JP2014087723A - Neutralization treatment method for ready-mixed concrete sludge, and neutralization treatment material - Google Patents

Neutralization treatment method for ready-mixed concrete sludge, and neutralization treatment material Download PDF

Info

Publication number
JP2014087723A
JP2014087723A JP2012238006A JP2012238006A JP2014087723A JP 2014087723 A JP2014087723 A JP 2014087723A JP 2012238006 A JP2012238006 A JP 2012238006A JP 2012238006 A JP2012238006 A JP 2012238006A JP 2014087723 A JP2014087723 A JP 2014087723A
Authority
JP
Japan
Prior art keywords
ferrous sulfate
curing
raw consludge
neutralization treatment
ready
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012238006A
Other languages
Japanese (ja)
Other versions
JP5861611B2 (en
Inventor
Masao Takahashi
正男 高橋
Takashi Tokita
孝至 時田
Seiji Okabayashi
誠治 岡林
Tomohiro Takahashi
朋弘 高橋
Akira Matsui
瑛 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECO PROJECT KK
Original Assignee
ECO PROJECT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ECO PROJECT KK filed Critical ECO PROJECT KK
Priority to JP2012238006A priority Critical patent/JP5861611B2/en
Publication of JP2014087723A publication Critical patent/JP2014087723A/en
Application granted granted Critical
Publication of JP5861611B2 publication Critical patent/JP5861611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00724Uses not provided for elsewhere in C04B2111/00 in mining operations, e.g. for backfilling; in making tunnels or galleries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a new neutralization treatment method for ready-mixed concrete sludge capable of recycling ready-mixed concrete sludge as a backfill at a low cost, and a neutralization treatment material.SOLUTION: The method comprises: a mixing step of adding ferrous sulfate, a polymer flocculant and inorganic powder to ready-mixed concrete sludge and mixing them; and a curing step of curing the mixture obtained by the mixing step. Preferably, the addition amount of the ferrous sulfate in the mixing step is 100 kg or more per mof the ready-mixed concrete sludge, and curing time in the curing step is 14 days or more.

Description

本発明は、生コンスラッジの中性化処理方法及び中性化処理材に関する。   The present invention relates to a neutralization treatment method and a neutralization treatment material of raw consludge.

生コンスラッジ(生コンクリートスラッジ)は、生コンクリート工場のミキサーやアジテータ車からの洗い水、現場で打ち込まないで残ったコンクリート(以下、残コンという。)や荷卸し検査に不合格となって生コン会社に戻されるコンクリート(以下、戻りコンという。)を処理した排水に含まれる固形分である。生コンスラッジには、主に未反応のセメント粒子、セメント水和生成物、骨材微粒子が含まれている。   Ready-mixed sludge (washed concrete sludge) was washed by the mixer and agitator car of the ready-mixed concrete factory, the concrete left behind without being driven in the field (hereinafter referred to as “remained-use-con”) and unloading inspection, and the ready-mixed company. It is the solid content contained in the wastewater that has been processed concrete (hereinafter referred to as "return container"). The raw consludge mainly contains unreacted cement particles, cement hydrated products, and aggregate fine particles.

生コンスラッジは、産業廃棄物上は汚泥に分類されており、強アルカリ性であることから、原則として管理型処分場にて埋め立て処分されている。しかし、全国の生コンスラッジの排出量は、約300万m/年間と見積もられ、管理型処分場の残余年数の問題が指摘されている。このため、業者間では以前より強く生コンスラッジの再利用策が望まれていた。 Raw consludge is classified as sludge on industrial waste and is strongly alkaline. Therefore, as a rule, it is disposed of in landfills at managed disposal sites. However, the amount of raw conslag discharged nationwide is estimated to be about 3 million m 3 / year, and the problem of the remaining years of managed disposal sites has been pointed out. For this reason, there has been a strong demand among suppliers for reusing raw consludge.

ところが、例えば、生コンスラッジを埋め戻し材料として再利用するためには、全国の保健所の指導によれば、強アルカリ性の生コンスラッジのpHを中性化し、灰色の生コンスラッジを粘性土色に着色し、さらに、生コンスラッジに含有される六価クロムを土壌の汚染に係る環境基準0.05mg/L以下に抑える必要がある。   However, for example, in order to reuse raw consludge as a backfill material, according to the guidance of health centers nationwide, the pH of strong alkaline raw consludge is neutralized and gray raw consludge is colored to a clay color. Furthermore, it is necessary to suppress the hexavalent chromium contained in the raw consludge to an environmental standard of 0.05 mg / L or less related to soil contamination.

なお、特許文献1には、コンクリートスラッジの固化処理方法として、六価クロムを還元して不溶化、造粒固化することが開示されている。しかし、この方法で得られる固化体のpHは依然としてアルカリ性であるため、国土交通省のリサイクル基準に合致するものの、保健所の指導により埋め戻し材料として再利用することができない、という問題があった。また、この固化体のpHを中性化しようとすれば、そのための処理コストがかなり多くかかってしまう、という問題があった。   Patent Document 1 discloses a method for solidifying concrete sludge, in which hexavalent chromium is reduced to be insolubilized and granulated and solidified. However, since the pH of the solidified body obtained by this method is still alkaline, there is a problem that it cannot be reused as a backfill material under the guidance of a health center, although it meets the recycling standards of the Ministry of Land, Infrastructure, Transport and Tourism. Moreover, if the pH of the solidified product is neutralized, there is a problem that the processing cost for that purpose is considerably increased.

このほか、引用文献2には、生コンスラッジを回収し、これにセメント、水及び砕石を添加混練して再生生コンクリートを生成し、これを型枠内に養生固化し、さらに凝固させた後、これを破砕及び又は粉砕して所定粒径以下の再生切込み材を形成する生コンスラッジ再生法が開示されている。また、引用文献3には、生コンスラッジを脱水させ、脱水後の生コンスラッジに質量比40%ないし80%の高炉スラグ微粉末を混練させてなる生コンスラッジの処理方法が開示されている。しかし、これらの方法で得られた再生材は生コンスラッジのリサイクル方法を提案しているが、そのための設備費やコスト問題が懸念される。更に、このような方法では基本的に生コンスラッジの中和化を意識したものでない。   In addition, in the cited document 2, raw consludge is recovered, cement, water and crushed stone are added and kneaded to produce recycled green concrete, which is cured and solidified in a mold, and further solidified. A raw consludge regeneration method is disclosed in which a crushed and / or pulverized product is formed to form a regenerated cutting material having a predetermined particle size or less. Further, cited document 3 discloses a method for treating raw consludge in which raw consludge is dehydrated, and fine blast furnace slag powder having a mass ratio of 40% to 80% is kneaded with dehydrated raw consludge. However, the recycled materials obtained by these methods have proposed a method for recycling raw consludge, but there are concerns about facility costs and cost problems. Furthermore, such a method is basically not conscious of neutralization of raw consludge.

生コンスラッジを埋戻し材、盛土材および路盤材などに有効活用しようとする場合、産業廃棄物上の汚泥としての認定を外れなければならないが、それには生コンスラッジの安全性と多様性用途を意識した中性化、着色、六価クロムの還元が必須条件となっている。このため、これらの条件を満たす生コンスラッジの処理方法が強く求められていた。   In order to make effective use of raw consludge as backfill material, embankment material, roadbed material, etc., it must be disqualified as sludge on industrial waste, but it is conscious of the safety and diversity of raw consludge. Neutralization, coloring, and reduction of hexavalent chromium are essential conditions. For this reason, there is a strong demand for a method for treating green consludge that satisfies these conditions.

更には、生コンスラッジ排出業者の新たな設備投資を必要とせず、従来の設備を使いながら、しかも管理型処分場に持ち込む経費より、かなり安価な処理方法が望まれていた。同時に、中性化処理土が汎用土木用資材として広く活用されることが期待されていた。   Furthermore, there has been a demand for a processing method that does not require a new capital investment by a raw consludge discharger, and is considerably cheaper than the cost of bringing it into a managed disposal site while using conventional facilities. At the same time, the neutralized soil was expected to be widely used as a general-purpose civil engineering material.

特開2010−36178号公報JP 2010-36178 A 特開2008−50189号公報JP 2008-50189 A 特開2001−191095号公報JP 2001-191095 A

そこで、本発明は、低コストにて生コンスラッジを埋め戻し材料として再利用することを可能にする、新規の生コンスラッジの中性化処理方法及び中性化処理材を提供することを目的とする。   Then, this invention aims at providing the neutralization processing method and the neutralization processing material of the novel raw consludge which make it possible to reuse raw consludge as a backfill material at low cost. .

本発明者らは鋭意検討した結果、硫酸第一鉄を中性化処理材の成分として用いることで、生コンスラッジの中性化、着色、六価クロムの還元を同時にかつ低コストにて達成できることを見出し、本発明に想到した。   As a result of intensive studies, the present inventors have been able to achieve neutralization, coloring, and reduction of hexavalent chromium at the same time and at a low cost by using ferrous sulfate as a component of the neutralization treatment material. As a result, the present invention has been conceived.

すなわち、本発明の生コンスラッジの中性化処理方法は、生コンスラッジに、硫酸第一鉄と、高分子凝集剤と、無機粉末とを添加して混合する混合工程と、この混合工程により得られた混合物を養生する養生工程とを備えたことを特徴とする。   That is, the method for neutralizing the raw consludge of the present invention is obtained by a mixing step of adding ferrous sulfate, a polymer flocculant, and an inorganic powder to the raw consludge and mixing, and this mixing step. And a curing process for curing the mixture.

また、前記混合工程における硫酸第一鉄の添加量が、硫酸第一鉄・一水塩換算で、生コンスラッジ1mあたり100kg以上である。 The amount of ferrous sulfate in the mixing step, in ferrous monohydrate converted sulfate is mixed concrete sludge 1 m 3 per 100kg or more.

さらに、前記養生工程における養生時間が14日以上である。   Furthermore, the curing time in the curing process is 14 days or more.

本発明の生コンスラッジの中性化処理材は、硫酸第一鉄と、高分子凝集剤と、無機粉末とを含有することを特徴とする。   The neutralization treatment material of the raw consludge of the present invention is characterized by containing ferrous sulfate, a polymer flocculant, and an inorganic powder.

本発明によれば、生コンスラッジの中性化、着色、六価クロムの還元を同時にかつ低コストにて達成でき、低コストにて生コンスラッジを埋め戻し材料として再利用することが可能となる。   According to the present invention, neutralization, coloring, and reduction of hexavalent chromium can be achieved at the same time and at low cost, and it is possible to reuse the raw consludge as a backfill material at a low cost.

処理材Aを添加した場合のpHの経時変化を示すグラフである。It is a graph which shows the time-dependent change of pH at the time of adding the processing material A. 処理材Bを添加した場合のpHの経時変化を示すグラフである。It is a graph which shows the time-dependent change of pH at the time of adding the processing material B. 処理材Cを添加した場合のpHの経時変化を示すグラフである。It is a graph which shows the time-dependent change of pH at the time of adding the processing material C.

本発明の生コンスラッジの中性化処理方法は、生コンスラッジに、硫酸第一鉄と、高分子凝集剤と、無機粉末とを添加して混合する混合工程と、この混合工程により得られた混合物を養生する養生工程とを備えたものである。   The method for neutralizing the raw consludge according to the present invention includes a mixing step of adding ferrous sulfate, a polymer flocculant, and an inorganic powder to the raw consludge and mixing, and a mixture obtained by this mixing step. And a curing process for curing.

一般的な生コンスラッジは、pH11〜14、湿潤密度1.1〜2.0g/ml、含水比30〜100%である。   Common raw sludge has a pH of 11 to 14, a wet density of 1.1 to 2.0 g / ml, and a water content of 30 to 100%.

はじめに混合工程において、この生コンスラッジに硫酸第一鉄と、高分子凝集剤と、無機粉末とを添加して混合する。   First, in the mixing step, ferrous sulfate, a polymer flocculant, and an inorganic powder are added to and mixed with this raw consludge.

ここで、硫酸第一鉄としては、無水物や種々の水和物が知られており、特定のものに限定されるものではないが、例えば、硫酸第一鉄・一水塩、硫酸第一鉄・四水塩を好適に用いることができる。また、酸化チタン製造の副産物や鉄鋼洗浄廃液の乾燥品として得られた硫酸第一鉄を用いることができる。   Here, anhydrous ferrous sulfate and various hydrates are known as ferrous sulfate, and are not limited to specific ones. For example, ferrous sulfate / monohydrate, ferrous sulfate Iron or tetrahydrate can be preferably used. Moreover, ferrous sulfate obtained as a by-product of titanium oxide production or a dried product of steel washing waste liquid can be used.

混合工程における硫酸第一鉄の添加量は、一水塩換算で、好ましくは、生コンスラッジ1mあたり100kg以上とする。これは、100kg未満では、つぎの養生工程において混合物のpHが中性付近に到達しないためである。なお、生コンスラッジ1mあたり100kgの硫酸第一鉄(一水塩換算)を添加すれば、養生後のpHはおよそ9以下の中性付近に到達し、埋め戻し材料として再利用可能なレベルとなる。さらに、確実にpHを中和付近に到達させるためには、硫酸第一鉄の添加量は、一水塩換算で、生コンスラッジ1mあたり140kg以上とするのが好ましいが、経済性を考慮して120〜150kgとしてもよい。 The amount of ferrous sulfate added in the mixing step is preferably 100 kg or more per 1 m 3 of raw consludge in terms of monohydrate. This is because, if it is less than 100 kg, the pH of the mixture does not reach near neutral in the next curing step. In addition, if 100 kg of ferrous sulfate (monohydrate equivalent) is added per 1 m 3 of raw consludge, the pH after curing reaches about 9 or less neutral and can be reused as backfill material. Become. Furthermore, in order to ensure that the pH reaches near neutralization, the amount of ferrous sulfate added is preferably 140 kg or more per 1 m 3 of raw consludge in terms of monohydrate. It is good also as 120-150 kg.

また、高分子凝集剤としては、一般的に知られている種々のノニオンポリマー、アニオンポリマーを用いることができる。特定のものに限定されるものではないが、例えば、ノニオンポリマーとしては、ポリアクリクアミド、アニオンポリマーとしては、ポリアクリルアミド部分加水分解物、アクリルアミド−アクリル酸ナトリウム共重合物を好適に用いることができる。高分子凝集剤の添加量は、例えば、硫酸第一鉄(一水塩換算)100質量部に対して0.05〜1.5質量部とすることができる。なお、ポリアクリルアミドを用いる場合は、混合物の造粒性を良好にするために、ポリアクリルアミドの添加量は、生コンススラッジ1mあたり0.05kg以上、さらには0.3kg以上とするのが好ましい。 As the polymer flocculant, various generally known nonionic polymers and anionic polymers can be used. Although not limited to a specific one, for example, polyacrylamide can be suitably used as the nonionic polymer, and polyacrylamide partial hydrolyzate or acrylamide-sodium acrylate copolymer can be suitably used as the anionic polymer. . The addition amount of the polymer flocculant can be, for example, 0.05 to 1.5 parts by mass with respect to 100 parts by mass of ferrous sulfate (monohydrate conversion). When polyacrylamide is used, in order to improve the granulation property of the mixture, the amount of polyacrylamide added is preferably 0.05 kg or more, more preferably 0.3 kg or more per 1 m 3 of raw consludge sludge. .

また、無機粉末としては、一般的に知られている種々の無機物からなる粉末を用いることができる。特定のものに限定されるものではないが、例えば、シリカ粉末、フライアッシュ、酸性白土粉末やカオリン粉末などの粘土鉱物の粉末、高炉スラグ粉末、及び鋳物砂粉末などが好適に用いられる。無機粉末の添加量は、例えば、硫酸第一鉄(一水塩換算)100質量部に対して1〜80質量部とすることができる。無機粉末は、混合物を均一に混合しやすくするために添加する。   Moreover, as inorganic powder, the powder which consists of various generally known inorganic substances can be used. Although not limited to specific ones, for example, silica powder, fly ash, clay mineral powder such as acid clay powder, kaolin powder, blast furnace slag powder, and foundry sand powder are preferably used. The addition amount of inorganic powder can be 1-80 mass parts with respect to 100 mass parts of ferrous sulfate (monohydrate conversion), for example. Inorganic powder is added to facilitate uniform mixing of the mixture.

つぎに養生工程において、上記混合工程において生コンスラッジに硫酸第一鉄と、高分子凝集剤と、無機粉末とを添加して混合することによって得られた混合物を養生する。   Next, in the curing step, the mixture obtained by adding and mixing ferrous sulfate, a polymer flocculant, and inorganic powder to the raw consludge in the mixing step is cured.

ここで、硫酸第一鉄は、酸性化成分として作用して生コンスラッジと中和反応する。そして、これと同時に、生コンスラッジに含まれる六価クロムが三価クロムに還元される。一方、硫酸第一鉄の二価鉄は三価鉄に酸化され、この三価鉄の生成により、混合物の色が暗緑色から暗茶色を経て茶色に変化する。さらに、混合物を撹拌し養生することにより二価鉄から三価鉄への空気酸化が促進され、最終的には粘性土の色である黄褐色に至る。また、積極的に酸化を促進させる場合は酸化剤、例えば次亜塩素酸、過酸化水素、過マンガン酸塩などを添加する方法もある。   Here, ferrous sulfate acts as an acidifying component and neutralizes with raw consludge. At the same time, hexavalent chromium contained in the raw consludge is reduced to trivalent chromium. On the other hand, ferrous sulfate divalent iron is oxidized to trivalent iron, and the formation of this trivalent iron changes the color of the mixture from dark green to dark brown. Furthermore, by stirring and curing the mixture, air oxidation from divalent iron to trivalent iron is promoted, and finally the yellowish brown color which is the color of the clay is reached. In addition, when the oxidation is actively promoted, there is a method of adding an oxidizing agent such as hypochlorous acid, hydrogen peroxide, permanganate and the like.

養生工程における養生時間は、14日以上とするのが好ましいが、この期間中3日に1回位の頻度で養生物全体をバックホゥなどで撹拌混合し、空気接触を多くする事が好適である。更に養生時間を14日以上とすることにより、中和反応が十分に進んで混合物のpHが中性付近に達する。   The curing time in the curing process is preferably 14 days or longer, but it is preferable to stir and mix the entire living organism with a backhoe or the like at a frequency of about once every 3 days during this period to increase air contact. . Further, by setting the curing time to 14 days or longer, the neutralization reaction proceeds sufficiently and the pH of the mixture reaches near neutral.

また、高分子凝集剤は、固化材として作用し、混合物を固化させる。高分子凝集剤の凝集作用により、混合物を撹拌した際の造粒が容易となる。   The polymer flocculant acts as a solidifying material and solidifies the mixture. Due to the aggregating action of the polymer flocculant, granulation is facilitated when the mixture is stirred.

本発明の生コンスラッジの中性化処理材は、上記の生コンスラッジの中性化処理方法を行うために配合されたものであり、硫酸第一鉄と、高分子凝集剤と、無機粉末とを含有する。なお、硫酸第一鉄、高分子凝集剤、無機粉末についての詳細は上述のとおりである。   A neutralization treatment material of the raw consludge of the present invention is blended to perform the neutralization method of the raw consludge described above, and includes ferrous sulfate, a polymer flocculant, and an inorganic powder. contains. The details of ferrous sulfate, the polymer flocculant, and the inorganic powder are as described above.

硫酸第一鉄、高分子凝集剤、無機粉末の配合割合は、例えば、硫酸第一鉄(無水物換算)100質量部に対して、高分子凝集剤0.05〜1.5質量部、無機粉末1〜80質量部とすることができる。   The blending ratio of ferrous sulfate, polymer flocculant, and inorganic powder is, for example, 0.05 to 1.5 parts by weight of polymer flocculant, inorganic with respect to 100 parts by weight of ferrous sulfate (anhydride equivalent). It can be 1-80 mass parts of powder.

更に、本発明の中性化処理後の処理土は、生コンスラッジ構成成分である骨材粒子やケイ酸カルシウムなどの他に、中和副成分として硫酸カルシウム、鉄酸四カルシウムやケイ酸塩と鉄などの複塩が含まれているものと予想される。   Furthermore, the treated soil after the neutralization treatment of the present invention includes calcium sulfate, tetracalcium ferrate and silicate as neutralizing subcomponents in addition to aggregate particles and calcium silicate which are constituent components of raw consludge. It is expected to contain double salts such as iron.

以下、本発明の生コンスラッジの中性化処理方法について具体的に説明する。なお、本発明は以下の実施例に限定されるものではなく、種々の変形実施が可能である。   Hereinafter, the neutralization processing method of the raw consludge of the present invention will be specifically described. In addition, this invention is not limited to a following example, A various deformation | transformation implementation is possible.

灰白色、pH12.78(20〜25℃)、湿潤密度1.6062g/cm、含水比60.7%の生コンスラッジを用いて、以下の中性化処理を行った。 The following neutralization treatment was performed using raw white sludge having a pH of 12.78 (20 to 25 ° C.), a wet density of 1.6062 g / cm 3 , and a moisture content of 60.7%.

中性化処理材として、硫酸第一鉄・一水塩60質量%、ポリアクリルアミド0.4質量%、シリカ粒子3.6質量%、フライアッシュ36質量%を配合した処理材A、硫酸第一鉄・一水塩96質量%、ポリアクリルアミド0.4質量%、シリカ粒子3.6質量%を配合した処理材B、硫酸第一鉄・一水塩100質量%からなる処理材Cを用意した。   As a neutralizing treatment material, treatment material A containing 60% by mass of ferrous sulfate / monohydrate, 0.4% by mass of polyacrylamide, 3.6% by mass of silica particles, and 36% by mass of fly ash; A treatment material B containing 96% by mass of iron / monohydrate, 0.4% by mass of polyacrylamide and 3.6% by mass of silica particles, and a treatment material C comprising 100% by mass of ferrous sulfate / monohydrate were prepared. .

そして、生コンスラッジを予め均一に混合した後、所定量のスラッジを採取し、生コンスラッジ1mあたり以下の表に示す添加量の処理材を添加してスパーテルで30秒間混合し、造粒性の状態を観察した。その後、開放状態で養生し、pHの経時変化を測定した。なお、pHはJIS 0211、含水比はJIS A 1203に準拠して測定した。造粒性の状態は目視により観察して評価し、pH0日後は混合1時間後に測定した。また、表中、硫酸鉄とあるのは、硫酸第一鉄・一水塩の添加量である。その結果を以下の表に示す。また、処理剤Aを用いた場合のpHの経時変化をグラフ化したものを図1に、処理剤Bを用いた場合のpHの経時変化をグラフ化したものを図2に、処理剤Cを用いた場合のpHの経時変化をグラフ化したものを図3に示す。 Then, after mixing the raw consludge uniformly in advance, a predetermined amount of sludge is collected, and the amount of treatment material shown in the following table is added per 1 m 3 of the raw consludge and mixed with a spatula for 30 seconds. The condition was observed. Then, it cured in the open state and measured the change with time of pH. The pH was measured according to JIS 0211, and the water content was measured according to JIS A 1203. The state of granulation was evaluated by visual observation, and was measured after 1 hour of mixing after 0 days of pH. In the table, iron sulfate is the amount of ferrous sulfate / monohydrate added. The results are shown in the following table. Further, FIG. 1 is a graph showing the change over time of pH when treatment agent A is used, FIG. 2 is a graph showing the change over time of pH when treatment agent B is used, and FIG. FIG. 3 shows a graph of changes over time in pH when used.

Figure 2014087723
Figure 2014087723

いずれの処理剤を添加した場合にも、pHは養生初期に大きく低下し、その後ゆるやかに低下した。また、いずれの処理剤を添加した場合にも、硫酸第一鉄・一水塩の添加量が多いほどpHの低下が大きかった。そして、生コンスラッジ1mあたりの硫酸第一鉄・一水塩の添加量が100kg以上の場合に14日間の養生後のpHが9.1以下となり、140kg以上の場合にpHが8.6以下となった。 Even when any of the treatment agents was added, the pH greatly decreased at the initial stage of curing, and then gradually decreased. In addition, when any of the treatment agents was added, the pH decreased as the amount of ferrous sulfate / monohydrate added increased. When the amount of ferrous sulfate / monohydrate added per 1 m 3 of raw consludge is 100 kg or more, the pH after curing for 14 days is 9.1 or less, and when it is 140 kg or more, the pH is 8.6 or less. It became.

造粒性については、ポリアクリルアミドを含まない処理剤Cを用いた場合と、ポリアクリルアミドを含む処理剤A、Bを50kg/m(生コンススラッジ1mに対しポリアクリルアミド0.2kg)添加したときにやや悪かったが、それ以外の場合は良好であった。 The granulation properties, the case of using the treating agent C containing no polyacrylamide, treatment agent A containing polyacrylamide (polyacrylamide 0.2kg to raw cons sludge 1 m 3) to 50 kg / m 3 B were added It was a little bad at times, but it was good otherwise.

また、14日間の養生後の混合物の六価クロムの溶出試験を行った。110℃で乾燥後、乳鉢で砕き目開き2mmの篩いを通し、ジフェニルカルバジド吸光光度法に準拠したパックテストを行った。その結果、いずれの処理剤を添加した場合においても、14日間の養生後に六価クロムは検出されなかった。一方、未処理の生コンスラッジからは、0.15ppmの六価クロムが検出された。   Moreover, the elution test of the hexavalent chromium of the mixture after 14-day curing was done. After drying at 110 ° C., a pack test based on the diphenylcarbazide absorptiometric method was performed through a sieve having a crack opening of 2 mm in a mortar. As a result, hexavalent chromium was not detected after curing for 14 days, regardless of which treatment was added. On the other hand, 0.15 ppm of hexavalent chromium was detected from the raw untreated sludge.

また、14日間の養生後の混合物の測色試験を行った。小砂利、砂を除去するために、混合物を乳鉢で粗粉砕し、16#(1000μm)の篩いにかけた。つぎに、乳鉢で粉砕して60#(250μm)の篩いをかけて、篩いを通過したものについて試験を行った。色の測定は、JIS Z 8722:2009に準拠し、色の表示方法は、JIS Z 8729:2004に準拠して行った。その結果を下表に示す。また、下表には、測色試験の結果からJIS Z 8721:1993に基づき求めたMunsell値と、JIS Z 8102:2001に記載の269色慣用色名と近似した相当色名を併せて記載した。生コンスラッジ1mあたり192kgの硫酸第一鉄・一水塩を添加したときに、粘性土の色である濃い黄褐色(土色)になり、それ以外の場合は薄い黄褐色(金茶)になった。 In addition, a colorimetric test was performed on the mixture after curing for 14 days. In order to remove small gravel and sand, the mixture was coarsely pulverized in a mortar and passed through a 16 # (1000 μm) sieve. Next, it grind | pulverized with the mortar, applied the sieve of 60 # (250 micrometers), and tested about what passed the sieve. The color measurement was performed according to JIS Z 8722: 2009, and the color display method was performed according to JIS Z 8729: 2004. The results are shown in the table below. In the table below, the Munsell value obtained from the result of the color measurement test based on JIS Z 8721: 1993 and the equivalent color name approximated to the 269 color conventional color name described in JIS Z 8102: 2001 are also shown. . Upon addition of ferrous monohydrate sulfate fresh concrete sludge 1 m 3 per 192 kg, to dark tan is a color Clay (sallow), otherwise the light tan (gold brown) became.

Figure 2014087723
Figure 2014087723

Claims (4)

生コンスラッジに、硫酸第一鉄と、高分子凝集剤と、無機粉末とを添加して混合する混合工程と、この混合工程により得られた混合物を養生する養生工程とを備えたことを特徴とする生コンスラッジの中性化処理方法。 Featuring a mixing step of adding ferrous sulfate, a polymer flocculant, and inorganic powder to raw consludge and mixing, and a curing step of curing the mixture obtained by this mixing step To neutralize the raw consludge. 前記混合工程における硫酸第一鉄の添加量が、硫酸第一鉄・一水塩換算で、生コンスラッジ1mあたり100kg以上である請求項1記載の生コンスラッジの中性化処理方法。 The additive amount of ferrous sulfate in the mixing step, the one iron monohydrate terms, neutralization processing method fresh concrete sludge according to claim 1, wherein the fresh concrete sludge 1 m 3 per 100kg or more sulfate. 前記養生工程における養生時間が14日以上である請求項1又は2記載の生コンスラッジの中性化処理方法。 The method for neutralizing a raw consludge according to claim 1 or 2, wherein the curing time in the curing step is 14 days or more. 硫酸第一鉄と、高分子凝集剤と、無機粉末とを含有することを特徴とする生コンスラッジの中性化処理材。 A neutralized material for raw consludge comprising ferrous sulfate, a polymer flocculant, and inorganic powder.
JP2012238006A 2012-10-29 2012-10-29 Neutralizing treatment method of raw consludge Active JP5861611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238006A JP5861611B2 (en) 2012-10-29 2012-10-29 Neutralizing treatment method of raw consludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238006A JP5861611B2 (en) 2012-10-29 2012-10-29 Neutralizing treatment method of raw consludge

Publications (2)

Publication Number Publication Date
JP2014087723A true JP2014087723A (en) 2014-05-15
JP5861611B2 JP5861611B2 (en) 2016-02-16

Family

ID=50790140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238006A Active JP5861611B2 (en) 2012-10-29 2012-10-29 Neutralizing treatment method of raw consludge

Country Status (1)

Country Link
JP (1) JP5861611B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188559A1 (en) * 2015-05-26 2016-12-01 Cemex Research Group Ag. Method to artificially agglomerate finely divided materials
WO2016198087A1 (en) * 2015-06-08 2016-12-15 Cemex Research Group Ag. Method to produce aggregates from unsettled cementitious mixtures
JP2017064613A (en) * 2015-09-29 2017-04-06 株式会社エコ・プロジェクト Hydrogen sulfide gas absorber
JP7117809B1 (en) 2022-03-22 2022-08-15 環境創研株式会社 Method for producing treated concrete sludge
CN115814760A (en) * 2023-01-09 2023-03-21 重庆三峡学院 Preparation and application of sludge biochar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119651A (en) * 1998-10-09 2000-04-25 Shinichi Yoshida Neutralizing method of alkaline soil in construction residual soil for greening use
JP2002322475A (en) * 2001-04-27 2002-11-08 Bentonite Sangyo Kk Neutral solidifying agent for soil
JP2003305497A (en) * 2002-04-18 2003-10-28 Kurita Water Ind Ltd Alkaline muddy soil treating method and alkaline muddy soil modifying agent
JP2010036178A (en) * 2008-08-05 2010-02-18 Eco Project:Kk Inorganic powdery solidified material and solidification treatment method of concrete sludge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119651A (en) * 1998-10-09 2000-04-25 Shinichi Yoshida Neutralizing method of alkaline soil in construction residual soil for greening use
JP2002322475A (en) * 2001-04-27 2002-11-08 Bentonite Sangyo Kk Neutral solidifying agent for soil
JP2003305497A (en) * 2002-04-18 2003-10-28 Kurita Water Ind Ltd Alkaline muddy soil treating method and alkaline muddy soil modifying agent
JP2010036178A (en) * 2008-08-05 2010-02-18 Eco Project:Kk Inorganic powdery solidified material and solidification treatment method of concrete sludge

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188559A1 (en) * 2015-05-26 2016-12-01 Cemex Research Group Ag. Method to artificially agglomerate finely divided materials
US10640423B2 (en) 2015-05-26 2020-05-05 Cemex Research Group Ag Method to artificially agglomerate finely divided materials
WO2016198087A1 (en) * 2015-06-08 2016-12-15 Cemex Research Group Ag. Method to produce aggregates from unsettled cementitious mixtures
WO2016198384A1 (en) * 2015-06-08 2016-12-15 Cemex Research Group Ag Method to produce aggregates from unsettled cementitious mixtures
JP2017064613A (en) * 2015-09-29 2017-04-06 株式会社エコ・プロジェクト Hydrogen sulfide gas absorber
JP7117809B1 (en) 2022-03-22 2022-08-15 環境創研株式会社 Method for producing treated concrete sludge
JP2023140099A (en) * 2022-03-22 2023-10-04 環境創研株式会社 Manufacturing method of concrete sludge processed product
CN115814760A (en) * 2023-01-09 2023-03-21 重庆三峡学院 Preparation and application of sludge biochar

Also Published As

Publication number Publication date
JP5861611B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
Wang et al. Reuse of hazardous electrolytic manganese residue: Detailed leaching characterization and novel application as a cementitious material
JP5861611B2 (en) Neutralizing treatment method of raw consludge
CN105130160B (en) A kind of method of the melting waste slag collaboration solidification containing arsenic and other heavy metal sewage sludges
TWI653320B (en) Insoluble materials of specific hazardous substances and methods of insolubilization of specific hazardous substances using them
KR101091558B1 (en) Ecological reclamation agent manufacturing mehtod
Yang et al. The preparation of nano calcium carbonate and calcium silicate hardening accelerator from marble waste by nitric acid treatment and study of early strength effect of calcium silicate on C30 concrete
JP4694434B2 (en) By-product processing method
KR101722308B1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
CN109095877B (en) Soil body curing agent, preparation method thereof and soil curing method
JP6641558B2 (en) Hydrogen sulfide gas adsorbent
JP2004305833A (en) Method for stabilization treatment of waste
KR100652201B1 (en) Method for production of brick utilizing red mud
RU2394005C1 (en) Method of making building blocks
KR20040020494A (en) Manufacturing method of cement for solidifying industrial waste using waste concrete and the cement thereby
JP5470699B2 (en) Detoxification method for heavy metal-containing basic waste
JP2005246125A (en) Neutralization treatment method of acidic waste water
CN101781108A (en) Brick making method by recycling residue precipitate after sulfur acid contained industrial sewage treatment
JP2000350976A (en) Method for solidifying granular steel-making slag
JP5666172B2 (en) Manufacturing method of solidified body
JP2010053327A (en) Solidifying material for oil-contaminated soil, high organic volcanic ash, and oil-containing waste fluid
CN113185163A (en) Method for manufacturing composite mineral admixture through ferromanganese ore tailing mud
JP2005095809A (en) Treatment method for concrete scrap
KR20230159504A (en) Manufacturing method of roadbed material
JPS5832680A (en) Method of strengthening water-containing soft ground by use of blast furnace slag modified with sulfuric acid
JP4982911B2 (en) Solidification method of steelmaking slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151207

R150 Certificate of patent or registration of utility model

Ref document number: 5861611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250