JP2014087125A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2014087125A
JP2014087125A JP2012232850A JP2012232850A JP2014087125A JP 2014087125 A JP2014087125 A JP 2014087125A JP 2012232850 A JP2012232850 A JP 2012232850A JP 2012232850 A JP2012232850 A JP 2012232850A JP 2014087125 A JP2014087125 A JP 2014087125A
Authority
JP
Japan
Prior art keywords
coil
power
power transmission
resonance coil
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012232850A
Other languages
Japanese (ja)
Inventor
Masashi Yoshihiro
昌史 吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2012232850A priority Critical patent/JP2014087125A/en
Publication of JP2014087125A publication Critical patent/JP2014087125A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain practically sufficiently high transmission efficiency without using angle compensation means because of large likelihood in a relative angle between a power transmission resonance coil and a power reception resonance coil against constraint of reduction in transmission efficiency.SOLUTION: Provided is a non-contact power transmission device for transmitting power from a transmitting device to a receiving device via magnetic resonance between a power transmission resonance coil and a power reception resonance coil, the non-contact power transmission device comprising: a power transmission device 1 having a power transmission coil unit 3 including a power transmission resonance coil 3b and a power receiving device 2 having a power reception coil unit 4 including a power reception resonance coil 4b. Either the power transmission resonance coil or the power reception resonance coil has a three-dimensionally bent or curved shape, and the other resonance coil has a planar shape. The resonance coil of three-dimensional shape is configured so that there exist at least three partially flat regions defined by a bent or curved portion of the coil winding, the plane of each of the partially flat regions having respectively different directions relative to the plane of the resonance coil of planar shape.

Description

本発明は、送電コイルと受電コイル間の相互作用を介して非接触(ワイヤレス)で電力を伝送する非接触電力伝送装置に関する。   The present invention relates to a non-contact power transmission apparatus that transmits power in a non-contact (wireless) manner through an interaction between a power transmission coil and a power reception coil.

非接触で電力を伝送する方法として、電磁誘導(数100kHz以下)による電磁誘導型、電界または磁界共鳴を介したLC共振間伝送による電界・磁界共鳴型、電波(数GHz)によるマイクロ波送電型、あるいは可視光領域の電磁波(光)によるレーザ送電型が知られている。この中で既に実用化されているのは、電磁誘導型である。これは簡易な回路(トランス方式)で実現可能であるなどの優位性はあるが、送電距離が短いという課題もある。   Non-contact power transmission methods include electromagnetic induction using electromagnetic induction (several hundreds of kHz or less), electric / magnetic resonance using LC-resonant transmission via electric field or magnetic resonance, and microwave transmission using radio waves (several GHz). Alternatively, a laser power transmission type using an electromagnetic wave (light) in the visible light region is known. Among them, the electromagnetic induction type has already been put into practical use. This has the advantage that it can be realized with a simple circuit (transformer system), but there is also a problem that the transmission distance is short.

そこで、最近になって近距離伝送(〜2m)が可能な電界・磁界共鳴型の電力伝送が注目を浴びてきた。このうち、電界共鳴型の場合、伝送経路中に手などを入れると、人体が誘電体であるため、エネルギーを熱として吸収して誘電体損失を生じる。これに対して磁界共鳴型の場合、人体がエネルギーをほとんど吸収せず、誘電体損失を避けられる。この点から磁界共鳴型に対する注目度が上昇してきている。   Therefore, recently, electric field / magnetic field resonance type power transmission capable of short-distance transmission (up to 2 m) has attracted attention. Among these, in the case of the electric field resonance type, when a hand or the like is put in the transmission path, the human body is a dielectric, so that energy is absorbed as heat and dielectric loss occurs. On the other hand, in the case of the magnetic resonance type, the human body hardly absorbs energy, and dielectric loss can be avoided. From this point of view, attention to the magnetic resonance type has been increasing.

このような電磁誘導型や磁界共鳴型の構成により非接触で電力を送受電する場合、送電器に対して受電器が適切に配置されていないと、効率良く電力を伝送することは困難である。例えば、特許文献1に記載されているような磁界共鳴型の送受電装置は、電磁誘導を用いた送受電装置よりも比較的位置決め尤度が高いと言われているが、実用上、受電器に対する何らかの位置決め装置が必要である。   When power is transmitted and received in a non-contact manner using such an electromagnetic induction type or magnetic field resonance type configuration, it is difficult to efficiently transmit power unless the power receiver is properly arranged with respect to the power transmitter. . For example, a magnetic field resonance type power transmitting and receiving device as described in Patent Document 1 is said to have a relatively high positioning likelihood as compared with a power transmitting and receiving device using electromagnetic induction. Some positioning device is required.

特許文献1には、給電施設に設けられた送電コイル(送電共振コイル)から、車両等の移動体に設けられた受電コイル(受電共振コイル)に非接触で電力を供給する際に、送電共振コイルと受電共振コイルの相互の位置関係を適切に調整するための構成が開示されている。すなわち、送電共振コイルの位置を検出するとともに、移動体の位置を検出し、送電共振コイルの位置及び移動体の位置に基づき、送電共振コイルが発生する磁界ベクトルの向きを算出する。これにより、磁界ベクトルの向きに一致するように、送電共振コイルあるいは受電共振コイルの向きを調整することで、任意の位置において高効率で給電を行うことを可能とする。   In Patent Document 1, when power is supplied in a non-contact manner from a power transmission coil (power transmission resonance coil) provided in a power supply facility to a power reception coil (power reception resonance coil) provided in a moving body such as a vehicle, power transmission resonance is performed. A configuration for appropriately adjusting the mutual positional relationship between the coil and the power receiving resonance coil is disclosed. That is, the position of the power transmission resonance coil is detected, the position of the mobile body is detected, and the direction of the magnetic field vector generated by the power transmission resonance coil is calculated based on the position of the power transmission resonance coil and the position of the mobile body. Thus, by adjusting the direction of the power transmission resonance coil or the power reception resonance coil so as to coincide with the direction of the magnetic field vector, it is possible to perform power feeding at an arbitrary position with high efficiency.

但し、特許文献1に記載されているような角度補正機構は、自動車等の大型機器には設置を許容出来るが、小型機器の場合は、装置スペースおよび装置コストの観点から、設置を許容できない。一方、小型機器に受電装置を組み込む場合、機器の形状によっては、送電装置の送電共振コイルと受電装置の受電共振コイルの角度が大きく傾く可能性がある。コスト増の許容値が小さい小型の民生機器に関しては、角度に対する尤度が少ない規制部材を配置する事により、コストを抑制した角度設定が可能である。しかし、受電共振コイルを備えた機器を決まった場所に正確に装着する操作を必要とするため、装置使用者の負担が大きい。近年、機器取り扱いに関してはユニバーサル化が叫ばれており、低コストでかつ使用者の負担が小さい機器構成が望まれる。   However, the angle correction mechanism as described in Patent Document 1 can be installed in a large device such as an automobile, but in the case of a small device, it cannot be installed from the viewpoint of device space and device cost. On the other hand, when the power receiving device is incorporated into a small device, the angle between the power transmission resonance coil of the power transmission device and the power reception resonance coil of the power reception device may be greatly inclined depending on the shape of the device. For small consumer equipment with a small allowable cost increase, it is possible to set an angle with a reduced cost by arranging a restricting member with a low likelihood for the angle. However, since an operation for accurately mounting the device including the power receiving resonance coil at a predetermined place is required, the burden on the apparatus user is large. In recent years, universalization has been sought for device handling, and a device configuration that is low in cost and less burdensome on the user is desired.

そこで特許文献2には、受電共振コイルの形状を改良して、小型機器に適した簡単な構成により、電子機器と充電装置の位置関係に関わりなく、効率よく充電を行うことを可能とする方法が開示されている。すなわち、直方体または立方体形状の鉄心(強磁性体コア)の隣接する3面の外周にコイルを巻いて受電共振コイルとし、鉄心各面に垂直な方向に関して電磁誘導により非接触で電力伝送を行うように構成する。   Therefore, Patent Document 2 discloses a method for improving the shape of the power receiving resonance coil and enabling efficient charging with a simple configuration suitable for a small device regardless of the positional relationship between the electronic device and the charging device. Is disclosed. That is, a coil is wound around the outer periphery of three adjacent surfaces of a rectangular parallelepiped or cube-shaped iron core (ferromagnetic core) to form a power receiving resonance coil, and power is transmitted in a non-contact manner by electromagnetic induction in a direction perpendicular to each surface of the iron core Configure.

受電共振コイルの巻き線ループは、x軸y軸平面、y軸z軸平面、z軸x軸平面の全ての平面に対して投影面積を有することになる。これにより、x軸、y軸、z軸方向夫々の3軸方向からの電磁界が受電共振コイルのループと必ず交差するため、3軸方向で受電可能となる。すなわち、受電共振コイルの設置時の姿勢に依らない安定した受電が可能である。   The winding loop of the power receiving resonance coil has a projected area with respect to all the planes of the x axis y axis plane, the y axis z axis plane, and the z axis x axis plane. As a result, the electromagnetic fields from the three axial directions of the x-axis, y-axis, and z-axis directions always intersect the loop of the power receiving resonance coil, so that power can be received in the three-axis directions. That is, it is possible to stably receive power regardless of the installation posture of the power receiving resonance coil.

特開2010−98896号公報JP 2010-98896 A 特開2010−80851号公報JP 2010-80851 A

しかしながら、特許文献2のように、受電共振コイルに強磁性体コアを用いた構成において、送電共振コイルにコアを用いない場合には、送電側の磁力線密度が足りず、高効率の送電は期待できない。また、送電共振コイルにコアを用いた場合、コア同士が十分に近接できるコア各面に垂直な方向に関しては高効率での送電が可能であるが、ギャップが大きいと、高効率な送電が困難であることが、一般に知られている。   However, as in Patent Document 2, in a configuration using a ferromagnetic core for the power receiving resonance coil, when the core is not used for the power transmission resonance coil, the magnetic field line density on the power transmission side is insufficient and high efficiency power transmission is expected. Can not. In addition, when a core is used for the power transmission resonance coil, high efficiency power transmission is possible in the direction perpendicular to each surface of the core where the cores can be sufficiently close to each other. However, if the gap is large, high efficiency power transmission is difficult. It is generally known that

すなわち、ギャップにより送電側と受電側の磁気抵抗が大きくなり、見掛けの透磁率が大幅に下がるため、コアがない場合と同様に受電側に有効に磁力線を伝達できず、高効率な送電が困難である。   In other words, the magnetic resistance on the power transmission side and the power reception side is increased by the gap, and the apparent permeability is greatly reduced. As in the case where there is no core, the magnetic field lines cannot be effectively transmitted to the power reception side, making it difficult to perform highly efficient power transmission It is.

このように、コアを用いた電磁誘導の場合、三次元的にコイルを巻くことで、複数の方向において高効率を得られる可能性はあるが、高効率が得られる方向はコアの形状に依存する。また、特許文献2のような直方体または立方体のコアにおいては、各面に垂直な三方向のみに高効率の得られる方向が限定される。   Thus, in the case of electromagnetic induction using a core, there is a possibility that high efficiency can be obtained in multiple directions by winding a coil three-dimensionally, but the direction in which high efficiency is obtained depends on the shape of the core. To do. In addition, in a rectangular parallelepiped or cubic core as in Patent Document 2, the direction in which high efficiency is obtained is limited to only three directions perpendicular to each surface.

本発明は、伝送効率の低下抑制に対する送電共振コイルと受電共振コイル間の相対角度の尤度が大きく、角度補正手段を備えることなく実用上十分に高い伝送効率が得られる非接触電力伝送装置を提供することを目的とする。   The present invention provides a non-contact power transmission device that has a high likelihood of a relative angle between a power transmission resonance coil and a power reception resonance coil for suppressing a decrease in transmission efficiency, and can obtain a practically sufficiently high transmission efficiency without providing an angle correction means. The purpose is to provide.

本発明の非接触電力伝送装置は、送電共振コイルを含む送電コイルユニットを有する送電装置と、受電共振コイルを含む受電コイルユニットを有する受電装置とを備え、前記送電共振コイルと前記受電共振コイルの間の磁界共鳴を介して前記送電装置から前記受電装置へ電力を伝送する。前記送電共振コイルまたは前記受電共振コイルのいずれか一方の共振コイルは、立体的に屈曲または湾曲した立体形状を有し、他方の共振コイルは平面形状を有する。前記立体形状の共振コイルは、コイルの巻き線の屈曲または湾曲部分により規定される部分平面領域が、少なくとも3箇所存在するように構成され、前記平面形状の共振コイルの平面に対する、各々の前記部分平面領域の平面の方向が互いに異なっている。   A non-contact power transmission device of the present invention includes a power transmission device having a power transmission coil unit including a power transmission resonance coil, and a power reception device including a power reception coil unit including a power reception resonance coil, and the power transmission resonance coil and the power reception resonance coil. Electric power is transmitted from the power transmitting apparatus to the power receiving apparatus via magnetic field resonance between the power transmitting apparatus and the power receiving apparatus. One of the power transmission resonance coil and the power reception resonance coil has a three-dimensional shape that is three-dimensionally bent or curved, and the other resonance coil has a planar shape. The three-dimensional resonance coil is configured such that there are at least three partial plane regions defined by a bent or curved portion of the coil winding, and each of the portions with respect to the plane of the planar resonance coil The plane directions of the plane regions are different from each other.

上記構成の非接触電力伝送装置によれば、一方の共振コイルの立体形状に、少なくとも3箇所の面方向の異なる部分平面領域が存在することにより、送電共振コイルと受電共振コイルの相対角度が変化しても、平面形状の共振コイルに対する投影面積の変化が少なく、電力の伝送効率の変化が少ない相対角度の範囲が拡大される。従って、角度補正手段を備えることなく、実用上十分に高い伝送効率が得られる。これにより、小型で低コストかつ高効率な使い勝手の良い非接触電力伝送装置が得られる。   According to the non-contact power transmission apparatus having the above configuration, the relative angle between the power transmission resonance coil and the power reception resonance coil changes due to the presence of at least three partial plane regions having different surface directions in the three-dimensional shape of one resonance coil. Even so, the range of the relative angle with a small change in the projected area with respect to the planar resonance coil and a small change in the power transmission efficiency is expanded. Accordingly, practically sufficiently high transmission efficiency can be obtained without providing an angle correction means. As a result, a small, low-cost and highly efficient non-contact power transmission device can be obtained.

実施の形態1における非接触電力伝送装置の構成を概念的に示す図The figure which shows notionally the structure of the non-contact electric power transmission apparatus in Embodiment 1. 同非接触電力伝送装置を構成する送電コイルユニット及び受電コイルユニットの形状の一例を示す正面図The front view which shows an example of the shape of the power transmission coil unit which comprises the same non-contact electric power transmission apparatus, and a receiving coil unit 同非接触電力伝送装置を構成する送電コイルユニットの形状の一例を示す斜視図The perspective view which shows an example of the shape of the power transmission coil unit which comprises the non-contact electric power transmission apparatus 同非接触電力伝送装置を構成する受電共振コイルの形状の一例を示す図であり、(a)は平面図、(b)は正面図、(c)は側面図It is a figure which shows an example of the shape of the receiving resonance coil which comprises the same non-contact electric power transmission apparatus, (a) is a top view, (b) is a front view, (c) is a side view 同非接触電力伝送装置の受電コイルユニットを構成する受電コイルと受電共振コイルを積層配置した屈曲加工前の形状を示す斜視図The perspective view which shows the shape before the bending process which laminated | stacked and arrange | positioned the receiving coil and receiving resonance coil which comprise the receiving coil unit of the non-contact electric power transmission apparatus 同非接触電力伝送装置の図5Aに示した受電コイルと受電共振コイルの積層体を屈曲加工した後の形状を示す斜視図The perspective view which shows the shape after bending the laminated body of the receiving coil and receiving resonance coil which were shown to FIG. 5A of the non-contact electric power transmission apparatus. 同非接触電力伝送装置の受電コイルユニットを構成する受電コイル及び受電共振コイルを一枚の基板上に形成した屈曲加工前の形状を示す斜視図The perspective view which shows the shape before the bending process which formed the receiving coil and the receiving resonance coil which comprise the receiving coil unit of the non-contact electric power transmission apparatus on one board | substrate. 同非接触電力伝送装置の図6Aに示した受電コイル及び受電共振コイルの構造体を屈曲加工した後の形状を示す斜視図The perspective view which shows the shape after bending the structure of the receiving coil and receiving resonance coil which were shown to FIG. 6A of the non-contact electric power transmission apparatus 同非接触電力伝送装置における送電コイルユニットに対して受電コイルユニットを傾けたときの、傾き角と電力伝送効率の関係を示す図The figure which shows the relationship between an inclination angle and electric power transmission efficiency when a receiving coil unit is inclined with respect to the power transmission coil unit in the non-contact electric power transmission apparatus 同非接触電力伝送装置における受電コイルユニットを傾けるときの回動中心軸の方向を説明する図The figure explaining the direction of the rotation center axis when inclining the receiving coil unit in the non-contact power transmission device 同非接触電力伝送装置の送電距離と伝送効率の関係を示す図The figure which shows the relationship between the transmission distance and transmission efficiency of the non-contact electric power transmission equipment 実施の形態2における非接触電力伝送装置を構成する送電コイルユニット及び受電コイルユニットの構造及び配置を示す斜視図The perspective view which shows the structure and arrangement | positioning of the power transmission coil unit and power receiving coil unit which comprise the non-contact electric power transmission apparatus in Embodiment 2. FIG. 同非接触電力伝送装置における送電コイルユニットに対して受電コイルユニットを傾けたときの、傾き角と電力伝送効率の関係を示す図The figure which shows the relationship between an inclination angle and electric power transmission efficiency when a receiving coil unit is inclined with respect to the power transmission coil unit in the non-contact electric power transmission apparatus 比較例1の非接触電力伝送装置を構成する送電コイルユニット及び受電コイルユニットの構造及び配置を示す斜視図The perspective view which shows the structure and arrangement | positioning of the power transmission coil unit which comprises the non-contact electric power transmission apparatus of the comparative example 1, and a receiving coil unit 同非接触電力伝送装置の受電コイルユニットの傾き角と伝送効率の関係を示す図The figure which shows the relationship between the inclination angle of the receiving coil unit of the non-contact electric power transmission apparatus, and transmission efficiency 比較例2の非接触電力伝送装置を構成する送電コイルユニット及び受電コイルユニットの構造及び配置を示す斜視図The perspective view which shows the structure and arrangement | positioning of the power transmission coil unit which comprises the non-contact electric power transmission apparatus of the comparative example 2, and a receiving coil unit 同非接触電力伝送装置の受電コイルユニットの第1方向における傾き角と伝送効率の関係の一例を示す図The figure which shows an example of the relationship between the inclination angle in the 1st direction of the receiving coil unit of the same non-contact electric power transmission apparatus, and transmission efficiency 同非接触電力伝送装置の受電コイルユニットの第2方向における傾き角と伝送効率の関係の一例を示す図The figure which shows an example of the relationship between the inclination angle in the 2nd direction of the receiving coil unit of the non-contact electric power transmission apparatus, and transmission efficiency 同非接触電力伝送装置の受電コイルユニットの第3方向における傾き角と伝送効率の関係の一例を示す図The figure which shows an example of the relationship between the inclination angle in the 3rd direction of the receiving coil unit of the same non-contact electric power transmission apparatus, and transmission efficiency 実施の形態3における非接触電力伝送装置送電コイルユニット及び受電コイルユニットの構造及び配置を示す斜視図The perspective view which shows the structure and arrangement | positioning of the non-contact electric power transmission apparatus power transmission coil unit and power receiving coil unit in Embodiment 3. 同非接触電力伝送装置を構成する受電コイルと受電共振コイルを積層配置した受電コイルユニットの屈曲加工前の形状を示す斜視図The perspective view which shows the shape before the bending process of the receiving coil unit which laminated | stacked and arrange | positioned the receiving coil and receiving resonance coil which comprise the non-contact electric power transmission apparatus 同非接触電力伝送装置の図18Aに示した受電コイル及び受電共振コイルの積層体の屈曲加工後の形状を示す斜視図The perspective view which shows the shape after the bending process of the laminated body of the receiving coil and the receiving resonance coil which were shown to FIG. 18A of the non-contact electric power transmission apparatus. 同非接触電力伝送装置を構成する受電コイル及び受電共振コイルを一枚の基板上に形成した受電コイルユニットの屈曲加工前の形状を示す斜視図The perspective view which shows the shape before the bending process of the receiving coil unit which formed the receiving coil and receiving resonance coil which comprise the non-contact electric power transmission apparatus on one board | substrate. 同非接触電力伝送装置の図19Aに示した受電コイル及び受電共振コイルの構造体を屈曲加工した後の形状を示す斜視図The perspective view which shows the shape after bending the structure of the receiving coil and receiving resonance coil which were shown to FIG. 19A of the non-contact electric power transmission apparatus. 同非接触電力伝送装置における送電コイルユニットに対して受電コイルユニットを傾けたときの、傾き角と電力伝送効率の関係を示す図The figure which shows the relationship between an inclination angle and electric power transmission efficiency when a receiving coil unit is inclined with respect to the power transmission coil unit in the non-contact electric power transmission apparatus

本発明の非接触電力伝送装置は、上記構成を基本として、以下のような態様をとることができる。   The non-contact power transmission apparatus of the present invention can take the following aspects based on the above configuration.

すなわち、前記平面形状の共振コイルの平面に対する前記立体形状の共振コイルの投影領域は、前記平面形状の共振コイルの領域内に含まれる構成とすることができる。   That is, the projection region of the three-dimensional resonance coil with respect to the plane of the planar resonance coil can be included in the region of the planar resonance coil.

また、前記立体形状の共振コイルは、平面形状が六角形のコイルを屈曲または湾曲させた形状であって、前記六角形の1個の頂点に隣接する一対の頂点を結んだ第1対角線、及び前記一対の頂点に隣接する一対の頂点を結んだ第2対角線を境界として屈曲または湾曲した、Z字型の側面形状を有する構成とすることができる。この場合、前記Z字型の側面形状の屈曲または湾曲の角度を90度とすることができる。   Further, the three-dimensional resonance coil is a shape obtained by bending or bending a hexagonal coil in a planar shape, and a first diagonal line connecting a pair of apexes adjacent to one apex of the hexagon, and It can be set as the structure which has a Z-shaped side shape bent or curved by the 2nd diagonal line which tied a pair of vertex adjacent to a pair of said vertex as a boundary. In this case, the angle of bending or bending of the Z-shaped side surface shape can be set to 90 degrees.

また、前記立体形状の共振コイルは、六面体の一頂点の周りで隣接する3面を展開したL字型平面の外形線に沿ったループを、前記六面体の前記3面に沿わせて屈曲させた形状を有する構成とすることができる。   Further, the three-dimensional resonance coil has a loop along an outer shape of an L-shaped plane that is developed on three faces adjacent to one vertex of a hexahedron, and is bent along the three faces of the hexahedron. It can be set as the structure which has a shape.

また、前記送電コイルユニット及び前記受電コイルユニットはそれぞれ、基板上に形成された導電層パターンにより構成され、前記立体形状の共振コイルは、前記基板とともに屈曲または湾曲している構成とすることができる。   Further, each of the power transmission coil unit and the power reception coil unit may be configured by a conductive layer pattern formed on a substrate, and the three-dimensional resonance coil may be bent or curved together with the substrate. .

また、前記送電コイルユニットは、前記送電共振コイル、及び前記送電共振コイルと同様の形状を有し電磁誘導により前記送電共振コイルに給電する給電コイルにより構成され、前記受電コイルユニットは、前記受電共振コイル、及び前記受電共振コイルと同様の形状を有し電磁誘導により前記受電共振コイルから受電する受電コイルにより構成され、前記送電共振コイル及び前記給電コイルは、それぞれ異なる前記基板上に形成されて互いに重ね合わされており、前記受電共振コイル及び前記受電コイルは、それぞれ異なる前記基板上に形成されて互いに重ね合わされており、前記立体形状の共振コイルと組み合わされた前記給電コイルまたは前記受電コイルは、前記基板とともに屈曲または湾曲している構成とすることができる。   The power transmission coil unit includes a power transmission resonance coil and a power supply coil that has the same shape as the power transmission resonance coil and supplies power to the power transmission resonance coil by electromagnetic induction, and the power reception coil unit includes the power reception resonance. A coil and a power receiving coil that has the same shape as the power receiving resonant coil and receives power from the power receiving resonant coil by electromagnetic induction, and the power transmitting resonant coil and the power feeding coil are formed on different substrates, respectively. The power receiving resonance coil and the power receiving coil are formed on different substrates and overlapped with each other, and the power feeding coil or the power receiving coil combined with the three-dimensional resonance coil is The structure may be bent or curved together with the substrate.

また、前記送電コイルユニットは、前記送電共振コイル、及び前記送電共振コイルと同様の形状を有し電磁誘導により前記送電共振コイルに給電する給電コイルにより構成され、前記受電コイルユニットは、前記受電共振コイル、及び前記受電共振コイルと同様の形状を有し電磁誘導により前記受電共振コイルから受電する受電コイルにより構成され、前記送電共振コイル及び前記給電コイルは、同一の前記基板上に前記給電コイルが前記送電共振コイルを包囲するように形成されており、前記受電共振コイル及び前記受電コイルは、同一の前記基板上に前記受電コイルが前記受電共振コイルを包囲するように形成されており、前記立体形状の共振コイルと組み合わされた前記給電コイルまたは前記受電コイルは、前記基板とともに屈曲または湾曲している構成とすることができる。   The power transmission coil unit includes a power transmission resonance coil and a power supply coil that has the same shape as the power transmission resonance coil and supplies power to the power transmission resonance coil by electromagnetic induction, and the power reception coil unit includes the power reception resonance. A coil and a power receiving coil that has the same shape as the power receiving resonant coil and receives power from the power receiving resonant coil by electromagnetic induction, and the power transmitting resonant coil and the power feeding coil are arranged on the same substrate. The power receiving resonance coil and the power receiving coil are formed so as to surround the power transmitting resonance coil, and the power receiving coil is formed on the same substrate so that the power receiving coil surrounds the power receiving resonance coil. The feeding coil or the receiving coil combined with the resonant coil having a shape is bent or bent together with the substrate. It can be curved Configurations.

以下、本発明の実施の形態における非接触電力伝送装置について、図面を参照しながら説明する。   Hereinafter, a non-contact power transmission apparatus according to an embodiment of the present invention will be described with reference to the drawings.

<実施の形態1>
図1は、実施の形態1における非接触電力伝送装置を構成する、送電装置1及び受電装置2の概略構成を示す図である。送電装置1は、給電コイル3aと送電共振コイル3bを組み合わせた送電コイルユニット3を備えている。受電装置2は、受電コイル4aと受電共振コイル4bを組み合わせた受電コイルユニット4を備えている。送電装置1の給電コイル3aには高周波電力ドライバー5が接続され、交流電源(AC100V)6の電力を送電可能な高周波電力に変換して供給する。受電装置2の受電コイル4aには、整流器7を介して負荷の一例として、充電池8が接続されている。
<Embodiment 1>
FIG. 1 is a diagram illustrating a schematic configuration of a power transmission device 1 and a power reception device 2 that constitute the contactless power transmission device according to the first embodiment. The power transmission device 1 includes a power transmission coil unit 3 in which a power feeding coil 3a and a power transmission resonance coil 3b are combined. The power receiving device 2 includes a power receiving coil unit 4 in which a power receiving coil 4a and a power receiving resonance coil 4b are combined. A high-frequency power driver 5 is connected to the feeding coil 3a of the power transmission device 1, and the power of the AC power source (AC 100V) 6 is converted into high-frequency power that can be transmitted and supplied. A rechargeable battery 8 is connected to the power receiving coil 4 a of the power receiving device 2 as an example of a load via a rectifier 7.

給電コイル3aは、高周波電力ドライバー5から供給される周波数f0の高周波電力により励起され、電磁誘導により送電共振コイル3bに高周波電力を伝送する。送電共振コイル3bは給電コイル3aから出力された高周波電力により磁界を発生させる。送電共振コイル3bに供給された高周波電力は、磁界共鳴により受電共振コイル4bに非接触で伝送される。伝送された高周波電力は、受電共振コイル4bから電磁誘導により受電コイル4aへ伝送され、整流器7により整流されて充電池8に供給される。   The feeding coil 3a is excited by the high frequency power of the frequency f0 supplied from the high frequency power driver 5, and transmits the high frequency power to the power transmission resonance coil 3b by electromagnetic induction. The power transmission resonance coil 3b generates a magnetic field by the high frequency power output from the power supply coil 3a. The high frequency power supplied to the power transmission resonance coil 3b is transmitted in a non-contact manner to the power reception resonance coil 4b by magnetic field resonance. The transmitted high frequency power is transmitted from the power receiving resonance coil 4 b to the power receiving coil 4 a by electromagnetic induction, rectified by the rectifier 7 and supplied to the rechargeable battery 8.

なお、給電コイル3a、受電コイル4aは、必ずしも必要ではなく、送電コイルユニット3を送電共振コイル3bのみにより、受電装置2を受電共振コイル4bのみにより構成することも可能である。その場合の送電共振コイル3bに対する給電、及び受電共振コイル4bからの受電には、周知のどのような構成を採ってもよい。   The power feeding coil 3a and the power receiving coil 4a are not necessarily required, and the power transmitting coil unit 3 can be configured only by the power transmitting resonant coil 3b, and the power receiving device 2 can be configured by only the power receiving resonant coil 4b. In this case, any known configuration may be adopted for power feeding to the power transmission resonance coil 3b and power reception from the power reception resonance coil 4b.

送電共振コイル3bにはキャパシタ9が接続されており、これにより送電共振器が構成される。また、受電共振コイル4bの両端間にもキャパシタ10が接続されており、受電共振器が構成される。キャパシタ9、10は、送電共振器および受電共振器の共振周波数を調整するために設けられる。但し、必ずしも、図示したように回路素子として可変コンデンサを設けた構成には限定されず、固定コンデンサを接続してもよいし、あるいは浮遊容量を利用した構成としてもよい。また受電装置2は、整流器の出力を、DC/DCコンバータにより電圧を調整して供給する構成とすることもできる。   A capacitor 9 is connected to the power transmission resonance coil 3b, thereby forming a power transmission resonator. Further, the capacitor 10 is also connected between both ends of the power receiving resonance coil 4b, and a power receiving resonator is configured. Capacitors 9 and 10 are provided to adjust the resonance frequencies of the power transmission resonator and the power reception resonator. However, the configuration is not necessarily limited to a configuration in which a variable capacitor is provided as a circuit element as illustrated, and a fixed capacitor may be connected or a configuration using a stray capacitance may be used. The power receiving device 2 can also be configured to supply the output of the rectifier by adjusting the voltage with a DC / DC converter.

図1に示した非接触電力伝送装置の構成は、基本的には従来例の装置と同様であるが、本実施の形態は、送電コイルユニット3および受電コイルユニット4の構成が、従来例とは異なる特徴を有する。図1では、送電コイルユニット3および受電コイルユニット4の形状は概念的に描かれているが、実際には、以下に説明するような形状を有する。   The configuration of the non-contact power transmission apparatus shown in FIG. 1 is basically the same as that of the conventional apparatus, but in the present embodiment, the configurations of the power transmission coil unit 3 and the power receiving coil unit 4 are the same as those of the conventional example. Have different characteristics. In FIG. 1, the shapes of the power transmission coil unit 3 and the power reception coil unit 4 are conceptually illustrated, but actually have shapes as described below.

図2は、本実施の形態の送電コイルユニット3及び受電コイルユニット4の基本的な構成を示す正面図である。送電コイルユニット3の斜視図を、図3に示す。送電コイルユニット3を構成する給電コイル3a及び送電共振コイル3bは、ともに八角形の平面形状のループを形成し、給電コイル3aの上に送電共振コイル3bを重ねて構成されている。給電コイル3aは1ターン、送電共振コイル3bは複数ターン巻かれている。   FIG. 2 is a front view showing a basic configuration of the power transmission coil unit 3 and the power reception coil unit 4 of the present embodiment. A perspective view of the power transmission coil unit 3 is shown in FIG. The power feeding coil 3a and the power transmission resonance coil 3b constituting the power transmission coil unit 3 are both configured to form an octagonal planar loop, and the power transmission resonance coil 3b is superimposed on the power supply coil 3a. The power supply coil 3a is wound by one turn, and the power transmission resonance coil 3b is wound by a plurality of turns.

一方、図2から判るように、受電コイルユニット4は、立体形状を有する。受電共振コイル4bの形状の一例を、図4に示す。同図において、(a)は平面図、(b)は正面図、(c)は側面図である。受電共振コイル4bは、図4(a)に示すように、基本的には平面形状が六角形であり、頂点11a〜11fを形成している。そして、図4(b)、(c)に示すように、側面形状が例えば、頂点11bと11fを結んだ第1対角線、及び11cと11eを結んだ第2対角線を境界として、Z字型に屈曲した立体形状になっている。屈曲の角度αは、一例としては90度である。受電コイル4aは、受電共振コイル4bと同様な形状と外形寸法を有し、図2に示したように、受電共振コイル4bの外側に沿って配置されている。   On the other hand, as can be seen from FIG. 2, the power receiving coil unit 4 has a three-dimensional shape. An example of the shape of the power receiving resonance coil 4b is shown in FIG. In the figure, (a) is a plan view, (b) is a front view, and (c) is a side view. As shown in FIG. 4A, the power receiving resonance coil 4b basically has a hexagonal planar shape and forms vertices 11a to 11f. Then, as shown in FIGS. 4B and 4C, the side shape is, for example, Z-shaped with the first diagonal line connecting the vertices 11b and 11f and the second diagonal line connecting 11c and 11e as boundaries. It has a bent solid shape. The bending angle α is 90 degrees as an example. The power receiving coil 4a has the same shape and outer dimensions as the power receiving resonant coil 4b, and is disposed along the outside of the power receiving resonant coil 4b as shown in FIG.

上述の立体形状によれば、受電共振コイル4bでは、頂点11b、11d、11fの屈曲部分を挟む各々2本の稜線は、それぞれ異なる3箇所の部分平面領域A〜Cを規定している。例えば部分平面領域Aは、頂点11bの屈曲部分を挟む、稜線11a−11c及び稜線11b−11cにより規定される。これらの部分平面領域A〜Cの平面の方向は、平面形状の送電共振コイル3bの平面に対して互いに異なっている。これによって、後述するような効果が得られる。   According to the three-dimensional shape described above, in the power receiving resonance coil 4b, each of the two ridge lines sandwiching the bent portions of the vertices 11b, 11d, and 11f defines three different partial plane regions A to C. For example, the partial plane region A is defined by the ridge lines 11a-11c and the ridge lines 11b-11c that sandwich the bent portion of the vertex 11b. The plane directions of these partial plane regions A to C are different from each other with respect to the plane of the planar power transmission resonance coil 3b. As a result, the effects described later can be obtained.

また、図2に示したように、平面形状の送電共振コイル3bの平面に対する、立体形状の受電共振コイル4bの投影領域は、送電共振コイル3bの領域内に含まれている。言い換えれば、送電共振コイル3bの平面に垂直な方向で見た受電共振コイル4bの外形寸法は、送電共振コイル3bの外形寸法よりも小さい。   Further, as shown in FIG. 2, the projection area of the three-dimensional power receiving resonance coil 4b with respect to the plane of the planar power transmission resonance coil 3b is included in the area of the power transmission resonance coil 3b. In other words, the external dimensions of the power receiving resonant coil 4b viewed in the direction perpendicular to the plane of the power transmitting resonant coil 3b are smaller than the external dimensions of the power transmitting resonant coil 3b.

なお、屈曲箇所では、明瞭な角を形成せずに湾曲した状態になっていてもよい。従って、以下の説明で「屈曲」との記載は、湾曲して曲がっている態様も含むものとする。   Note that the bent portion may be in a curved state without forming a clear corner. Therefore, the description of “bending” in the following description includes a curved and bent form.

また、受電共振コイル4b(受電コイル4aも同様)は、あらかじめ屈曲させた基材に線材を沿わせて巻回することにより、湾曲した形状とすることができる。あるいは、製造を容易にするためには、受電コイルユニット4を塑性変形可能な平面基板上に平面コイルとして形成した後、屈曲加工する方法を採ることが望ましい。平面コイルは、例えば、基板上に金属膜を形成し、エッチングによりパターニングした導電層パターンとして作製することができる。そのような態様の例を図5A、図5B、図6A、図6Bに示す。   In addition, the power receiving resonance coil 4b (the same applies to the power receiving coil 4a) can be formed into a curved shape by winding a wire along a previously bent base material. Alternatively, in order to facilitate manufacture, it is desirable to adopt a method in which the power receiving coil unit 4 is formed as a planar coil on a plastically deformable planar substrate and then bent. The planar coil can be produced, for example, as a conductive layer pattern in which a metal film is formed on a substrate and patterned by etching. Examples of such aspects are shown in FIGS. 5A, 5B, 6A, and 6B.

図5A、図5Bの態様は、受電コイル4aと、受電共振コイル4bをそれぞれ、異なる基板上に形成したものである。図5Aは、屈曲させる前の形状である。受電コイル4aは基板12上に形成され、受電共振コイル4bは基板13上に形成されて、互いに重ねられる。図5Bは、屈曲させた後の形状である。屈曲加工は、例えば図5Aの状態の両共振コイル4a、4bを垂直に立てて、最下点になった頂点11aに隣接する2つの頂点11b、11fを境として、その下側の稜線を手前に90度屈曲させる。更に、最上点になった頂点11dに隣接する2つの頂点11c、11eを境として、その上側の稜線を奥側に90度屈曲させる。   5A and 5B are such that the power receiving coil 4a and the power receiving resonance coil 4b are formed on different substrates. FIG. 5A shows the shape before bending. The power receiving coil 4a is formed on the substrate 12, and the power receiving resonance coil 4b is formed on the substrate 13 and overlaps with each other. FIG. 5B shows the shape after bending. In the bending process, for example, the two resonance coils 4a and 4b in the state of FIG. Bend 90 degrees. Further, with the two vertices 11c and 11e adjacent to the vertex 11d as the uppermost point as a boundary, the upper ridge line is bent 90 degrees toward the back.

また、受電コイル4aと受電側の負荷とのインピーダンス整合がとれている場合や、受電コイル4aと負荷との間に整合回路を設けている場合は、図6A、図6Bに示すように同じ基板14上に、受電共振コイル4bと受電コイル4aを形成した構成とすることができる。屈曲加工は、図5Bの場合と同様でもよいが、図6Bには、別の態様を示す。すなわち、基板14を水平に載置し、左側の頂点11aに隣接する2つの頂点11b、11fを境として、その左側の稜線を下方に90度屈曲させる。更に、右側の頂点11dに隣接する2つの頂点11c、11eを境として、その右側の稜線を上方に90度屈曲させる。   Further, when impedance matching is established between the power receiving coil 4a and the load on the power receiving side, or when a matching circuit is provided between the power receiving coil 4a and the load, the same substrate as shown in FIGS. 6A and 6B. 14, the power receiving resonance coil 4 b and the power receiving coil 4 a can be formed. The bending process may be the same as in FIG. 5B, but FIG. 6B shows another mode. That is, the substrate 14 is placed horizontally, and the left ridge line is bent 90 degrees downward with the two vertices 11b and 11f adjacent to the left vertex 11a as a boundary. Further, with the two vertices 11c and 11e adjacent to the right vertex 11d as a boundary, the right ridge line is bent upward 90 degrees.

以上のように、受電共振コイル4bを屈曲あるいは湾曲させた形状とすることにより、送電コイルユニット3に対して、受電コイルユニット4が傾いた状態になったときの伝送効率の劣化を抑制することができる。何故ならば、受電コイルユニット4が傾いても、受電共振コイル4bの送電共振コイル3bに対する投影面積の変化は小さいからである。   As described above, by making the power receiving resonance coil 4b bent or curved, the deterioration of transmission efficiency when the power receiving coil unit 4 is tilted with respect to the power transmitting coil unit 3 is suppressed. Can do. This is because even if the power receiving coil unit 4 is tilted, the change in the projected area of the power receiving resonant coil 4b with respect to the power transmitting resonant coil 3b is small.

すなわち、図4(a)に示したように、受電共振コイル4bには、3つの異なる部分平面領域A〜Cが存在する。これらの部分平面領域A〜Cは、送電共振コイル3bを含む平面に対して、平面の方向が互いに異なる。このため、受電コイルユニット4がどのように傾いても、送電共振コイル3bに対する部分平面領域A〜Cの投影面積には、減少する部分と増大する部分が発生し、受電共振コイル4bの送電共振コイル3bに対する投影面積の変化は小さい。この結果、送電共振コイル3bが形成する磁束が受電共振コイル4bに鎖交する磁束の量は、傾きの変化の影響を受け難くなり、伝送効率の劣化が抑制される。   That is, as shown in FIG. 4A, the power receiving resonance coil 4b has three different partial plane regions A to C. These partial plane areas A to C have mutually different plane directions with respect to the plane including the power transmission resonance coil 3b. For this reason, no matter how the power receiving coil unit 4 is tilted, the projected area of the partial plane regions A to C with respect to the power transmission resonance coil 3b includes a decreasing portion and an increasing portion, and the power transmission resonance of the power reception resonance coil 4b. The change in the projected area with respect to the coil 3b is small. As a result, the amount of magnetic flux that the magnetic flux formed by the power transmission resonance coil 3b interlinks with the power reception resonance coil 4b is not easily affected by the change in inclination, and the deterioration of transmission efficiency is suppressed.

送電コイルユニット3に対して、受電コイルユニット4を様々な方向の中心軸の周りに回動させたときの伝送効率の変化を比較した結果を、図7Aに示す。図中、凡例の角度θ(=0°,45°,135°)は、図7Bにおける、XY平面上の回動中心軸15とY軸のなす角度θである。給電コイル3aと送電共振コイル3bの外接円の直径はφ70mm、受電コイル4a及び受電共振コイル4bの一辺の長さは20mmとした。   FIG. 7A shows a result of comparing the change in transmission efficiency when the power receiving coil unit 4 is rotated around the central axis in various directions with respect to the power transmitting coil unit 3. In the figure, the legend angle θ (= 0 °, 45 °, 135 °) is the angle θ formed between the rotation center axis 15 on the XY plane and the Y axis in FIG. 7B. The diameter of the circumscribed circle of the feeding coil 3a and the power transmission resonance coil 3b was φ70 mm, and the length of one side of the power reception coil 4a and the power reception resonance coil 4b was 20 mm.

送電コイルユニット3と受電コイルユニット4の距離を、図2に示したように、受電コイルユニット4の上下方向における中央部で測定した平均距離Dmにより表す。平均距離Dm=20mmで一定に維持して、回動中心軸15の周りに受電コイルユニット4を回動させた。図7Aから判るように、いずれの回動中心軸15の周りに回動させても、傾斜角度が±50度以下の範囲内であれば、実質的に一定の伝送効率が得られている。傾斜角度が±50度の範囲を若干超えても同等の効果が得られ、±60度以下であれば、伝送効率の変化幅は実用上十分に範囲に抑制されることが判る。   The distance between the power transmission coil unit 3 and the power reception coil unit 4 is represented by the average distance Dm measured at the center in the vertical direction of the power reception coil unit 4 as shown in FIG. The power receiving coil unit 4 was rotated around the rotation center axis 15 while maintaining a constant average distance Dm = 20 mm. As can be seen from FIG. 7A, a substantially constant transmission efficiency is obtained when the tilt angle is within a range of ± 50 degrees or less, even if it is rotated around any rotation center axis 15. It can be seen that even if the inclination angle slightly exceeds the range of ± 50 degrees, the same effect can be obtained. If the inclination angle is ± 60 degrees or less, the range of change in transmission efficiency is practically sufficiently suppressed within the range.

次に、送電コイルユニット3と受電コイルユニット4の平均距離Dmを変化させて、受電コイルユニット4を傾けたときの電力伝送効率の変化の様子を、図8に示す。平均距離Dmを変化させた値は、図中の凡例に示したとおり、20mm、25mm、30mm、35mmである。この場合、送電コイルユニット3と受電コイルユニット4の平均距離Dmが離れるほど、傾き角度に対する尤度は減少する傾向はあるが、傾き角0度の伝送効率と比べて伝送効率が半分になる角度は、±60度以上である。   Next, FIG. 8 shows how the power transmission efficiency changes when the power receiving coil unit 4 is tilted by changing the average distance Dm between the power transmitting coil unit 3 and the power receiving coil unit 4. The values obtained by changing the average distance Dm are 20 mm, 25 mm, 30 mm, and 35 mm as shown in the legend in the figure. In this case, as the average distance Dm between the power transmission coil unit 3 and the power reception coil unit 4 increases, the likelihood of the inclination angle tends to decrease, but the angle at which the transmission efficiency is halved compared to the transmission efficiency at the inclination angle of 0 degree. Is ± 60 degrees or more.

なお、上述の構成においては、立体形状を、平面状に形成したコイルを二箇所の境界線で屈曲させて形成した例を示したが、屈曲の境界は、二箇所を超えても良い。   In the above-described configuration, an example in which the three-dimensional shape is formed by bending a coil formed in a planar shape at two boundary lines is shown, but the bending boundary may exceed two locations.

以上のように、本実施の形態によれば、送電共振コイルまたは受電共振コイルのいずれか一方の共振コイルは、立体的に屈曲または湾曲した立体形状を有し、他方の共振コイルは平面形状を有する。立体形状は、コイルの巻き線の屈曲または湾曲部分により規定される部分平面領域が、少なくとも3箇所存在するように構成され、平面形状の共振コイルの平面に対する、各々の部分平面領域の平面の方向が互いに異なるように構成される。   As described above, according to the present embodiment, one of the power transmission resonance coil and the power reception resonance coil has a three-dimensional shape that is three-dimensionally bent or curved, and the other resonance coil has a planar shape. Have. The three-dimensional shape is configured such that there are at least three partial plane regions defined by the bent or curved portions of the coil winding, and the plane direction of each partial plane region with respect to the plane of the planar resonance coil Are configured to be different from each other.

<実施の形態2>
実施の形態2における非接触電力伝送装置について、図9を参照して説明する。非接触電力伝送装置としての構成は、基本的には図1に示した実施の形態1の装置と同様であり、送電コイルユニットおよび受電コイルユニットの構成が、実施の形態1とは相違する。
<Embodiment 2>
A non-contact power transmission apparatus according to Embodiment 2 will be described with reference to FIG. The configuration as the non-contact power transmission device is basically the same as the device of the first embodiment shown in FIG. 1, and the configurations of the power transmission coil unit and the power reception coil unit are different from those of the first embodiment.

図9は、送電コイルユニット16及び受電コイルユニット17の構成の一例を示す斜視図である。送電コイルユニット16は立体形状を有し、受電コイルユニット17は平面形状を有して外形が送電コイルユニット16よりも大きい。   FIG. 9 is a perspective view showing an example of the configuration of the power transmission coil unit 16 and the power reception coil unit 17. The power transmission coil unit 16 has a three-dimensional shape, and the power reception coil unit 17 has a planar shape and is larger in outer shape than the power transmission coil unit 16.

給電コイル16a及び送電共振コイル16bは、実施の形態1における受電コイル4a及び受電共振コイル4bと同様の形状を有し、平面形状が六角形で、側面形状がZ字型に屈曲している。屈曲の角度αは、90度である。受電コイル17a及び受電共振コイル17bは、実施の形態1における送電コイルユニット3の給電コイル3a及び送電共振コイル3bと同様の平面形状を有する。   The power supply coil 16a and the power transmission resonance coil 16b have the same shape as the power reception coil 4a and the power reception resonance coil 4b in the first embodiment, the planar shape is a hexagon, and the side surface shape is bent in a Z shape. The bending angle α is 90 degrees. The power reception coil 17a and the power reception resonance coil 17b have the same planar shape as the power supply coil 3a and the power transmission resonance coil 3b of the power transmission coil unit 3 in the first embodiment.

また、平面形状の受電共振コイル17bの平面に対する、立体形状の送電共振コイル16bの投影領域は、受電共振コイル17bの領域内に含まれている。   The projection region of the three-dimensional power transmission resonance coil 16b with respect to the plane of the planar power reception resonance coil 17b is included in the region of the power reception resonance coil 17b.

送電コイルユニット16に対して、受電コイルユニット17を様々な方向の中心軸の周りに回動させたときの伝送効率の変化を比較した結果を、図10に図示する。図中凡例の角度θ(=0°,45°,135°)は、図7Bに示した角度と同様、XY平面上の回動中心軸15とY軸のなす角度θを示している。給電コイル16aと送電共振コイル16bの一辺の長さは20mm、受電コイル17a及び受電共振コイル17bの外接円の直径はφ70mmとした。   FIG. 10 shows a result of comparing changes in transmission efficiency when the power receiving coil unit 17 is rotated around the central axis in various directions with respect to the power transmitting coil unit 16. In the figure, the legend angle θ (= 0 °, 45 °, 135 °) indicates the angle θ formed between the rotation center axis 15 on the XY plane and the Y axis, similarly to the angle shown in FIG. 7B. The length of one side of the power feeding coil 16a and the power transmission resonance coil 16b was 20 mm, and the diameter of the circumscribed circle of the power reception coil 17a and the power reception resonance coil 17b was 70 mm.

送電コイルユニット16と受電コイルユニット17の距離を、図4に示した態様と同様、送電コイルユニット16の上下方向における中央部で測定した平均距離Dmにより表す。平均距離Dmを40mmで一定に維持して、回動中心軸15の周りに受電コイルユニット17を回動させた。   The distance between the power transmission coil unit 16 and the power reception coil unit 17 is represented by the average distance Dm measured at the center in the vertical direction of the power transmission coil unit 16 as in the embodiment shown in FIG. The receiving coil unit 17 was rotated around the rotation center axis 15 while maintaining the average distance Dm constant at 40 mm.

この場合、受電コイルユニット17を50度以上傾けると、送電共振コイル16bと受電共振コイル17bが物理的に干渉してしまうので、±50度の範囲内で測定を行った。測定した範囲では伝送効率の変化はほとんどなかった。   In this case, if the power reception coil unit 17 is tilted by 50 degrees or more, the power transmission resonance coil 16b and the power reception resonance coil 17b physically interfere with each other. Therefore, measurement was performed within a range of ± 50 degrees. There was almost no change in transmission efficiency in the measured range.

送電コイルユニット16、及び受電コイルユニット17の具体的な構造、屈曲、湾曲のさせ方は、実施の形態1の場合と同様の種々の態様を採ることができる。   The specific structures of the power transmission coil unit 16 and the power reception coil unit 17, how to bend and bend can take the same various aspects as in the first embodiment.

<比較例1>
上述の各実施の形態による効果を検証するための、比較例1の非接触電力伝送装置に関する測定について説明する。比較例1の非接触電力伝送装置の基本的な構成は上述の実施の形態と同様であり、送電コイルユニットおよび受電コイルユニットの構成が実施の形態とは異なる。
<Comparative Example 1>
The measurement regarding the non-contact electric power transmission apparatus of the comparative example 1 for verifying the effect by each above-mentioned embodiment is demonstrated. The basic configuration of the non-contact power transmission apparatus of Comparative Example 1 is the same as that of the above-described embodiment, and the configurations of the power transmission coil unit and the power reception coil unit are different from those of the embodiment.

比較例1の送電コイルユニットおよび受電コイルユニットの構成は、図11に示すとおりとした。この例では、実施の形態1と同様の平面形状の送電コイルユニット3を用い、また、小型の平面形状の受電コイルユニット18を用いた。給電コイル3aおよび送電共振コイル3bの外接円の直径はφ70mm、受電コイル18aおよび受電共振コイル18bの外接円の直径はφ20mmとした。   The configurations of the power transmission coil unit and the power reception coil unit of Comparative Example 1 were as shown in FIG. In this example, the power transmission coil unit 3 having the same planar shape as that of the first embodiment is used, and the power receiving coil unit 18 having a small planar shape is used. The diameter of the circumscribed circle of the power feeding coil 3a and the power transmitting resonance coil 3b was φ70 mm, and the diameter of the circumscribed circle of the power receiving coil 18a and the power receiving resonant coil 18b was φ20 mm.

送電コイルユニット3と受電コイルユニット18の距離を変化させ、また、送電コイルユニット3に対して受電コイルユニット18を傾けたときの、伝送効率の変化の様子を、図12に図示した。   FIG. 12 shows how the transmission efficiency changes when the distance between the power transmission coil unit 3 and the power reception coil unit 18 is changed and the power reception coil unit 18 is tilted with respect to the power transmission coil unit 3.

受電コイルユニット18を傾けたとき、実施の形態1〜2の場合とは異なり、電力伝送効率が変化しない領域が存在せず、受電コイルユニット18の傾き角の増大に応じて電力伝送効率が減少する。傾き角0度の場合の伝送効率と比べて伝送効率が半分になる角度は、±50度程度である。従って、上述の各実施の形態の装置の場合の伝送効率は、この比較例1と比べて、受電コイルユニットの傾きによる影響が抑制されていることが判る。   When the power receiving coil unit 18 is tilted, unlike the first and second embodiments, there is no region where the power transmission efficiency does not change, and the power transmission efficiency decreases as the tilt angle of the power receiving coil unit 18 increases. To do. The angle at which the transmission efficiency is halved compared to the transmission efficiency when the tilt angle is 0 degree is about ± 50 degrees. Therefore, it can be seen that the transmission efficiency in the case of the devices of the above-described embodiments is less influenced by the inclination of the power receiving coil unit than in the first comparative example.

<比較例2>
上述の各実施の形態による効果を検証するための、比較例1の非接触電力伝送装置に関する測定について説明する。比較例2の非接触電力伝送装置の基本的な構成は上述の実施の形態と同様であり、送電コイルユニットおよび受電コイルユニットの構成が、実施の形態とは異なる。
<Comparative example 2>
The measurement regarding the non-contact electric power transmission apparatus of the comparative example 1 for verifying the effect by each above-mentioned embodiment is demonstrated. The basic configuration of the contactless power transmission apparatus of Comparative Example 2 is the same as that of the above-described embodiment, and the configurations of the power transmission coil unit and the power reception coil unit are different from those of the embodiment.

比較例2の送電コイルユニットおよび受電コイルユニットの構成は、図13に示すとおりとした。この例では、実施の形態2と同様、送電コイルユニット19は平面形状が六角形の立体形状であり、受電コイルユニット18が平面形状である。但し、実施の形態2とは異なり、送電コイルユニット19の外形の方が、受電コイルユニット18の外形よりも大きい。   The configurations of the power transmission coil unit and the power reception coil unit of Comparative Example 2 were as shown in FIG. In this example, the power transmission coil unit 19 has a hexagonal three-dimensional shape, and the power receiving coil unit 18 has a planar shape, as in the second embodiment. However, unlike the second embodiment, the outer shape of the power transmission coil unit 19 is larger than the outer shape of the power receiving coil unit 18.

給電コイル19aおよび送電共振コイル19bの一辺は50mm、受電コイル18aおよび受電共振コイル18bの外接円の直径はφ20mmとした。   One side of the power supply coil 19a and the power transmission resonance coil 19b was 50 mm, and the diameter of the circumscribed circle of the power reception coil 18a and the power reception resonance coil 18b was 20 mm.

送電コイルユニット19と受電コイルユニット18の平均距離Dmを変化させ、また、送電コイルユニット19に対して受電コイルユニット18を傾けたときの、電力伝送効率の変化の様子を、図14〜図16に示す。   Changes in the power transmission efficiency when the average distance Dm between the power transmission coil unit 19 and the power reception coil unit 18 is changed and the power reception coil unit 18 is tilted with respect to the power transmission coil unit 19 are shown in FIGS. Shown in

図13に示したY軸を中心として受電コイルユニット18を回動させたときの、送電コイルユニット19に対する受電コイルユニット18の傾き角と伝送効率の関係を、図14に示す。平均距離Dm=5、10、15、20mmの場合について示した。比較例1の場合と同様に、傾き角0度の場合の伝送効率と比べて伝送効率が半分になる角度は、±50度程度であることが判る。   FIG. 14 shows the relationship between the inclination angle of the power receiving coil unit 18 relative to the power transmitting coil unit 19 and the transmission efficiency when the power receiving coil unit 18 is rotated around the Y axis shown in FIG. The cases where the average distance Dm is 5, 10, 15, and 20 mm are shown. As in the case of Comparative Example 1, it can be seen that the angle at which the transmission efficiency is halved compared to the transmission efficiency when the tilt angle is 0 degrees is about ± 50 degrees.

次に、図13に示したX軸を中心として受電コイルユニット18を回動させたときの、送電コイルユニット19に対する受電コイルユニット18の傾き角と伝送効率の関係を、図15に示す。平均距離Dm=5、10、15、20mmの場合について示した。比較例1の場合と同様に、傾き角0度の場合の伝送効率と比べて伝送効率が半分になる角度は、±50度程度である。   Next, FIG. 15 shows the relationship between the inclination angle of the power receiving coil unit 18 relative to the power transmitting coil unit 19 and the transmission efficiency when the power receiving coil unit 18 is rotated about the X axis shown in FIG. The cases where the average distance Dm is 5, 10, 15, and 20 mm are shown. As in the case of Comparative Example 1, the angle at which the transmission efficiency is halved compared to the transmission efficiency when the tilt angle is 0 degrees is about ± 50 degrees.

次に、図13に示したX軸からβ=45度傾けた軸を中心として受電コイルユニット18を回動させたときの、送電コイルユニット19に対する受電コイルユニット18の傾き角と伝送効率の関係を、図16に示す。平均距離Dm=5、15、20mmの場合について示した。図14、図15に示した場合と比べて、傾き角依存は若干良好であるが、傾き角0度の場合の伝送効率と比べて伝送効率が半分になる角度は、±60度未満である。   Next, the relationship between the inclination angle of the power reception coil unit 18 relative to the power transmission coil unit 19 and the transmission efficiency when the power reception coil unit 18 is rotated about an axis inclined by β = 45 degrees from the X axis shown in FIG. Is shown in FIG. The cases where the average distance Dm is 5, 15, and 20 mm are shown. Compared to the cases shown in FIGS. 14 and 15, the inclination angle dependence is slightly better, but the angle at which the transmission efficiency is halved compared to the transmission efficiency when the inclination angle is 0 degree is less than ± 60 degrees. .

以上のことから、上述の各実施の形態の装置の場合の伝送効率は、比較例2と比べて、受電コイルユニットの傾きによる影響が低減されていることが判る。   From the above, it can be seen that the transmission efficiency in the case of the devices of the above-described embodiments is less affected by the inclination of the power receiving coil unit than in Comparative Example 2.

<実施の形態3>
実施の形態3における非接触電力伝送装置について、図17、図18A、図18B、図19A、図19Bを参照して説明する。非接触電力伝送装置としての構成は、基本的には図1に示した実施の形態1の装置と同様であり、送電コイルユニットおよび受電コイルユニットの構成が、実施の形態1及び2とは相違する。
<Embodiment 3>
A non-contact power transmission apparatus according to Embodiment 3 will be described with reference to FIGS. 17, 18A, 18B, 19A, and 19B. The configuration as a non-contact power transmission device is basically the same as the device of the first embodiment shown in FIG. 1, and the configurations of the power transmission coil unit and the power reception coil unit are different from those of the first and second embodiments. To do.

図17は、本実施の形態の送電コイルユニット3及び受電コイルユニット20の基本的な構成を示す斜視図である。送電コイルユニット3は実施の形態1の構成と同様であり、給電コイル3a及び送電共振コイル3bは平面形状を有する。受電コイルユニット20は、立体形状を有する。立体形状を形成するための屈曲構造が、実施の形態1とは相違する。   FIG. 17 is a perspective view showing a basic configuration of the power transmission coil unit 3 and the power reception coil unit 20 of the present embodiment. The power transmission coil unit 3 has the same configuration as that of the first embodiment, and the power feeding coil 3a and the power transmission resonance coil 3b have a planar shape. The power receiving coil unit 20 has a three-dimensional shape. A bent structure for forming a three-dimensional shape is different from that of the first embodiment.

但し、本実施の形態においても、受電コイル20a及び受電共振コイル20bの立体形状は、上述の実施の形態と同様の条件を満足するように設定される。すなわち、受電共振コイル20bの巻き線の屈曲または湾曲部分により規定される部分平面領域が、少なくとも3箇所存在するように構成される。そして、送電共振コイル3bの平面に対する、受電共振コイル20bの各々の部分平面領域の平面の方向が互いに異なるように構成されている。   However, also in the present embodiment, the three-dimensional shapes of the power receiving coil 20a and the power receiving resonance coil 20b are set so as to satisfy the same conditions as in the above-described embodiment. That is, it is configured such that there are at least three partial plane regions defined by the bent or curved portion of the winding of the power receiving resonance coil 20b. And it is comprised so that the direction of the plane of each partial plane area | region of the receiving resonance coil 20b may mutually differ with respect to the plane of the power transmission resonance coil 3b.

また、図17に示されるように、平面形状の送電共振コイル3bの平面に対する、立体形状の受電共振コイル20bの投影領域は、送電共振コイル3bの領域内に含まれている。すなわち、送電共振コイル3bの平面に垂直な方向で見た受電共振コイル20bの外形寸法は、送電共振コイル3bの外形寸法よりも小さい。   Further, as shown in FIG. 17, the projection area of the three-dimensional power receiving resonance coil 20b with respect to the plane of the planar power transmission resonance coil 3b is included in the area of the power transmission resonance coil 3b. That is, the outer dimensions of the power receiving resonance coil 20b viewed in the direction perpendicular to the plane of the power transmission resonance coil 3b are smaller than the outer dimensions of the power transmission resonance coil 3b.

具体的には、受電コイルユニット20の基本構造は、図17に示すように、六面体の一頂点の周りで隣接する3面の稜線に沿わせて、巻き線のループを形成した形状を有する。より正確には、その3面を展開したL字型平面の外形線に沿ったループを、元の六面体の位置に戻した当該3面に沿わせて屈曲させた状態のコイル形状を有する。   Specifically, as shown in FIG. 17, the basic structure of the power receiving coil unit 20 has a shape in which a winding loop is formed along three adjacent ridgelines around one vertex of a hexahedron. More precisely, it has a coil shape in which the loop along the outer shape of the L-shaped plane developed from the three surfaces is bent along the three surfaces returned to the position of the original hexahedron.

この受電コイルユニット20を作製するには、実施の形態1、2と同様、受電コイルユニット20を塑性変形可能な平面基板上に平面コイルとして形成した後、屈曲加工する方法を採ることが望ましい。そのような態様の例を図18A、図18B、図19A、図19Bに示す。   In order to produce the power receiving coil unit 20, it is desirable to adopt a method of bending the power receiving coil unit 20 after forming the power receiving coil unit 20 on a flat substrate that can be plastically deformed, as in the first and second embodiments. Examples of such aspects are shown in FIGS. 18A, 18B, 19A, and 19B.

図18A、図18Bの例は、受電コイル20a及び受電共振コイル20bをそれぞれ、異なる平面基板上に形成したものである。図18Aは、屈曲させる前の形状であり、L字型である。受電コイル20aは塑性変形可能な基板21上に形成され、受電共振コイル20bは塑性変形可能な基板22上に形成されて、互いに重ねられている。図18Bは、屈曲させた後の形状である。屈曲加工は、六面体の3面を画定する稜線のうち、L字型の内部を横切る2箇所の稜線を境界として90度に折り曲げるものである。   In the example of FIGS. 18A and 18B, the power reception coil 20a and the power reception resonance coil 20b are formed on different planar substrates. FIG. 18A shows a shape before bending and is L-shaped. The power receiving coil 20a is formed on a plastically deformable substrate 21, and the power receiving resonance coil 20b is formed on a plastically deformable substrate 22 and is superposed on each other. FIG. 18B shows the shape after bending. In the bending process, among the ridge lines defining the three faces of the hexahedron, two ridge lines crossing the inside of the L-shape are bent at 90 degrees as boundaries.

受電コイル20aと受電側の負荷とのインピーダンス整合がとれている場合や、受電コイル20aと負荷との間に整合回路を設けている場合、図19A、図19Bに示すように同じ基板23上に、受電共振コイル20bと受電コイル20aを形成しても良い。屈曲加工は、図18Bの場合と同様でよい。   When impedance matching is established between the power receiving coil 20a and the load on the power receiving side, or when a matching circuit is provided between the power receiving coil 20a and the load, as shown in FIGS. 19A and 19B, the same substrate 23 is used. The power receiving resonance coil 20b and the power receiving coil 20a may be formed. The bending process may be the same as in the case of FIG. 18B.

受電コイルユニット20を様々な方向の中心軸の周りに回動させたときの伝送効率を比較した結果を、図20に示す。給電電コイルと給電側共振コイルの直径はφ70、受電コイルおよび受電共振コイルの一辺の長さは20mmである。20mmの距離で送電コイルと受電コイルの平均距離が変化しないようにコイル中心に対して回動させた。   FIG. 20 shows a result of comparison of transmission efficiency when the power receiving coil unit 20 is rotated around the central axis in various directions. The diameter of the feeding coil and the feeding-side resonance coil is 70, and the length of one side of the receiving coil and the receiving resonance coil is 20 mm. The coil was rotated with respect to the coil center so that the average distance between the power transmission coil and the power reception coil did not change at a distance of 20 mm.

L字型のコイルの内側部分がコイルを折り曲げたときにパターンの折り返し部分となるため、実施の形態1に比べて3ポイントほど効率が低下するが、図示したように、いずれの方向の中心軸の周りに回動させても±60度以上の範囲でほぼ同程度の効率が得られている。   Since the inner portion of the L-shaped coil becomes the folded portion of the pattern when the coil is bent, the efficiency is reduced by about 3 points compared to the first embodiment. However, as shown in the figure, the central axis in any direction Even if it is rotated around the same angle, almost the same efficiency is obtained in the range of ± 60 degrees or more.

本発明の非接触電力伝送装置によれば、伝送効率の低下抑制に対する送電共振コイルと受電共振コイル間の相対角度の尤度が大きく、角度補正手段を用いることなく実用上十分に高い伝送効率が得られる。従って、携帯電話や補聴器等の小型機器、TVや電気自動車などでの非接触電力伝送に好適である。   According to the non-contact power transmission device of the present invention, the likelihood of the relative angle between the power transmission resonance coil and the power reception resonance coil with respect to the suppression of the decrease in transmission efficiency is large, and the transmission efficiency is sufficiently high practically without using the angle correction means. can get. Therefore, it is suitable for non-contact power transmission in small devices such as mobile phones and hearing aids, TVs and electric vehicles.

1 送電装置
2 受電装置
3、16 送電コイルユニット
3a、16a 給電コイル
3b、16b 送電共振コイル
4、17 受電コイルユニット
4a、17a 受電コイル
4b、17b 受電共振コイル
5 高周波電力ドライバー
6 交流電源
7 整流器
8 充電池
9、10 キャパシタ
11a〜11f 頂点
12、13、14 基板
15 回動中心軸
DESCRIPTION OF SYMBOLS 1 Power transmission apparatus 2 Power reception apparatus 3, 16 Power transmission coil unit 3a, 16a Power feeding coil 3b, 16b Power transmission resonance coil 4, 17 Power reception coil unit 4a, 17a Power reception coil 4b, 17b Power reception resonance coil 5 High frequency power driver 6 AC power supply 7 Rectifier 8 Rechargeable battery 9, 10 Capacitors 11a-11f Vertex 12, 13, 14 Substrate 15 Center axis of rotation

Claims (8)

送電共振コイルを含む送電コイルユニットを有する送電装置と、
受電共振コイルを含む受電コイルユニットを有する受電装置とを備え、
前記送電共振コイルと前記受電共振コイルの間の磁界共鳴を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、
前記送電共振コイルまたは前記受電共振コイルのいずれか一方の共振コイルは、立体的に屈曲または湾曲した立体形状を有し、他方の共振コイルは平面形状を有し、
前記立体形状の共振コイルは、コイルの巻き線の屈曲または湾曲部分により規定される部分平面領域が、少なくとも3箇所存在するように構成され、
前記平面形状の共振コイルの平面に対する、各々の前記部分平面領域の平面の方向が互いに異なっていることを特徴とする非接触電力伝送装置。
A power transmission device having a power transmission coil unit including a power transmission resonance coil;
A power receiving device having a power receiving coil unit including a power receiving resonance coil,
In the non-contact power transmission device that transmits power from the power transmission device to the power reception device via magnetic field resonance between the power transmission resonance coil and the power reception resonance coil,
Either one of the power transmission resonance coil or the power reception resonance coil has a three-dimensional shape that is three-dimensionally bent or curved, and the other resonance coil has a planar shape,
The three-dimensional resonance coil is configured such that there are at least three partial plane regions defined by a bent or curved portion of the coil winding,
The non-contact power transmission device according to claim 1, wherein the plane directions of the partial plane regions with respect to the plane of the planar resonance coil are different from each other.
前記平面形状の共振コイルの平面に対する前記立体形状の共振コイルの投影領域は、前記平面形状の共振コイルの領域内に含まれる請求項1に記載の非接触電力伝送装置。   The non-contact power transmission apparatus according to claim 1, wherein a projection area of the three-dimensional resonance coil with respect to a plane of the planar resonance coil is included in an area of the planar resonance coil. 前記立体形状の共振コイルは、平面形状が六角形のコイルを屈曲または湾曲させた形状であって、
前記六角形の1個の頂点に隣接する一対の頂点を結んだ第1対角線、及び前記一対の頂点に隣接する一対の頂点を結んだ第2対角線を境界として屈曲または湾曲した、Z字型の側面形状を有する請求項1または2に記載の非接触電力伝送装置。
The three-dimensional resonance coil is a shape obtained by bending or bending a hexagonal coil in a planar shape,
A Z-shaped, bent or curved with a first diagonal line connecting a pair of vertices adjacent to one vertex of the hexagon and a second diagonal line connecting a pair of vertices adjacent to the pair of vertices as a boundary The non-contact power transmission device according to claim 1, wherein the non-contact power transmission device has a side shape.
前記Z字型の側面形状の屈曲または湾曲の角度が90度である請求項3に記載の非接触電力伝送装置。   The contactless power transmission device according to claim 3, wherein an angle of bending or bending of the Z-shaped side shape is 90 degrees. 前記立体形状の共振コイルは、六面体の一頂点の周りで隣接する3面を展開したL字型平面の外形線に沿ったループを、前記六面体の前記3面に沿わせて屈曲させた形状を有する請求項1または2に記載の非接触電力伝送装置。   The three-dimensional resonance coil has a shape obtained by bending a loop along an outer shape of an L-shaped plane that develops three adjacent surfaces around one vertex of a hexahedron along the three surfaces of the hexahedron. The non-contact power transmission device according to claim 1 or 2. 前記送電コイルユニット及び前記受電コイルユニットはそれぞれ、基板上に形成された導電層パターンにより構成され、
前記立体形状の共振コイルは、前記基板とともに屈曲または湾曲している請求項1〜5のいずれか1項に記載の非接触電力伝送装置。
Each of the power transmission coil unit and the power reception coil unit is configured by a conductive layer pattern formed on a substrate,
The non-contact power transmission apparatus according to claim 1, wherein the three-dimensional resonance coil is bent or curved together with the substrate.
前記送電コイルユニットは、前記送電共振コイル、及び前記送電共振コイルと同様の形状を有し電磁誘導により前記送電共振コイルに給電する給電コイルにより構成され、
前記受電コイルユニットは、前記受電共振コイル、及び前記受電共振コイルと同様の形状を有し電磁誘導により前記受電共振コイルから受電する受電コイルにより構成され、
前記送電共振コイル及び前記給電コイルは、それぞれ異なる前記基板上に形成されて互いに重ね合わされており、
前記受電共振コイル及び前記受電コイルは、それぞれ異なる前記基板上に形成されて互いに重ね合わされており、
前記立体形状の共振コイルと組み合わされた前記給電コイルまたは前記受電コイルは、前記基板とともに屈曲または湾曲している請求項6に記載の非接触電力伝送装置。
The power transmission coil unit is configured by a power feeding coil that has the same shape as the power transmission resonance coil and the power transmission resonance coil and feeds the power transmission resonance coil by electromagnetic induction.
The power receiving coil unit is configured by a power receiving coil that has the same shape as the power receiving resonant coil and the power receiving resonant coil and receives power from the power receiving resonant coil by electromagnetic induction,
The power transmission resonance coil and the power feeding coil are formed on different substrates and overlapped with each other,
The power receiving resonance coil and the power receiving coil are formed on different substrates and overlapped with each other,
The contactless power transmission device according to claim 6, wherein the feeding coil or the receiving coil combined with the three-dimensional resonance coil is bent or curved together with the substrate.
前記送電コイルユニットは、前記送電共振コイル、及び前記送電共振コイルと同様の形状を有し電磁誘導により前記送電共振コイルに給電する給電コイルにより構成され、
前記受電コイルユニットは、前記受電共振コイル、及び前記受電共振コイルと同様の形状を有し電磁誘導により前記受電共振コイルから受電する受電コイルにより構成され、
前記送電共振コイル及び前記給電コイルは、同一の前記基板上に前記給電コイルが前記送電共振コイルを包囲するように形成されており、
前記受電共振コイル及び前記受電コイルは、同一の前記基板上に前記受電コイルが前記受電共振コイルを包囲するように形成されており、
前記立体形状の共振コイルと組み合わされた前記給電コイルまたは前記受電コイルは、前記基板とともに屈曲または湾曲している請求項6に記載の非接触電力伝送装置。
The power transmission coil unit is configured by a power feeding coil that has the same shape as the power transmission resonance coil and the power transmission resonance coil and feeds the power transmission resonance coil by electromagnetic induction.
The power receiving coil unit is configured by a power receiving coil that has the same shape as the power receiving resonant coil and the power receiving resonant coil and receives power from the power receiving resonant coil by electromagnetic induction,
The power transmission resonance coil and the power supply coil are formed on the same substrate so that the power supply coil surrounds the power transmission resonance coil,
The power receiving resonance coil and the power receiving coil are formed on the same substrate so that the power receiving coil surrounds the power receiving resonance coil,
The contactless power transmission device according to claim 6, wherein the feeding coil or the receiving coil combined with the three-dimensional resonance coil is bent or curved together with the substrate.
JP2012232850A 2012-10-22 2012-10-22 Non-contact power transmission device Pending JP2014087125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012232850A JP2014087125A (en) 2012-10-22 2012-10-22 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012232850A JP2014087125A (en) 2012-10-22 2012-10-22 Non-contact power transmission device

Publications (1)

Publication Number Publication Date
JP2014087125A true JP2014087125A (en) 2014-05-12

Family

ID=50789735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012232850A Pending JP2014087125A (en) 2012-10-22 2012-10-22 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP2014087125A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623951B (en) * 2016-02-05 2018-05-11 台灣東電化股份有限公司 Inductive and resonance dual transmit coils in the wireless power transmission system
US10090717B2 (en) 2013-10-04 2018-10-02 Tdk Corporation Power receiving device and power feeding device
WO2021107652A1 (en) * 2019-11-26 2021-06-03 한국전기연구원 Three-dimensional wireless power transmission coil and apparatus having same
EP3780028A4 (en) * 2018-05-24 2021-07-07 Japan Aviation Electronics Industry, Limited Coil member, contactless-type power transmission device, electromagnetic wave irradiation/reception device, power transmission/information communication device, and autonomous mobile robot system
CN113960507A (en) * 2021-10-20 2022-01-21 全球能源互联网研究院有限公司 Device for acquiring three-dimensional space magnetic field information and energy
KR20220095063A (en) * 2020-12-29 2022-07-06 경북대학교 산학협력단 Wireless charging structure for location detection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10090717B2 (en) 2013-10-04 2018-10-02 Tdk Corporation Power receiving device and power feeding device
TWI623951B (en) * 2016-02-05 2018-05-11 台灣東電化股份有限公司 Inductive and resonance dual transmit coils in the wireless power transmission system
EP3780028A4 (en) * 2018-05-24 2021-07-07 Japan Aviation Electronics Industry, Limited Coil member, contactless-type power transmission device, electromagnetic wave irradiation/reception device, power transmission/information communication device, and autonomous mobile robot system
US11322982B2 (en) 2018-05-24 2022-05-03 Japan Aviation Electronics Industry, Limited Coil member, contactless-type power transmission device, electromagnetic wave irradiation/reception device, power transmission/information communication device, and autonomous mobile robot system
WO2021107652A1 (en) * 2019-11-26 2021-06-03 한국전기연구원 Three-dimensional wireless power transmission coil and apparatus having same
KR20220095063A (en) * 2020-12-29 2022-07-06 경북대학교 산학협력단 Wireless charging structure for location detection
KR102557726B1 (en) * 2020-12-29 2023-07-20 경북대학교 산학협력단 Wireless charging structure for location detection
CN113960507A (en) * 2021-10-20 2022-01-21 全球能源互联网研究院有限公司 Device for acquiring three-dimensional space magnetic field information and energy

Similar Documents

Publication Publication Date Title
US10158256B2 (en) Contactless connector system tolerant of position displacement between transmitter coil and receiver coil and having high transmission efficiency
JP6124085B2 (en) Wireless power transmission device, wireless power transmission device and power reception device
JP6264437B2 (en) Power supply device, power supply system, and electronic device
US10511089B2 (en) Antenna device and electronic apparatus
US20160013661A1 (en) Resonators for wireless power transfer systems
US9842687B2 (en) Wireless power transfer systems with shaped magnetic components
JP6078005B2 (en) Wireless power transmitter and method thereof
WO2012157454A1 (en) Power supply device, power supply system, and electronic device
JP2014087125A (en) Non-contact power transmission device
US9818532B2 (en) Method of forming electromagnetic space
JP4650536B2 (en) Electric field coupler, communication apparatus, communication system, and method of manufacturing electric field coupler.
JP5667019B2 (en) Wireless power transmission apparatus and method
JP6635230B1 (en) Antenna device, communication system, and electronic device
WO2010079768A1 (en) Electric power transmitting apparatus and noncontact electric power transmission system
JP6168500B2 (en) Wireless power transmission device, power transmission device, and power reception device
JP6544441B2 (en) Antenna device for power transmission, electronic device and power transmission system
JP2016004990A (en) Resonator
WO2017170073A1 (en) Coil antenna, power-feeding device, power-receiving device, and wireless power supply system
JP5960973B2 (en) Transmission antenna for power transmission, power transmission device, and non-contact power transmission device
Kim et al. Modified helical coils structure for uniform magnetic flux density
KR20170028504A (en) Wireless Power Transfer Apparatus with Omni-Directional Feature