動データ信号は、終端抵抗23及び差動信号受信素子21に印加されると共に、第2の差動伝送線路22A,22Bを介して終端抵抗28で終端される。
(Transmission from the differential signal transmitting element 24 to the differential signal receiving element 14)
Next, when a differential data signal is output from the differential signal transmitting element 24, the differential data signal is applied to the terminating resistor 23 and the differential signal receiving element 21, and the second differential transmission line. It is terminated with a termination resistor 28 via 22A and 22B.

なお、差動信号受信素子21においては、差動信号送信素子24から差動データ信号を受信することも、拒否することも可能である。   The differential signal receiving element 21 can receive or reject the differential data signal from the differential signal transmitting element 24.

同時に、差動信号送信素子24からの差動データ信号は、第2の差動伝送線路22A,22Bに主として静電結合された第1の差動伝送線路12A,12Bの両端に向かって進行する。第1の差動伝送線路12A,12Bの左側端で終端抵抗18により終端され、更に、右側端で終端抵抗13により終端されると共に差動信号受信素子14に入力する。   At the same time, the differential data signal from the differential signal transmission element 24 travels toward both ends of the first differential transmission lines 12A and 12B mainly electrostatically coupled to the second differential transmission lines 22A and 22B. . The first differential transmission lines 12 </ b> A and 12 </ b> B are terminated at the left end by the termination resistor 18, and further terminated at the right end by the termination resistor 13 and input to the differential signal receiving element 14.

差動信号受信素子14に入力された差動データ信号は、差動信号受信素子14で増幅された後、図2、図3に示したデータ復調回路30と同様のデータ復調回路により、第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 14 is amplified by the differential signal receiving element 14 and then the first data demodulating circuit similar to the data demodulating circuit 30 shown in FIGS. The processing described in the embodiment is performed.

[第8の実施の形態]
図11は、本発明の第8の実施の形態に係る半導体集積回路装置を示す接続図である。本実施の形態は、第1の差動伝送線路12A,12Bを前記各実施の形態に比べて長くし、更に、図5の第2の実施の形態に示した第2の半導体集積回路素子2における各部材の3組分からなる第5〜第7の差動伝送線路80A,80B,81A,81B,82A,82Bを第1の差動伝送線路12A,12Bに対向させて所定間隔に配置したものである。
[Eighth Embodiment]
FIG. 11 is a connection diagram showing a semiconductor integrated circuit device according to the eighth embodiment of the present invention. In the present embodiment, the first differential transmission lines 12A and 12B are made longer than those in the above embodiments, and the second semiconductor integrated circuit element 2 shown in the second embodiment in FIG. The fifth to seventh differential transmission lines 80A, 80B, 81A, 81B, 82A, 82B made up of three sets of the respective members are arranged at predetermined intervals so as to face the first differential transmission lines 12A, 12B. It is.

そして、第5の差動伝送線路80A,80Bの両端に差動信号送信素子91A及び差動信号受信素子92Aを接続し、第6の差動伝送線路81A,81Bの両端に差動信号送信素子91B及び差動信号受信素子92Bを接続し、第7の差動伝送線路82B,82Bの両端に差動信号送信素子91C及び差動信号受信素子92Cを接続している。また、差動信号受信素子92A〜92Cのそれぞれの差動入力端子は、終端抵抗90A〜90Cが接続されている。   The differential signal transmitting element 91A and the differential signal receiving element 92A are connected to both ends of the fifth differential transmission lines 80A and 80B, and the differential signal transmitting element is connected to both ends of the sixth differential transmission lines 81A and 81B. 91B and the differential signal receiving element 92B are connected, and the differential signal transmitting element 91C and the differential signal receiving element 92C are connected to both ends of the seventh differential transmission lines 82B and 82B. Further, termination resistors 90A to 90C are connected to the differential input terminals of the differential signal receiving elements 92A to 92C, respectively.

なお、図11においては、差動信号送信素子91A〜91Cを左側に配置し、差動信号受信素子92A〜92Cを右側に配置しているが、逆に、差動信号送信素子91A〜91Cと差動信号受信素子92A〜92Cを入れ換えた構成にすることもできる。   In FIG. 11, the differential signal transmission elements 91A to 91C are arranged on the left side and the differential signal reception elements 92A to 92C are arranged on the right side. The differential signal receiving elements 92A to 92C may be replaced.

(半導体集積回路装置の動作)
次に、半導体集積回路装置100の動作について説明する。
(Operation of semiconductor integrated circuit device)
Next, the operation of the semiconductor integrated circuit device 100 will be described.

(差動信号送信素子11から差動信号受信素子21への伝送)
差動信号送信素子11から第1の差動伝送線路12A,12Bに差動データ信号が出力されると、この差動データ信号は、その終端に向かって進行した後、終端抵抗13で終端されると共に差動信号受信素子14に入力される。
(Transmission from the differential signal transmitting element 11 to the differential signal receiving element 21)
When a differential data signal is output from the differential signal transmission element 11 to the first differential transmission lines 12A and 12B, the differential data signal travels toward the end and is terminated by the termination resistor 13. And input to the differential signal receiving element 14.

なお、差動信号受信素子14においては、差動信号送信素子11からの差動データ信号を受信することも、拒否することも可能である。   The differential signal receiving element 14 can receive or reject the differential data signal from the differential signal transmitting element 11.

同時に、差動信号送信素子11からの差動データ信号は、第1の差動伝送線路12A,12Bに主として静電結合された第5〜第7の差動伝送線路80A,80B,81A,81B,82A,82Bへ伝達し、それぞれの差動伝送線路の両端に向かって進行する。   At the same time, the differential data signal from the differential signal transmission element 11 is transmitted through the fifth to seventh differential transmission lines 80A, 80B, 81A, 81B mainly electrostatically coupled to the first differential transmission lines 12A, 12B. , 82A, 82B, and proceeds toward both ends of each differential transmission line.

第5の差動伝送線路80A,80Bにおいては、終端で終端抵抗90Aにより終端されると共に差動信号受信素子92Aに入力する。同様に、第6の差動伝送線路81A,81Bにおいては、終端で終端抵抗90Bにより終端されると共に差動信号受信素子92Bに入力し、第7の差動伝送線路82A,82Bにおいては、終端で終端抵抗90Cにより終端されると共に差動信号受信素子92Cに入力する。   The fifth differential transmission lines 80A and 80B are terminated by a termination resistor 90A and input to the differential signal receiving element 92A. Similarly, the sixth differential transmission lines 81A and 81B are terminated by a termination resistor 90B and input to the differential signal receiving element 92B, and the seventh differential transmission lines 82A and 82B are terminated. Are terminated by the terminating resistor 90C and input to the differential signal receiving element 92C.

なお、差動信号受信素子92A〜92Cにおいては、差動信号を必ずしも受信する必要はなく、受信する動作モードにあるときに受信を行う。   Note that the differential signal receiving elements 92A to 92C do not necessarily receive a differential signal, and perform reception when in a receiving operation mode.

差動信号受信素子92Aに入力した差動データ信号は、差動信号受信素子92Aで増幅された後、図2、図3に示したデータ復調回路30により第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 92A is amplified by the differential signal receiving element 92A, and then processed by the data demodulating circuit 30 shown in FIGS. 2 and 3 in the first embodiment. Is done.

差動信号受信素子92B,92Cにおいても、差動信号受信素子92Aと同様に増幅及び復調処理が実施される。   In the differential signal receiving elements 92B and 92C, amplification and demodulation processes are performed in the same manner as the differential signal receiving element 92A.

(差動信号送信素子91Aから差動信号受信素子14への伝送)
差動信号送信素子91Aから差動データ信号が出力された場合、
第5の差動伝送線路80A,90Bを介して終端抵抗90Aで終端されると共に差動信号受信素子92Aに印加される。
(Transmission from the differential signal transmitting element 91A to the differential signal receiving element 14)
When a differential data signal is output from the differential signal transmitting element 91A,
It is terminated by the terminating resistor 90A via the fifth differential transmission lines 80A and 90B and applied to the differential signal receiving element 92A.

なお、差動信号受信素子92Aにおいては、差動信号送信素子91Aから差動データ信号を受信することも、拒否することも可能である。   The differential signal receiving element 92A can receive or reject the differential data signal from the differential signal transmitting element 91A.

同時に、差動信号送信素子91Aからの差動データ信号は、第2の差動伝送線路80A,80Bに主として静電結合された第1の差動伝送線路12A,12Bの終端に向かって進行する。差動データ信号は、第1の差動伝送線路12A,12Bの左側端で終端抵抗13により終端されると共に差動信号受信素子14に入力する。   At the same time, the differential data signal from the differential signal transmission element 91A travels toward the end of the first differential transmission lines 12A and 12B mainly electrostatically coupled to the second differential transmission lines 80A and 80B. . The differential data signal is terminated by the terminating resistor 13 at the left end of the first differential transmission lines 12A and 12B and is input to the differential signal receiving element.

差動信号受信素子14に入力した差動データ信号は、差動信号受信素子14で増幅された後、図2、図3に示したデータ復調回路30により第1の実施の形態で説明した処理が行われる。   The differential data signal input to the differential signal receiving element 14 is amplified by the differential signal receiving element 14, and then processed by the data demodulating circuit 30 shown in FIGS. 2 and 3 in the first embodiment. Is done.

以上は差動信号送信素子91Aから差動信号受信素子14への伝送であるが、差動信号送信素子91B,91Cから差動信号受信素子14への伝送も同様にして行われる。   The above is the transmission from the differential signal transmitting element 91A to the differential signal receiving element 14, but the transmission from the differential signal transmitting elements 91B and 91C to the differential signal receiving element 14 is performed in the same manner.

上記各実施の形態においては、差動信号受信素子14,24,44,52,92A〜92Cの動作電源は、当該差動信号受信素子を実装する半導体集積回路素子において用意するものとしたが、差動伝送線路を介して電源供給を行うこともできる。以下に、図を示して説明する。   In each of the above embodiments, the operation power supply of the differential signal receiving elements 14, 24, 44, 52, and 92A to 92C is prepared in the semiconductor integrated circuit element on which the differential signal receiving element is mounted. Power can also be supplied via a differential transmission line. Hereinafter, description will be given with reference to the drawings.

[第9の実施の形態]
図12は、本発明の第9の実施の形態に係る半導体集積回路装置を示す接続図である。本実施の形態は、第1の実施の形態において、送信側から受信側に電源供給を行うための電源供給回路を追加したものである。
[Ninth Embodiment]
FIG. 12 is a connection diagram showing a semiconductor integrated circuit device according to the ninth embodiment of the present invention. In the present embodiment, a power supply circuit for supplying power from the transmission side to the reception side is added to the first embodiment.

電源供給回路70は、第1の差動伝送線路12A,12Bと同様の構成を有する電源供給用の一対の第1の差動伝送線路12A’,12B’と、第1の差動伝送線路12A’,12B’の一端へ高周波信号(高周波電流)を印加する発振手段としての発振回路71とを第1の半導体集積回路素子1に設け、第2の差動伝送線路22A,22Bと同様の構成を有する電源供給用の一対の第2の差動伝送線路22A’,22B’と、第2の差動伝送線路22A’,22B’の他端に接続されて第1の差動伝送線路12A’,12B’から第2の差動伝送線路22A’,22B’に誘導された高周波信号を整流して直流電圧を得る整流回路72とを第2の半導体集積回路素子2に設けている。   The power supply circuit 70 includes a pair of first differential transmission lines 12A ′ and 12B ′ for power supply having the same configuration as the first differential transmission lines 12A and 12B, and the first differential transmission line 12A. An oscillation circuit 71 as an oscillating means for applying a high frequency signal (high frequency current) to one end of ', 12B' is provided in the first semiconductor integrated circuit element 1 and has the same configuration as the second differential transmission lines 22A, 22B. And a pair of second differential transmission lines 22A ′ and 22B ′ for power supply, and the first differential transmission line 12A ′ connected to the other ends of the second differential transmission lines 22A ′ and 22B ′. , 12B ′ is provided in the second semiconductor integrated circuit element 2 with a rectifier circuit 72 that rectifies a high-frequency signal induced from the second differential transmission lines 22A ′, 22B ′ to obtain a DC voltage.

発振回路71は、例えば、図示しないCMOS(Complementary Metal Oxcide Semiconductor)デバイス、抵抗(R)及びコンデンサ(C)を用いて構成されており、f=1/(2.2CR)の周波数の信号を発振し、発信出力を第1の差動伝送線路12A’,12B’の一端に印加する構成を有する。なお、発振回路71は、第1の半導体集積回路素子1に搭載のクロック回路のクロック信号を代用することもできる。   The oscillation circuit 71 includes, for example, a CMOS (Complementary Metal Oxcide Semiconductor) device, a resistor (R), and a capacitor (C) (not shown), and oscillates a signal having a frequency of f = 1 / (2.2CR). The transmission output is applied to one end of the first differential transmission lines 12A ′ and 12B ′. Note that the oscillation circuit 71 can substitute the clock signal of the clock circuit mounted on the first semiconductor integrated circuit element 1.

整流回路72は、同一仕様のダイオードからなる4つのダイオード721A〜721Dと、その整流出力間に接続された平滑コンデンサ722とを備えて構成され、その入力端は、第2の差動伝送線路22A’,22B’の終端側に接続されている。   The rectifier circuit 72 includes four diodes 721A to 721D made of diodes having the same specifications, and a smoothing capacitor 722 connected between the rectified outputs. The input end of the rectifier circuit 72 is the second differential transmission line 22A. It is connected to the terminal side of ', 22B'.

ダイオード721A〜721Dは、ブリッジ整流回路を構成するようにブリッジ接続されており、同一極性に直列接続されたダイオード721A,721Bの接続点とダイオード721A,721Bの接続点とが第2の差動伝送線路22A,22Bの他端に接続されている。   The diodes 721A to 721D are bridge-connected so as to form a bridge rectifier circuit, and the connection point between the diodes 721A and 721B and the connection point between the diodes 721A and 721B connected in series with the same polarity is the second differential transmission. The other ends of the lines 22A and 22B are connected.

(電源供給の動作)
図12において、発振回路71が高周波数で発振すると、その発振信号は第1の差動伝送線路12A’,12B’の一端に印加される。第1の差動伝送線路12A’,12B’には、第2の差動伝送線路22A’,22B’が容量結合及び誘導結合により結合されているため、発振回路71からの高周波信号は、第2の差動伝送線路22A’,22B’に伝送され、整流回路72に入力される。
(Power supply operation)
In FIG. 12, when the oscillation circuit 71 oscillates at a high frequency, the oscillation signal is applied to one end of the first differential transmission lines 12A ′ and 12B ′. Since the second differential transmission lines 22A ′ and 22B ′ are coupled to the first differential transmission lines 12A ′ and 12B ′ by capacitive coupling and inductive coupling, the high-frequency signal from the oscillation circuit 71 is The two differential transmission lines 22A ′ and 22B ′ are transmitted to the rectifier circuit 72.

整流回路72は、第2の差動伝送線路22A’,22B’からの高周波信号、即ち交流をダイオード721A〜721Dで整流した直流電圧を平滑コンデンサ722に印加する。平滑コンデンサ722は、ダイオード721A〜721Dからの脈流波を平滑し、リップル分を除去する。平滑コンデンサ722の端子電圧は、第2の半導体集積回路素子2の差動信号受信素子21の電源端子に印加される。   The rectifier circuit 72 applies a high-frequency signal from the second differential transmission lines 22 </ b> A ′ and 22 </ b> B ′, that is, a DC voltage obtained by rectifying an alternating current using the diodes 721 </ b> A to 721 </ b> D to the smoothing capacitor 722. The smoothing capacitor 722 smoothes the pulsating wave from the diodes 721A to 721D and removes the ripple. The terminal voltage of the smoothing capacitor 722 is applied to the power supply terminal of the differential signal receiving element 21 of the second semiconductor integrated circuit element 2.

次に、本発明の実施例について説明する。
図13は、本発明の実施例に係る伝達特性図である。本発明者らは、第1の実施の形態に示した半導体集積回路装置100を以下のパラメータで構成し、その特性の解析を行った。なお、図13において、「S21」は20log(out/in)を示し、1milは25.4μである。
Next, examples of the present invention will be described.
FIG. 13 is a transfer characteristic diagram according to the embodiment of the present invention. The inventors of the present invention configured the semiconductor integrated circuit device 100 shown in the first embodiment with the following parameters and analyzed its characteristics. In FIG. 13, “S21” indicates 20 log (out / in), and 1 mil is 25.4 μm.

図13の(a)は、以下の条件のもとで、差動信号送信素子11から差動信号受信素子21への伝達特性を測定したものである。   FIG. 13A shows the measurement of transfer characteristics from the differential signal transmitting element 11 to the differential signal receiving element 21 under the following conditions.

即ち、第1の差動伝送線路12A,12B及び第2の差動伝送線路22A,22Bの配線は、線幅が50μm、金属厚さが25μmであり、第1及び第1の差動伝送線路12A,12B,22A,22Bのそれぞれの2線路の間隔は50μm、第1の差動伝送線路12A,12Bと第2の差動伝送線路22A,22Bを流れる電流が互いに平行となる部分(均一に平行する部分)における第1の差動伝送線路12A,12Bと第2の差動伝送線路22A,22Bの距離が25μmであるとき、上記平行部分の長さを75μmから500μmまで変化させた結果を示している。   That is, the wirings of the first differential transmission lines 12A and 12B and the second differential transmission lines 22A and 22B have a line width of 50 μm and a metal thickness of 25 μm, and the first and first differential transmission lines. The distance between the two lines 12A, 12B, 22A and 22B is 50 μm, and the currents flowing through the first differential transmission lines 12A and 12B and the second differential transmission lines 22A and 22B are parallel to each other (uniformly When the distance between the first differential transmission lines 12A and 12B and the second differential transmission lines 22A and 22B in the parallel part) is 25 μm, the length of the parallel part is changed from 75 μm to 500 μm. Show.

図13の(a)から明らかなように、結合部分の長さが500μmであれば、10GHz以上の成分は、ほぼ周波数特性を持たずに伝達できることが分かる。   As is clear from FIG. 13A, it can be seen that if the length of the coupling portion is 500 μm, a component of 10 GHz or more can be transmitted without substantially having a frequency characteristic.

図13の(b)は、図11の(a)と線路構造が同一で、結合部分(均一に平行する部分)の長さを200μmとし、第1の差動伝送線路12A,12Bと第2の差動伝送線路22A,22Bの距離を変化させた場合の伝達特性を示している。   In FIG. 13B, the line structure is the same as that in FIG. 11A, the length of the coupling portion (a portion that is uniformly parallel) is 200 μm, and the first differential transmission lines 12A, 12B and the second The transmission characteristics when the distance between the differential transmission lines 22A and 22B is changed are shown.

図13の(b)から明らかなように、第1の差動伝送線路12A,12Bと第2の差動伝送線路22A,22Bの間隔を更に小さくすれば、より低い周波数まで周波数特性を持つことなく信号を伝送でき、また、結合部分の長さが更に短くとも同じ周波数まで伝送できることが分かる。   As is clear from FIG. 13B, if the distance between the first differential transmission lines 12A and 12B and the second differential transmission lines 22A and 22B is further reduced, the frequency characteristic can be obtained up to a lower frequency. It can be seen that the signal can be transmitted without any loss, and that the same frequency can be transmitted even if the length of the coupling portion is shorter.

なお、本発明者らの検討によれば、第1の差動伝送線路12A,12Bから第2の差動伝送線路22A,22Bへの漏れ信号は、第1の差動伝送線路12A,12Bの信号強度の1/10以上であれば、データ復調回路30で復調可能な受信信号を差動信号受信素子21に印加できることが分かった。   According to the study by the present inventors, leakage signals from the first differential transmission lines 12A and 12B to the second differential transmission lines 22A and 22B are transmitted from the first differential transmission lines 12A and 12B. It was found that when the signal strength is 1/10 or more, a reception signal that can be demodulated by the data demodulation circuit 30 can be applied to the differential signal receiving element 21.

具体的には、第1,第1の差動伝送線路12A,12B,22A,22Bが対向配置しながら平行する部分の長さをl、前記長さlを信号が通過する時間をtd、前記信号受信用の半導体素子における受信信号の立ち上がり時間をtrとするとき、td≧trに設定することで、最良の結果が得られることを見いだした。   Specifically, the length of the parallel portion of the first and first differential transmission lines 12A, 12B, 22A, and 22B is l, the time for the signal to pass through the length l is td, It has been found that the best result can be obtained by setting td ≧ tr, where tr is the rise time of the received signal in the signal receiving semiconductor element.

また、本発明者らは、解析により、本構造のまま3次元的に均等に縮小しても周波数伝達特性は劣化せず、更なる微細化が可能であることを確認している。   In addition, the present inventors have confirmed by analysis that the frequency transfer characteristics do not deteriorate even if the structure is uniformly reduced three-dimensionally and further miniaturization is possible.

[他の実施の形態]
なお、本発明は、上記各実施の形態に限定されず、その要旨を変更しない範囲内で種々な変形が可能である。例えば、各実施の形態間の構成要素の組合せは任意に行うことができる。
[Other embodiments]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, the combination of the components between the embodiments can be arbitrarily performed.

例えば、上記各実施の形態においては、差動信号送信素子、差動伝送線路及び差動信号受信素子による差動伝送の構成にしたが、差動に限定されるものではなく、シングル伝送の構成であってもよい。   For example, in each of the above embodiments, the differential transmission structure is configured by the differential signal transmission element, the differential transmission line, and the differential signal reception element. It may be.

1 第1の半導体集積回路素子
2 第2の半導体集積回路素子
3 第3の半導体集積回路素子
4,5 誘電体
11,21 差動信号送信素子
14,24,44,52 差動信号受信素子
12A,12B,12A’,12B’,55A,55B 第1の差動伝送線路
22A,22B,22A’,22B’,57A,57B 第2の差動伝送線路
13,18,23,28,46,53 終端抵抗
15,25 メタル配線層
16,26 半導体集積回路層
17A〜17D,27A〜27D 接続用電極
30 データ復調回路
31 第1のスレッショルド検出手段
32 第2のスレッショルド検出手段
33 論理反転手段
34,35 コンパレータ
36 R-Sフリップフロップ回路
41A〜41D,45A〜45D 貫通電極
42A,42B,59A,59B 第3の差動伝送線路
43,51 差動信号送信素子
47A〜47D,50A〜50D 接続用電極
49A,49B 第4の差動伝送線路
56A〜56D,58A〜58D,60A〜60D 接続用電極
70 電源供給回路
71 発振回路
72 整流回路
80A,80B,81A,81B,82A,82B 第5〜第7の差動伝送線路
90A〜90C 終端抵抗
91A〜91C 差動信号送信素子
92A〜92C 差動信号受信素子
100,102 半導体集積回路装置
101,201,301 背面配線層
103,105,203,205 メタル配線層
104,202,204 半導体集積回路層
302,303 半導体集積回路層
721A〜721D ダイオード
722 平滑コンデンサ
VTH1,VTH2 閾値

DESCRIPTION OF SYMBOLS 1 1st semiconductor integrated circuit element 2 2nd semiconductor integrated circuit element 3 3rd semiconductor integrated circuit element 4 and 5 Dielectric materials 11 and 21 Differential signal transmission element 14, 24, 44, 52 Differential signal receiving element 12A , 12B, 12A ′, 12B ′, 55A, 55B First differential transmission lines 22A, 22B, 22A ′, 22B ′, 57A, 57B Second differential transmission lines 13, 18, 23, 28, 46, 53 Termination resistors 15 and 25 Metal wiring layers 16 and 26 Semiconductor integrated circuit layers 17A to 17D and 27A to 27D Connection electrodes 30 Data demodulating circuit 31 First threshold detection means 32 Second threshold detection means 33 Logic inversion means 34 and 35 Comparator 36 RS flip-flop circuits 41A to 41D, 45A to 45D Through electrodes 42A, 42B, 59A, 59B Third differential transmission line 43 , 51 Differential signal transmission elements 47A-47D, 50A-50D Connection electrodes 49A, 49B Fourth differential transmission lines 56A-56D, 58A-58D, 60A-60D Connection electrodes 70 Power supply circuit 71 Oscillation circuit 72 Rectification Circuits 80A, 80B, 81A, 81B, 82A, 82B Fifth to seventh differential transmission lines 90A to 90C Termination resistors 91A to 91C Differential signal transmitting elements 92A to 92C Differential signal receiving elements 100 and 102 Semiconductor integrated circuit device 101, 201, 301 Rear wiring layers 103, 105, 203, 205 Metal wiring layers 104, 202, 204 Semiconductor integrated circuit layers 302, 303 Semiconductor integrated circuit layers 721A to 721D Diodes 722 Smoothing capacitors VTH1, VTH2 Thresholds

Claims (11)

差動信号送信素子及び前記差動信号送信素子からの信号を伝送すると共に同一平面上に配設された一対の第1の差動伝送線路を備えた第1の半導体集積回路素子と、
前記一対の第1の差動伝送線路と互いに容量性結合および誘導性結合による結合線路系(ただし、マイクロストリップラインの線路間結合を除く。)をなすように前記一対の第1の差動伝送線路に所定の距離を有して平行に対向配置された一対の第2の差動伝送線路、及び前記一対の第2の差動伝送線路の終端に接続された差動信号受信素子を備えると共に前記第1の半導体集積回路素子に積層された第2の半導体集積回路素子とを備え、
前記第1及び第2の差動伝送線路は、信号が前記第1及び第2の差動伝送線路を通過する時間をtd、前記差動信号受信素子における受信信号の立ち上がり時間をtrとするとき、前記対向配置により平行する部分の長さがtd≧trに設定されていることを特徴とする半導体集積回路装置。
A differential signal transmission element and a first semiconductor integrated circuit element that transmits a signal from the differential signal transmission element and includes a pair of first differential transmission lines disposed on the same plane;
The pair of first differential transmission lines so as to form a coupled line system by capacitive coupling and inductive coupling with the pair of first differential transmission lines (except for inter-line coupling of microstrip lines). A pair of second differential transmission lines disposed opposite to each other in parallel with a predetermined distance on the lines, and a differential signal receiving element connected to the end of the pair of second differential transmission lines A second semiconductor integrated circuit element stacked on the first semiconductor integrated circuit element,
The first and second differential transmission lines have a time when a signal passes through the first and second differential transmission lines as td and a rise time of a reception signal in the differential signal receiving element as tr. The semiconductor integrated circuit device is characterized in that the length of the parallel portion is set to td ≧ tr by the opposing arrangement.
前記第1及び第2の差動伝送線路は、前記第1及び第2の半導体集積回路素子の積層面の近傍に配置されていることを特徴とする請求項1に記載の半導体集積回路装置。   2. The semiconductor integrated circuit device according to claim 1, wherein the first and second differential transmission lines are arranged in the vicinity of a stacked surface of the first and second semiconductor integrated circuit elements. 前記第1及び第2の差動伝送線路は、終端または前記差動信号受信素子の接続端が前記第1及び第2の差動伝送線路の特性インピーダンスに等しい値の抵抗で終端されていることを特徴とする請求項1に記載の半導体集積回路装置。   The first and second differential transmission lines are terminated or a connection end of the differential signal receiving element is terminated with a resistor having a value equal to the characteristic impedance of the first and second differential transmission lines. The semiconductor integrated circuit device according to claim 1. 前記第1及び第2の差動伝送線路は、相互に近接して配置した場合に比べ、幅広で十分な長さを有し、相互間の距離が最も遠くなる位置に配設されていることを特徴とする請求項1に記載の半導体集積回路装置。   The first and second differential transmission lines are wider and have a sufficient length as compared to the case where they are arranged close to each other, and are arranged at positions where the distance between them is farthest. The semiconductor integrated circuit device according to claim 1. 前記第1及び第2の差動伝送線路は、それぞれの線幅が50μm以下であると共に前記平行に配設された2つの線路間隔が50μm以下であり、他方の差動伝送線路に対して均一に平行する部分の長さが500μm以下であることを特徴とする請求項1に記載の半導体集積回路装置。   Each of the first and second differential transmission lines has a line width of 50 μm or less and a distance between the two lines arranged in parallel is 50 μm or less, and is uniform with respect to the other differential transmission line. 2. The semiconductor integrated circuit device according to claim 1, wherein the length of the portion parallel to the semiconductor device is 500 [mu] m or less. 前記一対の第2の差動伝送線路は、複数からなり、それぞれの一端に差動信号送信素子が接続され、他端に差動信号受信素子が接続されていることを特徴とする請求項1に記載の半導体集積回路装置。   2. The pair of second differential transmission lines includes a plurality of differential signal transmission elements connected to one end and a differential signal reception element connected to the other end of each of the pair of second differential transmission lines. A semiconductor integrated circuit device according to 1. 前記第1の半導体集積回路素子は、前記差動信号送信素子が前記一対の第1の差動伝送線路の一端に接続されると共に他端に差動信号受信素子が接続され、
前記第2の半導体集積回路素子は、前記差動信号受信素子が前記一対の第2の差動伝送線路の一端に接続されると共に他端に差動信号送信素子が接続されていることを特徴とする請求項1に記載の半導体集積回路装置。
In the first semiconductor integrated circuit element, the differential signal transmitting element is connected to one end of the pair of first differential transmission lines, and a differential signal receiving element is connected to the other end.
In the second semiconductor integrated circuit element, the differential signal receiving element is connected to one end of the pair of second differential transmission lines, and a differential signal transmitting element is connected to the other end. The semiconductor integrated circuit device according to claim 1.
前記第1及び第2の半導体集積回路素子は、前記一対の第1及び第2の差動伝送線路の一端に差動信号送信素子と差動信号受信素子が並列に接続され、他端に終端抵抗が接続されていることを特徴とする請求項1に記載の半導体集積回路装置。   In the first and second semiconductor integrated circuit elements, a differential signal transmitting element and a differential signal receiving element are connected in parallel to one end of the pair of first and second differential transmission lines, and terminated at the other end. The semiconductor integrated circuit device according to claim 1, wherein a resistor is connected. 前記第1及び第2の半導体集積回路素子は、前記一対の第1及び第2の差動伝送線路が配線されたメタル配線層を有し、前記メタル配線層は相互に対向配置されていることを特徴とする請求項1に記載の半導体集積回路装置。   The first and second semiconductor integrated circuit elements have a metal wiring layer to which the pair of first and second differential transmission lines are wired, and the metal wiring layers are arranged to face each other. The semiconductor integrated circuit device according to claim 1. 前記第1の半導体集積回路素子は、前記一対の第1の差動伝送線路と同様に構成された電源供給用の一対の第1の差動伝送線路と、前記電源供給用の一対の第1の差動伝送線路の一端に高周波電流を印加する発振手段とを備え、
前記第2の半導体集積回路素子は、前記一対の第2の差動伝送線路と同様に構成された電源供給用の一対の第2の差動伝送線路と、前記電源供給用の第2の差動伝送線路の終端に接続された整流回路とを備えることを特徴とする請求項1に記載の半導体集積回路装置。
The first semiconductor integrated circuit element includes a pair of first differential transmission lines for power supply configured similarly to the pair of first differential transmission lines, and a pair of first differential transmission lines. An oscillation means for applying a high-frequency current to one end of the differential transmission line,
The second semiconductor integrated circuit element includes a pair of second differential transmission lines for supplying power configured similarly to the pair of second differential transmission lines, and a second difference for supplying power. The semiconductor integrated circuit device according to claim 1, further comprising: a rectifier circuit connected to a terminal end of the dynamic transmission line.
前記差動信号受信素子は、前記差動入力端子に入力された差動信号の立ち上がり及び立下りのタイミングで論理を反転させることにより前記差動信号を復調するデータ復調回路が接続されていることを特徴とする請求項1に記載の半導体集積回路装置。
The differential signal receiving element is connected to a data demodulating circuit that demodulates the differential signal by inverting the logic at the rising and falling timings of the differential signal input to the differential input terminal. The semiconductor integrated circuit device according to claim 1.
JP2014000987A 2014-01-07 2014-01-07 Semiconductor integrated circuit device Active JP5660231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000987A JP5660231B2 (en) 2014-01-07 2014-01-07 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000987A JP5660231B2 (en) 2014-01-07 2014-01-07 Semiconductor integrated circuit device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007118956A Division JP5499425B2 (en) 2007-04-27 2007-04-27 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JP2014090203A true JP2014090203A (en) 2014-05-15
JP5660231B2 JP5660231B2 (en) 2015-01-28

Family

ID=50791831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000987A Active JP5660231B2 (en) 2014-01-07 2014-01-07 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP5660231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032680A (en) * 2016-08-23 2018-03-01 日本電信電話株式会社 Laminated integrated circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011A (en) * 1845-04-26 Lock fob
JPH1168033A (en) * 1997-08-15 1999-03-09 Matsushita Electric Ind Co Ltd Multi-chip module
JP2005033495A (en) * 2003-05-15 2005-02-03 Fujikura Ltd Transmission line structure of ghz band transmission and connector used for ghz band transmission
JP2007049422A (en) * 2005-08-10 2007-02-22 Sony Corp Communication system, transmitting apparatus and method, and receiving apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011A (en) * 1845-04-26 Lock fob
JPH1168033A (en) * 1997-08-15 1999-03-09 Matsushita Electric Ind Co Ltd Multi-chip module
JP2005033495A (en) * 2003-05-15 2005-02-03 Fujikura Ltd Transmission line structure of ghz band transmission and connector used for ghz band transmission
JP2007049422A (en) * 2005-08-10 2007-02-22 Sony Corp Communication system, transmitting apparatus and method, and receiving apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032680A (en) * 2016-08-23 2018-03-01 日本電信電話株式会社 Laminated integrated circuit

Also Published As

Publication number Publication date
JP5660231B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5499425B2 (en) Semiconductor integrated circuit device
WO2007029435A1 (en) Transmission method, interface circuit, semiconductor device, semiconductor package, semiconductor module and memory module
US9322904B2 (en) Proximity sensing using EHF signals
US20110170231A1 (en) Passive Coupler Between Package Substrate and System Board
WO2012157180A1 (en) Reception circuit and signal reception method
US7351068B2 (en) Semiconductor device
Nguyen et al. FPGA-based implementation of multiple modes in near field inductive communication using frequency splitting and MIMO configuration
EP2741325B1 (en) Bond wire arrangement for efficient signal transmission
KR101410389B1 (en) Radio communication device and radio communication system
US9466421B2 (en) Resonance coupler and transmission device
US9437558B2 (en) High frequency integrated circuit and packaging for same
US9871563B2 (en) Electronic device for transmitting data by inductive coupling and intracorporeal current
WO2014129317A1 (en) Variable capacitance circuit, variable capacitance device, resonant circuit, amplifying circuit, and electronic apparatus
Park et al. A wireless power and data transfer IC for neural prostheses using a single inductive link with frequency-splitting characteristic
JP5660231B2 (en) Semiconductor integrated circuit device
CN106206537A (en) The pectination terminal of planar integrated circuit inducer
US7898362B2 (en) Passband filter
JP5103127B2 (en) RFID tag
TWI741983B (en) Package assembly with gathered insulated wires
JP2017069456A (en) Semiconductor chip and multi-chip module
US20120169430A1 (en) Input apparatus on chip for differential signals and balun thereof
JP2018518828A5 (en)
KR101668158B1 (en) Apparatus for chip-to-chip wireless power transfer using oscillator
JP2008278290A (en) Inter-unit communication device
CN209747513U (en) Packaged isolation capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5660231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350