JP2014088319A - Light transmitting zirconia sintered body and manufacturing method and use thereof - Google Patents

Light transmitting zirconia sintered body and manufacturing method and use thereof Download PDF

Info

Publication number
JP2014088319A
JP2014088319A JP2014018162A JP2014018162A JP2014088319A JP 2014088319 A JP2014088319 A JP 2014088319A JP 2014018162 A JP2014018162 A JP 2014018162A JP 2014018162 A JP2014018162 A JP 2014018162A JP 2014088319 A JP2014088319 A JP 2014088319A
Authority
JP
Japan
Prior art keywords
sintered body
zirconia
sintering
powder
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014018162A
Other languages
Japanese (ja)
Other versions
JP5817859B2 (en
Inventor
Kiyotaka Kawamura
清隆 河村
Hiroyuki Fujisaki
浩之 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41436713&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014088319(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014018162A priority Critical patent/JP5817859B2/en
Publication of JP2014088319A publication Critical patent/JP2014088319A/en
Application granted granted Critical
Publication of JP5817859B2 publication Critical patent/JP5817859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a zirconia sintered body having high sintered body density and strength and excellent in light-transmitting, and to provide a method of manufacturing the zirconia sintered body with simple process by normal pressure sintering.SOLUTION: A light transmitting zirconia sintered body containing yttria of 2 to 4 mol% as a stabilizer, consisting of zirconia containing alumina of 0.1 to 0.2 wt.% as an additive agent, and having a relative density of 99.8% or more and a light transmittance with thickness of 1.0 mm of 35% or more is obtained by normal pressure sintering. It is preferable to sinter a powder containing alumina having a particle diameter of 0.01 to 0.5 μm of 0.1 to 0.2 wt.%, and having a BET specific surface area of 5 to 15 m/gm, an average particle size of 0.3 to 0.7 μm, a sinter shrinkage rate during normal sintering (▵ρ/▵T: g/cm°C) of 0.0125 to 0.0160 under normal pressure in atmosphere.

Description

本発明は常圧焼結で焼結体密度及び強度が高く、透光性に優れるジルコニア焼結体に関する。特に歯科用途で使用されるジルコニア焼結体、さらには義歯材料等のミルブランク、歯列矯正ブラケットとして用いるのに適する。   The present invention relates to a zirconia sintered body that is sintered under normal pressure, has a high density and strength, and is excellent in translucency. It is particularly suitable for use as a zirconia sintered body used in dental applications, a mill blank such as a denture material, and an orthodontic bracket.

安定剤としてYを少量固溶させたジルコニア焼結体は、高強度、高靭性であることから切断工具、ダイス、ノズル、ベアリングなどの機械構造用材料や歯科材料等の生体材料として広く利用されている。歯科材料の場合、高強度、高靱性という機械的特性のみならず、審美的観点から透光性及び色調という光学的特性も要求される。 A zirconia sintered body in which a small amount of Y 2 O 3 is dissolved as a stabilizer has high strength and high toughness, so that it is used as a material for mechanical structures such as cutting tools, dies, nozzles, and bearings, and as a biomaterial such as dental materials. Widely used. In the case of dental materials, not only mechanical properties such as high strength and high toughness but also optical properties such as translucency and color tone are required from an aesthetic point of view.

ジルコニアの単結晶は透光感があり、従来からイットリアを約10mol%含有するジルコニア単結晶(キュービックジルコニア)は宝飾品等に利用されているが、強度が極めて低いという問題があった。一方、多結晶体である通常のジルコニア焼結体は透光感がないことが知られている。この原因として結晶粒間及び粒内に存在する気孔が光散乱を起こすことが知られており、これまで気孔を減少させる、つまり焼結体密度を増加させることで多結晶のジルコニア焼結体に透明性を付与しようとする研究がなされている。   Zirconia single crystals have translucency, and conventionally zirconia single crystals (cubic zirconia) containing about 10 mol% of yttria have been used for jewelry and the like, but have a problem of extremely low strength. On the other hand, it is known that a normal zirconia sintered body which is a polycrystalline body has no translucency. It is known that the pores existing between and within the grains cause light scattering as a cause of this, and so far, by reducing the pores, that is, by increasing the density of the sintered body, it becomes a polycrystalline zirconia sintered body. Research has been done to give transparency.

例えば特許文献1にはYを2mol%以上及びTiOを3〜20mol%含む透光性ジルコニアが開示されているが、透光性を与えるためにTiOを多量に含有するため、強度に問題があった。 For example, Patent Document 1 discloses translucent zirconia containing 2 mol% or more of Y 2 O 3 and 3 to 20 mol% of TiO 2 , but contains a large amount of TiO 2 to provide translucency, There was a problem with strength.

特許文献2には3mol%Y、0.25wt%Alの組成において透光性を有する焼結体密度99.8%のジルコニア焼結体が開示され、可視光に対する全光線透過率が49%(但し厚さ0.5mm)と報告されている。しかし、当該焼結体は熱間静水圧プレス(HIP)を用いた加圧焼結によるものであり、常圧焼結では十分な透光性が得られていなかった。 Patent Document 2 discloses a zirconia sintered body having a translucent sintered body density of 99.8% in a composition of 3 mol% Y 2 O 3 and 0.25 wt% Al 2 O 3 , and has a total light beam for visible light. The transmittance is reported to be 49% (thickness 0.5 mm). However, the sintered body was obtained by pressure sintering using a hot isostatic press (HIP), and sufficient translucency was not obtained by atmospheric pressure sintering.

特開昭62−91467号公報JP-A-62-91467 特開平20−50247号公報Japanese Patent Laid-Open No. 20-50247

本発明では、上記のような従来方法における欠点を解消し、焼結体密度及び強度が高く、透光感に優れるジルコニア焼結体を提供するところにあり、特にその様なジルコニア焼結体を常圧焼結による簡易なプロセスにより製造することのできる方法の提供を目的とするものである。   The present invention eliminates the above-mentioned drawbacks in the conventional method, provides a sintered body having a high density and strength, and excellent translucency. In particular, such a zirconia sintered body is provided. An object of the present invention is to provide a method that can be manufactured by a simple process by atmospheric pressure sintering.

本発明者らは、ジルコニア粉末中のアルミナの状態と焼結体密度及び焼結体の全光線透過率との関係について詳細に検討した結果、ジルコニア粉末の焼結性を高めるだけでは常圧焼結で透光性ジルコニア焼結体を得ることはできず、常圧焼結で透光性ジルコニア焼結体を得るためには当該ジルコニアの特定の温度領域の焼結速度を制御することが必要であり、なおかつ添加剤として用いられるアルミナの物性によって当該焼結速度を制御することが必要であることを見出し、本発明を完成するに到ったものである。   As a result of detailed investigations on the relationship between the state of alumina in the zirconia powder, the sintered body density, and the total light transmittance of the sintered body, the present inventors have found that the pressureless sintering is merely achieved by increasing the sinterability of the zirconia powder. It is not possible to obtain a light-transmitting zirconia sintered body by sintering, and in order to obtain a light-transmitting zirconia sintered body by atmospheric pressure sintering, it is necessary to control the sintering speed of a specific temperature region of the zirconia In addition, the inventors have found that it is necessary to control the sintering speed depending on the physical properties of alumina used as an additive, and have completed the present invention.

即ち、本発明は、
1)安定化剤として2〜4mol%のイットリア、添加剤として粒径が0.01〜0.5μmのアルミナを0.1〜0.2wt%含む透光性ジルコニア焼結体用粉末。
2)BET比表面積が5〜15m/g、平均粒径が0.3〜0.7μmである上記1)に記載の粉末。
3)常圧焼結(大気中、昇温速度300℃/時)における相対密度70%から90%までの焼結収縮速度(△ρ/△T:g/cm・℃)が0.0125以上0.0160以下である上記1)〜2)のいずれかに記載の粉末、
からなるものである。
That is, the present invention
1) Powder for translucent zirconia sintered body containing 2 to 4 mol% of yttria as a stabilizer and 0.1 to 0.2 wt% of alumina having a particle diameter of 0.01 to 0.5 µm as an additive.
2) The powder according to 1) above, wherein the BET specific surface area is 5 to 15 m 2 / g and the average particle size is 0.3 to 0.7 μm.
3) Sintering shrinkage rate (Δρ / ΔT: g / cm 3 · ° C.) from 70% to 90% relative density in atmospheric pressure sintering (in the atmosphere, temperature rising rate 300 ° C./hour) is 0.0125. The powder according to any one of 1) to 2) above, which is 0.0160 or less,
It consists of

従来、高密度ジルコニア焼結体に微細なアルミナ(ゾル等)を用いることは知られていたが、焼結体に要求される特性の向上の観点からその添加量は0.2wt%を超えるものしかなく、異種成分のアルミナの多いジルコニア焼結体では光の屈折、散乱等の影響により、高密度であっても透光性が十分なものはなかった。本発明の焼結体は、微細なアルミナの含有量が0.2wt%以下の範囲において、焼結体に要求される基本的な特性に優れ、なおかつ透光性に優れた焼結体である。   Conventionally, it has been known to use fine alumina (sol etc.) for high-density zirconia sintered body, but its addition amount exceeds 0.2 wt% from the viewpoint of improving the characteristics required of the sintered body. However, a zirconia sintered body containing a large amount of different component alumina has no sufficient translucency even at high density due to the effects of light refraction and scattering. The sintered body of the present invention is a sintered body excellent in basic characteristics required for a sintered body and having excellent translucency in a range where the content of fine alumina is 0.2 wt% or less. .

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

なお、本発明におけるジルコニア粉末に係わる「平均粒径」とは、体積基準で表される粒径分布の累積カーブが中央値(メディアン径;累積カーブの50%に対応する粒径)である粒子と同じ体積の球の直径をいい、レーザー回折法による粒径分布測定装置によって測定したものをいう。   The “average particle size” related to the zirconia powder in the present invention is a particle having a median value (median diameter; particle size corresponding to 50% of the cumulative curve) of the cumulative particle size distribution expressed by volume. Is the diameter of a sphere having the same volume as that measured by a particle size distribution measuring apparatus using a laser diffraction method.

「安定化剤濃度」とは、安定化剤/(ZrO+安定化剤)の比率をモル%として表した値をいう。 “Stabilizer concentration” refers to a value expressed as mole% of the ratio of stabilizer / (ZrO 2 + stabilizer).

「単斜晶相率(fm)」とは、粉末X腺回折(XRD)測定により単斜晶相の(111)及び(11−1)面,正方晶相の(111)面,立方晶の(111)面の回折強度をそれぞれ求めて、以下の数式1により算出されたものの値をいう。   “Monoclinic phase ratio (fm)” means the (111) and (11-1) planes of the monoclinic phase, the (111) plane of the tetragonal phase, and the cubic crystal by powder X-ray diffraction (XRD) measurement. The diffraction intensity of the (111) plane is obtained, and the value calculated by the following formula 1 is used.

Figure 2014088319
Figure 2014088319

(但し、Iは各回折線のピーク強度,添字m,t及びcは、それぞれ単斜晶相,正方晶相,立方晶相を表す。)
「添加物含有量」とは、添加物/(ZrO+安定化剤+添加物)の比率を重量%として表した値をいう。ここで、添加物は酸化物に換算した値である。
(However, I represents the peak intensity of each diffraction line, and subscripts m, t, and c represent a monoclinic phase, a tetragonal phase, and a cubic phase, respectively.)
“Additive content” refers to a value expressed as a weight% ratio of additive / (ZrO 2 + stabilizer + additive). Here, the additive is a value converted to an oxide.

水和ジルコニアゾルに係わる「反応率」とは、水和ジルコニアゾル含有液を限外濾過して、その濾液中に存在する未反応物のジルコニウム量を誘導結合プラズマ発光分光分析により求めて、水和ジルコニアゾルの生成量を算出し、原料仕込量に対する水和ジルコニアゾル量の比率として表したものの値をいう。   The “reaction rate” related to the hydrated zirconia sol is obtained by ultrafiltration of a hydrated zirconia sol-containing liquid and determining the amount of zirconium in the unreacted substance present in the filtrate by inductively coupled plasma emission spectrometry. The amount of zirconia sol produced is calculated and the value expressed as the ratio of the amount of hydrated zirconia sol to the amount of raw material charged.

「相対密度」とは、アルキメデス法により実測した実測密度ρと下記に示される数式2の計算式によって求めた理論密度ρとを用いて、(ρ/ρ)×100の比率(%)に換算して表した値をいう。数式2において、アルミナの理論密度を3.987(g/cm),3mol%イットリア含有ジルコニアの理論密度を6.0956(g/cm)とした。 The “relative density” is a ratio (%) of (ρ / ρ 0 ) × 100 using the measured density ρ actually measured by the Archimedes method and the theoretical density ρ 0 obtained by the calculation formula of Equation 2 shown below. The value expressed in terms of. In Formula 2, the theoretical density of alumina was 3.987 (g / cm 3 ), and the theoretical density of 3 mol% yttria-containing zirconia was 6.0956 (g / cm 3 ).

Figure 2014088319
Figure 2014088319

{但し、X:アルミナ含有量(重量%)}
本発明の透光性ジルコニア焼結体は、安定化剤として2〜4mol%のイットリアを含むものである。安定化剤が2mol%未満では、強度が低下するばかりか、結晶相が不安定となり焼結体の作製が困難となる。又、4mol%を超えると強度低下が顕著となる。高強度に適するイットリア濃度は2.5〜3mol%であり、全光線透過率に適するイットリア濃度は3〜4mol%である。
{However, X: Alumina content (wt%)}
The translucent zirconia sintered body of the present invention contains 2 to 4 mol% yttria as a stabilizer. If the stabilizer is less than 2 mol%, not only the strength is lowered, but also the crystal phase becomes unstable, making it difficult to produce a sintered body. On the other hand, when the amount exceeds 4 mol%, the strength is significantly reduced. The yttria concentration suitable for high intensity is 2.5 to 3 mol%, and the yttria concentration suitable for total light transmittance is 3 to 4 mol%.

本発明の透光性ジルコニア焼結体は、さらに添加剤としてアルミナを0.1〜0.2wt%含むものである。添加剤が0.1wt%未満では焼結速度が遅いため、相対密度が99.8%に到達せず、透光性に劣る。0.2wt%を超えると焼結速度が速くなりすぎるため、焼結中に多くの気孔が生成し、相対密度が99.8%に到達せず、透光性に劣る。より好ましいアルミナの添加量は0.12〜0.18wt%である。   The translucent zirconia sintered body of the present invention further contains 0.1 to 0.2 wt% of alumina as an additive. If the additive is less than 0.1 wt%, the sintering speed is slow, so the relative density does not reach 99.8% and the translucency is poor. If it exceeds 0.2 wt%, the sintering speed becomes too fast, so that many pores are generated during sintering, the relative density does not reach 99.8%, and the translucency is poor. A more preferable addition amount of alumina is 0.12 to 0.18 wt%.

本発明の透光性ジルコニア焼結体は、上記の組成を満足するもので相対密度が99.8%以上であることにより、厚さ1.0mmでの全光線透過率が35%以上を満足するものである。   The translucent zirconia sintered body of the present invention satisfies the above composition and has a relative density of 99.8% or more, so that the total light transmittance at a thickness of 1.0 mm satisfies 35% or more. To do.

本発明の透光性ジルコニア焼結体は、HIP等の加圧焼結を用いず、常圧焼結で得られるものであり、厚さ1.0mmでの全光線透過率が少なくとも35%以上、好ましくは37%以上で、さらに40%までに至る高い透光性を有するものである。   The translucent zirconia sintered body of the present invention is obtained by atmospheric pressure sintering without using pressure sintering such as HIP, and has a total light transmittance of at least 35% or more at a thickness of 1.0 mm. Preferably, it has a high translucency up to 37% and further up to 40%.

本発明の透光性ジルコニア焼結体はさらに結晶粒径が0.20〜0.45μmであることが好ましい。結晶粒径が0.20μm未満であると、粒間及び粒内に微細な気孔が多く存在するため、相対密度が99.8%に到達しない。結晶粒径が0.45μmを超えると、焼結体の水熱劣化が著しく進行し、焼結体が破壊してしまうため適さない。   The translucent zirconia sintered body of the present invention preferably further has a crystal grain size of 0.20 to 0.45 μm. When the crystal grain size is less than 0.20 μm, there are many fine pores between and within the grains, so that the relative density does not reach 99.8%. If the crystal grain size exceeds 0.45 μm, the hydrothermal deterioration of the sintered body proceeds remarkably and the sintered body is destroyed, which is not suitable.

本発明の透光性ジルコニア焼結体は、140℃の熱水中に24時間浸漬させた後の単斜晶相率が20〜30%であることが好ましい。単斜晶相率が30%を超えると焼結体の水熱劣化が著しく進行し、焼結体が破壊してしまうため適さない。   The translucent zirconia sintered body of the present invention preferably has a monoclinic phase ratio of 20 to 30% after being immersed in hot water at 140 ° C. for 24 hours. When the monoclinic phase ratio exceeds 30%, the hydrothermal deterioration of the sintered body proceeds remarkably, and the sintered body is destroyed.

本発明の透光性ジルコニア焼結体は、3点曲げ強度が1200MPa以上であることが好ましい。3点曲げ強度が1300MPa以上であり、さらには1400MPa以上であることが好ましい。   The translucent zirconia sintered body of the present invention preferably has a three-point bending strength of 1200 MPa or more. The three-point bending strength is 1300 MPa or more, and more preferably 1400 MPa or more.

本発明の透光性ジルコニア焼結体用のジルコニア粉末は、安定化剤として2〜4mol%のイットリア、添加剤として粒径が0.01〜0.5μmのアルミナを0.1〜0.2wt%含むものであり、特に粒径が0.01〜0.05μmのアルミナゾルを0.1〜0.2wt%含むものが好ましい。   The zirconia powder for a translucent zirconia sintered body of the present invention comprises 2 to 4 mol% of yttria as a stabilizer and 0.1 to 0.2 wt% of alumina having a particle diameter of 0.01 to 0.5 µm as an additive. In particular, those containing 0.1 to 0.2 wt% of alumina sol having a particle size of 0.01 to 0.05 μm are preferable.

本発明の透光性ジルコニア焼結体用のジルコニア粉末は、BET比表面積が5〜15m/gの範囲であることが好ましい。ジルコニア粉末のBET比表面積が、5m/gよりも小さくなると低温側で焼結しにくい粉末となり、また、15m/gよりも大きくなると粒子間の凝集力が著しい粉末となる。より好ましいBET比表面積は5〜10m/g、さらには6〜9m/gである。 The zirconia powder for a translucent zirconia sintered body of the present invention preferably has a BET specific surface area in the range of 5 to 15 m 2 / g. When the BET specific surface area of the zirconia powder is smaller than 5 m 2 / g, the powder is difficult to sinter on the low temperature side, and when it is larger than 15 m 2 / g, the cohesive force between the particles becomes remarkable. A more preferable BET specific surface area is 5 to 10 m 2 / g, and further 6 to 9 m 2 / g.

本発明の透光性ジルコニア焼結体用のジルコニア粉末は、平均粒径が0.3〜0.7μmの範囲内であることが好ましい。ジルコニア粉末の平均粒径が0.3μmよりも小さくなると粉末の凝集性を高める微小粒子が多くなって成形しにくいものとなり、一方、0.7μmよりも大きくなると硬い凝集粒子を含む粗粒が多くなるために、成形しにくいものとなり、かつ、粗粒が焼結の緻密化を阻害するために焼結性の悪いものとなる。好ましい平均粒径は0.4〜0.5μmである。   The zirconia powder for a translucent zirconia sintered body of the present invention preferably has an average particle diameter in the range of 0.3 to 0.7 μm. When the average particle size of the zirconia powder is smaller than 0.3 μm, the number of fine particles that increase the cohesiveness of the powder increases and it becomes difficult to mold. On the other hand, when the average particle size is larger than 0.7 μm, there are many coarse particles containing hard agglomerated particles. Therefore, it becomes difficult to mold, and the coarse particles inhibit the densification of the sintering, so that the sinterability is poor. A preferable average particle diameter is 0.4 to 0.5 μm.

本発明の透光性ジルコニア焼結体用のジルコニア粉末は、例えばジルコニウム塩水溶液の加水分解で得られる水和ジルコニアゾルを、乾燥,仮焼,粉砕して得ればよいが、該ジルコニウム塩水溶液にアルカリ金属水酸化物及び/又はアルカリ土類金属水酸化物を加えた後に、反応率が98%以上になるまで加水分解を行って得られる水和ジルコニアゾルに、安定化剤の原料としてイットリウムを添加して乾燥することが好ましい。   The zirconia powder for a translucent zirconia sintered body of the present invention may be obtained by drying, calcining and pulverizing, for example, a hydrated zirconia sol obtained by hydrolysis of a zirconium salt aqueous solution. After adding alkali metal hydroxide and / or alkaline earth metal hydroxide to hydrated zirconia sol obtained by hydrolysis until the reaction rate becomes 98% or more, yttrium as a raw material for the stabilizer It is preferable to add and dry.

水和ジルコニアゾルの製造に用いるジルコニウム塩としては、オキシ塩化ジルコニウム,硝酸ジルコニル,塩化ジルコニウム,硫酸ジルコニウムなどが挙げられるが、この他に水酸化ジルコニウムと酸との混合物を用いてもよい。ジルコニウム塩水溶液に加えるアルカリ金属水酸化物及び/又はアルカリ土類金属水酸化物としては、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム等の水酸化物を挙げることができる。上記の水酸化物は、水溶液にして加えることが好ましい。   Zirconium salts used for the production of the hydrated zirconia sol include zirconium oxychloride, zirconyl nitrate, zirconium chloride, zirconium sulfate, etc. In addition to this, a mixture of zirconium hydroxide and acid may be used. Examples of the alkali metal hydroxide and / or alkaline earth metal hydroxide added to the zirconium salt aqueous solution include hydroxides such as lithium, sodium, potassium, magnesium, and calcium. The hydroxide is preferably added as an aqueous solution.

上記で得られた水和ジルコニアゾルの乾燥粉を1000〜1250℃の温度で仮焼する。仮焼温度がこの範囲外になると、本発明の下記粉砕条件で得られるジルコニア微粉末の凝集性が著しく強くなって、あるいは硬い凝集粒子を含む粗粒が多くなるために平均粒径が0.3〜0.7μmの範囲外となって、本発明のジルコニア粉末が得られない。より好ましい仮焼温度は1050〜1150℃である。   The dried powder of hydrated zirconia sol obtained above is calcined at a temperature of 1000 to 1250 ° C. If the calcining temperature is outside this range, the agglomeration property of the zirconia fine powder obtained under the following pulverization conditions of the present invention becomes remarkably strong, or the average particle size becomes 0.00 because the number of coarse particles containing hard agglomerated particles increases. Outside the range of 3 to 0.7 μm, the zirconia powder of the present invention cannot be obtained. A more preferable calcining temperature is 1050 to 1150 ° C.

次いで、上記で得られた仮焼粉を平均粒径が0.3〜0.7μmの範囲になるまで、直径3mm以下のジルコニアボールを用いて湿式粉砕することによりさらに焼結性を本発明の範囲に調整することが好ましい。   Next, the sinterability of the present invention is further improved by wet-grinding the calcined powder obtained above using a zirconia ball having a diameter of 3 mm or less until the average particle diameter is in the range of 0.3 to 0.7 μm. It is preferable to adjust to the range.

水和ジルコニアゾル合成時に、ジルコニウム塩水溶液にアルカリ金属及び/又はアルカリ土類金属の水酸化物を添加しないと、この湿式粉砕が効率的に実施できなくなる。この原因は定かでないが、上記水酸化物を添加する事により、ジルコニア粉末同士の凝集力を低下するためと考えられる。   If an alkali metal and / or alkaline earth metal hydroxide is not added to the zirconium salt aqueous solution during the synthesis of the hydrated zirconia sol, this wet pulverization cannot be carried out efficiently. Although this cause is not certain, it is considered that the cohesive strength between the zirconia powders is reduced by adding the hydroxide.

本発明の透光性ジルコニア焼結体用のジルコニア粉末に用いる添加物であるアルミニウムの原料化合物としては、アルミナ、水和アルミナ、アルミナゾル、水酸化アルミニウム、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウムなどを挙げることができる。   Examples of the aluminum raw material compound used in the zirconia powder for the light-transmitting zirconia sintered body of the present invention include alumina, hydrated alumina, alumina sol, aluminum hydroxide, aluminum chloride, aluminum nitrate, and aluminum sulfate. be able to.

アルミナゾルとしては、特に平均粒径0.01〜0.05μmでなおかつBET比表面積が30〜150m/gのアルミナゾル、さらにはBET比表面積が30〜290m/gのアルミナゾルを用いる場合には、ジルコニア粉末と混合して焼結することにより、高い透光性のジルコニア焼結体となる。 As the alumina sol, particularly when using an alumina sol having an average particle size of 0.01 to 0.05 μm and a BET specific surface area of 30 to 150 m 2 / g, and further an alumina sol having a BET specific surface area of 30 to 290 m 2 / g, By mixing and sintering with zirconia powder, a highly translucent zirconia sintered body is obtained.

一方、アルミナとしては、平均粒径が0.05〜0.5μmでなおかつBET比表面積が5〜50m/gのα―アルミナを用いることができる。 On the other hand, as the alumina, α-alumina having an average particle diameter of 0.05 to 0.5 μm and a BET specific surface area of 5 to 50 m 2 / g can be used.

本発明の透光性ジルコニア焼結体用のジルコニア粉末は、常圧焼結(大気中、昇温速度300℃/時)における相対密度70%から90%までの焼結収縮速度(△ρ/△T:g/cm・℃)が、0.0125以上0.0160以下であることが好ましい(本発明の組成における相対密度は数式2の計算式によって求めた理論密度により計算される。)。 The zirconia powder for a translucent zirconia sintered body of the present invention has a sintering shrinkage rate (Δρ /) at a relative density of 70% to 90% in atmospheric pressure sintering (in the atmosphere, a heating rate of 300 ° C./hour). (ΔT: g / cm 3 · ° C.) is preferably 0.0125 or more and 0.0160 or less (the relative density in the composition of the present invention is calculated by the theoretical density obtained by the formula of Formula 2). .

本発明の透光性ジルコニア焼結体用のジルコニア粉末は、通常のプレス成型(必要に応じて静水圧プレス(CIP処理))により相対密度50±5%程度の成型体となる。その様な成型体を大気中で昇温すると、仮焼温度以上の温度、特に1100℃付近から焼結収縮が開始する。焼結の収縮速度は相対密度70%から90%までの範囲で一定となり、相対密度が90%を超えたところから徐々に収縮速度が低下し、100%付近において最終的にそれ以上温度を上げても収縮しなくなる。   The zirconia powder for a translucent zirconia sintered body of the present invention is formed into a molded body having a relative density of about 50 ± 5% by ordinary press molding (hydrostatic pressure pressing (CIP treatment if necessary)). When such a molded body is heated in the atmosphere, sintering shrinkage starts from a temperature equal to or higher than the calcination temperature, particularly around 1100 ° C. The shrinkage rate of sintering is constant in the range from 70% to 90% relative density. The shrinkage rate gradually decreases from the point where the relative density exceeds 90%, and finally the temperature is further increased near 100%. But it will not shrink.

常圧焼結(大気中、昇温速度300℃/時)における相対密度70%から90%までの焼結収縮速度(△ρ/△T:g/cm・℃)は、ジルコニア粉末を成型(金型成型の後、CIP処理(圧力2t/cm))した後、汎用的な熱膨張計(アルバック理工製 DL9700)によって測定することができる。本発明における焼結収縮速度は、相対密度が70%以上での測定値であるため、初期の成型密度(相対密度50%前後)のばらつきにより影響を受けない。さらに相対密度70%から90%では焼結収縮速度が一定であり、収縮速度が温度と相対密度の一次関数となるため、特別な近似計算処理を用いることなくても容易に正確な収縮速度を求めることが可能である。 The sintering shrinkage rate (Δρ / ΔT: g / cm 3 · ° C.) from 70% to 90% relative density in atmospheric pressure sintering (in the air, heating rate 300 ° C./hour) is obtained by molding zirconia powder. (After die molding, CIP treatment (pressure 2 t / cm 2 )), and then can be measured by a general-purpose thermal dilatometer (DL9700 manufactured by ULVAC-RIKO). Since the sintering shrinkage rate in the present invention is a measured value at a relative density of 70% or more, it is not affected by variations in the initial molding density (relative density around 50%). Furthermore, since the sintering shrinkage rate is constant at a relative density of 70% to 90%, and the shrinkage rate is a linear function of temperature and relative density, an accurate shrinkage rate can be easily obtained without using a special approximate calculation process. It is possible to ask.

本発明の透光性ジルコニア焼結体用のジルコニア粉末は、常圧焼結(大気中、昇温速度300℃/時)における相対密度70%から90%までの焼結収縮速度(△ρ/△T:g/cm・℃)が上記の範囲から外れると相対密度99.8%以上の高い透光性を有する焼結体を得ることが困難である。 The zirconia powder for a translucent zirconia sintered body of the present invention has a sintering shrinkage rate (Δρ /) at a relative density of 70% to 90% in atmospheric pressure sintering (in the atmosphere, a heating rate of 300 ° C./hour). If ΔT: g / cm 3 · ° C.) deviates from the above range, it is difficult to obtain a sintered body having a high translucency with a relative density of 99.8% or more.

本発明のジルコニア粉末は、HIP処理等の加圧焼結を用いなくても、常圧焼結において高い透光性の焼結体が得られるものであるが、本発明の粉末は、用いるアルミナの物性に対して特定の焼結性(焼結収縮速度)を有することが好ましい。本発明でいうところの焼結収縮速度(△ρ/△T:g/cm・℃)は高いほどよいというものではない。アルミナの物性に対して焼結収縮速度が本発明の範囲から外れた場合、常圧焼結において高い透光性を有する焼結体を得ることは困難である。
本発明で用いている焼結収縮速度は、昇温速度が変わればまた異なるが、昇温速度を決定すれば一定の値を有し、粉末に固有の値である。
The zirconia powder of the present invention is one that can obtain a highly translucent sintered body in normal pressure sintering without using pressure sintering such as HIP treatment. It is preferable to have specific sinterability (sintering shrinkage rate) with respect to the physical properties of The higher the sintering shrinkage rate (Δρ / ΔT: g / cm 3 · ° C.) referred to in the present invention, the better. When the sintering shrinkage rate deviates from the scope of the present invention with respect to the physical properties of alumina, it is difficult to obtain a sintered body having high translucency in atmospheric pressure sintering.
The sintering shrinkage rate used in the present invention is different when the heating rate changes, but has a constant value when the heating rate is determined, and is a value inherent to the powder.

本発明の粉末では用いるアルミナの平均粒径が0.01μm以上0.05μm未満の場合、焼結収縮速度(△ρ/△T:g/cm・℃)は0.0125以上0.0135以下であり、この範囲から外れると常圧焼結、特に1450℃以下、さらには1400℃以下での常圧焼結において透光性の高いジルコニア焼結体が得られない。 In the powder of the present invention, when the average particle size of alumina used is 0.01 μm or more and less than 0.05 μm, the sintering shrinkage rate (Δρ / ΔT: g / cm 3 · ° C.) is 0.0125 or more and 0.0135 or less. If it is out of this range, a zirconia sintered body having high translucency cannot be obtained in normal pressure sintering, particularly 1450 ° C. or lower, and even in normal pressure sintering at 1400 ° C. or lower.

本発明の粉末では用いるアルミナの平均粒径が0.05μmを超え0.5μm以下の場合、焼結収縮速度(△ρ/△T:g/cm・℃)は0.0135を超え0.0160以下である。0.0160を超えると常圧焼結、特に1450℃以下、さらには1400℃以下での常圧焼結において透光性の高い焼結体が得られない。一方、本発明の組成において平均粒径が0.05μmを超え0.5μm以下のアルミナを用いた場合、0.0135未満の焼結収縮速度を有するものを調製することは困難である。 In the powder of the present invention, when the average particle diameter of alumina used is more than 0.05 μm and 0.5 μm or less, the sintering shrinkage rate (Δρ / ΔT: g / cm 3 · ° C.) exceeds 0.0135 and is 0.00. 0160 or less. If it exceeds 0.0160, a sintered body with high translucency cannot be obtained in normal pressure sintering, particularly 1450 ° C. or lower, and further, 1400 ° C. or lower. On the other hand, when an alumina having an average particle size of more than 0.05 μm and 0.5 μm or less is used in the composition of the present invention, it is difficult to prepare one having a sintering shrinkage rate of less than 0.0135.

本発明の透光性ジルコニア焼結体用のジルコニア粉末は、噴霧成型粉末顆粒を用いることが好ましく、特に安定化剤としてのイットリア、添加剤としてのアルミナゾルの他に有機バインダーを含む噴霧造粒粉末を用いることが好ましい。   The zirconia powder for a translucent zirconia sintered body of the present invention is preferably a spray-molded powder granule, and in particular, a spray granulated powder containing an organic binder in addition to yttria as a stabilizer and alumina sol as an additive. Is preferably used.

ジルコニア粉末をスラリーにして噴霧乾燥することによりジルコニア顆粒では、成型体を形成する際の流動性が高く、焼結体中に気泡が生成し難い。顆粒の粒径は30〜80μm、軽装嵩密度が1.10〜1.40g/cmであることが好ましい。 When zirconia granules are formed by spray drying with zirconia powder as a slurry, the flowability when forming a molded body is high, and bubbles are hardly generated in the sintered body. It is preferable that the granule has a particle size of 30 to 80 μm and a light bulk density of 1.10 to 1.40 g / cm 3 .

顆粒にバインダーを使用する場合、バインダーとしては、一般に用いられるポリビニルアルコール、ポリビニルブチラート、ワックス、アクリル系等のバインダーを挙げることができるが、中でも分子中にカルボキシル基またはその誘導体(例えば、塩、特にアンモニウム塩など)を有するアクリル系のものが好ましい。このアクリル系のバインダーとして、例えば、ポリアクリル酸、ポリメタクリル酸、アクリル酸共重合体、メタクリル酸共重合体やその誘導体を挙げることができる。バインダーの添加量は、セラミックス粉末スラリー中のセラミックス粉末に対し0.5〜10重量%、特に1〜5重量%が好ましい。   In the case of using a binder for the granule, examples of the binder include commonly used binders such as polyvinyl alcohol, polyvinyl butyrate, wax, and acrylic. Among them, carboxyl groups or derivatives thereof (for example, salts, Acrylic materials having an ammonium salt are particularly preferred. Examples of the acrylic binder include polyacrylic acid, polymethacrylic acid, acrylic acid copolymer, methacrylic acid copolymer, and derivatives thereof. The amount of the binder added is preferably 0.5 to 10% by weight, particularly 1 to 5% by weight, based on the ceramic powder in the ceramic powder slurry.

本発明の透光性ジルコニア焼結体は、安定化剤として2〜4mol%のイットリア、添加剤として粒径が0.01〜0.05μmのアルミナゾルを0.1〜0.2wt%含むジルコニア粉末を成型後、常圧下にて1350〜1450℃、特に1400℃以下で、100℃/時以下で焼結することにより製造することが好ましい。   The translucent zirconia sintered body of the present invention is a zirconia powder containing 2 to 4 mol% of yttria as a stabilizer and 0.1 to 0.2 wt% of alumina sol having a particle diameter of 0.01 to 0.05 μm as an additive. After being molded, it is preferably produced by sintering at 1350 to 1450 ° C., particularly 1400 ° C. or less and 100 ° C./hour or less under normal pressure.

焼結温度が1350℃未満であると、相対密度が99.8%に到達せず、1450℃を超えると、焼結体の水熱劣化が著しく進行し、焼結体が破壊し易い。   When the sintering temperature is less than 1350 ° C., the relative density does not reach 99.8%, and when it exceeds 1450 ° C., the hydrothermal degradation of the sintered body proceeds remarkably, and the sintered body tends to break.

本発明の透光性ジルコニア焼結体は常圧焼結で得るが、焼結雰囲気としては還元性雰囲気でなければ特に制限は無く、酸素雰囲気、大気中焼結で良い。特に大気中で焼結することが好ましい。   The translucent zirconia sintered body of the present invention is obtained by atmospheric pressure sintering, but the sintering atmosphere is not particularly limited as long as it is not a reducing atmosphere, and may be an oxygen atmosphere or in-air sintering. It is particularly preferable to sinter in the atmosphere.

本発明の透光性ジルコニア焼結体は、高密度、高強度でなおかつ透光性に優れているため、歯科用途で使用されるジルコニア焼結体、具体的には義歯材料等のミルブランク、歯列矯正ブラケットとして用いる焼結体として優れたものであり、本発明の透光性ジルコニア焼結体用の粉末は、HIP等の大掛かりな加圧焼結装置を用いないで常圧焼結で透光性ジルコニア焼結体を製造できるものである。   Since the translucent zirconia sintered body of the present invention has high density, high strength and excellent translucency, the zirconia sintered body used in dental applications, specifically, a mill blank such as a denture material, It is excellent as a sintered body used as an orthodontic bracket, and the powder for a translucent zirconia sintered body of the present invention can be sintered under normal pressure without using a large pressure sintering apparatus such as HIP. A translucent zirconia sintered body can be manufactured.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に何等限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples at all.

例中、ジルコニア粉末の平均粒径は、マイクロトラック粒度分布計(Honeywell社製,型式:9320−HRA)を用いて測定した。試料の前処理条件としては、粉末を蒸留水に懸濁させ、超音波ホモジナイザー(日本精機製作所製,型式:US−150T)を用いて3分間分散させた。XRD測定により求められる単斜晶相率は数式1より算出した(いずれの例においても、立方晶は含まれていなかった)。また、ジルコニア顆粒の平均粒径は、ふるい分け試験方法によって求めた。   In the examples, the average particle diameter of the zirconia powder was measured using a Microtrac particle size distribution meter (manufactured by Honeywell, model: 9320-HRA). As pretreatment conditions for the sample, the powder was suspended in distilled water and dispersed using an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, model: US-150T) for 3 minutes. The monoclinic phase ratio determined by XRD measurement was calculated from Equation 1 (in all examples, cubic crystals were not included). Moreover, the average particle diameter of the zirconia granule was calculated | required with the screening test method.

原料粉末の成形は、金型プレスにより圧力700kgf/cmで行い、当該予備成形体をゴム型を用いて圧力2t/cmで冷間静水圧プレス(CIP)処理して成形体とした。得られた成形体は所定温度(保持時間2時間)に設定して焼結させた。ジルコニア焼結体の結晶粒子の平均粒径は、鏡面研磨した焼結体を熱エッチング処理し、電解放出形走査型電子顕微鏡(FESEM)(日本電子社製、型式:JSM−T220)を用いてプラニメトリック法により算出した。焼結体密度は、アルキメデス法で測定した。 The raw material powder was molded by a mold press at a pressure of 700 kgf / cm 2 , and the preform was subjected to cold isostatic pressing (CIP) treatment at a pressure of 2 t / cm 2 using a rubber mold to obtain a molded body. The obtained molded body was sintered at a predetermined temperature (holding time 2 hours). The average particle diameter of the crystal grains of the zirconia sintered body is determined by subjecting the mirror-polished sintered body to a thermal etching treatment and using a field emission scanning electron microscope (FESEM) (manufactured by JEOL Ltd., model: JSM-T220). Calculated by the planimetric method. The sintered body density was measured by Archimedes method.

焼結体の全光線透過率は、濁度計(日本電色工業(株)製、型式:NDH2000)を用いて、JIS K7361に準拠して光源D65で測定した。試料は焼結体を両面研磨した厚み1mmの円盤形状のものを用いた。焼結体の強度は、3点曲げ測定法で評価した。   The total light transmittance of the sintered body was measured with a light source D65 in accordance with JIS K7361 using a turbidimeter (Nippon Denshoku Industries Co., Ltd., model: NDH2000). The sample used was a disc-shaped one having a thickness of 1 mm obtained by polishing the sintered body on both sides. The strength of the sintered body was evaluated by a three-point bending measurement method.

水熱耐久試験は、焼結体を140℃の熱水中に24時間浸漬させ、生成する単斜晶相の比率(単斜晶相率)を求めることによって評価した。単斜晶相率は、浸漬処理した焼結体についてXRD測定を行い、ジルコニア粉末の単斜晶相率と同様の算出方法で、既述の数式1により求めた。   The hydrothermal durability test was evaluated by immersing the sintered body in 140 ° C. hot water for 24 hours and determining the ratio of the monoclinic phase to be formed (monoclinic phase ratio). The monoclinic phase ratio was obtained by the above-described Equation 1 by the same calculation method as that of the monoclinic phase ratio of the zirconia powder after XRD measurement was performed on the sintered sintered body.

実施例1
0.4モル/リットルのオキシ塩化ジルコニウム水溶液に水酸化カリウム水溶液を添加して、モル濃度比が[OH]/[Zr]=0.02の水溶液を調製した。この溶液を還流器付きフラスコ中で攪拌しながら加水分解反応を煮沸温度で350時間行った。得られた水和ジルコニアゾルの反応率は99%であった。この水和ジルコニアゾルに蒸留水を加えて、ジルコニア換算濃度0.3モル/リットルの溶液を調製した。これを出発溶液に用いて、溶液の5体積%を反応槽から間欠的に排出し、かつ、溶液の体積が一定に保たれるように、その排出量と同量の0.3モル/リットルの水酸化ナトリウム水溶液を添加したオキシ塩化ジルコニウム水溶液([OH]/[Zr]=0.02)を30分毎に反応槽に供給しながら煮沸温度で加水分解反応を200時間行った。反応槽から排出された水和ジルコニアゾルの反応率は99%であった。
Example 1
A potassium hydroxide aqueous solution was added to a 0.4 mol / liter zirconium oxychloride aqueous solution to prepare an aqueous solution having a molar concentration ratio of [OH] / [Zr] = 0.02. While stirring this solution in a flask equipped with a reflux condenser, the hydrolysis reaction was carried out at the boiling temperature for 350 hours. The reaction rate of the obtained hydrated zirconia sol was 99%. Distilled water was added to the hydrated zirconia sol to prepare a solution having a zirconia equivalent concentration of 0.3 mol / liter. Using this as a starting solution, 5% by volume of the solution is intermittently discharged from the reaction vessel, and 0.3 mol / liter of the same amount as the discharged amount so that the volume of the solution is kept constant. Hydrolysis reaction was carried out at boiling temperature for 200 hours while supplying an aqueous zirconium oxychloride solution ([OH] / [Zr] = 0.02) to which a sodium hydroxide aqueous solution was added to the reaction vessel every 30 minutes. The reaction rate of the hydrated zirconia sol discharged from the reaction vessel was 99%.

この水和ジルコニアゾルに、塩化イットリウムをイットリア濃度が3モル%になるように添加して乾燥させ、1140℃の温度で2時間仮焼した。得られた仮焼粉を水洗処理したあとに、粒径0.015μmのアルミナゾルをアルミナ含有量で0.10重量%及び蒸留水を加えてジルコニア濃度45重量%のスラリーにした。このスラリーを直径2mmのジルコニアボールを用いて、振動ミルで24時間処理して、ジルコニア粉末を得た。   To this hydrated zirconia sol, yttrium chloride was added to a yttria concentration of 3 mol%, dried, and calcined at a temperature of 1140 ° C. for 2 hours. The obtained calcined powder was washed with water, and then an alumina sol having a particle size of 0.015 μm was added to a slurry having an alumina content of 0.10 wt% and distilled water to give a zirconia concentration of 45 wt%. This slurry was treated with a vibration mill for 24 hours using zirconia balls having a diameter of 2 mm to obtain zirconia powder.

得られたジルコニア粉末のAl含有量、BET比表面積、平均粒径、単斜晶相率の値を表1に示す。得られたジルコニア粉末を水に分散させてスラリー濃度50%のジルコニアスラリーを得、このスラリーに増粘剤を添加して粘度調整を行ったあとに噴霧造粒を実施した。得られたジルコニア顆粒の平均粒径が50μm、軽装嵩密度が1.21g/cmであった。 Table 1 shows the Al 2 O 3 content, the BET specific surface area, the average particle diameter, and the monoclinic phase rate of the obtained zirconia powder. The obtained zirconia powder was dispersed in water to obtain a zirconia slurry having a slurry concentration of 50%. After the viscosity was adjusted by adding a thickener to the slurry, spray granulation was performed. The obtained zirconia granules had an average particle size of 50 μm and a light bulk density of 1.21 g / cm 3 .

次いで、上記で得られたジルコニア顆粒をCIP(圧力2t/cm)でプレス成形し1450℃の条件で焼結させた。得られた焼結体の焼結温度、焼結体密度、曲げ強度、結晶粒径、水熱耐久試験後の単斜結晶相率を表2に示す。 Next, the zirconia granules obtained above were press-molded with CIP (pressure 2 t / cm 2 ) and sintered under the condition of 1450 ° C. Table 2 shows the sintering temperature, sintered body density, bending strength, crystal grain size, and monoclinic crystal phase rate after the hydrothermal durability test of the obtained sintered body.

全光線透過率は37%であり、透光性に優れた焼結体であることが確認された。また、水熱耐久試験後の単斜晶相率が21%であり、劣化しにくい焼結体であることが確認された。   The total light transmittance was 37%, and it was confirmed that the sintered body was excellent in translucency. Further, the monoclinic phase ratio after the hydrothermal durability test was 21%, and it was confirmed that the sintered body was not easily deteriorated.

実施例2
アルミナゾルをアルミナ含有量で0.12重量%添加した以外は実施例1と同様にしてジルコニア粉末を得た。得られたジルコニア粉末の特性を表1に示す。その後で、得られたジルコニア粉末を水に分散させてスラリー濃度50%のジルコニアスラリーを得、このスラリーにアクリル系バインダー及びポリビニルアルコールをジルコニアスラリー中のジルコニアに対して3wt%添加し、増粘剤を添加して粘度調整を行ったあとに噴霧造粒を実施してジルコニア顆粒を製造した。得られたジルコニア顆粒の平均粒径が45μm、軽装嵩密度が1.20g/cmであった。
Example 2
A zirconia powder was obtained in the same manner as in Example 1 except that 0.12% by weight of alumina sol was added in terms of alumina content. The properties of the obtained zirconia powder are shown in Table 1. Thereafter, the obtained zirconia powder is dispersed in water to obtain a zirconia slurry having a slurry concentration of 50%, and an acrylic binder and polyvinyl alcohol are added to this slurry in an amount of 3 wt% with respect to the zirconia in the zirconia slurry. Was added to adjust the viscosity, and then spray granulation was performed to produce zirconia granules. The obtained zirconia granules had an average particle size of 45 μm and a light bulk density of 1.20 g / cm 3 .

次いで、上記で得られたジルコニア顆粒微粉末をCIP(圧力2t/cm)でプレス成形し1450℃の条件で焼結させた。 Subsequently, the zirconia granule fine powder obtained above was press-molded with CIP (pressure 2 t / cm 2 ) and sintered under the condition of 1450 ° C.

得られた焼結体の焼結温度、焼結体密度、曲げ強度、結晶粒径、水熱耐久試験後の単斜結晶相率を表2に示す。全光線透過率が35%であり、透光性に優れた焼結体であることが確認された。また、劣化試験後の単斜晶相率が20%であり、劣化しにくい焼結体であることが確認された。   Table 2 shows the sintering temperature, sintered body density, bending strength, crystal grain size, and monoclinic crystal phase rate after the hydrothermal durability test of the obtained sintered body. The total light transmittance was 35%, and it was confirmed that the sintered body was excellent in translucency. Further, the monoclinic phase rate after the deterioration test was 20%, and it was confirmed that the sintered body was not easily deteriorated.

実施例3
アルミナゾルをアルミナ含有量で0.17重量%になるように添加した以外は、実施例1と同様の条件でジルコニア微粉末を得た。得られたジルコニア微粉末の特性を表1に示す。そのジルコニア微粉末を使用して、実施例2と同様の方法でジルコニア顆粒を得た。得られたジルコニア顆粒の平均粒径が40μm、軽装嵩密度が1.18g/cmであった。
Example 3
A zirconia fine powder was obtained under the same conditions as in Example 1 except that the alumina sol was added so that the alumina content was 0.17 wt%. The characteristics of the obtained zirconia fine powder are shown in Table 1. Using the zirconia fine powder, zirconia granules were obtained in the same manner as in Example 2. The obtained zirconia granules had an average particle size of 40 μm and a light bulk density of 1.18 g / cm 3 .

次いで、上記で得られたジルコニア顆粒をプレス成形し1400℃の条件で焼結させた。得られた焼結体の焼結温度、焼結体密度、曲げ強度、結晶粒径、劣化試験後の単斜結晶相率を表2に示す。全光線透過率が39%であり、透光性に優れた焼結体であることが確認された。また、劣化試験後の単斜晶相率が28%であり、劣化しにくい焼結体であることが確認された。   Next, the zirconia granules obtained above were press-molded and sintered under the condition of 1400 ° C. Table 2 shows the sintering temperature, sintered body density, bending strength, crystal grain size, and monoclinic crystal phase rate after the deterioration test of the obtained sintered body. The total light transmittance was 39%, and it was confirmed that the sintered body was excellent in translucency. Further, the monoclinic phase ratio after the deterioration test was 28%, and it was confirmed that the sintered body was not easily deteriorated.

実施例4
ジルコニア顆粒の焼結温度を1350℃とする以外は、実施例3と同様の方法でジルコニア焼結体を得た。但し、焼結の際、通常は100℃/時で昇温するところを50℃/時と低い昇温速度で焼結した。
Example 4
A zirconia sintered body was obtained in the same manner as in Example 3 except that the sintering temperature of the zirconia granules was 1350 ° C. However, at the time of sintering, the place where the temperature was normally raised at 100 ° C./hour was sintered at a low temperature raising rate of 50 ° C./hour.

得られた焼結体の焼結温度、焼結体密度、曲げ強度、結晶粒径、水熱耐久試験後の単斜結晶相率を表2に示す。全光線透過率が38%であり、透光性に優れた焼結体であることが確認された。また、劣化試験後の単斜晶相率が5%であり、劣化しにくい焼結体であることが確認された。   Table 2 shows the sintering temperature, sintered body density, bending strength, crystal grain size, and monoclinic crystal phase rate after the hydrothermal durability test of the obtained sintered body. The total light transmittance was 38%, and it was confirmed that the sintered body was excellent in translucency. Further, the monoclinic phase rate after the deterioration test was 5%, and it was confirmed that the sintered body was not easily deteriorated.

実施例5
ジルコニア粉末の製造時の仮焼温度を1220℃にする以外は、実施例3と同様の方法でジルコニア粉末を得た。得られたジルコニア微粉末の特性を表1に示す。
Example 5
A zirconia powder was obtained in the same manner as in Example 3 except that the calcining temperature during production of the zirconia powder was 1220 ° C. The characteristics of the obtained zirconia fine powder are shown in Table 1.

そのジルコニア微粉末を使用して、実施例2と同様の方法でジルコニア顆粒を得た。得られたジルコニア顆粒の平均粒径が40μm、軽装嵩密度が1.12g/cmであった。 Using the zirconia fine powder, zirconia granules were obtained in the same manner as in Example 2. The obtained zirconia granules had an average particle size of 40 μm and a light bulk density of 1.12 g / cm 3 .

次いで、上記で得られたジルコニア顆粒をプレス成形し1400℃の条件で焼結させた。但し、焼結の際、通常は100℃/時で昇温するところを50℃/時と低い昇温速度で焼結した。得られた焼結体の焼結温度、焼結体密度、曲げ強度、結晶粒径、水熱耐久試験後の単斜結晶相率を表2に示す。全光線透過率は39%であり、透光性に優れた焼結体であることが確認された。また、水熱耐久試験後の単斜晶相率が27%であり、劣化しにくい焼結体であることが確認された。   Next, the zirconia granules obtained above were press-molded and sintered under the condition of 1400 ° C. However, at the time of sintering, the place where the temperature was normally raised at 100 ° C./hour was sintered at a low temperature raising rate of 50 ° C./hour. Table 2 shows the sintering temperature, sintered body density, bending strength, crystal grain size, and monoclinic crystal phase rate after the hydrothermal durability test of the obtained sintered body. The total light transmittance was 39%, and it was confirmed that the sintered body was excellent in translucency. Further, the monoclinic phase ratio after the hydrothermal durability test was 27%, and it was confirmed that the sintered body was hardly deteriorated.

実施例6
ジルコニア粉末の製造時の仮焼温度を1080℃にする以外は、実施例3と同様の方法でジルコニア粉末を得た。得られたジルコニア粉末の特性を表1に示す。
Example 6
A zirconia powder was obtained in the same manner as in Example 3 except that the calcining temperature during production of the zirconia powder was 1080 ° C. The properties of the obtained zirconia powder are shown in Table 1.

そのジルコニア粉末を使用して、実施例2と同様の方法でジルコニア顆粒を得た。得られたジルコニア顆粒の平均粒径が42μm、軽装嵩密度が1.23g/cmであった。 Using the zirconia powder, zirconia granules were obtained in the same manner as in Example 2. The obtained zirconia granules had an average particle size of 42 μm and a light bulk density of 1.23 g / cm 3 .

次いで、上記で得られたジルコニア顆粒をプレス成形し1400℃の条件で焼結させた。但し、焼結の際、通常は100℃/時で昇温するところを50℃/時と低い昇温速度で焼結した。得られた焼結体の焼結温度、焼結体密度、曲げ強度、結晶粒径、水熱耐久試験後の単斜結晶相率を表2に示す。全光線透過率は38%であり、透光性に優れた焼結体であることが確認された。また、水熱耐久試験後の単斜晶相率が29%であり、劣化しにくい焼結体であることが確認された。   Next, the zirconia granules obtained above were press-molded and sintered under the condition of 1400 ° C. However, at the time of sintering, the place where the temperature was normally raised at 100 ° C./hour was sintered at a low temperature raising rate of 50 ° C./hour. Table 2 shows the sintering temperature, sintered body density, bending strength, crystal grain size, and monoclinic crystal phase rate after the hydrothermal durability test of the obtained sintered body. The total light transmittance was 38%, and it was confirmed that the sintered body was excellent in translucency. Further, the monoclinic phase ratio after the hydrothermal durability test was 29%, and it was confirmed that the sintered body was hardly deteriorated.

比較例1
アルミナゾルをアルミナ含有量で0.075重量%添加した以外は、実施例1と同様にしてジルコニア粉末を得、そのジルコニア粉末を使用して、実施例1と同様の方法でジルコニア顆粒を得た。得られたジルコニア微粉末の特性を表1に示す。
Comparative Example 1
A zirconia powder was obtained in the same manner as in Example 1 except that the alumina sol was added in an alumina content of 0.075% by weight. Using the zirconia powder, zirconia granules were obtained in the same manner as in Example 1. The characteristics of the obtained zirconia fine powder are shown in Table 1.

次いで、上記で得られたジルコニア顆粒をCIP(圧力2t/cm)でプレス成形し1450℃の条件で焼結させた。得られた焼結体の焼結温度、焼結体密度、曲げ強度、結晶粒径、水熱耐久試験後の単斜結晶相率を表2に示す。水熱耐久試験後の単斜晶相率が10%であり、劣化しにくい焼結体であることが確認されたが、全光線透過率が29%と低く、透光性に乏しい焼結体であることが分かった。 Next, the zirconia granules obtained above were press-molded with CIP (pressure 2 t / cm 2 ) and sintered under the condition of 1450 ° C. Table 2 shows the sintering temperature, sintered body density, bending strength, crystal grain size, and monoclinic crystal phase rate after the hydrothermal durability test of the obtained sintered body. The monoclinic phase ratio after the hydrothermal durability test was 10%, and it was confirmed that the sintered body was not easily deteriorated. However, the total light transmittance was as low as 29%, and the sintered body was poor in translucency. It turns out that.

比較例2
実施例1のアルミナ含有量をアルミナ粉末で0.25重量%,粉砕時間を8時間にする以外は、実施例1と同様の条件でジルコニア粉末を得、そのジルコニア粉末を使用して、実施例2と同様の方法でジルコニア顆粒を得た。得られたジルコニア粉末の特性を表1に示す。
Comparative Example 2
A zirconia powder was obtained under the same conditions as in Example 1 except that the alumina content in Example 1 was 0.25 wt% with alumina powder and the pulverization time was 8 hours. Zirconia granules were obtained in the same manner as in No. 2. The properties of the obtained zirconia powder are shown in Table 1.

次いで、上記で得られたジルコニア顆粒をCIP(圧力2t/cm)でプレス成形し1500℃の条件で焼結させた。得られた焼結体の焼結温度、焼結体密度、曲げ強度、結晶粒径、水熱耐久試験後の単斜結晶相率を表2に示す。水熱耐久試験後の単斜晶相率が50%であり、劣化しやすい信頼性の低い焼結体であること確認された。また、全光線透過率が32%と低く、透光性に乏しい焼結体であることが分かった。 Next, the zirconia granules obtained above were press-molded with CIP (pressure 2 t / cm 2 ) and sintered at 1500 ° C. Table 2 shows the sintering temperature, sintered body density, bending strength, crystal grain size, and monoclinic crystal phase rate after the hydrothermal durability test of the obtained sintered body. The monoclinic phase ratio after the hydrothermal durability test was 50%, and it was confirmed that the sintered body is easily deteriorated and has low reliability. Moreover, it turned out that it is a sintered compact with a total light transmittance as low as 32%, and poor in translucency.

比較例3
実施例1の仮焼温度を900℃、アルミナ粉末でアルミナ含有量を0.25重量%、振動ミルで8時間処理する以外は、実施例1と同様の条件でジルコニア粉末を得、そのジルコニア粉末を使用して、実施例2と同様の方法でジルコニア顆粒を得た。
Comparative Example 3
A zirconia powder was obtained under the same conditions as in Example 1 except that the calcining temperature of Example 1 was 900 ° C., alumina content was 0.25 wt% with alumina powder, and treatment was performed with a vibration mill for 8 hours. Was used to obtain zirconia granules in the same manner as in Example 2.

得られたジルコニア粉末の特性を表1に示す。   The properties of the obtained zirconia powder are shown in Table 1.

次いで、上記で得られたジルコニア顆粒をプレス成形し1350℃の条件で焼結させた。得られた焼結体の焼結温度、焼結体密度、曲げ強度、結晶粒径、水熱耐久試験後の単斜結晶相率を表2に示す。   Next, the zirconia granules obtained above were press-molded and sintered under the condition of 1350 ° C. Table 2 shows the sintering temperature, sintered body density, bending strength, crystal grain size, and monoclinic crystal phase rate after the hydrothermal durability test of the obtained sintered body.

水熱耐久試験後の単斜晶相率が5%であり劣化しにくい焼結体であることが確認されたが、全光線透過率が18%と非常に低い焼結体であることが分かった。   Although the monoclinic phase ratio after the hydrothermal durability test was 5%, it was confirmed that the sintered body was not easily deteriorated. However, it was found that the sintered body had a very low total light transmittance of 18%. It was.

Figure 2014088319
Figure 2014088319

Figure 2014088319
Figure 2014088319

実施例7〜10、比較例4〜7
加水分解反応により得られた水和ジルコニアゾルに、塩化イットリウムをイットリア濃度が3mol%になるように添加し、乾燥後、実施例1〜6で用いたものと同様のアルミナゾルと、平均粒径が0.3μmのα―アルミナ粉末を用い、ジルコニア粉末のBET表面積が10〜15m/gの粉末を調製した。
Examples 7-10, Comparative Examples 4-7
To the hydrated zirconia sol obtained by the hydrolysis reaction, yttrium chloride was added so that the yttria concentration was 3 mol%, and after drying, the same alumina sol as used in Examples 1 to 6 and the average particle size were Using 0.3 μm α-alumina powder, a zirconia powder having a BET surface area of 10 to 15 m 2 / g was prepared.

得られた粉末をCIP(圧力2t/cm)でプレス成形し、1400℃の条件で焼結させた。また、同様にCIP成形した成形体を熱収縮計(アルバック理工製 DL9700)を用い、大気中、昇温速度300℃/時における相対密度70%から90%までの焼結収縮速度(△ρ/△T:g/cm・℃)を求めた。 The obtained powder was press-molded with CIP (pressure 2 t / cm 2 ) and sintered under the condition of 1400 ° C. Similarly, a CIP-molded compact was subjected to a sintering shrinkage rate (Δρ /) from a relative density of 70% to 90% at a heating rate of 300 ° C./hour in the atmosphere using a heat shrinkage meter (DL9700 manufactured by ULVAC-RIKO). ΔT: g / cm 3 · ° C.).

ジルコニア粉末のAl含有量(粒径)、BET比表面積、相対密度が70%から90%までの焼結収縮速度(△ρ/△T:g/cm・℃)、及び大気中常圧1400℃で昇温速度100℃/時で焼結した場合おける焼結密度を表3に示す。 Al 2 O 3 content (particle size) of zirconia powder, BET specific surface area, sintering shrinkage rate with relative density from 70% to 90% (Δρ / ΔT: g / cm 3 · ° C.), and normal in air Table 3 shows the sintering density when sintering was performed at a pressure of 1400 ° C. and a heating rate of 100 ° C./hour.

アルミナの平均粒径が0.01μm以上0.05μm未満の場合には0.0125以上0.0135以下において、アルミナの平均粒径が0.05μmを超え0.5μm以下の場合には0.0135を超え0.0160以下において相対密度99.8%以上の透光性ジルコニア焼結体が得られた。   When the average particle size of alumina is 0.01 μm or more and less than 0.05 μm, it is 0.0125 or more and 0.0135 or less. When the average particle size of alumina is more than 0.05 μm and 0.5 μm or less, 0.0135 And a translucent zirconia sintered body having a relative density of 99.8% or more was obtained at a temperature exceeding 0.0160 and below.

焼結収縮速度(Δρ/ΔT:g/cm・℃)と焼結体相対密度の関係を図1に示す。 The relationship between the sintering shrinkage rate (Δρ / ΔT: g / cm 3 · ° C.) and the sintered body relative density is shown in FIG.

Figure 2014088319
Figure 2014088319

アルミナ含有量が0.1〜0.2wt%において、相対密度99.8%以上の焼結体においてのみ全光透過率が35%以上の透光性が得られおり、透過率35%以上を達成するためには相対密度99.8%以上が不可欠である。   When the alumina content is 0.1 to 0.2 wt%, transmissivity with a total light transmittance of 35% or more is obtained only in a sintered body having a relative density of 99.8% or more, and the transmittance is 35% or more. To achieve this, a relative density of 99.8% or more is essential.

焼結収縮速度(△ρ/△T:g/cm・℃)と焼結体相対密度の関係Relationship between sintering shrinkage rate (Δρ / ΔT: g / cm 3 · ° C.) and sintered body relative density ジルコニア粉末の大気中常圧焼結(昇温速度300℃/時)における熱収縮曲線の例(実施例7)Example of heat shrinkage curve in atmospheric pressure sintering of zirconia powder (temperature increase rate: 300 ° C./hour) (Example 7)

Claims (5)

安定化剤として2〜4mol%のイットリア、添加剤として粒径が0.01〜0.5μmのアルミナを0.1〜0.2wt%含む透光性ジルコニア焼結体用粉末。 A powder for translucent zirconia sintered body containing 2 to 4 mol% of yttria as a stabilizer and 0.1 to 0.2 wt% of alumina having a particle diameter of 0.01 to 0.5 µm as an additive. BET比表面積が5〜15m/g、平均粒径が0.3〜0.7μmである請求項1に記載の粉末。 The powder according to claim 1, wherein the BET specific surface area is 5 to 15 m 2 / g and the average particle size is 0.3 to 0.7 μm. アルミナの平均粒径が0.01μm以上0.5μm以下、常圧焼結(大気中、昇温速度300℃/時)における相対密度70%から90%までの焼結収縮速度(△ρ/△T:g/cm・℃)が0.0125以上0.0160以下である請求項1乃至2のいずれかに記載の粉末。 Sintering shrinkage rate (Δρ / Δ) of alumina having an average particle size of 0.01 μm or more and 0.5 μm or less and a relative density of 70% to 90% in atmospheric pressure sintering (in the atmosphere, temperature rising rate 300 ° C./hour) 3. The powder according to claim 1, wherein T: g / cm 3 · ° C.) is 0.0125 or more and 0.0160 or less. アルミナの平均粒径が0.01μm以上0.05μm以下、常圧焼結(大気中、昇温速度300℃/時)における相対密度70%から90%までの焼結収縮速度(△ρ/△T:g/cm・℃)が0.0125以上0.0135以下である請求項1乃至3のいずれかに記載の粉末。 The average particle diameter of alumina is 0.01 μm or more and 0.05 μm or less, and the sintering shrinkage rate (Δρ / Δ) from 70% to 90% relative density in atmospheric pressure sintering (in the atmosphere, the heating rate is 300 ° C./hour). The powder according to any one of claims 1 to 3 , wherein T: g / cm 3 · ° C) is 0.0125 or more and 0.0135 or less. アルミナの平均粒径が0.05μmを超え0.5μm以下、常圧焼結(大気中、昇温速度300℃/時)における相対密度70%から90%までの焼結収縮速度(△ρ/△T:g/cm・℃)が0.0135を超え0.0160以下である請求項1乃至3のいずれかに記載の粉末。 The average particle size of alumina is more than 0.05 μm and 0.5 μm or less, and the sintering shrinkage rate (Δρ / The powder according to any one of claims 1 to 3 , wherein ΔT: g / cm 3 · ° C) is more than 0.0135 and not more than 0.0160.
JP2014018162A 2008-04-09 2014-02-03 Translucent zirconia sintered body, manufacturing method and use thereof Active JP5817859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014018162A JP5817859B2 (en) 2008-04-09 2014-02-03 Translucent zirconia sintered body, manufacturing method and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008101324 2008-04-09
JP2008101324 2008-04-09
JP2014018162A JP5817859B2 (en) 2008-04-09 2014-02-03 Translucent zirconia sintered body, manufacturing method and use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008328498A Division JP2009269812A (en) 2008-04-09 2008-12-24 Light-transmitting sintered zirconia compact, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2014088319A true JP2014088319A (en) 2014-05-15
JP5817859B2 JP5817859B2 (en) 2015-11-18

Family

ID=41436713

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008328498A Pending JP2009269812A (en) 2008-04-09 2008-12-24 Light-transmitting sintered zirconia compact, method for producing the same, and use thereof
JP2014018162A Active JP5817859B2 (en) 2008-04-09 2014-02-03 Translucent zirconia sintered body, manufacturing method and use thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008328498A Pending JP2009269812A (en) 2008-04-09 2008-12-24 Light-transmitting sintered zirconia compact, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (2) JP2009269812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131958A (en) * 2014-03-06 2014-07-17 Tosoh Corp Translucent zirconia sintered body, method for producing the same and application of the same
WO2020196650A1 (en) 2019-03-25 2020-10-01 第一稀元素化学工業株式会社 Zirconia powder, method for producing zirconia powder, method for producing zirconia sintered body, and zirconia sintered body

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954761B1 (en) * 2009-12-24 2015-11-27 Saint Gobain Ct Recherches ZIRCONIA PELLETS POWDER
JP2013540012A (en) * 2010-10-06 2013-10-31 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツング Ceramic cutting template
JP6236883B2 (en) * 2012-06-04 2017-11-29 東ソー株式会社 Translucent zirconia sintered body and method for producing the same
JP6205988B2 (en) * 2012-12-28 2017-10-04 東ソー株式会社 Colored translucent zirconia sintered body and use thereof
WO2014142080A1 (en) 2013-03-11 2014-09-18 クラレノリタケデンタル株式会社 Sintered zirconia compact, and zirconia composition and calcined compact
JP6340879B2 (en) * 2013-04-10 2018-06-13 東ソー株式会社 Zirconia sintered body and manufacturing method thereof
JP6340880B2 (en) * 2014-04-01 2018-06-13 東ソー株式会社 Zirconia sintered body and manufacturing method thereof
JP6672806B2 (en) 2015-01-15 2020-03-25 東ソー株式会社 Translucent zirconia sintered body, method for producing the same, and use thereof
JP6897087B2 (en) * 2016-02-09 2021-06-30 東ソー株式会社 Purple zirconia sintered body and its manufacturing method
JP6897088B2 (en) * 2016-02-09 2021-06-30 東ソー株式会社 Orange zirconia sintered body and its manufacturing method
JP7062900B2 (en) * 2017-03-31 2022-05-09 東ソー株式会社 Zirconia powder and its manufacturing method
KR101773130B1 (en) 2017-06-07 2017-08-30 주식회사 디맥스 Method of Manufacturing for Zirconia block
EP3936490A4 (en) * 2019-03-06 2022-11-30 Kuraray Noritake Dental Inc. Zirconia sintered compact having high linear light transmittance
JP7345785B2 (en) * 2020-02-06 2023-09-19 株式会社トクヤマデンタル Method for producing a ceramic raw material compound and method for producing a ceramic article using the ceramic raw material compound obtained by the method
JPWO2022250077A1 (en) 2021-05-27 2022-12-01
CN114014652A (en) * 2021-11-08 2022-02-08 长裕控股集团有限公司 Low-temperature sintered zirconia ceramic and preparation process thereof
WO2023127793A1 (en) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 Zirconia sintered body and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530970A (en) * 2000-04-27 2003-10-21 サン−ゴバン・セラミツク・アバンセ・デマルケ In vivo medical component made of yttrium-doped zirconia
JP2004143031A (en) * 2002-05-20 2004-05-20 Tosoh Corp Ceramics and its manufacturing method
WO2008013099A1 (en) * 2006-07-25 2008-01-31 Tosoh Corporation Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof
JP2008024555A (en) * 2006-07-21 2008-02-07 Tosoh Corp Zirconia fine powder, its manufacturing method and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530970A (en) * 2000-04-27 2003-10-21 サン−ゴバン・セラミツク・アバンセ・デマルケ In vivo medical component made of yttrium-doped zirconia
JP2004143031A (en) * 2002-05-20 2004-05-20 Tosoh Corp Ceramics and its manufacturing method
JP2008024555A (en) * 2006-07-21 2008-02-07 Tosoh Corp Zirconia fine powder, its manufacturing method and its use
WO2008013099A1 (en) * 2006-07-25 2008-01-31 Tosoh Corporation Sintered zirconia having high light transmission and high strength, use of the same and process for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131958A (en) * 2014-03-06 2014-07-17 Tosoh Corp Translucent zirconia sintered body, method for producing the same and application of the same
WO2020196650A1 (en) 2019-03-25 2020-10-01 第一稀元素化学工業株式会社 Zirconia powder, method for producing zirconia powder, method for producing zirconia sintered body, and zirconia sintered body

Also Published As

Publication number Publication date
JP5817859B2 (en) 2015-11-18
JP2009269812A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5817859B2 (en) Translucent zirconia sintered body, manufacturing method and use thereof
JP5608976B2 (en) Translucent zirconia sintered body, manufacturing method and use thereof
WO2009125793A1 (en) Light-transmitting sintered zirconia compact, process for producing the same, and use thereof
JP6760443B2 (en) Translucent zirconia sintered body and zirconia powder, and their uses
JP6443513B2 (en) Colored translucent zirconia sintered body and use thereof
JP6079028B2 (en) Colored translucent zirconia sintered body and use thereof
JP6221698B2 (en) Pink zirconia sintered body
JP5034349B2 (en) Zirconia fine powder, production method thereof and use thereof
WO2014104236A1 (en) Colored light-transmitting zirconia sintered body and use thereof
JP2023138969A (en) Zirconia sintered body and manufacturing method therefor
JP5707667B2 (en) Translucent zirconia sintered body, method for producing the same, and use thereof
JP2021088501A (en) Sintered body, powder, and method for producing the same
JP5748012B2 (en) Translucent zirconia sintered body, method for producing the same, and use thereof
JP5804144B2 (en) Translucent zirconia sintered body and use thereof
JP6665542B2 (en) Zirconia powder and method for producing the same
JP5741735B2 (en) Powder for translucent zirconia sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R151 Written notification of patent or utility model registration

Ref document number: 5817859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157