JP2014086576A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP2014086576A
JP2014086576A JP2012234571A JP2012234571A JP2014086576A JP 2014086576 A JP2014086576 A JP 2014086576A JP 2012234571 A JP2012234571 A JP 2012234571A JP 2012234571 A JP2012234571 A JP 2012234571A JP 2014086576 A JP2014086576 A JP 2014086576A
Authority
JP
Japan
Prior art keywords
solar cell
receiving surface
cell element
light receiving
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012234571A
Other languages
Japanese (ja)
Other versions
JP5934075B2 (en
Inventor
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012234571A priority Critical patent/JP5934075B2/en
Publication of JP2014086576A publication Critical patent/JP2014086576A/en
Application granted granted Critical
Publication of JP5934075B2 publication Critical patent/JP5934075B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To apply stress capable of enhancing photoelectric conversion efficiency to a non-light receiving surface side of a solar cell element.SOLUTION: A solar cell module includes: a solar cell element having a light receiving surface and a non-light receiving surface; and light transmissive stress application means that has a plurality of protrusions at a principal plane and contacts the plurality of protrusions to the light receiving surface of the solar cell element.

Description

本発明は太陽電池モジュールに関する。   The present invention relates to a solar cell module.

従来、太陽電池素子の機械強度を向上するため、フレームで太陽電池素子の周縁部分を補強した太陽電池モジュールが知られている。   Conventionally, in order to improve the mechanical strength of a solar cell element, a solar cell module in which a peripheral portion of the solar cell element is reinforced with a frame is known.

例えば特許文献1のように、太陽電池素子の周縁部分をフレームの挟持部で表裏から押圧することで、太陽電池素子をフレームに固定する太陽電池モジュールの構造が知られている。   For example, as in Patent Document 1, a structure of a solar cell module that fixes a solar cell element to a frame by pressing the peripheral portion of the solar cell element from the front and back with a holding portion of the frame is known.

特開2006−100639号公報JP 2006-1000063 A

一方、半導体に外部から応力を印加することによって歪を付与すると、電気的特性が変化することが知られている。   On the other hand, it is known that when a strain is applied to a semiconductor by applying a stress from the outside, the electrical characteristics change.

例えば、CuO系の太陽電池素子に対して、外部から4点曲げ等により適度な応力を印加して歪を付与させることによって、ショットキー障壁が変化し、光電変換における最大出力を向上させることが知られている。   For example, by applying an appropriate stress to the CuO-based solar cell element from the outside by four-point bending or the like, the Schottky barrier changes and the maximum output in photoelectric conversion can be improved. Are known.

しかしながら、特許文献1のような太陽電池素子をフレームに固定するというだけの太陽電池モジュールの構造では、太陽電池モジュールの中央部分だけが、自重によって大きく反ってしまうだけの構造であるので、太陽電池モジュールの光電変換効率を十分に高めるのは困難である。   However, in the structure of the solar cell module in which the solar cell element as in Patent Document 1 is simply fixed to the frame, only the central portion of the solar cell module is warped by its own weight. It is difficult to sufficiently increase the photoelectric conversion efficiency of the module.

本発明の太陽電池モジュールは、受光面および非受光面を有する太陽電池素子と、複数の凸部を主面に有するとともに前記複数の凸部を前記太陽電池素子の前記受光面に当接させた透光性の応力印加手段とを有する。   The solar cell module of the present invention has a solar cell element having a light receiving surface and a non-light receiving surface, a plurality of convex portions on a main surface, and the plurality of convex portions are brought into contact with the light receiving surface of the solar cell element. Translucent stress applying means.

本発明の太陽電池モジュールによれば、光電変換効率を高めることが可能な応力を太陽電池素子の受光面側に対して印加することができる。   According to the solar cell module of the present invention, a stress capable of increasing the photoelectric conversion efficiency can be applied to the light receiving surface side of the solar cell element.

本発明の太陽電池モジュールの一実施形態における太陽電池素子と応力印加手段の断面模式図である。It is a cross-sectional schematic diagram of the solar cell element and stress application means in one embodiment of the solar cell module of the present invention. 本発明の太陽電池モジュールの一実施形態における応力印加手段を主面側から平面視した平面模式図である。It is the plane schematic diagram which planarly viewed the stress application means in one Embodiment of the solar cell module of this invention from the main surface side. 本発明の太陽電池モジュールの他の実施形態における応力印加手段を主面側から平面視した平面模式図である。It is the plane schematic diagram which planarly viewed the stress application means in other embodiment of the solar cell module of this invention from the main surface side. 図2の応力印加手段を用いた太陽電池モジュールにおいて、太陽電池素子の受光面側を干渉計によって観察したときの平面模式図である。In the solar cell module using the stress application means of FIG. 2, it is a plane schematic diagram when the light-receiving surface side of a solar cell element is observed with an interferometer. 図3の応力印加手段を用いた太陽電池モジュールにおいて、太陽電池素子の受光面側を干渉計によって観察したときの平面模式図である。In the solar cell module using the stress application means of FIG. 3, it is a plane schematic diagram when the light-receiving surface side of a solar cell element is observed with an interferometer. 本発明の太陽電池モジュールの一実施形態における応力印加手段の主面付近の拡大断面模式図である。It is an expanded cross-sectional schematic diagram of the main surface vicinity of the stress application means in one Embodiment of the solar cell module of this invention.

(太陽電池モジュール)
以下、本発明の太陽電池モジュールの一実施形態について、図面を用いて説明する。
(Solar cell module)
Hereinafter, an embodiment of a solar cell module of the present invention will be described with reference to the drawings.

<太陽電池素子>
本実施形態に用いられる太陽電池素子としては、例えば、基板と、第1の電極層と、光吸収層と、半導体層と、第2の電極層とを含んでなる構成の薄膜系太陽電池素子(不図示)があるが、これに限定されるものではなく、シリコン系太陽電池等であっても構わない。
<Solar cell element>
As the solar cell element used in the present embodiment, for example, a thin film solar cell element having a configuration including a substrate, a first electrode layer, a light absorption layer, a semiconductor layer, and a second electrode layer. (Not shown), but is not limited to this, and may be a silicon-based solar cell or the like.

ここで基板とは、太陽電池素子を支持するためのものであり、剛性、平滑性を満たしていれば良く、基板に用いられる材料としては、例えば、ガラス、セラミックス、硬質樹脂、サファイヤおよびSUS等の金属等が挙げられる。   Here, the substrate is used to support the solar cell element, and only needs to satisfy rigidity and smoothness. Examples of the material used for the substrate include glass, ceramics, hard resin, sapphire, and SUS. The metal etc. are mentioned.

そして、太陽電池素子の周縁部を囲むようにフレーム等が設けられ、太陽電池素子とフレームとを組み合わせたものが太陽電池モジュールとなる。   And a frame etc. are provided so that the peripheral part of a solar cell element may be enclosed, and what combined a solar cell element and a flame | frame becomes a solar cell module.

<太陽電池モジュール>
本発明の太陽電池モジュールの実施形態によれば、受光面および非受光面を有する太陽電池素子と、複数の凸部を主面に有するとともに複数の凸部を前記太陽電池素子の受光面に当接させた透光性の応力印加手段とを有する。
<Solar cell module>
According to the embodiment of the solar cell module of the present invention, the solar cell element having the light receiving surface and the non-light receiving surface, the plurality of convex portions on the main surface, and the plurality of convex portions on the light receiving surface of the solar cell element. A translucent stress applying means in contact therewith.

図1のように、受光面1aと非受光面1bとを有する太陽電池素子1と、これとは別に、複数の凸部2aを主面に有する板状の応力印加手段2を用意する。   As shown in FIG. 1, a solar cell element 1 having a light receiving surface 1a and a non-light receiving surface 1b, and a plate-like stress applying means 2 having a plurality of convex portions 2a on the main surface are prepared separately.

そして、太陽電池素子1の受光面1aに対して、応力印加手段2の複数の凸部2aを押圧するように当接させて配置する。   And it arrange | positions with respect to the light-receiving surface 1a of the solar cell element 1 so that the some convex part 2a of the stress application means 2 may be pressed.

ここで太陽電池素子1と応力印加手段2とは、太陽電池素子1の受光面1aと、応力印加手段2の主面とを接着剤によって固定したものであってもよいし、あるいは、太陽電池素子1の外縁部と、応力印加手段2の外縁部とをフレーム等によって固定したものであっても構わない。   Here, the solar cell element 1 and the stress applying means 2 may be those in which the light receiving surface 1a of the solar cell element 1 and the main surface of the stress applying means 2 are fixed by an adhesive, or the solar cell. The outer edge portion of the element 1 and the outer edge portion of the stress applying means 2 may be fixed by a frame or the like.

これにより、光電変換効率を高めることが可能な応力を太陽電池素子1の受光面1a側から印加することができる。   Thereby, the stress which can improve a photoelectric conversion efficiency can be applied from the light-receiving surface 1a side of the solar cell element 1. FIG.

これは、太陽電池素子1に適度な応力を印加して歪を付与して、太陽電池素子1の半導体膜の抵抗値を低下させること(ピエゾ抵抗効果)によって、太陽電池素子1の光電変換効率を向上させることができるためと考えられる。   This is by applying an appropriate stress to the solar cell element 1 to impart a strain and thereby lowering the resistance value of the semiconductor film of the solar cell element 1 (piezoresistance effect), whereby the photoelectric conversion efficiency of the solar cell element 1 is reduced. This is thought to be due to the fact that

なお、このような応力印加手段2を太陽電池素子1の受光面1a側に配置するには、太陽電池素子1の受光面1a側への光の入射を妨げないようにすること、および、応力印加手段2の凸部2aが、太陽電池素子1の上部電極層に損傷を与えないようにすることが必要である。   In order to arrange such a stress applying means 2 on the light receiving surface 1a side of the solar cell element 1, it is necessary not to prevent the incidence of light on the light receiving surface 1a side of the solar cell element 1, and stress It is necessary that the convex part 2a of the applying means 2 does not damage the upper electrode layer of the solar cell element 1.

このようなことから、特に応力印加手段が受光面側を覆う受光面側パネルであれば、応力印加手段と受光面側パネルとを一体にできるので、複数の部材を重ねて反射率が低下してしまうことを低減できる点で好ましい。   For this reason, in particular, if the stress applying means is a light receiving surface side panel that covers the light receiving surface side, the stress applying means and the light receiving surface side panel can be integrated with each other. This is preferable in that it can be reduced.

さらに本発明の太陽電池モジュールの実施形態によれば、前記複数の凸部が前記太陽電池素子の前記受光面に当接している位置において、前記太陽電池素子に歪みがあることが好ましい。   Furthermore, according to the embodiment of the solar cell module of the present invention, it is preferable that the solar cell element is distorted at a position where the plurality of convex portions are in contact with the light receiving surface of the solar cell element.

すなわち、図2のような板状の応力印加手段2の主面上に設けられた複数の凸部2aに対応して、図4のように、太陽電池素子1上に歪3を均一に付与できるので、高い光電変換効率を得ることができる。あるいは、図3のような板状の応力印加手段2の主面上に設けられた複数の凸部2aに対応して、図5のように、太陽電池素子1上に歪3を均一に付与できるので、高い光電変換効率を得ることができる。   That is, the strain 3 is uniformly applied on the solar cell element 1 as shown in FIG. 4 corresponding to the plurality of convex portions 2a provided on the main surface of the plate-like stress applying means 2 as shown in FIG. Therefore, high photoelectric conversion efficiency can be obtained. Alternatively, corresponding to the plurality of convex portions 2a provided on the main surface of the plate-like stress applying means 2 as shown in FIG. 3, the strain 3 is uniformly applied on the solar cell element 1 as shown in FIG. Therefore, high photoelectric conversion efficiency can be obtained.

なお、複数の凸部2aの配置の形態については、適切な大きさの歪3をより多く得ることができるならば、これらの配置に制限されるものではない。   In addition, about the form of arrangement | positioning of the some convex part 2a, if the distortion 3 of a suitable magnitude | size can be obtained more, it will not be restrict | limited to these arrangement | positioning.

さらに本発明の太陽電池モジュールの実施形態によれば、複数の凸部の各々が太陽電池素子の受光面に当接する圧力は、受光面内において略均一であることが好ましい。   Furthermore, according to the embodiment of the solar cell module of the present invention, it is preferable that the pressure at which each of the plurality of convex portions comes into contact with the light receiving surface of the solar cell element is substantially uniform within the light receiving surface.

すなわち、複数の凸部2aによってかかる応力を太陽電池素子1の特定の部位にだけではなく、太陽電池素子1に対して均一に分散することによって、応力による歪3の大きさを面内で一定にすることができる。   That is, the stress 3 due to the plurality of convex portions 2a is uniformly distributed not only to a specific portion of the solar cell element 1 but also to the solar cell element 1, so that the magnitude of the strain 3 due to the stress is constant in the plane. Can be.

例えば図2および図3では、応力印加手段2から太陽電池素子1に対して印加される応力分布を均一にすることを目的として、応力印加手段2の主面上に凸部2aを規則的に配置している。   For example, in FIGS. 2 and 3, the convex portions 2a are regularly formed on the main surface of the stress applying means 2 for the purpose of making the stress distribution applied from the stress applying means 2 to the solar cell element 1 uniform. It is arranged.

これにより、太陽電池素子1の面内方向に偏りのない状態で、光電変換効率を均一に向上することができる。   Thereby, photoelectric conversion efficiency can be improved uniformly in a state where there is no bias in the in-plane direction of the solar cell element 1.

このような応力分布は、例えば干渉計を用いることによって、歪3の分布を観察することができる。   For such a stress distribution, the distribution of the strain 3 can be observed by using an interferometer, for example.

この場合、受光面1a側から光を当てて、太陽電池素子1の受光面1aにおける干渉縞(不図示)によって、歪3を観察することになる。   In this case, light 3 is applied from the light receiving surface 1 a side, and the distortion 3 is observed by interference fringes (not shown) on the light receiving surface 1 a of the solar cell element 1.

干渉縞の間隔は、光源の波長と入射角により決定され、等高線として用いることができるので、太陽電池素子1の受光面側から、歪3の大きさの度合いを観察することができる。   The interval between the interference fringes is determined by the wavelength of the light source and the incident angle, and can be used as a contour line. Therefore, the degree of the magnitude of the strain 3 can be observed from the light receiving surface side of the solar cell element 1.

さらに本発明の太陽電池モジュールの実施形態によれば、凸部は、太陽電池モジュールの外縁部側に位置する程高さが高いことが好ましい。   Furthermore, according to embodiment of the solar cell module of this invention, it is preferable that a convex part is so high that it is located in the outer edge part side of a solar cell module.

太陽電池素子1は中央付近になる程、自重による重さが増すので、図6のように、凸部2aの高さHが、太陽電池モジュール10の外縁部側に位置する程高くなること、すなわち高さH1>高さH2>高さH3とすることによって、各凸部2aからの応力を一定にすることができる。   As the solar cell element 1 becomes closer to the center, the weight due to its own weight increases, so that the height H of the convex portion 2a becomes higher as it is located on the outer edge side of the solar cell module 10, as shown in FIG. That is, by setting the height H1> the height H2> the height H3, the stress from each convex portion 2a can be made constant.

これにより、太陽電池素子1の自重が比較的軽い外縁部側であっても、凸部2aを高く
することによって、太陽電池素子1の自重が比較的重い中央部側と同じ程度の応力を得ることができるので、同じ程度の歪3を得ることができる。
Thereby, even if the own weight of the solar cell element 1 is a relatively light outer edge side, the same level of stress as that of the central part side where the own weight of the solar cell element 1 is relatively heavy is obtained by increasing the convex portion 2a. Therefore, the same strain 3 can be obtained.

凸部2aの高さHは、0.1〜1mm範囲であることが、太陽電池素子1と応力印加手段2との間に不必要な隙間を形成せず、太陽電池モジュール10が厚くならない点で好ましい。   The height H of the convex portion 2a is in the range of 0.1 to 1 mm, so that no unnecessary gap is formed between the solar cell element 1 and the stress applying means 2, and the solar cell module 10 is not thickened. Is preferable.

さらに本発明の太陽電池モジュールの実施形態によれば、複数の凸部は、太陽電池モジュールの外縁部側に位置する程頂点同士の間隔が広いことが好ましい。   Furthermore, according to embodiment of the solar cell module of this invention, it is preferable that the space | interval of vertex is so wide that a some convex part is located in the outer edge part side of a solar cell module.

太陽電池素子1は中央付近になる程、自重による重さが増すので、図6のように、凸部2aの頂点同士の間隔Wが、太陽電池モジュール10の外縁部側に位置する程広くなること、すなわち間隔W1<間隔W2<間隔W3となることによって、各凸部2aでの応力を一定にすることができる。   As the solar cell element 1 becomes closer to the center, the weight due to its own weight increases. Therefore, as shown in FIG. 6, the interval W between the vertices of the convex portions 2 a becomes wider as it is located on the outer edge side of the solar cell module 10. That is, when the distance W1 <the distance W2 <the distance W3, the stress at each convex portion 2a can be made constant.

これにより、太陽電池素子1の自重が比較的軽い外縁部側であっても、凸部2aの頂点同士の間隔Wを広げることによって、太陽電池素子1の自重が比較的重い中央部側と同じ程度の応力を得ることができるので、太陽電池素子1の面内で同じ程度の大きさの歪3を得ることができる。   Thereby, even if the own weight of the solar cell element 1 is relatively light on the outer edge side, by increasing the interval W between the vertices of the protrusions 2a, the solar cell element 1 has the same heavy weight as the central part side. Since a certain degree of stress can be obtained, the strain 3 having the same magnitude can be obtained in the plane of the solar cell element 1.

ここで間隔Wは、基板のサイズ次第であるが、10〜100mmの範囲であることが、応力を均一に制御し易い点で好ましい。   Here, the interval W depends on the size of the substrate, but is preferably in the range of 10 to 100 mm because the stress can be easily controlled uniformly.

以上のように、太陽電池素子1の受光面1a側における歪3の大きさを安定化させることによって、太陽電池素子1の半導体膜の抵抗値を低く維持して、光電変換効率を向上させることができる。   As described above, by stabilizing the magnitude of the strain 3 on the light receiving surface 1a side of the solar cell element 1, the resistance value of the semiconductor film of the solar cell element 1 can be maintained low, and the photoelectric conversion efficiency can be improved. Can do.

(製造方法)
以下、本発明の太陽電池モジュールの製造方法について説明する。
(Production method)
Hereinafter, the manufacturing method of the solar cell module of this invention is demonstrated.

応力印加手段2は、ガラス板やエポキシ樹脂、ポリカーボネート樹脂等の透光性樹脂で作製すればよく、応力印加手段2の主面に凸部2aの高さHや間隔Wを制御するためのマスキングを施してから、主面をブラスト処理した後で、硝酸等でエッチングすることによって、凸部2aを形成する。   The stress applying means 2 may be made of a translucent resin such as a glass plate, an epoxy resin, or a polycarbonate resin, and masking for controlling the height H and the interval W of the convex portions 2a on the main surface of the stress applying means 2. Then, after the main surface is blasted, the convex portion 2a is formed by etching with nitric acid or the like.

あるいは、金型成形によって、応力印加手段2の主面に凸部2aを有する受光面パネル2を形成することもできる。   Or the light-receiving surface panel 2 which has the convex part 2a in the main surface of the stress application means 2 can also be formed by metal mold | die shaping | molding.

次に、太陽電池素子1の受光面1a側に対して、応力印加手段2の主面を押圧した状態で、太陽電池素子1と応力印加手段2とをフレーム等によって組み合わせたものが太陽電池モジュール10となる。   Next, the solar cell module is obtained by combining the solar cell element 1 and the stress applying means 2 with a frame or the like in a state where the main surface of the stress applying means 2 is pressed against the light receiving surface 1a side of the solar cell element 1. 10

あるいは、太陽電池素子1の受光面1a側に対して、応力印加手段2の主面を押圧した状態で、太陽電池素子1と応力印加手段2とをEVA等によって接着して太陽電池モジュール10としてもよい。   Alternatively, the solar cell element 1 and the stress applying means 2 are bonded by EVA or the like while the main surface of the stress applying means 2 is pressed against the light receiving surface 1a side of the solar cell element 1 to form the solar cell module 10. Also good.

なお、上記した凸部2aの高さHや間隔Wの値は、図6のような応力印加手段2の断面で観察する必要はなく、応力印加手段2の主面における凸部2aを、前述した干渉計や、あるいは、AFM等で所定範囲を観察して測定すればよい。   Note that the values of the height H and the interval W of the convex portions 2a described above do not need to be observed in the cross section of the stress applying means 2 as shown in FIG. 6, and the convex portions 2a on the main surface of the stress applying means 2 are described above. What is necessary is just to observe and measure a predetermined range with an interferometer or an AFM.

1:太陽電池素子
1a:受光面
1b:非受光面
2:応力印加手段(受光面パネル)
2a:凸部
3:歪
10:太陽電池モジュール
H:高さ
W:間隔
1: solar cell element 1a: light receiving surface 1b: non-light receiving surface 2: stress applying means (light receiving surface panel)
2a: Convex part 3: Strain 10: Solar cell module H: Height W: Interval

Claims (6)

受光面および非受光面を有する太陽電池素子と、
複数の凸部を主面に有するとともに前記複数の凸部を前記太陽電池素子の前記受光面に当接させた透光性の応力印加手段とを有する、太陽電池モジュール。
A solar cell element having a light receiving surface and a non-light receiving surface;
A solar cell module comprising: a plurality of convex portions on a main surface; and translucent stress applying means in which the plurality of convex portions are brought into contact with the light receiving surface of the solar cell element.
前記応力印加手段が前記受光面側を覆う受光面側パネルである、請求項1記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein the stress applying means is a light receiving surface side panel covering the light receiving surface side. 前記複数の凸部が前記太陽電池素子の前記受光面に当接している位置において、前記太陽電池素子に歪みがある、請求項1または2に記載の太陽電池モジュール。   The solar cell module according to claim 1 or 2, wherein the solar cell element is distorted at a position where the plurality of convex portions are in contact with the light receiving surface of the solar cell element. 前記複数の凸部の各々が前記太陽電池素子の前記受光面に当接する圧力は、前記受光面内において略均一である、請求項1〜3のいずれかに記載の太陽電池モジュール。   The solar cell module according to any one of claims 1 to 3, wherein a pressure at which each of the plurality of convex portions comes into contact with the light receiving surface of the solar cell element is substantially uniform within the light receiving surface. 前記凸部は、前記太陽電池モジュールの外縁部側に位置する程高さが高い、請求項1〜4のいずれかに記載の太陽電池モジュール。   The said convex part is a solar cell module in any one of Claims 1-4 whose height is so high that it is located in the outer edge part side of the said solar cell module. 前記複数の凸部は、前記太陽電池モジュールの外縁部側に位置する程頂点同士の間隔が広い、請求項1〜5のいずれかに記載の太陽電池モジュール。   The solar cell module according to any one of claims 1 to 5, wherein the plurality of convex portions have a wider interval between vertices as they are positioned on an outer edge side of the solar cell module.
JP2012234571A 2012-10-24 2012-10-24 Solar cell module Expired - Fee Related JP5934075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234571A JP5934075B2 (en) 2012-10-24 2012-10-24 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234571A JP5934075B2 (en) 2012-10-24 2012-10-24 Solar cell module

Publications (2)

Publication Number Publication Date
JP2014086576A true JP2014086576A (en) 2014-05-12
JP5934075B2 JP5934075B2 (en) 2016-06-15

Family

ID=50789353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234571A Expired - Fee Related JP5934075B2 (en) 2012-10-24 2012-10-24 Solar cell module

Country Status (1)

Country Link
JP (1) JP5934075B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312411A (en) * 1996-05-20 1997-12-02 Sony Corp Optoelectronic device, manufacture thereof, and information recording and/or reproducing device
JP2012521663A (en) * 2009-03-23 2012-09-13 ダウ グローバル テクノロジーズ エルエルシー Optoelectronic device
JP2012222267A (en) * 2011-04-13 2012-11-12 Toyota Motor Corp Solar cell and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09312411A (en) * 1996-05-20 1997-12-02 Sony Corp Optoelectronic device, manufacture thereof, and information recording and/or reproducing device
JP2012521663A (en) * 2009-03-23 2012-09-13 ダウ グローバル テクノロジーズ エルエルシー Optoelectronic device
JP2012222267A (en) * 2011-04-13 2012-11-12 Toyota Motor Corp Solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP5934075B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2007109568A3 (en) Method and structure for fabricating solar cells
WO2006110341A3 (en) Nano-structured photovoltaic solar cells and related methods
WO2010126572A3 (en) Bifacial solar cells with back surface reflector
US9543459B2 (en) Flexible solar cell apparatus and method of fabricating the same
TW201225319A (en) Package structure of solar photovoltaic module and method of manufacturing the same
WO2012123645A9 (en) Thin film photovoltaic cell structure, nanoantenna, and method for manufacturing
JP2006295087A (en) Photovoltaic module
JP6184369B2 (en) Solar cell module manufacturing apparatus and solar cell module manufacturing method
WO2011029640A3 (en) Solar cell
JP2014165417A5 (en)
JP2014153387A5 (en)
WO2011087221A3 (en) V-shaped groove structure for optical fiber array block, and preparation method thereof
JP5934075B2 (en) Solar cell module
WO2011138739A3 (en) Photovoltaic cell having a structured back surface and associated manufacturing method
JP2012074530A (en) Solar cell module
US20130125984A1 (en) Solar cell module
JP2014067962A (en) Solar cell module
JP6249369B2 (en) Solar cell module wiring material, solar cell module, and solar cell module manufacturing method
JP2015065303A (en) Solar cell module and method of manufacturing the same
TWI523249B (en) Solar cell
JP2012049401A5 (en)
TW201607052A (en) Solar cell module and manufacturing method thereof
JP2010056229A5 (en)
TWI538228B (en) Solar cell module
JP2014090010A (en) Solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5934075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees