JP2014088301A - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
JP2014088301A
JP2014088301A JP2012240638A JP2012240638A JP2014088301A JP 2014088301 A JP2014088301 A JP 2014088301A JP 2012240638 A JP2012240638 A JP 2012240638A JP 2012240638 A JP2012240638 A JP 2012240638A JP 2014088301 A JP2014088301 A JP 2014088301A
Authority
JP
Japan
Prior art keywords
glass
heating
electrode
transmission member
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012240638A
Other languages
Japanese (ja)
Inventor
Ryo Usui
遼 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2012240638A priority Critical patent/JP2014088301A/en
Publication of JP2014088301A publication Critical patent/JP2014088301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an electric power transmission member for transmitting electric power in a heating device, which has a heating body heated by the electric power transmission member, from being blown out by detecting an electric power member being overloaded by acquiring temperature information on the electric power transmission member itself and performing management and, especially, to prevent an electrode itself from being blown out since the electrode which supplies electric power directly to a glass fusing member is loaded larger than the glass fusing member when glass is fused.SOLUTION: There is provided a heating device having a heating body, an electric power transmission member which transmits electric power to the heating body, and a temperature information acquiring mechanism for the transmission member.

Description

本発明は、各種加熱装置における電力を供給する電力伝導部材の通電時の溶断防止に関し、特にガラスを加熱熔融成形する装置において、ガラス加熱部材における温度制御機構、またその温度制御機構における事故防止機構に関するものである。 The present invention relates to fusing prevention during energization of a power conducting member that supplies power in various heating devices, and in particular, in a device for heating and melting glass, a temperature control mechanism in the glass heating member, and an accident prevention mechanism in the temperature control mechanism It is about.

特開2003−073130号では、ガラス素子成形装置において、熔融ガラスの温度制御は成形される光学ガラス素子の成形量、品質等を管理する上で非常に重要な工程であり、その中でもガラス熔融部材を直接通電により加熱する方式は加熱対象部分を高効率、高精度で制御することが可能である手法であると記述している。   In Japanese Patent Application Laid-Open No. 2003-073130, in a glass element molding apparatus, temperature control of molten glass is a very important process for managing the molding amount, quality, and the like of an optical glass element to be molded. It is described that the method of heating by direct energization is a technique that can control the heating target portion with high efficiency and high accuracy.

特開平10−152329号では、直接通電加熱方式では通電に電極を用いるためその電極をガラス熔融部材の支持材として用いることもできると記述している。 Japanese Patent Application Laid-Open No. 10-152329 describes that an electrode can be used as a support material for a glass-melting member because an electrode is used for energization in the direct current heating method.

ガラス熔解装置おいて、熔融ガラスの温度制御を行うことは、特に光学ガラスとしての性能の発現、品質の保持においてきわめて重要なものとなる。 In the glass melting apparatus, controlling the temperature of the molten glass is extremely important particularly in the expression of performance as optical glass and the maintenance of quality.

ガラス熔解装置において熔融ガラスの接触するガラス熔融部材の温度は様々な制御方法により管理されるが、その中でもガラス熔融部材に直接通電を行い加熱する方式は、ガラス熔融部材の任意の範囲を均一に加熱することができ、特に光学ガラスの品質維持において大きな役割を担う。 The temperature of the glass melted member in contact with the molten glass in the glass melting apparatus is controlled by various control methods. Among them, the method of heating by directly energizing the glass melted member makes the arbitrary range of the glass melted member uniform. It can be heated and plays a big role especially in maintaining the quality of the optical glass.

しかし直接通電加熱方式をとる場合、間接加熱方式と異なりガラス熔融部材に直接負荷がかかるため、温度制御機構に安全性が求められる。 However, when the direct current heating method is adopted, a load is directly applied to the glass melting member unlike the indirect heating method, and thus the temperature control mechanism is required to be safe.

何らかの要因により直接通電加熱方式においてガラス熔融部材に高負荷がかかってしまった場合、熔融部材部分は高温状態となり、ガラス成形条件から大きく逸脱する可能性がある。 When a high load is applied to the glass melt member in the direct current heating method due to some factor, the melt member portion is in a high temperature state, which may greatly deviate from the glass forming conditions.

前述の先行技術を含め、多くのガラス熔解装置では熔融ガラスと接触しているガラス熔融部材についてのみ温度計測を行っており、直接通電を行う電極となる部位の温度測定は行っていない。 In many glass melting apparatuses including the above-described prior art, temperature measurement is performed only for a glass melting member in contact with molten glass, and temperature measurement is not performed for a portion serving as an electrode that is directly energized.

上記の場合、前述したような高負荷が発生した場合、ガラス熔融部材よりも先に、ガラス熔融部材に接続された電極が高温となることがある。 In the above case, when a high load as described above occurs, the electrode connected to the glass melting member may become high temperature before the glass melting member.

この場合、電極自身に生じる過負荷により、電極自身の損耗または溶断、ガラス熔融部材の劣化、溶断などが発生する。 In this case, due to the overload generated in the electrode itself, the electrode itself is worn or melted, the glass melt member is deteriorated, or melted.

また、ガラス熔融に限らず、発熱体を通電により発熱させる場合にも、電力を供給する電極などが、それ自体の過熱により溶断されてしまうことがある。 Moreover, not only glass melting but also when a heating element generates heat by energization, an electrode for supplying power may be melted by overheating itself.

特開2003−073130号公報JP 2003-073130 A 特開平10−152329号公報Japanese Patent Laid-Open No. 10-152329

本発明は上記問題点に鑑みてなされたものであって、電力を伝達する電力伝達部材により加熱される発熱体を有する加熱装置において、電力伝達部材自身に対する温度情報を取得し、管理することにより、電力部材に対する過負荷を事前に検知し、電力伝達部材の溶断を防止することを目的とする。 The present invention has been made in view of the above problems, and in a heating device having a heating element heated by a power transmission member that transmits power, by acquiring and managing temperature information for the power transmission member itself. An object is to detect an overload on the power member in advance and prevent the power transmission member from fusing.

特に、ガラスを熔融する場合では、ガラス熔融部材への直接通電加熱を行う電極自身の負荷は、ガラス熔融部材よりも大きな負荷がかかってしまうことがあり、電極自身が溶断してしまう危険を回避することが必要となる。 In particular, when melting glass, the load of the electrode itself that directly heats the glass melt member may be larger than that of the glass melt member, avoiding the risk of the electrode itself fusing. It is necessary to do.

本発明者らは、電力伝達部材により電力が供給される発熱体に対し、温度情報取得機構を設けると同時に、電力伝達部材に対しても温度情報取得機構を設けることにより、電力伝達部材自身に対する過負荷が早期に発見されることを見出し、本発明を完成するに至った。 The present inventors provide a temperature information acquisition mechanism for the heating element to which power is supplied by the power transmission member, and at the same time, provide a temperature information acquisition mechanism for the power transmission member, thereby preventing the power transmission member itself. The inventors have found that an overload is detected at an early stage, and have completed the present invention.

より具体的には、本発明は以下のようなものを提供する。   More specifically, the present invention provides the following.

(1)発熱体、
発熱体に電力を伝達する電力伝達部材及び
伝達部材の温度情報取得機構を有することを特徴とする加熱装置。
(1) heating element,
A heating apparatus comprising: a power transmission member that transmits power to a heating element; and a temperature information acquisition mechanism of the transmission member.

(2)前記発熱体及び前記電力伝導部材が同一金属から構成されることを特徴とする(1)の加熱装置。 (2) The heating device according to (1), wherein the heating element and the power conducting member are made of the same metal.

(3)前記発熱体がガラス原料を熔解するためのガラス加熱用部材であり、
前記電力伝導部材がガラス加熱用部材に電力を供給するための電極であり及び
前記温度情報取得機構が前記電極に接続された熱電対であることを特徴とする(1)または(2)記載の加熱装置。
(3) The heating element is a glass heating member for melting the glass raw material,
(1) or (2), wherein the power conducting member is an electrode for supplying power to the glass heating member, and the temperature information acquisition mechanism is a thermocouple connected to the electrode. Heating device.

(4)前記熱電対により測定された温度を表示する表示部、
前記表示部の測定温度が設定範囲外となった際に信号を発する警報装置を有することを特徴とする(3)いずれか記載の加熱装置。
(4) a display unit for displaying the temperature measured by the thermocouple,
(3) The heating device according to any one of (3), further including an alarm device that emits a signal when the measured temperature of the display unit is out of a set range.

(5)ガラス加熱用部材によりガラスを熔融する工程、
電力伝達部材により、前記ガラス加熱用部材に電力が伝達される工程及び
前記伝達部材の温度情報を取得する温度情報取得工程を有することを特徴とするガラス製造方法。
(5) a step of melting glass with a glass heating member,
A glass manufacturing method comprising: a step of transmitting power to the glass heating member by a power transmission member; and a temperature information acquisition step of acquiring temperature information of the transmission member.

(6)同一金属から構成されたガラス加熱用部材及び前記電力伝達部材を有することを特徴とする(5)のガラス製造方法。 (6) The glass manufacturing method according to (5), comprising a glass heating member made of the same metal and the power transmission member.

(7)前記電力伝達部材が前記ガラス加熱用部材に電力を供給するための電極であり、
前記温度情報取得工程が熱電対によりされることを特徴とする(5)または(6)のガラス製造方法。
(7) The power transmission member is an electrode for supplying power to the glass heating member,
The glass production method according to (5) or (6), wherein the temperature information acquisition step is performed by a thermocouple.

(8)さらに前記温度情報取得工程により取得された温度情報の値が設定範囲外となった際に信号を発する機構を有することを特徴とする(5)から(7)いずれか記載のガラス製造方法。
(8) The glass production according to any one of (5) to (7), further comprising a mechanism that emits a signal when the value of the temperature information acquired by the temperature information acquisition step is outside the set range. Method.

本発明によれば、操作ミスや機械トラブルによる不測の事態から電力伝達部材自身に高負荷がかかり高温となった場合に、電力伝達部材自身の温度の測定、測定値の設定範囲外となった際の信号の発信により、電力伝達部材自身への過負荷が早期に発見できる。 According to the present invention, when the power transmission member itself is subjected to a high load and becomes high temperature due to an unforeseen situation due to an operation error or a machine trouble, the temperature of the power transmission member itself is out of the setting range of the measurement value. By transmitting the signal at the time, an overload on the power transmission member itself can be detected early.

本発明の流路及び熱電対の位置関係図Positional relationship diagram of flow path and thermocouple of the present invention 本発明の熔融漕及び熱電対の位置関係図Positional relationship diagram of molten iron and thermocouple of the present invention 熱電対により測定された温度を表示する制御盤A control panel that displays the temperature measured by a thermocouple

以下、本発明の一実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。尚、説明が重複する個所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。   Hereinafter, an embodiment of the present invention will be described in detail. However, the present invention is not limited to the following embodiment, and may be implemented with appropriate modifications within the scope of the object of the present invention. it can. In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the meaning of invention is not limited.

光学ガラス成形においては、通常、原料を調合・撹拌し、一次熔解を行うことによりカレットを作製する。その後、二次熔解において、ガラス熔融漕にカレットを投入し、熔融ガラス化、撹拌され、流路を通し成形される。ガラス熔融漕及び流路は、間接加熱、直接加熱により加熱され、熱電対により測定された値を用いて温度制御される。   In optical glass molding, usually, cullet is prepared by mixing and stirring raw materials and performing primary melting. Thereafter, in secondary melting, cullet is put into a glass melted iron, melted into glass, stirred, and molded through a flow path. The glass melt and the channel are heated by indirect heating and direct heating, and the temperature is controlled using values measured by a thermocouple.

また、本明細書中において、「発熱体」とは、電気や磁気などを加えることにより発熱するものの総称を指す。例えば、ガラス製造においては、通電により発熱するガラス加熱用部材を指すが、それ以外にもヒーターなどの公知の発熱体を指す。 Further, in the present specification, the “heating element” refers to a generic name for those that generate heat by applying electricity or magnetism. For example, in glass production, it refers to a glass heating member that generates heat when energized, but also refers to a known heating element such as a heater.

特に、本明細書中において、「ガラス加熱用部材」とは、熔融ガラスに接触する部位を指す概念である。すなわち、図1においては、特にガラス熔融漕1、流路2を指すものである。 In particular, in the present specification, “a member for heating a glass” is a concept indicating a portion in contact with molten glass. That is, in FIG. 1, the glass melted iron 1 and the flow path 2 are particularly pointed out.

また、本明細書中において、「電力伝達部材」とは、発熱体に対して電力を伝達する手段の総称を指す。例えば、電極、コードなどの導電体を指す。すなわち、図1においては、特に電極3を指すものである。 Further, in the present specification, the “power transmission member” refers to a general term for means for transmitting power to the heating element. For example, it refers to a conductor such as an electrode or a cord. That is, in FIG. 1, the electrode 3 is particularly indicated.

図1は、熔融漕に接続されたガラス熔解装置に、通電加熱される電極及び熱電対が接続されたガラス熔解装置の全体を表している。本発明にかかるガラス熔解装置は、ガラス熔融漕1及び前記ガラス熔融槽1に接続された流路2を有し、さらに流路2上には電極
3が溶接され、流路上及び電極には、熱電対4、5がそれぞれ溶接されている。
FIG. 1 shows the entire glass melting apparatus in which an electrode to be energized and a thermocouple are connected to a glass melting apparatus connected to a molten iron. The glass melting apparatus according to the present invention has a glass melter 1 and a flow channel 2 connected to the glass melting tank 1, and an electrode 3 is welded on the flow channel 2, and on the flow channel and the electrode, Thermocouples 4 and 5 are welded respectively.

本発明において、ガラス加熱用部材は、ガラス熔解時の高温においても安定である部材が好ましく、特に白金属、石英、金、白金族合金、強化白金などの公知のガラス熔融に使用し得る材質を用いることができる。   In the present invention, the glass heating member is preferably a member that is stable even at high temperatures during glass melting, and in particular, a material that can be used for known glass melting such as white metal, quartz, gold, platinum group alloy, and reinforced platinum. Can be used.

ガラス加熱用部材の材質は、強度、電気伝導度、熱伝導率などの観点から同一の材質であることが望ましい。特に、熔融漕、流路などのガラス加熱用部材の材質は同一の材質であることが望ましい。 The material for the glass heating member is preferably the same material from the viewpoint of strength, electrical conductivity, thermal conductivity and the like. In particular, it is desirable that the materials for the glass heating members such as the molten iron and the flow path are the same.

また、電力伝達部材も上記と同様の理由から、発熱体と同一の材質であることが望ましい。特に、ガラス加熱用部材と電力伝達部材(図1では電極3)が同一の材質であることが望ましい。   The power transmission member is also preferably made of the same material as the heating element for the same reason as described above. In particular, the glass heating member and the power transmission member (electrode 3 in FIG. 1) are preferably made of the same material.

電極は、ガラス加熱部材に通電し加熱するために設けられ、ガラス加熱部材の任意の位置に溶接することが可能である。例えば、図1中の流路2上、また図2中の熔融漕7上のように複数の電極を溶接することにより、任意の位置を精密に温度制御することが可能である。   The electrode is provided to energize and heat the glass heating member, and can be welded to an arbitrary position of the glass heating member. For example, it is possible to precisely control the temperature of an arbitrary position by welding a plurality of electrodes on the flow path 2 in FIG. 1 and on the molten iron 7 in FIG.

温度情報取得機構は、温度情報を表示する表示部を有する制御盤などを指す。 The temperature information acquisition mechanism indicates a control panel having a display unit for displaying temperature information.

温度情報取得情報は、例えば、熱電対により測定される。 The temperature information acquisition information is measured by, for example, a thermocouple.

本発明における熱電対は、ガラス加熱部材に加え、前記電極自身の温度を測定するためにも設けられ、前記ガラス加熱部材と電極の溶接部近傍、ガラス加熱部材に接続された複数の電極の中間地点に設けることによりガラス加熱部材自身の温度を測定するほか、電極自身に溶接することにより、電極の温度情報も得ることができる。具体的には、ガラス熔融漕側面及び底面、流路と電極の溶接部分近傍、流路上の複数の電極の中間地点、及び電極自身に溶接することが望ましい。 The thermocouple in the present invention is provided for measuring the temperature of the electrode itself, in addition to the glass heating member, and in the vicinity of the welded portion between the glass heating member and the electrode, between the plurality of electrodes connected to the glass heating member. In addition to measuring the temperature of the glass heating member itself by providing it at the point, it is also possible to obtain temperature information of the electrode by welding to the electrode itself. Specifically, it is desirable to weld to the side surface and bottom surface of the glass melt, the vicinity of the welded portion of the flow channel and the electrode, the intermediate points of the plurality of electrodes on the flow channel, and the electrode itself.

前記電極自身に溶接される熱電対は、電極の任意の点に溶接することができるが、特に流路中の高温ガラスの影響を受けず、かつ電極自身の平均的な温度を測定することが求められる場合には、電極の重心部分に溶接されることが望ましい。   The thermocouple welded to the electrode itself can be welded to any point of the electrode, but is not particularly affected by the high temperature glass in the flow path and can measure the average temperature of the electrode itself. Where required, it is desirable to weld to the center of gravity of the electrode.

図2は、ガラス熔融漕7に熔融漕加熱用電極6を溶接した態様であり、図1の流路2と同様、直接通電加熱によりガラス熔融漕7を温度制御する。
この場合、熔融漕加熱用電極6にも熱電対8を溶接し、ガラス熔融漕7を温度制御することが望ましい。
FIG. 2 is a mode in which the molten iron heating electrode 6 is welded to the glass melt 7, and the temperature of the glass melt 7 is controlled by direct current heating as in the flow path 2 of FIG. 1.
In this case, it is desirable to control the temperature of the glass melt 7 by welding the thermocouple 8 to the melt heating electrode 6.

図3はガラス熔解装置に接続された熱電対からの測定温度を表示する温度制御盤9である。例えば図1において、温度制御盤9は、熱電対4及び5から測定された温度の表示部と警報装置10を有する。 FIG. 3 shows a temperature control panel 9 for displaying the measured temperature from the thermocouple connected to the glass melting apparatus. For example, in FIG. 1, the temperature control panel 9 includes a display unit for the temperature measured from the thermocouples 4 and 5 and an alarm device 10.

制御盤の温度の表示部において、測定部位の温度、通電出力等により、測定される温度が設定温度範囲外となった場合、温度制御装置から信号が発信され、制御盤に組み込まれた警報装置が作動する。 In the temperature display section of the control panel, when the measured temperature is out of the set temperature range due to the temperature of the measurement site, energization output, etc., a signal is transmitted from the temperature control device and an alarm device incorporated in the control panel Operates.

警報装置とは、熱電対により測定される温度の値に対し、設定された測定値の範囲を超えた際に、信号を発信する機構を有する装置を指す。発生される信号は光、音等の手段を用いることができる。 The alarm device refers to a device having a mechanism for transmitting a signal when a temperature value measured by a thermocouple exceeds a set measurement value range. As the generated signal, means such as light and sound can be used.

上記温度測定範囲は、ガラス加熱部材の材質により、任意に設定することが可能である。 The temperature measurement range can be arbitrarily set depending on the material of the glass heating member.

例えば、図1では、電極自身の測定温度がガラス加熱部材に用いる材質の融点より500℃低い温度であることが望ましい。 For example, in FIG. 1, it is desirable that the measurement temperature of the electrode itself is 500 ° C. lower than the melting point of the material used for the glass heating member.

例えば、図1において、ガラス加熱用部材である熔融漕1及び流路2、電力伝達部材である電極4に強化白金が使用されている場合、強化白金の融点より500℃低い温度である1200℃が電極で計測された場合警報装置10が作動するよう設定される。 For example, in FIG. 1, when reinforced platinum is used for the molten iron 1 and the flow path 2 that are glass heating members and the electrode 4 that is a power transmission member, the temperature is 1200 ° C., which is 500 ° C. lower than the melting point of the reinforced platinum. Is set so that the alarm device 10 is activated.

警報装置が作動した場合は、測定対象となる電力伝達部材に過負荷がかかっている状態であるため、適宜、負荷を減じる措置を行う。
例えば図1においては、電極温度が数十℃単位で低下するように電極にかかる電流値を少しずつ下げ、溶断が発生しないよう対策をとる。
When the alarm device is activated, the power transmission member to be measured is in an overloaded state, and therefore measures to reduce the load are taken as appropriate.
For example, in FIG. 1, the current value applied to the electrode is gradually decreased so that the electrode temperature is decreased in units of several tens of degrees Celsius, and measures are taken to prevent fusing.

警報装置が作動した場合は、手動で温度制御を行うことも可能であるが、自動制御機構を用いて温度制御をすることが望ましい。   When the alarm device is activated, it is possible to perform temperature control manually, but it is desirable to perform temperature control using an automatic control mechanism.

上記溶断防止機構を導入した後は、同様の操作においても過昇温などは確認されておらず、溶断も発生していない。
After the fusing prevention mechanism has been introduced, no overheating has been confirmed even in the same operation, and no fusing has occurred.

1 ガラス熔融漕
2 ガラス流路
3 電極
4 流路温度測定用熱電対
5 電極温度測定用熱電対
6 熔融漕加熱用電極
7 ガラス熔融漕
8 電極温度測定用熱電対
9 温度制御盤
10 警報装置
DESCRIPTION OF SYMBOLS 1 Glass molten metal 2 Glass flow path 3 Electrode 4 Channel temperature measurement thermocouple 5 Electrode temperature measurement thermocouple 6 Molten metal heating electrode 7 Glass molten metal 8 Electrode temperature measurement thermocouple 9 Temperature control panel 10 Alarm device

Claims (8)

発熱体、
発熱体に電力を伝達する電力伝達部材及び
伝達部材の温度情報取得機構を有することを特徴とする加熱装置。
Heating element,
A heating apparatus comprising: a power transmission member that transmits power to a heating element; and a temperature information acquisition mechanism of the transmission member.
前記発熱体及び前記電力伝導部材が同一金属から構成されることを特徴とする請求項1記載の加熱装置。
The heating device according to claim 1, wherein the heating element and the power conducting member are made of the same metal.
前記発熱体がガラス原料を熔解するためのガラス加熱用部材であり、
前記電力伝導部材がガラス加熱用部材に電力を供給するための電極であり及び
前記温度情報取得機構が前記電極に接続された熱電対であることを特徴とする請求項1または2記載の加熱装置。
The heating element is a glass heating member for melting glass raw materials,
The heating apparatus according to claim 1 or 2, wherein the power conducting member is an electrode for supplying power to the glass heating member, and the temperature information acquisition mechanism is a thermocouple connected to the electrode. .
前記熱電対により測定された温度を表示する表示部、
前記表示部の測定温度が設定範囲外となった際に信号を発する警報装置を有することを特徴とする請求項3いずれか記載の加熱装置。
A display unit for displaying the temperature measured by the thermocouple;
The heating apparatus according to claim 3, further comprising an alarm device that emits a signal when the measured temperature of the display unit is out of a set range.
ガラス加熱用部材によりガラスを熔融する工程、
電力伝達部材により、前記ガラス加熱用部材に電力が伝達される工程及び
前記伝達部材の温度情報を取得する温度情報取得工程を有することを特徴とするガラス製造方法。
A step of melting glass with a glass heating member,
A glass manufacturing method comprising: a step of transmitting power to the glass heating member by a power transmission member; and a temperature information acquisition step of acquiring temperature information of the transmission member.
同一金属から構成されたガラス加熱用部材及び前記電力伝達部材を有することを特徴とする請求項5のガラス製造方法。
The glass manufacturing method according to claim 5, comprising a glass heating member made of the same metal and the power transmission member.
前記電力伝達部材が前記ガラス加熱用部材に電力を供給するための電極であり、
前記温度情報取得工程が熱電対によりされることを特徴とする請求項5または6記載のガラス製造方法。
The power transmission member is an electrode for supplying power to the glass heating member;
The glass manufacturing method according to claim 5, wherein the temperature information acquisition step is performed by a thermocouple.
さらに前記温度情報取得工程により取得された温度情報の値が設定範囲外となった際に信号を発する機構を有することを特徴とする請求項5から7いずれか記載のガラス製造方法。 Furthermore, it has a mechanism which emits a signal when the value of the temperature information acquired by the said temperature information acquisition process becomes out of a setting range, The glass manufacturing method in any one of Claim 5 to 7 characterized by the above-mentioned.
JP2012240638A 2012-10-31 2012-10-31 Heating device Pending JP2014088301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240638A JP2014088301A (en) 2012-10-31 2012-10-31 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240638A JP2014088301A (en) 2012-10-31 2012-10-31 Heating device

Publications (1)

Publication Number Publication Date
JP2014088301A true JP2014088301A (en) 2014-05-15

Family

ID=50790569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240638A Pending JP2014088301A (en) 2012-10-31 2012-10-31 Heating device

Country Status (1)

Country Link
JP (1) JP2014088301A (en)

Similar Documents

Publication Publication Date Title
JP6417560B2 (en) Repositionable heater assembly for glass production line and method for managing glass temperature in production line
JP6445141B2 (en) Manufacturing method of glass substrate
WO2014011847A1 (en) Apparatus for use in direct resistance heating of platinum-containing vessels
US11021386B2 (en) Glass manufacturing apparatuses and methods for operating the same
WO2007132898A1 (en) Optical fiber reinforcing device and reinforcing method
JP2014037320A (en) Glass plate manufacturing method
JP2019000854A (en) Welding system and welding method
JP2010032344A (en) High-temperature surface tension measuring device
JP5838644B2 (en) Heating element inspection method and inspection apparatus
JP6002526B2 (en) Glass substrate manufacturing apparatus and glass substrate manufacturing method
JP2014088301A (en) Heating device
JP6514588B2 (en) Method of manufacturing glass substrate
RU2603115C1 (en) Method for glass melting in the glass melting furnace bath
JP2007084426A (en) Glass melt electrode and method for melting glass or glass ceramic
JP6015828B2 (en) Heating element inspection method and inspection apparatus
KR20190108916A (en) Stud Welding Gun with Preheating Function
JP5697105B2 (en) Electroslag remelting temperature measuring device and electroslag remelting temperature measuring method
JP3731053B2 (en) Method for measuring diffusion coefficient in conductive melt and apparatus for measuring diffusion coefficient in conductive melt
JP4259294B2 (en) Terminal caulking device and terminal caulking method
JP6730865B2 (en) Glass plate manufacturing method
JP2015209366A (en) Apparatus and method for manufacturing glass plate
WO2022118781A1 (en) Glass melting furnace monitoring method and glass article manufacturing method
JP7388143B2 (en) Heating device condition monitoring method and condition monitoring system
JPH06239619A (en) Method for cutting molten glass stream and cutter
KR101746205B1 (en) Heat treating apparatus