JP2014088341A - Separation method of 1,3-butadiene and separation membrane - Google Patents

Separation method of 1,3-butadiene and separation membrane Download PDF

Info

Publication number
JP2014088341A
JP2014088341A JP2012238939A JP2012238939A JP2014088341A JP 2014088341 A JP2014088341 A JP 2014088341A JP 2012238939 A JP2012238939 A JP 2012238939A JP 2012238939 A JP2012238939 A JP 2012238939A JP 2014088341 A JP2014088341 A JP 2014088341A
Authority
JP
Japan
Prior art keywords
butadiene
separation
group
separating
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012238939A
Other languages
Japanese (ja)
Other versions
JP5980091B2 (en
Inventor
Keisuke Kishida
圭輔 岸田
Masahiro Watanabe
賢広 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2012238939A priority Critical patent/JP5980091B2/en
Publication of JP2014088341A publication Critical patent/JP2014088341A/en
Application granted granted Critical
Publication of JP5980091B2 publication Critical patent/JP5980091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separation method and a separation membrane capable of selectively separating and recovering 1,3-butadiene from a mixed gas containing 1,3-butadiene and carbohydrate having 4 carbon atoms other than 1,3-butadiene.SOLUTION: A metal complex containing dicarboxylic acid compound having 4 carbon atoms, an ion of at least one kind of metals, and an organic ligand capable of bidentate coordination to the metal ion and represented by the general formula (I), and having a structure in which jungle gym skeletons are interpenetrating doubly is used as a gas separation material.

Description

本発明は、金属錯体を含むガス分離材を用いて混合ガスから1,3−ブタジエンを分離する方法、およびそのガス分離材を有する1,3−ブタジエン分離膜に関する。   The present invention relates to a method for separating 1,3-butadiene from a mixed gas using a gas separation material containing a metal complex, and a 1,3-butadiene separation membrane having the gas separation material.

炭化水素を含む混合ガス中から、目的の炭化水素ガスのみを分離・回収する技術がこれまでに知られている。   There has been known a technique for separating and recovering only a target hydrocarbon gas from a mixed gas containing hydrocarbons.

分離・回収したい炭化水素ガスの一例として、1,3−ブタジエンが挙げられる。1,3−ブタジエンは、例えば合成ゴム製造のための出発物質として、また、非常に多くの化合物の中間体としても有用な化合物である。1,3−ブタジエンは一般にナフサ分解やブテンの脱水素によって製造される。これらの製造方法では1,3−ブタジエンは混合ガスの一成分として得られる。したがって、混合物として得られる生成物中から、1,3−ブタジエンを選択的に分離・回収することが必要となる。生成物中の炭素数4の主成分としては、1,3−ブタジエン、イソブテン、1−ブテン、2−ブテン、ノルマルブタン、イソブタンなどが挙げられる。これらは、炭素数が同じであり、沸点も近いため、工業的に採用されている蒸留法では分離が困難である。   An example of the hydrocarbon gas to be separated / recovered is 1,3-butadiene. 1,3-butadiene is a useful compound, for example, as a starting material for the production of synthetic rubber and as an intermediate for a large number of compounds. 1,3-butadiene is generally produced by naphtha cracking or butene dehydrogenation. In these production methods, 1,3-butadiene is obtained as one component of the mixed gas. Therefore, it is necessary to selectively separate and recover 1,3-butadiene from the product obtained as a mixture. Examples of the main component having 4 carbon atoms in the product include 1,3-butadiene, isobutene, 1-butene, 2-butene, normal butane, and isobutane. Since they have the same carbon number and close boiling points, they are difficult to separate by a distillation method adopted industrially.

他の分離方法の一つとして抽出蒸留法が挙げられるが、この方法は極性溶媒を用いた吸収法であるため、極性溶媒中から1,3−ブタジエンを回収する際に、非常に多くのエネルギーを使用する。したがって、より省エネルギーで1,3−ブタジエンを分離・回収する方法として、吸着法による分離が望まれている。   One of the other separation methods is the extractive distillation method. Since this method is an absorption method using a polar solvent, a large amount of energy is required for recovering 1,3-butadiene from the polar solvent. Is used. Therefore, separation by adsorption is desired as a method for separating and recovering 1,3-butadiene with more energy saving.

しかしながら、従来の多孔性材料(特許文献1)は1,3−ブタジエンの分離性能が低いため、多段階で分離する必要があり、分離装置の大型化が不可避であった。   However, since the conventional porous material (Patent Document 1) has a low separation performance of 1,3-butadiene, it has to be separated in multiple stages, and an increase in the size of the separation apparatus is inevitable.

従来の多孔性材料より優れた分離性能を与える吸着材として、外部刺激により動的構造変化が生じる多孔性金属錯体が開発されている(非特許文献1および非特許文献2)。この多孔性材料をガス吸着材として使用した場合、ある一定の圧力まではガスを吸着しないが、ある一定圧を越えるとガス吸着が始まるという特異な現象が観測されている。また、ガスの種類によって吸着開始圧が異なる現象が観測されている。   Porous metal complexes in which dynamic structural changes are caused by external stimuli have been developed as adsorbents that give better separation performance than conventional porous materials (Non-Patent Document 1 and Non-Patent Document 2). When this porous material is used as a gas adsorbent, a unique phenomenon has been observed in which gas adsorption does not occur up to a certain pressure, but gas adsorption begins when a certain pressure is exceeded. In addition, a phenomenon has been observed in which the adsorption start pressure varies depending on the type of gas.

この多孔性材料を、例えば圧力スイング吸着方式のガス分離装置における吸着材に応用した場合、非常に効率良いガス分離が可能となる。また、圧力のスイング幅を狭くすることができ、省エネルギーにも寄与する。さらに、ガス分離装置の小型化にも寄与し得るため、高純度ガスを製品として販売する際のコスト競争力を高めることができることは勿論、自社工場内部で高純度ガスを用いる場合であっても、高純度ガスを必要とする設備に要するコストを削減できるため、結局最終製品の製造コストを削減する効果を有する。   When this porous material is applied, for example, to an adsorbent in a pressure swing adsorption type gas separation apparatus, very efficient gas separation is possible. In addition, the pressure swing width can be narrowed, contributing to energy saving. Furthermore, since it can contribute to miniaturization of the gas separation device, it is possible to increase cost competitiveness when selling high-purity gas as a product, of course, even when high-purity gas is used inside its own factory Since the cost required for the equipment that requires high purity gas can be reduced, the manufacturing cost of the final product can be reduced.

亜鉛イオン、フマル酸およびビピリジンからなる金属錯体[Zn(fm)(bpy)]が開示されている(非特許文献3)。しかしながら、この金属錯体の1,3−ブタジエンを含む炭素数4の炭化水素ガスの吸着、分離特性については検討がなされていない。 A metal complex [Zn 2 (fm) 2 (bpy)] composed of zinc ion, fumaric acid and bipyridine is disclosed (Non-patent Document 3). However, the adsorption and separation characteristics of a hydrocarbon gas having 4 carbon atoms including 1,3-butadiene of this metal complex have not been studied.

亜鉛イオン、フマル酸および1,2−ジ(4−ピリジル)エチレンからなる金属錯体[Zn(fm)(bpe)]も開示されている(非特許文献4)。しかしながら、この金属錯体の1,3−ブタジエンを含む炭素数4の炭化水素ガスの吸着、分離特性については検討がなされていない。 A metal complex [Zn 2 (fm) 2 (bpe)] composed of zinc ion, fumaric acid and 1,2-di (4-pyridyl) ethylene is also disclosed (Non-patent Document 4). However, the adsorption and separation characteristics of a hydrocarbon gas having 4 carbon atoms including 1,3-butadiene of this metal complex have not been studied.

特開昭51−43702号公報JP 51-43702 A

植村一広、北川進、未来材料、第2巻、44〜51頁(2002年)Kazuhiro Uemura, Susumu Kitagawa, Future Materials, Volume 2, 44-51 (2002) 松田亮太郎、北川進、ペトロテック、第26巻、97〜104頁(2003年)Ryotaro Matsuda, Susumu Kitagawa, Petrotech, Vol. 26, 97-104 (2003) Bao−Qing Ma, Karen L. Mulfort, and Joseph T. Hupp, Inorganic Chemistry,第44巻、4912−4914頁(2005年)Bao-Qing Ma, Karen L. Mulfort, and Joseph T .; Hopp, Inorganic Chemistry, Vol. 44, 4912-4914 (2005). Tomislav Friscic and Laszlo Fabian, CrystEngComm,第11巻、743−745頁(2009年)Tomislav Friscic and Laszlo Fabian, CrystEngCom, 11: 743-745 (2009)

本発明の目的は、1,3−ブタジエンおよび1,3−ブタジエン以外の炭素数4の炭化水素を含む混合ガス中から、1,3−ブタジエンを選択的に分離・回収することができる、従来よりも優れた分離方法および分離膜を提供することにある。   It is an object of the present invention to selectively separate and recover 1,3-butadiene from a mixed gas containing 1,3-butadiene and a hydrocarbon having 4 carbon atoms other than 1,3-butadiene. It is an object of the present invention to provide a separation method and a separation membrane that are superior to each other.

本発明者らは鋭意検討し、炭素数4のジカルボン酸化合物と、少なくとも1種の金属イオンと、前記金属イオンに二座配位可能な有機配位子(I)とからなる金属錯体を含む分離材により、上記目的を達成できることを見出し、本発明に至った。
すなわち、本発明は以下の[1]〜[10]の実施態様を含む。
The present inventors have intensively studied and include a metal complex comprising a dicarboxylic acid compound having 4 carbon atoms, at least one metal ion, and an organic ligand (I) capable of bidentate coordination with the metal ion. The present inventors have found that the above object can be achieved by a separating material, and have reached the present invention.
That is, the present invention includes the following embodiments [1] to [10].

[1]1,3−ブタジエンおよび1,3−ブタジエン以外の炭素数4の炭化水素を含む混合ガスを分離材と接触させ、1,3−ブタジエンを前記分離材に選択的に吸着させる吸着工程と、前記分離材に吸着された1,3−ブタジエンを前記分離材から脱着させて、脱離してくる1,3−ブタジエンを捕集する再生工程とを含む、前記混合ガスから1,3−ブタジエンを分離する方法において、
前記分離材が、炭素数4のジカルボン酸化合物と、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、亜鉛およびカドミウムからなる群より選択される少なくとも1種の金属のイオンと、下記一般式(I):
(式中、R、R、R、R、R、R、RおよびRはそれぞれ同一または異なっていてもよい、水素原子、置換基を有していてもよい炭素数1〜5のアルキル基またはハロゲン原子であり、RとR、あるいはRとRが一緒になって置換基を有していてもよいアルケニレン基を形成してもよい。)で表される前記金属イオンに二座配位可能な有機配位子(I)とからなり、ジャングルジム骨格が二重に相互貫入した構造を有する金属錯体を含む1,3−ブタジエンの分離方法。
[2]前記ジカルボン酸化合物がフマル酸である[1]に記載の1,3−ブタジエンの分離方法。
[3]一般式(I)で示される有機配位子(I)が、R、R、R、R、R、R、RおよびRのすべてが水素原子である4,4’−ビピリジルである[1]または[2]のいずれかに記載の1,3−ブタジエンの分離方法。
[4]前記金属のイオンが亜鉛イオンである[1]〜[3]のいずれかに記載の1,3−ブタジエンの分離方法。
[5]前記分離方法が圧力スイング吸着法である[1]〜[4]のいずれかに記載の1,3−ブタジエンの分離方法。
[6]前記分離方法が温度スイング吸着法である[1]〜[4]のいずれかに記載の1,3−ブタジエンの分離方法。
[7]炭素数4のジカルボン酸化合物と、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、亜鉛およびカドミウムからなる群より選択される少なくとも1種の金属のイオンと、下記一般式(I):
(式中、R、R、R、R、R、R、RおよびRはそれぞれ同一または異なっていてもよい、水素原子、置換基を有していてもよい炭素数1〜5のアルキル基またはハロゲン原子であり、RとR、あるいはRとRが一緒になって置換基を有していてもよいアルケニレン基を形成してもよい。)で表される前記金属イオンに二座配位可能な有機配位子(I)とからなり、ジャングルジム骨格が二重に相互貫入した構造を有する金属錯体を含む1,3−ブタジエン分離材を有する1,3−ブタジエン分離膜。
[8]多孔質支持体をさらに含み、前記1,3−ブタジエン分離材が前記多孔質支持体の表層部に付着している[7]に記載の1,3−ブタジエン分離膜。
[9]高分子材料をさらに含み、前記1,3−ブタジエン分離材が前記高分子材料中に分散している[7]に記載の1,3−ブタジエン分離膜。
[10]1,3−ブタジエンおよび1,3−ブタジエン以外の炭素数4の炭化水素を含む混合ガスを分離膜に接触させ、前記分離膜を通して1,3−ブタジエンを選択的に透過させることを含む、前記混合ガスよりも1,3−ブタジエン濃度が高いガスを得る1,3−ブタジエンの分離方法において、前記分離膜が[7]〜[9]のいずれかに記載の1,3−ブタジエン分離膜であることを特徴とする1,3−ブタジエンの分離方法。
[1] An adsorption step in which 1,3-butadiene and a mixed gas containing a hydrocarbon having 4 carbon atoms other than 1,3-butadiene are brought into contact with the separation material, and 1,3-butadiene is selectively adsorbed on the separation material. And a regeneration step of desorbing 1,3-butadiene adsorbed on the separation material from the separation material and collecting the desorbed 1,3-butadiene. In a method for separating butadiene,
The separating material includes a dicarboxylic acid compound having 4 carbon atoms, beryllium, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, zinc and At least one metal ion selected from the group consisting of cadmium and the following general formula (I):
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different and each may have a hydrogen atom or a substituent. An alkyl group having 1 to 5 or a halogen atom, and R 2 and R 3 , or R 6 and R 7 may be combined to form an alkenylene group which may have a substituent. A method for separating 1,3-butadiene, comprising a metal complex comprising an organic ligand (I) capable of bidentate coordination with the metal ion represented and having a structure in which a jungle gym skeleton is double interpenetrated.
[2] The method for separating 1,3-butadiene according to [1], wherein the dicarboxylic acid compound is fumaric acid.
[3] In the organic ligand (I) represented by the general formula (I), all of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are hydrogen atoms. The method for separating 1,3-butadiene according to either [1] or [2], which is 4,4′-bipyridyl.
[4] The method for separating 1,3-butadiene according to any one of [1] to [3], wherein the metal ions are zinc ions.
[5] The 1,3-butadiene separation method according to any one of [1] to [4], wherein the separation method is a pressure swing adsorption method.
[6] The 1,3-butadiene separation method according to any one of [1] to [4], wherein the separation method is a temperature swing adsorption method.
[7] From a dicarboxylic acid compound having 4 carbon atoms and beryllium, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, zinc and cadmium At least one metal ion selected from the group consisting of the following general formula (I):
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different and each may have a hydrogen atom or a substituent. An alkyl group having 1 to 5 or a halogen atom, and R 2 and R 3 , or R 6 and R 7 may be combined to form an alkenylene group which may have a substituent. It comprises an organic ligand (I) capable of bidentate coordination with the metal ion represented, and has a 1,3-butadiene separator containing a metal complex having a structure in which a jungle gym skeleton is double interpenetrated 1,3-butadiene separation membrane.
[8] The 1,3-butadiene separation membrane according to [7], further comprising a porous support, wherein the 1,3-butadiene separation material is attached to a surface layer portion of the porous support.
[9] The 1,3-butadiene separation membrane according to [7], further comprising a polymer material, wherein the 1,3-butadiene separator is dispersed in the polymer material.
[10] A gas mixture containing 1,3-butadiene and a hydrocarbon having 4 carbon atoms other than 1,3-butadiene is brought into contact with the separation membrane, and 1,3-butadiene is selectively permeated through the separation membrane. In the 1,3-butadiene separation method for obtaining a gas having a higher 1,3-butadiene concentration than the mixed gas, the separation membrane is 1,3-butadiene according to any one of [7] to [9] A method for separating 1,3-butadiene, which is a separation membrane.

本発明により、1,3−ブタジエンを含む混合ガスから1,3−ブタジエンを従来よりも高い分離性能で分離・回収することができる。   According to the present invention, 1,3-butadiene can be separated and recovered from a mixed gas containing 1,3-butadiene with higher separation performance than before.

なお、上述の記載は、本発明の全ての実施態様および本発明に関する全ての利点を開示したものと見なしてはならない。   The above description should not be construed as disclosing all embodiments of the present invention and all advantages related to the present invention.

ジカルボン酸化合物のカルボキシレートイオン、金属イオンおよび二座配位可能な有機配位子(I)からなるジャングルジム骨格の模式図である。It is a schematic diagram of a jungle gym skeleton composed of a carboxylate ion of a dicarboxylic acid compound, a metal ion, and an organic ligand (I) capable of bidentate coordination. ジャングルジム骨格が二重に相互貫入した三次元構造の模式図である。It is a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double interpenetrated. 圧力スイング吸着法により混合ガスから1,3−ブタジエンを回収する装置の模式図である。It is a schematic diagram of the apparatus which collect | recovers 1, 3- butadiene from mixed gas by a pressure swing adsorption method. 合成例1の金属錯体1の粉末X線回折パターンとジャングルジム骨格が二重に相互貫入した三次元構造をとると仮定した単結晶構造から予測される粉末X線回折パターンとの比較図である。It is a comparison figure of the powder X-ray-diffraction pattern of the metal complex 1 of the synthesis example 1, and the powder X-ray-diffraction pattern estimated from the single-crystal structure assumed that the jungle dime frame has a three-dimensional structure which double-penetrated mutually interpenetrated. . 合成例1の金属錯体1を用いた分離材の、25℃における1,3−ブタジエン、1−ブテンおよびノルマルブタンの吸脱着等温線である。2 is an adsorption / desorption isotherm of 1,3-butadiene, 1-butene and normal butane at 25 ° C. of a separating material using the metal complex 1 of Synthesis Example 1. FIG. 代表的な吸着材(ゼオライト)の、25℃における1,3−ブタジエン、1−ブテンおよびノルマルブタンの吸脱着等温線である。2 is an adsorption / desorption isotherm of 1,3-butadiene, 1-butene and normal butane at 25 ° C. of a typical adsorbent (zeolite). 比較合成例1の比較金属錯体1を用いた分離材の、25℃における1,3−ブタジエン、1−ブテンおよびノルマルブタンの吸脱着等温線である。2 is an adsorption / desorption isotherm of 1,3-butadiene, 1-butene and normal butane at 25 ° C. of a separating material using the comparative metal complex 1 of Comparative Synthesis Example 1. FIG.

以下、本発明の代表的な実施態様を例示する目的でより詳細に説明するが、本発明はこれらの実施態様に限定されない。   Hereinafter, the present invention will be described in more detail for the purpose of illustrating representative embodiments of the present invention, but the present invention is not limited to these embodiments.

<分離材>
本発明に使用する1,3−ブタジエンの分離材は、炭素数4のジカルボン酸化合物と、特定の金属イオンと、前記金属イオンに二座配位可能な有機配位子(I)とからなり、ジャングルジム骨格が二重に相互貫入した構造を有する金属錯体を構成成分とする。
<Separation material>
The 1,3-butadiene separator used in the present invention comprises a dicarboxylic acid compound having 4 carbon atoms, a specific metal ion, and an organic ligand (I) capable of bidentate coordination with the metal ion. A metal complex having a structure in which a jungle gym skeleton is double interpenetrated is used as a constituent component.

<ジカルボン酸化合物(I)>
本発明に用いられる炭素数4のジカルボン酸化合物としては、マレイン酸、フマル酸、コハク酸を使用することができ、中でもフマル酸がより好ましい。
<Dicarboxylic acid compound (I)>
As the dicarboxylic acid compound having 4 carbon atoms used in the present invention, maleic acid, fumaric acid, and succinic acid can be used, and fumaric acid is more preferable.

<金属イオン>
本発明の分離材に用いられる金属錯体を構成する金属イオンはベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、亜鉛およびカドミウムからなる群より選択される少なくとも1種の金属のイオンである。これらの中でもガス吸着性能の面から亜鉛イオン、鉄イオン、コバルトイオン、マンガンイオン、ニッケルイオンおよび銅イオンが好ましく、亜鉛イオンがより好ましい。
<Metal ion>
Metal ions constituting the metal complex used in the separation material of the present invention are beryllium, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, And at least one metal ion selected from the group consisting of zinc and cadmium. Among these, zinc ion, iron ion, cobalt ion, manganese ion, nickel ion and copper ion are preferable in terms of gas adsorption performance, and zinc ion is more preferable.

本発明の分離材に用いられる金属錯体を製造する際には前記金属の塩を用いることができる。金属塩は単一の金属塩を使用することが好ましいが、2種以上の金属塩を混合して用いてもよい。これらの金属塩としては、酢酸塩、ギ酸塩などの有機酸塩、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、炭酸塩などの無機酸塩を使用することができる。   When the metal complex used for the separating material of the present invention is produced, the metal salt can be used. The metal salt is preferably a single metal salt, but two or more metal salts may be mixed and used. As these metal salts, organic acid salts such as acetate and formate, and inorganic acid salts such as hydrochloride, hydrobromide, sulfate, nitrate and carbonate can be used.

<二座配位可能な有機配位子(II)>
本発明に用いられる金属イオンに二座配位可能な有機配位子(I)は下記一般式(I)で表される。
(式中、R、R、R、R、R、R、RおよびRはそれぞれ同一または異なっていてもよい、水素原子、置換基を有していてもよい炭素数1〜5のアルキル基またはハロゲン原子であり、RとR、あるいはRとRが一緒になって置換基を有していてもよいアルケニレン基を形成してもよい。)
<Organic ligand capable of bidentate coordination (II)>
The organic ligand (I) capable of bidentate coordination to the metal ion used in the present invention is represented by the following general formula (I).
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different and each may have a hydrogen atom or a substituent. It is an alkyl group or a halogen atom of formulas 1 to 5, and R 2 and R 3 , or R 6 and R 7 may be combined to form an alkenylene group which may have a substituent.

、R、R、R、R、R、RおよびRを構成することのできるアルキル基の炭素数は1〜5であり、1〜3であることがより好ましい。炭素数1〜5のアルキル基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、ペンチル基などの直鎖または分岐を有するアルキル基が挙げられる。該アルキル基が有していてもよい置換基の例としては、アルコキシ基(メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基など)、アミノ基、モノアルキルアミノ基(メチルアミノ基など)、ジアルキルアミノ基(ジメチルアミノ基など)、ホルミル基、エポキシ基、アシロキシ基(アセトキシ基、n−プロパノイルオキシ基、n−ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、n−ブトキシカルボニル基など)、カルボン酸無水物基(−CO−O−CO−R基)(Rは炭素数1〜5のアルキル基である)などが挙げられる。アルキル基が置換基を有する場合、置換基の数は1〜3個が好ましく、1個がより好ましい。 The alkyl group that can constitute R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 has 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms. . Examples of the alkyl group having 1 to 5 carbon atoms are linear or branched such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, and pentyl group. An alkyl group is mentioned. Examples of the substituent that the alkyl group may have include an alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, etc.), Amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyloxy group, n-butanoyloxy group, Pivaloyloxy group, benzoyloxy group, etc.), alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, etc.), carboxylic acid anhydride group (—CO—O—CO—R group) (R is carbon number) 1 to 5 alkyl groups). When the alkyl group has a substituent, the number of substituents is preferably 1 to 3, and more preferably 1.

ハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子、およびヨウ素原子が挙げられる。   Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

とR、あるいはRとRが一緒になって置換基を有していてもよいアルケニレン基を形成する場合、アルケニレン基の炭素数は2であることが好ましい。アルケニレン基の炭素数が2の場合、RとR、あるいはRとRはそれらが結合している炭素原子と一緒になって6員環(ベンゼン環)を構成する。例えば、RとR、およびRとRがそれぞれ炭素数2の非置換のアルケニレン基、すなわちエテニレン基を形成し、残りのR、R、RおよびRが水素原子である場合、一般式(I)の化合物はジアザピレンとなる。 When R 2 and R 3 , or R 6 and R 7 together form an alkenylene group which may have a substituent, the alkenylene group preferably has 2 carbon atoms. When the alkenylene group has 2 carbon atoms, R 2 and R 3 , or R 6 and R 7 together with the carbon atom to which they are bonded form a 6-membered ring (benzene ring). For example, R 2 and R 3 , and R 6 and R 7 each form an unsubstituted alkenylene group having 2 carbon atoms, that is, an ethenylene group, and the remaining R 1 , R 4 , R 5, and R 8 are hydrogen atoms. In some cases, the compound of general formula (I) is diazapyrene.

該アルケニレン基が有していてもよい置換基の例としては、アルコキシ基(メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基など)、アミノ基、モノアルキルアミノ基(メチルアミノ基など)、ジアルキルアミノ基(ジメチルアミノ基など)、ホルミル基、エポキシ基、アシロキシ基(アセトキシ基、n−プロパノイルオキシ基、n−ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基など)、アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、n−ブトキシカルボニル基など)、カルボン酸無水物基(−CO−O−CO−R基)(Rは炭素数1〜5のアルキル基である)などが挙げられる。   Examples of the substituent that the alkenylene group may have include an alkoxy group (methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, etc.), Amino group, monoalkylamino group (such as methylamino group), dialkylamino group (such as dimethylamino group), formyl group, epoxy group, acyloxy group (acetoxy group, n-propanoyloxy group, n-butanoyloxy group, Pivaloyloxy group, benzoyloxy group, etc.), alkoxycarbonyl group (methoxycarbonyl group, ethoxycarbonyl group, n-butoxycarbonyl group, etc.), carboxylic acid anhydride group (—CO—O—CO—R group) (R is carbon number) 1 to 5 alkyl groups).

、R、R、R、R、R、RおよびRはそれぞれ水素原子またはメチル基であることが好ましく、すべて水素原子であることがより好ましい。 R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each preferably a hydrogen atom or a methyl group, and more preferably all hydrogen atoms.

二座配位可能な有機配位子(I)としては、例えば、4,4’−ビピリジル、2,2’−ジメチル−4,4’−ビピリジンまたはジアザピレンを使用することができ、中でも4,4’−ビピリジルが好ましい。なお、本明細書において、「二座配位可能な有機配位子」とは、非共有電子対で金属イオンに対して配位できる部位を少なくとも2箇所持つ中性配位子と定義する。   As the organic ligand (I) capable of bidentate coordination, for example, 4,4′-bipyridyl, 2,2′-dimethyl-4,4′-bipyridine or diazapyrene can be used. 4′-bipyridyl is preferred. In the present specification, the “organic ligand capable of bidentate coordination” is defined as a neutral ligand having at least two sites capable of coordinating with a metal ion by a lone pair of electrons.

<製造方法>
本発明で使用する分離材となる金属錯体は、炭素数4のジカルボン酸化合物と、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、亜鉛およびカドミウムからなる群より選択される少なくとも1種の金属の塩と、該金属のイオンに二座配位可能な有機配位子(I)とを、常圧下、溶媒中で数時間から数日間反応させ、結晶を析出させて製造することができる。例えば、前記金属塩の有機溶媒溶液と、ジカルボン酸化合物および二座配位可能な有機配位子(I)を含有する有機溶媒溶液とを、常圧下で混合して反応させることにより本発明の金属錯体を得ることができる。
<Manufacturing method>
The metal complex used as the separating material used in the present invention is a dicarboxylic acid compound having 4 carbon atoms, beryllium, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, A salt of at least one metal selected from the group consisting of palladium, platinum, copper, zinc and cadmium, and an organic ligand (I) capable of bidentate coordination with the ion of the metal under a normal pressure The reaction can be carried out for several hours to several days, and crystals can be precipitated. For example, an organic solvent solution of the metal salt and an organic solvent solution containing a dicarboxylic acid compound and an organic ligand (I) capable of bidentate coordination are mixed and reacted under normal pressure to cause the reaction of the present invention. A metal complex can be obtained.

金属錯体を製造するときのジカルボン酸化合物と二座配位可能な有機配位子(I)との混合比率は、ジカルボン酸化合物:二座配位可能な有機配位子(I)=1:5〜8:1のモル比の範囲内が好ましく、1:3〜6:1のモル比の範囲内がより好ましい。これ以外の範囲で反応を行っても目的とする金属錯体は得られるが、収率が低下し、副反応も増えるために好ましくない。   The mixing ratio of the dicarboxylic acid compound and the bidentate organic ligand (I) when producing the metal complex is as follows: dicarboxylic acid compound: bidentate organic ligand (I) = 1: A molar ratio in the range of 5-8: 1 is preferred, and a molar ratio in the range of 1: 3-6: 1 is more preferred. Even if the reaction is carried out in a range other than this, the desired metal complex can be obtained, but this is not preferable because the yield is lowered and the side reaction is also increased.

金属錯体を製造するときの金属塩と二座配位可能な有機配位子(I)の混合比率は、金属塩:二座配位可能な有機配位子(I)=3:1〜1:3のモル比の範囲内が好ましく、2:1〜1:2のモル比の範囲内がより好ましい。これ以外の範囲では目的とする金属錯体の収率が低下し、また、未反応の原料が残留して得られた金属錯体の精製が困難になることがある。   When the metal complex is produced, the mixing ratio of the metal salt and the organic ligand (I) capable of bidentate coordination is as follows: metal salt: organic ligand capable of bidentate coordination (I) = 3: 1 to 1 : Within the range of the molar ratio of 3: 3, and more preferably within the range of the molar ratio of 2: 1 to 1: 2. In other ranges, the yield of the target metal complex decreases, and purification of the metal complex obtained by leaving unreacted raw materials may be difficult.

金属錯体を製造するための溶液におけるジカルボン酸化合物のモル濃度は、0.005〜5.0mol/Lが好ましく、0.01〜2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では溶解性が低下し、反応が円滑に進行しないことがある。   The molar concentration of the dicarboxylic acid compound in the solution for producing the metal complex is preferably 0.005 to 5.0 mol / L, and more preferably 0.01 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. Further, at a concentration higher than this, the solubility is lowered and the reaction may not proceed smoothly.

金属錯体を製造するための溶液における金属塩のモル濃度は、0.005〜5.0mol/Lが好ましく、0.01〜2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では未反応の金属塩が残留し、得られた金属錯体の精製が困難になることがある。   The molar concentration of the metal salt in the solution for producing the metal complex is preferably 0.005 to 5.0 mol / L, and more preferably 0.01 to 2.0 mol / L. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. Further, at a concentration higher than this, unreacted metal salt remains, and purification of the obtained metal complex may be difficult.

金属錯体を製造するための溶液における二座配位可能な有機配位子(I)のモル濃度は、0.001〜5.0mol/Lが好ましく、0.005〜2.0mol/Lがより好ましい。これより低い濃度で反応を行っても目的とする金属錯体は得られるが、収率が低下するため好ましくない。また、これより高い濃度では溶解性が低下し、反応が円滑に進行しないことがある。   The molar concentration of the bidentate organic ligand (I) in the solution for producing the metal complex is preferably 0.001 to 5.0 mol / L, more preferably 0.005 to 2.0 mol / L. preferable. Even if the reaction is performed at a concentration lower than this, the desired metal complex can be obtained, but this is not preferable because the yield decreases. Further, at a concentration higher than this, the solubility is lowered and the reaction may not proceed smoothly.

金属錯体の製造に用いる溶媒としては、有機溶媒、水またはそれらの混合溶媒を使用することができる。具体的には、メタノール、エタノール、プロパノール、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、塩化メチレン、クロロホルム、アセトン、酢酸エチル、アセトニトリル、N,N−ジメチルホルムアミド、水またはこれらの混合溶媒を使用することができる。反応温度は、−20〜150℃が好ましく、60〜120℃がより好ましい。反応時間は1〜24時間が好ましく、2〜12時間がより好ましい。   As a solvent used for producing the metal complex, an organic solvent, water, or a mixed solvent thereof can be used. Specifically, methanol, ethanol, propanol, diethyl ether, dimethoxyethane, tetrahydrofuran, hexane, cyclohexane, heptane, benzene, toluene, methylene chloride, chloroform, acetone, ethyl acetate, acetonitrile, N, N-dimethylformamide, water or These mixed solvents can be used. The reaction temperature is preferably -20 to 150 ° C, more preferably 60 to 120 ° C. The reaction time is preferably 1 to 24 hours, more preferably 2 to 12 hours.

反応が終了したことはガスクロマトグラフィーまたは高速液体クロマトグラフィーにより原料の残存量を定量することにより確認することができる。反応終了後、得られた混合液を吸引濾過に付して沈殿物を集め、有機溶媒による洗浄後、例えば60〜100℃程度で数時間真空乾燥することにより、本発明の分離材に用いる金属錯体を得ることができる。結晶性の高い金属錯体は、純度が高くて吸着性能が優れている。結晶性を高めるには、酸または塩基を用いて適切なpHに調整すればよい。   The completion of the reaction can be confirmed by quantifying the remaining amount of the raw material by gas chromatography or high performance liquid chromatography. After completion of the reaction, the obtained mixed solution is subjected to suction filtration to collect a precipitate, washed with an organic solvent, and then vacuum-dried at, for example, about 60 to 100 ° C. for several hours to obtain a metal used for the separation material of the present invention A complex can be obtained. A metal complex having high crystallinity has high purity and excellent adsorption performance. In order to increase the crystallinity, an appropriate pH may be adjusted using an acid or a base.

本発明で用いる金属錯体は、溶媒分子が吸着した状態ではガス分子を吸着しない。そのため、分離材として用いる際には、予め得られた金属錯体について真空乾燥を行い、細孔内の溶媒分子を取り除くことが必要である。   The metal complex used in the present invention does not adsorb gas molecules when solvent molecules are adsorbed. Therefore, when using as a separating material, it is necessary to vacuum-dry the metal complex obtained in advance to remove the solvent molecules in the pores.

<金属錯体の構造>
以上のようにして得られる金属錯体は、ジカルボン酸化合物のカルボキシレートイオン(図1中の濃いハッチングの棒に対応)と金属イオンとからなる二核の金属クラスター(図1中の球に対応)中の金属イオンに二座配位可能な有機配位子(I)(図1中の薄いハッチングの棒に対応)が配位して形成されるジャングルジム骨格が多重に相互貫入した三次元構造を有する。ジャングルジム骨格の模式図を図1に、ジャングルジム骨格が二重に相互貫入した三次元構造の模式図を図2に示す。本発明では、ジャングルジム骨格が二重に相互貫入した構造を有する金属錯体が用いられる。
<Structure of metal complex>
The metal complex obtained as described above is a dinuclear metal cluster composed of a carboxylate ion of a dicarboxylic acid compound (corresponding to the dark hatched rod in FIG. 1) and a metal ion (corresponding to the sphere in FIG. 1). Three-dimensional structure in which jungle gym skeleton formed by coordinating organic ligand (I) (corresponding to the thin hatched rod in FIG. 1) coordinated to metal ions inside is interpenetrated multiple times Have A schematic diagram of the jungle gym skeleton is shown in FIG. 1, and a schematic diagram of a three-dimensional structure in which the jungle gym skeleton is double-interpenetrated is shown in FIG. In the present invention, a metal complex having a structure in which a jungle gym skeleton is double interpenetrated is used.

本発明の分離材に用いられる金属錯体は、金属イオン:ジカルボン酸化合物:有機配位子(I)=2モル:2モル:1モルの比率で通常構成されるが、本発明の効果が得られる限り前記比率からの逸脱は許容される。   The metal complex used in the separation material of the present invention is usually composed in a ratio of metal ion: dicarboxylic acid compound: organic ligand (I) = 2 mol: 2 mol: 1 mol, but the effect of the present invention is obtained. Deviations from the ratio are allowed as much as possible.

本明細書において、「ジャングルジム骨格が多重に相互貫入した構造」とは、複数のジャングルジム骨格が互いの細孔を埋める形で貫入し合った三次元集積構造と定義する。   In the present specification, “a structure in which multiple jungle gym skeletons interpenetrate” is defined as a three-dimensional integrated structure in which a plurality of jungle gym skeletons penetrate each other so as to fill the pores.

金属錯体が「ジャングルジム骨格が多重に相互貫入した構造を有する」ことは、例えば単結晶X線構造解析、粉末X線結晶構造解析などにより確認できる。   That the metal complex has “a structure in which the jungle gym skeleton is interpenetrated multiple times” can be confirmed by, for example, single crystal X-ray structural analysis, powder X-ray crystal structural analysis, or the like.

本発明の分離材に用いられる金属錯体の三次元構造は、合成後の結晶においても変化させることができる。金属錯体の三次元構造の変化に伴って、細孔の構造や大きさも変化する。この構造が変化する条件は、吸着される物質の種類、吸着圧力、吸着温度などに依存する。すなわち、細孔表面と吸着される物質の相互作用の差に加え(相互作用の強さは物質のLennard−Jonesポテンシャルの大きさに比例する)、吸着される物質により構造変化の程度が異なるため、本発明の分離材に用いられる金属錯体は高い選択性を示す。本発明では、ジカルボン酸化合物を用いて細孔表面とガス分子との相互作用の強さを制御し、一般式(I)で表される二座配位可能な有機配位子を用いて細孔径を制御することで、高いガス分離性能を発現させることができる。吸着された物質が脱着した後は、元の構造に戻るので、細孔の大きさも元に戻る。   The three-dimensional structure of the metal complex used in the separation material of the present invention can be changed in the synthesized crystal. As the three-dimensional structure of the metal complex changes, the structure and size of the pores also change. The conditions for changing the structure depend on the type of substance to be adsorbed, the adsorption pressure, the adsorption temperature, and the like. That is, in addition to the difference in the interaction between the pore surface and the adsorbed substance (the strength of the interaction is proportional to the magnitude of the Lennard-Jones potential of the substance), the degree of structural change varies depending on the adsorbed substance. The metal complex used in the separation material of the present invention exhibits high selectivity. In the present invention, the dicarboxylic acid compound is used to control the strength of the interaction between the pore surface and the gas molecule, and the bidentate organic ligand represented by the general formula (I) is used for fine control. By controlling the pore diameter, high gas separation performance can be exhibited. After the adsorbed substance is desorbed, it returns to its original structure, so the pore size also returns.

前記の吸着メカニズムは推定ではあるが、例え前記メカニズムに従っていない場合でも、本発明で規定する要件を満足するのであれば、本発明の技術的範囲に包含される。   Although the said adsorption mechanism is presumption, even if it does not follow the said mechanism, if the requirements prescribed | regulated by this invention are satisfied, it will be included in the technical scope of this invention.

金属錯体は一般的に成形した分離材として使用される。金属錯体を含む分離材は、例えばビーズ、リング、ストランド、もしくはタブレットに成形した不規則充填物として、または規則構造体、例えば規則充填物、ハニカム体、もしくはモノリスとして使用することができる。あるいは、分離材として金属錯体を含む分離膜を使用することも可能である。   Metal complexes are generally used as molded separators. Separation materials containing metal complexes can be used, for example, as irregular packings formed into beads, rings, strands, or tablets, or as regular structures, such as regular packings, honeycomb bodies, or monoliths. Alternatively, a separation membrane containing a metal complex can be used as the separation material.

<1,3−ブタジエンの分離方法>
本発明の1,3−ブタジエンおよび1,3−ブタジエン以外の炭素数4の炭化水素を含む混合ガスから、1,3−ブタジエンを分離する方法では、分離対象である1,3−ブタジエンを含む混合ガスを本発明の分離材と接触させ、1,3−ブタジエンを前記分離材に選択的に吸着させ、その後、前記分離材に吸着された1,3−ブタジエンを前記分離材から脱着させて、脱離してくる1,3−ブタジエンを捕集する。1,3−ブタジエンの脱着により分離材は再生する。
<Method for separating 1,3-butadiene>
In the method for separating 1,3-butadiene from a mixed gas containing 1,3-butadiene and a hydrocarbon having 4 carbon atoms other than 1,3-butadiene according to the present invention, 1,3-butadiene as a separation target is contained. A mixed gas is brought into contact with the separation material of the present invention, 1,3-butadiene is selectively adsorbed on the separation material, and then 1,3-butadiene adsorbed on the separation material is desorbed from the separation material. The 1,3-butadiene coming off is collected. The separating material is regenerated by desorption of 1,3-butadiene.

混合ガスに含まれる1,3−ブタジエン以外の炭素数4の炭化水素は特に限定されないが、沸点が1,3−ブタジエンと近いため従来の分離材では分離が困難な、イソブテン、1−ブテン、2−ブテンなどのブテン、ノルマルブタン、イソブタンなどのブタンなどの炭素数4の炭化水素を他のガスとして含む混合ガスから1,3−ブタジエンを分離する際に、本発明の分離材は特に有効である。   The hydrocarbon having 4 carbon atoms other than 1,3-butadiene contained in the mixed gas is not particularly limited. However, isobutene, 1-butene, which has a boiling point close to 1,3-butadiene and is difficult to separate with a conventional separation material, The separation material of the present invention is particularly effective in separating 1,3-butadiene from a mixed gas containing hydrocarbons having 4 carbon atoms such as butene such as 2-butene, butane such as normal butane, and isobutane as other gases. It is.

混合ガスと分離材の接触は目的の1,3−ブタジエンのみが有効に分離材に吸着される温度、圧力条件を選択することが望ましい。   As for the contact between the mixed gas and the separating material, it is desirable to select the temperature and pressure conditions in which only the target 1,3-butadiene is effectively adsorbed on the separating material.

分離方法は、1,3−ブタジエンが分離材に吸着できる条件で、混合ガスと本発明の分離材とを接触させる吸着工程を含む。1,3−ブタジエンが分離材に吸着できる条件である吸着圧力および吸着温度は、装置の設計、製品ガスに要求される純度などに応じて適宜設定することができる。例えば、吸着工程において導入される混合ガス中の1,3−ブタジエン分圧は10〜990kPaが好ましく、100〜300kPaがより好ましい。また、吸着温度は0〜150℃が好ましく、25〜100℃がより好ましい。   The separation method includes an adsorption step in which the mixed gas and the separation material of the present invention are brought into contact under conditions where 1,3-butadiene can be adsorbed on the separation material. The adsorption pressure and adsorption temperature, which are conditions under which 1,3-butadiene can be adsorbed on the separation material, can be appropriately set according to the design of the apparatus, the purity required for the product gas, and the like. For example, the 1,3-butadiene partial pressure in the mixed gas introduced in the adsorption step is preferably 10 to 990 kPa, and more preferably 100 to 300 kPa. Moreover, 0-150 degreeC is preferable and adsorption temperature is more preferable 25-100 degreeC.

分離方法は、圧力スイング吸着法または温度スイング吸着法とすることができる。   The separation method can be a pressure swing adsorption method or a temperature swing adsorption method.

分離方法が圧力スイング吸着法である場合は、1,3−ブタジエンを含む混合ガスを分離材と接触させ、目的の1,3−ブタジエンのみを分離材に選択的に吸着させた(吸着工程)後、圧力を、吸着圧力から吸着した1,3−ブタジエンを分離材から脱着させることができる圧力まで減圧する工程(再生工程)を含む。脱着圧力は、装置の設計、製造効率などに応じて適宜設定することができる。例えば、吸着圧力は10〜100kPaが好ましく、15〜25kPaがより好ましい。また、脱着圧力は0.005〜5kPaが好ましく、0.005〜2kPaがより好ましい。   When the separation method is a pressure swing adsorption method, a mixed gas containing 1,3-butadiene is brought into contact with the separation material, and only the target 1,3-butadiene is selectively adsorbed on the separation material (adsorption process). Thereafter, a step (regeneration step) of reducing the pressure to a pressure at which 1,3-butadiene adsorbed from the adsorption pressure can be desorbed from the separating material is included. The desorption pressure can be appropriately set according to the design of the apparatus, the production efficiency, and the like. For example, the adsorption pressure is preferably 10 to 100 kPa, and more preferably 15 to 25 kPa. The desorption pressure is preferably 0.005 to 5 kPa, and more preferably 0.005 to 2 kPa.

圧力スイング吸着法について図3を参照して具体的に説明する。吸着塔AC1およびAC2には本発明の分離材が充填されている。1,3−ブタジエン、ブテン、ブタンなどを含む混合ガス(M)は、混合ガス貯槽MSからコンプレッサーで0.3MPa程度まで加圧されてバルブV1(「V1」と略す。以下同様。)を通り分離材が充填されている吸着塔AC1に供給される。図5からわかるように1,3−ブタジエン分圧が0kPaを越えると吸着塔AC1内では1,3−ブタジエンが選択的に分離材に吸着される(吸着工程)。一方ブタン類は吸着されず、またブテン類もその分圧が25kPa以下であれば吸着されず、吸着塔AC1から排出される。結果的にブタン、ブテン類が濃縮されたガス(B)は、V7を通り、製品貯槽PS2に送られる。次に吸着塔AC1は、V1、V5、V6およびV7が閉の状態、V2が開の状態で真空ポンプP1により吸気される。圧力が下がると吸着塔AC1の分離材に吸着された1,3−ブタジエンを主成分とするガス(BD)が脱着し、製品貯槽PS1に送られる(脱着工程)。同様にして吸着塔AC2についても吸着工程を完了させる。吸着塔AC1の脱着工程を所定時間実施した後、V1、V2、V3、V4、V7およびV8を閉、V5およびV6を開にして、吸着塔AC1と吸着塔AC2の圧力差を利用して吸着塔AC2内の残留混合ガスを吸着塔AC1へ回収する(均圧工程)。均圧工程を行うことで純度を落とすことなく、効率よく各製品ガスを得ることができる。次いで、吸着塔AC2は、V2、V3、V5、V6およびV8が閉の状態、V4が開の状態で真空ポンプP1により吸気され、このとき吸着された1,3−ブタジエンを主成分とするガス(BD)が脱着し、製品貯槽PS1に送られる。吸着塔AC1にはV2、V3、V5、V6およびV8が閉の状態、V1、V7が開の状態で1,3−ブタジエンを含む混合ガス(M)が供給され、再び吸着工程が実施される。吸着塔AC1と吸着塔AC2において、吸着および脱着の操作は、タイマーなどにより適宜設定されたサイクルで交互に繰り返し行われ、各製品ガスは連続的に製造される。   The pressure swing adsorption method will be specifically described with reference to FIG. The separation towers of the present invention are packed in the adsorption towers AC1 and AC2. The mixed gas (M) containing 1,3-butadiene, butene, butane and the like is pressurized from the mixed gas storage tank MS to about 0.3 MPa by a compressor and passes through a valve V1 (hereinafter abbreviated as “V1”; the same applies hereinafter). It is supplied to the adsorption tower AC1 filled with the separation material. As can be seen from FIG. 5, when the 1,3-butadiene partial pressure exceeds 0 kPa, 1,3-butadiene is selectively adsorbed on the separation material in the adsorption tower AC1 (adsorption step). On the other hand, butanes are not adsorbed, and butenes are not adsorbed if their partial pressure is 25 kPa or less, and are discharged from the adsorption tower AC1. As a result, the gas (B) in which butane and butenes are concentrated passes through V7 and is sent to the product storage tank PS2. Next, the adsorption tower AC1 is sucked by the vacuum pump P1 with V1, V5, V6 and V7 closed and V2 open. When the pressure drops, the gas (BD) mainly composed of 1,3-butadiene adsorbed on the separation material of the adsorption tower AC1 is desorbed and sent to the product storage tank PS1 (desorption process). Similarly, the adsorption step is completed for the adsorption tower AC2. After the desorption step of the adsorption tower AC1 is carried out for a predetermined time, the adsorption is performed using the pressure difference between the adsorption tower AC1 and the adsorption tower AC2 by closing V1, V2, V3, V4, V7 and V8, and opening V5 and V6. The residual mixed gas in the column AC2 is recovered to the adsorption column AC1 (pressure equalizing step). By performing the pressure equalization step, each product gas can be obtained efficiently without reducing the purity. Next, the adsorption tower AC2 is sucked by the vacuum pump P1 with V2, V3, V5, V6 and V8 closed and V4 opened, and the gas mainly composed of 1,3-butadiene adsorbed at this time. (BD) is desorbed and sent to the product storage tank PS1. The adsorption column AC1 is supplied with a mixed gas (M) containing 1,3-butadiene with V2, V3, V5, V6 and V8 closed, and V1 and V7 open, and the adsorption step is performed again. . In the adsorption tower AC1 and the adsorption tower AC2, the adsorption and desorption operations are alternately repeated in a cycle appropriately set by a timer or the like, and each product gas is continuously produced.

分離方法が温度スイング吸着法である場合は、1,3−ブタジエンを含む混合ガスを分離材と接触させ、目的の1,3−ブタジエンのみを分離材に選択的に吸着させた(吸着工程)後、温度を、吸着温度から吸着した1,3−ブタジエンを分離材から脱着させることができる温度まで昇温する工程(再生工程)を含む。脱着温度は、装置の設計、製造効率などに応じて適宜設定することができる。例えば、脱着温度は25〜200℃が好ましく、30〜110℃がより好ましい。   When the separation method is a temperature swing adsorption method, a mixed gas containing 1,3-butadiene is brought into contact with the separation material, and only the target 1,3-butadiene is selectively adsorbed on the separation material (adsorption process). Then, the process includes a step of raising the temperature to a temperature at which 1,3-butadiene adsorbed from the adsorption temperature can be desorbed from the separating material (regeneration step). The desorption temperature can be appropriately set according to the design of the apparatus, production efficiency, and the like. For example, the desorption temperature is preferably 25 to 200 ° C, more preferably 30 to 110 ° C.

分離方法が圧力スイング吸着法または温度スイング吸着法である場合、混合ガスと分離材とを接触させる工程(吸着工程)と、1,3−ブタジエンを分離材から脱着させることができる圧力または温度まで変化させる工程(再生工程)を、適宜繰り返すことができる。   When the separation method is a pressure swing adsorption method or a temperature swing adsorption method, the step of bringing the mixed gas into contact with the separation material (adsorption step) and the pressure or temperature at which 1,3-butadiene can be desorbed from the separation material The changing step (regeneration step) can be repeated as appropriate.

上記以外の分離方法として膜分離も挙げられる。分離膜は金属錯体を多孔質支持体の表層部に例えば結晶成長により付着させることで得ることができる。多孔質支持体の材質としては、例えばアルミナ、シリカ、ムライト、コージェライトなどのシリカまたはアルミナとその他の成分よりなる組成物、多孔質の焼結金属、多孔質ガラスなどを好適に用いることができる。また、ジルコニア、マグネシアなどの他の酸化物もしくは炭化珪素、窒化珪素などの炭化物もしくは窒化物などのセラミックス類、石膏、セメントなど、またはそれらの混合物を用いることができる。多孔質支持体の気孔率は、通常30〜80%程度であり、好ましくは35〜70%、もっとも好ましくは40〜60%である。気孔率が小さすぎる場合にはガスなどの流体の透過性が低下するので好ましくなく、大きすぎる場合には、支持体の強度が低下して好ましくない。また、多孔質支持体の細孔径は、通常10〜10,000nm、好ましくは100〜10,000nmである。金属錯体を多孔質支持体の表層部に結晶成長させて得られる分離膜は、金属錯体の原料を含む溶液中に多孔質支持体を含浸させ、必要に応じて加熱することによって得られる。   Another separation method other than the above is membrane separation. The separation membrane can be obtained by attaching the metal complex to the surface layer portion of the porous support by, for example, crystal growth. As a material for the porous support, for example, silica, such as alumina, silica, mullite, cordierite or the like, a composition comprising alumina and other components, a porous sintered metal, porous glass, and the like can be suitably used. . In addition, other oxides such as zirconia and magnesia, ceramics such as carbide or nitride such as silicon carbide and silicon nitride, gypsum, cement, or a mixture thereof can be used. The porosity of the porous support is usually about 30 to 80%, preferably 35 to 70%, and most preferably 40 to 60%. When the porosity is too small, the permeability of a fluid such as gas is lowered, which is not preferable. When the porosity is too large, the strength of the support is decreased, which is not preferable. The pore diameter of the porous support is usually 10 to 10,000 nm, preferably 100 to 10,000 nm. A separation membrane obtained by crystal growth of the metal complex on the surface layer of the porous support is obtained by impregnating the porous support in a solution containing the metal complex raw material and heating as necessary.

また、分離膜は本発明の金属錯体を高分子材料と混練して高分子材料中に分散し、フィルム状に成形することによっても得ることができる。高分子材料としてはポリ酢酸ビニル、ポリイミド、ポリジメチルシロキサンなどのガス分離膜用高分子材料が挙げられる。   The separation membrane can also be obtained by kneading the metal complex of the present invention with a polymer material, dispersing it in the polymer material, and molding it into a film. Examples of the polymer material include polymer materials for gas separation membranes such as polyvinyl acetate, polyimide, and polydimethylsiloxane.

膜分離では目的の1,3−ブタジエンを含む混合ガスを分離膜に接触させた場合、混合ガス中の各ガスの透過率Pは各ガスの膜への溶解度Sと膜中での拡散係数Dの積で表される。透過率Pが高いガスほど選択的に膜を透過するため、このようなガスを混合ガスから分離回収することができる。よって、1,3−ブタジエンの選択性が高い、本発明の金属錯体を膜化することにより、1,3−ブタジエンを選択的に透過させる膜を得ることができる。例えば、気体不透過性の外管と分離膜からなる内管とを備えた二重管の内管へ混合ガスを通気すると、1,3−ブタジエンが選択的に内管を透過し、外管と内管の間に濃縮されるのでこのガスを捕集することで目的の1,3−ブタジエンを分離することが可能となる。   In the membrane separation, when the target mixed gas containing 1,3-butadiene is brought into contact with the separation membrane, the permeability P of each gas in the mixed gas is the solubility S of each gas in the membrane and the diffusion coefficient D in the membrane. It is represented by the product of Since a gas having a higher transmittance P selectively permeates the membrane, such a gas can be separated and recovered from the mixed gas. Therefore, by forming a film of the metal complex of the present invention having high selectivity for 1,3-butadiene, a film that selectively allows 1,3-butadiene to permeate can be obtained. For example, when a mixed gas is passed through an inner pipe of a double pipe having a gas impermeable outer pipe and an inner pipe made of a separation membrane, 1,3-butadiene selectively permeates the inner pipe, It is possible to separate the desired 1,3-butadiene by collecting this gas since it is concentrated between the inner tube and the inner tube.

分離する混合ガス中の1,3−ブタジエンの割合は様々な値を取ることができるが、この割合は混合ガスの供給源に大きく依存する。1,3−ブタジエンの他に、混合ガスは少なくともイソブテン、1−ブテン、2−ブテンなどのブテン、ノルマルブタン、イソブタンなどのブタンなどの炭化水素を含み、さらに他の炭化水素を含んでもよい。混合ガスは好ましくは、混合ガス中にある1,3−ブタジエンと他の炭化水素(複数種であってもよい)の体積割合の合計に対して、1,3−ブタジエンを10〜99体積%含む。より好ましくは、1,3−ブタジエンの割合が20〜60体積%である。   The ratio of 1,3-butadiene in the mixed gas to be separated can take various values, but this ratio greatly depends on the supply source of the mixed gas. In addition to 1,3-butadiene, the mixed gas contains at least hydrocarbons such as butene such as isobutene, 1-butene and 2-butene, butane such as normal butane and isobutane, and may further include other hydrocarbons. The mixed gas is preferably 10 to 99% by volume of 1,3-butadiene with respect to the total volume ratio of 1,3-butadiene and other hydrocarbons (which may be plural types) in the mixed gas. Including. More preferably, the ratio of 1,3-butadiene is 20 to 60% by volume.

本発明の分離材はナフサ分解によって得られる炭素数4の留分(C4留分)の分離に適用可能である。例えば、1,3−ブタジエンを40体積%程度含む混合ガスを175kPa以上に加圧した後、本発明の分離材を充填した吸着塔に1〜10分間流通させる。その後、均圧の工程を経た後、真空ポンプで20kPa以下に減圧し、分離材に吸着された1,3−ブタジエンを回収することができる。   The separation material of the present invention can be applied to separation of a C4 fraction obtained by naphtha decomposition (C4 fraction). For example, after pressurizing a mixed gas containing about 40% by volume of 1,3-butadiene to 175 kPa or more, it is circulated for 1 to 10 minutes through an adsorption tower packed with the separation material of the present invention. Then, after passing through the pressure equalizing step, the pressure is reduced to 20 kPa or less with a vacuum pump, and 1,3-butadiene adsorbed on the separating material can be recovered.

以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。以下の実施例および比較例における分析および評価は次のようにして行った。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. Analysis and evaluation in the following examples and comparative examples were performed as follows.

(1)吸脱着等温線の測定
高圧ガス吸着装置を用いて容量法で測定を行った。このとき、測定に先立って試料を150℃、50Paで6時間乾燥し、吸着水などを除去した。分析条件の詳細を以下に示す。
<分析条件>
装置:日本ベル株式会社製BELSORP−18HT
平衡待ち時間:500秒
(1) Measurement of adsorption / desorption isotherm The measurement was performed by a volume method using a high-pressure gas adsorption apparatus. At this time, prior to measurement, the sample was dried at 150 ° C. and 50 Pa for 6 hours to remove adsorbed water and the like. Details of the analysis conditions are shown below.
<Analysis conditions>
Apparatus: BELSORP-18HT manufactured by Nippon Bell Co., Ltd.
Equilibrium waiting time: 500 seconds

(2)粉末X線回折パターンの測定
株式会社リガク製のX線回折装置:マルチフレックスを用いて、回折角(2θ)=3〜50°の範囲を走査速度3°/分で走査し、対称反射法で測定した。単結晶構造からのXRPD回折パターンへの変換には、The Cambridge Crystallographic Data Centre製Mercury(ver2.3)を用いた。
(2) Measurement of powder X-ray diffraction pattern X-ray diffractometer manufactured by Rigaku Corporation: Using a multiflex, the range of diffraction angle (2θ) = 3 to 50 ° is scanned at a scanning speed of 3 ° / min. Measured by reflection method. For conversion from a single crystal structure to an XRPD diffraction pattern, Mercury (ver. 2.3) manufactured by The Cambridge Crystallographic Data Center was used.

<合成例1>
[Zn(fm)(bpy)]の合成:金属錯体1
2000mLナスフラスコに硝酸亜鉛六水和物299g(1.00mol)、フマル酸116g(1.00mol)、4、4’−ビピリジル78.4g(0.50mol)、N,N−ジメチルホルムアミド(DMF)1000mLを加え、溶液を得た。当該溶液を120℃で6時間加熱攪拌した。室温まで冷却した後、析出した金属錯体を吸引濾過し、DMFおよびメタノールで洗浄し、80℃で6時間真空乾燥した。目的の金属錯体230g(収率:85%)を得た。ジャングルジム骨格が二重に相互貫入した三次元構造をとると仮定した単結晶構造から予測される粉末X線回折パターンと、得られた金属錯体の粉末X線回折パターンとの比較を図4に示す。図4より、得られた固体が非特許文献3に記載されているジャングルジム骨格が二重に相互貫入した三次元構造を有する金属錯体であることがわかる。
<Synthesis Example 1>
Synthesis of [Zn 2 (fm) 2 (bpy)]: Metal Complex 1
In a 2000 mL eggplant flask, zinc nitrate hexahydrate 299 g (1.00 mol), fumaric acid 116 g (1.00 mol), 4,4′-bipyridyl 78.4 g (0.50 mol), N, N-dimethylformamide (DMF) 1000 mL was added to obtain a solution. The solution was heated and stirred at 120 ° C. for 6 hours. After cooling to room temperature, the precipitated metal complex was filtered with suction, washed with DMF and methanol, and dried in vacuo at 80 ° C. for 6 hours. 230 g (yield: 85%) of the target metal complex was obtained. FIG. 4 shows a comparison between a powder X-ray diffraction pattern predicted from a single crystal structure assumed to have a three-dimensional structure in which a jungle gym skeleton is double-penetrated and a powder X-ray diffraction pattern of the obtained metal complex. Show. FIG. 4 shows that the obtained solid is a metal complex having a three-dimensional structure in which the jungle gym skeleton described in Non-Patent Document 3 is double interpenetrated.

<比較合成例1>
[Zn(fm)(bpe)]の合成:比較金属錯体1
50mL遊星ボールミル容器に酸化亜鉛1.6g(20mmol)、フマル酸2.3g(20mmol)、1,2−ジ(4−ピリジル)エチレン1.8g(10mmol)、DMF2mLを加えた。得られた溶液を600rpmで30分間攪拌した。析出した固体を吸引濾過し、DMFおよびメタノールで洗浄し、80℃で真空乾燥した。目的の比較金属錯体1を4.6g(収率:72%)得た。
<Comparative Synthesis Example 1>
Synthesis of [Zn 2 (fm) 2 (bpe)]: Comparative metal complex 1
To a 50 mL planetary ball mill container, 1.6 g (20 mmol) of zinc oxide, 2.3 g (20 mmol) of fumaric acid, 1.8 g (10 mmol) of 1,2-di (4-pyridyl) ethylene, and 2 mL of DMF were added. The resulting solution was stirred at 600 rpm for 30 minutes. The precipitated solid was filtered with suction, washed with DMF and methanol, and dried in vacuo at 80 ° C. 4.6 g (yield: 72%) of the target comparative metal complex 1 was obtained.

<実施例1>
合成例1で得た金属錯体1について、25℃における1,3−ブタジエン、1−ブテンおよびノルマルブタンの吸脱着等温線を測定した。結果を図5に示す。
<Example 1>
With respect to the metal complex 1 obtained in Synthesis Example 1, the adsorption and desorption isotherms of 1,3-butadiene, 1-butene and normal butane at 25 ° C. were measured. The results are shown in FIG.

<比較例1>
代表的な吸着材として、NaY型ゼオライト(HS−320、和光純薬工業株式会社製)について、25℃における1,3−ブタジエン、1−ブテンおよびノルマルブタンの吸脱着等温線を測定した。結果を図6に示す。
<Comparative Example 1>
As typical adsorbents, the adsorption and desorption isotherms of 1,3-butadiene, 1-butene and normal butane at 25 ° C. were measured for NaY-type zeolite (HS-320, manufactured by Wako Pure Chemical Industries, Ltd.). The results are shown in FIG.

<比較例2>
代表的な相互貫入したジャングルジム骨格を有する金属錯体の吸着材として、比較合成例1の比較金属錯体1について、25℃における1,3−ブタジエン、1−ブテンおよびノルマルブタンの吸脱着等温線を測定した。結果を図7に示す。
<Comparative example 2>
As an adsorbent of a metal complex having a typical interpenetrating jungle gym skeleton, the adsorption and desorption isotherms of 1,3-butadiene, 1-butene and normal butane at 25 ° C. were obtained for the comparative metal complex 1 of Comparative Synthesis Example 1. It was measured. The results are shown in FIG.

図5によると金属錯体1は0〜約30kPaの圧力範囲において1,3−ブタジエンを選択的に吸着することがわかる。したがって、1,3−ブタジエン、1−ブテンおよびノルマルブタンからなる混合ガスを1−ブテン分圧が25kPa以下に保たれるように供給して金属錯体1と接触させると1,3−ブタジエンのみが吸着され、濃縮される。次に混合ガスの供給を止め、圧力を下げると1,3−ブタジエンが脱着するので1,3−ブタジエンが濃縮されたガスを得ることができる。一方、図6および図7では0〜110kPaの圧力範囲において1,3−ブタジエンの選択的吸着性が低い。すなわち、1,3−ブタジエン以外に1−ブテンおよびノルマルブタンも吸着されてしまい、1,3−ブタジエンのみを十分に濃縮することができない。   According to FIG. 5, it can be seen that the metal complex 1 selectively adsorbs 1,3-butadiene in the pressure range of 0 to about 30 kPa. Therefore, when a mixed gas composed of 1,3-butadiene, 1-butene and normal butane is supplied so that the 1-butene partial pressure is maintained at 25 kPa or less and brought into contact with the metal complex 1, only 1,3-butadiene is obtained. Adsorbed and concentrated. Next, when the supply of the mixed gas is stopped and the pressure is lowered, 1,3-butadiene is desorbed, so that a gas enriched in 1,3-butadiene can be obtained. On the other hand, in FIGS. 6 and 7, the selective adsorptivity of 1,3-butadiene is low in the pressure range of 0 to 110 kPa. That is, 1-butene and normal butane are also adsorbed in addition to 1,3-butadiene, and only 1,3-butadiene cannot be sufficiently concentrated.

MS 混合ガス貯槽
PS1、PS2 製品貯槽
AC1、AC2 吸着塔
P1 真空ポンプ
V1〜V8 バルブ
M 混合ガス
B ブタン、ブテン類が濃縮されたガス
BD 1,3−ブタジエンを主成分とするガス
MS Mixed gas storage tank PS1, PS2 Product storage tank AC1, AC2 Adsorption tower P1 Vacuum pump V1-V8 Valve M Mixed gas B Gas enriched in butane and butenes BD Gas mainly composed of 1,3-butadiene

Claims (10)

1,3−ブタジエンおよび1,3−ブタジエン以外の炭素数4の炭化水素を含む混合ガスを分離材と接触させ、1,3−ブタジエンを前記分離材に選択的に吸着させる吸着工程と、前記分離材に吸着された1,3−ブタジエンを前記分離材から脱着させて、脱離してくる1,3−ブタジエンを捕集する再生工程とを含む、前記混合ガスから1,3−ブタジエンを分離する方法において、
前記分離材が、炭素数4のジカルボン酸化合物と、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、亜鉛およびカドミウムからなる群より選択される少なくとも1種の金属のイオンと、下記一般式(I):
(式中、R、R、R、R、R、R、RおよびRはそれぞれ同一または異なっていてもよい、水素原子、置換基を有していてもよい炭素数1〜5のアルキル基またはハロゲン原子であり、RとR、あるいはRとRが一緒になって置換基を有していてもよいアルケニレン基を形成してもよい。)で表される前記金属イオンに二座配位可能な有機配位子(I)とからなり、ジャングルジム骨格が二重に相互貫入した構造を有する金属錯体を含む1,3−ブタジエンの分離方法。
An adsorption step in which a mixed gas containing 1,3-butadiene and a hydrocarbon having 4 carbon atoms other than 1,3-butadiene is brought into contact with a separation material, and 1,3-butadiene is selectively adsorbed on the separation material; The 1,3-butadiene is separated from the mixed gas, including a regeneration step of desorbing 1,3-butadiene adsorbed on the separation material from the separation material and collecting the desorbed 1,3-butadiene. In the way to
The separating material includes a dicarboxylic acid compound having 4 carbon atoms, beryllium, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, zinc and At least one metal ion selected from the group consisting of cadmium and the following general formula (I):
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different and each may have a hydrogen atom or a substituent. An alkyl group having 1 to 5 or a halogen atom, and R 2 and R 3 , or R 6 and R 7 may be combined to form an alkenylene group which may have a substituent. A method for separating 1,3-butadiene, comprising a metal complex comprising an organic ligand (I) capable of bidentate coordination with the metal ion represented and having a structure in which a jungle gym skeleton is double interpenetrated.
前記ジカルボン酸化合物がフマル酸である請求項1に記載の1,3−ブタジエンの分離方法。   The method for separating 1,3-butadiene according to claim 1, wherein the dicarboxylic acid compound is fumaric acid. 一般式(I)で示される有機配位子(I)が、R、R、R、R、R、R、RおよびRのすべてが水素原子である4,4’−ビピリジルである請求項1または2のいずれかに記載の1,3−ブタジエンの分離方法。 In the organic ligand (I) represented by the general formula (I), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are all hydrogen atoms The method for separating 1,3-butadiene according to claim 1 or 2, which is' -bipyridyl. 前記金属のイオンが亜鉛イオンである請求項1〜3のいずれか一項に記載の1,3−ブタジエンの分離方法。   The method for separating 1,3-butadiene according to any one of claims 1 to 3, wherein the metal ion is a zinc ion. 前記分離方法が圧力スイング吸着法である請求項1〜4のいずれか一項に記載の1,3−ブタジエンの分離方法。   The method for separating 1,3-butadiene according to any one of claims 1 to 4, wherein the separation method is a pressure swing adsorption method. 前記分離方法が温度スイング吸着法である請求項1〜4のいずれか一項に記載の1,3−ブタジエンの分離方法。   The method for separating 1,3-butadiene according to any one of claims 1 to 4, wherein the separation method is a temperature swing adsorption method. 炭素数4のジカルボン酸化合物と、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、バナジウム、クロム、マンガン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、パラジウム、白金、銅、亜鉛およびカドミウムからなる群より選択される少なくとも1種の金属のイオンと、下記一般式(I):
(式中、R、R、R、R、R、R、RおよびRはそれぞれ同一または異なっていてもよい、水素原子、置換基を有していてもよい炭素数1〜5のアルキル基またはハロゲン原子であり、RとR、あるいはRとRが一緒になって置換基を有していてもよいアルケニレン基を形成してもよい。)で表される前記金属イオンに二座配位可能な有機配位子(I)とからなり、ジャングルジム骨格が二重に相互貫入した構造を有する金属錯体を含む1,3−ブタジエン分離材を有する1,3−ブタジエン分離膜。
From the group consisting of a C4 dicarboxylic acid compound and beryllium, magnesium, calcium, strontium, barium, titanium, vanadium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel, palladium, platinum, copper, zinc and cadmium At least one metal ion selected and the following general formula (I):
(In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 may be the same or different and each may have a hydrogen atom or a substituent. An alkyl group having 1 to 5 or a halogen atom, and R 2 and R 3 , or R 6 and R 7 may be combined to form an alkenylene group which may have a substituent. It comprises an organic ligand (I) capable of bidentate coordination with the metal ion represented, and has a 1,3-butadiene separator containing a metal complex having a structure in which a jungle gym skeleton is double interpenetrated 1,3-butadiene separation membrane.
多孔質支持体をさらに含み、前記1,3−ブタジエン分離材が前記多孔質支持体の表層部に付着している請求項7に記載の1,3−ブタジエン分離膜。   The 1,3-butadiene separation membrane according to claim 7, further comprising a porous support, wherein the 1,3-butadiene separation material is attached to a surface layer portion of the porous support. 高分子材料をさらに含み、前記1,3−ブタジエン分離材が前記高分子材料中に分散している請求項7に記載の1,3−ブタジエン分離膜。   The 1,3-butadiene separation membrane according to claim 7, further comprising a polymer material, wherein the 1,3-butadiene separator is dispersed in the polymer material. 1,3−ブタジエンおよび1,3−ブタジエン以外の炭素数4の炭化水素を含む混合ガスを分離膜に接触させ、前記分離膜を通して1,3−ブタジエンを選択的に透過させることを含む、前記混合ガスよりも1,3−ブタジエン濃度が高いガスを得る1,3−ブタジエンの分離方法において、前記分離膜が請求項7〜9のいずれか一項に記載の1,3−ブタジエン分離膜であることを特徴とする1,3−ブタジエンの分離方法。   Contacting a separation gas with a mixed gas containing 1,3-butadiene and a hydrocarbon having 4 carbon atoms other than 1,3-butadiene, and selectively allowing 1,3-butadiene to permeate through the separation membrane, The 1,3-butadiene separation membrane according to any one of claims 7 to 9, wherein the separation membrane is a 1,3-butadiene separation method for obtaining a gas having a higher 1,3-butadiene concentration than a mixed gas. There is provided a method for separating 1,3-butadiene.
JP2012238939A 2012-10-30 2012-10-30 Method for separating 1,3-butadiene and separation membrane Active JP5980091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238939A JP5980091B2 (en) 2012-10-30 2012-10-30 Method for separating 1,3-butadiene and separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238939A JP5980091B2 (en) 2012-10-30 2012-10-30 Method for separating 1,3-butadiene and separation membrane

Publications (2)

Publication Number Publication Date
JP2014088341A true JP2014088341A (en) 2014-05-15
JP5980091B2 JP5980091B2 (en) 2016-08-31

Family

ID=50790591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238939A Active JP5980091B2 (en) 2012-10-30 2012-10-30 Method for separating 1,3-butadiene and separation membrane

Country Status (1)

Country Link
JP (1) JP5980091B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037317A1 (en) * 2017-08-22 2019-02-28 浙江大学 Method for separating carbon tetraolefin mixture
WO2023171305A1 (en) * 2022-03-08 2023-09-14 Eneos株式会社 Unsaturated hydrocarbon scavenger, novel compound, and metal-organic framework

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143702A (en) * 1974-08-12 1976-04-14 Uop Inc ZEORAITOKYUCHAKUZAINOSENTAKUTEKIKYUCHAKUNYORU 1 33 BUTAJENNOBUNRIHO
JPS62169734A (en) * 1984-05-29 1987-07-25 ユ−オ−ピ− インコ−ポレイテツド Separation of 1,3-butadiene
WO2013024888A1 (en) * 2011-08-17 2013-02-21 株式会社クラレ Separation material, and separation method using said separating material
WO2014045967A1 (en) * 2012-09-18 2014-03-27 昭和電工株式会社 1, 3-butadiene-separating material, and separation method using said separating material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5143702A (en) * 1974-08-12 1976-04-14 Uop Inc ZEORAITOKYUCHAKUZAINOSENTAKUTEKIKYUCHAKUNYORU 1 33 BUTAJENNOBUNRIHO
JPS62169734A (en) * 1984-05-29 1987-07-25 ユ−オ−ピ− インコ−ポレイテツド Separation of 1,3-butadiene
WO2013024888A1 (en) * 2011-08-17 2013-02-21 株式会社クラレ Separation material, and separation method using said separating material
WO2014045967A1 (en) * 2012-09-18 2014-03-27 昭和電工株式会社 1, 3-butadiene-separating material, and separation method using said separating material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015048667; Inorg. Chem. 44(14), 2005, pp. 4912-4914 *
JPN6015048668; Inorg. Chem. 46(4), 2007, pp. 1233-1236 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037317A1 (en) * 2017-08-22 2019-02-28 浙江大学 Method for separating carbon tetraolefin mixture
US11214530B2 (en) * 2017-08-22 2022-01-04 Zhejiang University Method for the separation of C4 olefin mixtures
WO2023171305A1 (en) * 2022-03-08 2023-09-14 Eneos株式会社 Unsaturated hydrocarbon scavenger, novel compound, and metal-organic framework

Also Published As

Publication number Publication date
JP5980091B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6278964B2 (en) Metal complex, adsorbent, separating material and method for separating 1,3-butadiene
JP6215213B2 (en) 1,3-butadiene separator and separation method using the separator
JP6188724B2 (en) Gas separation material and gas separation method using metal complex
Bétard et al. Fabrication of a CO2-selective membrane by stepwise liquid-phase deposition of an alkylether functionalized pillared-layered metal-organic framework [Cu2L2P] n on a macroporous support
Chen et al. A pillar-layer metal-organic framework for efficient adsorption separation of propylene over propane
JP6305405B2 (en) 1,3-butadiene separator and separation method using the separator
JP5478120B2 (en) Metal complex and method for producing the same
JP5677131B2 (en) Metal complex, and occlusion material and separation material comprising the same
CN111944160B (en) Oxalic acid functionalized microporous coordination polymer material and preparation method and application thereof
JP2012031161A (en) Metal complex, and occlusion material and separating material consisting of the same
JP5955135B2 (en) Gas separation material containing metal complex of oxocarbonic acid and method for separating hydrocarbon gas
JP5478121B2 (en) Metal complex and method for producing the same
CN112844321A (en) Synthesis preparation of series column support type metal organic framework materials and separation application of low-carbon hydrocarbons of series column support type metal organic framework materials
JP2013107826A (en) Metal complex, method for producing the metal complex and separation material
JP5980091B2 (en) Method for separating 1,3-butadiene and separation membrane
CN114452938A (en) Alkane preferential adsorption microporous material and preparation method and application thereof
JP2014148482A (en) Method for separating ethylene using metal complex
JP2012184197A (en) Metal complex and adsorbent, occlusion material, and separation material consisting of the same
CN116655929A (en) Organic metal framework material and preparation method thereof, and method for preparing ethylene by separation and purification
JP2011037793A (en) Metal complex and method for producing the same
JP2014058481A (en) Metal complex, and adsorbent, occlusion material and separation material therefor
JP2011190255A (en) Metal complex, and adsorbing material, occlusion material and separation material composed thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160726

R150 Certificate of patent or registration of utility model

Ref document number: 5980091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350