JP2014085496A - Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system - Google Patents

Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system Download PDF

Info

Publication number
JP2014085496A
JP2014085496A JP2012233969A JP2012233969A JP2014085496A JP 2014085496 A JP2014085496 A JP 2014085496A JP 2012233969 A JP2012233969 A JP 2012233969A JP 2012233969 A JP2012233969 A JP 2012233969A JP 2014085496 A JP2014085496 A JP 2014085496A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
end state
variable magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012233969A
Other languages
Japanese (ja)
Other versions
JP6031942B2 (en
Inventor
Akihiko Kohama
昭彦 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012233969A priority Critical patent/JP6031942B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to CN201810052583.0A priority patent/CN108227161A/en
Priority to PCT/JP2013/078545 priority patent/WO2014065266A1/en
Priority to CN201810054204.1A priority patent/CN108333733B/en
Priority to CN201380055144.0A priority patent/CN104755983B/en
Publication of JP2014085496A publication Critical patent/JP2014085496A/en
Priority to US14/693,916 priority patent/US9709779B2/en
Application granted granted Critical
Publication of JP6031942B2 publication Critical patent/JP6031942B2/en
Priority to US15/636,616 priority patent/US20170299849A1/en
Priority to US15/988,845 priority patent/US10948700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact variable magnification optical system and an optical device which exhibit a high variable magnification ratio and superior optical performances, and to provide a manufacturing method for the variable magnification optical system.SOLUTION: A variable magnification optical system: comprises a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power in this order from the object side; is configured such that a distance between the first lens group G1 and the second lens group G2, a distance between the second lens group G2 and the aperture stop S, a distance between the aperture stop S and the third lens group G3, and a distance between the third lens group G3 and the fourth lens group G4 are changed while a distance between the aperture stop S and the fourth lens group G4 is kept constant when magnification from a wide-angle end state to a telephoto end state; and fulfills a prescribed formula.

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、カメラ用の交換レンズ、デジタルカメラ、ビデオカメラ等に好適な変倍光学系として、最も物体側のレンズ群が正の屈折力を有するものが数多く提案されている(例えば、特許文献1を参照。)。   Conventionally, as a variable power optical system suitable for an interchangeable lens for a camera, a digital camera, a video camera, and the like, many lenses having a positive refractive power in the most object side lens group have been proposed (for example, Patent Document 1). reference.).

特開2008−292562号公報JP 2008-292562 A

しかしながら、上述のような従来の変倍光学系は、大型化することなく高変倍比化を図ろうとすれば、十分に高い光学性能を得ることが困難であるという問題があった。   However, the conventional variable power optical system as described above has a problem that it is difficult to obtain sufficiently high optical performance if an attempt is made to increase the zoom ratio without increasing the size.

そこで本発明は上記問題点に鑑みてなされたものであり、小型で、高変倍比を有し、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。   Accordingly, the present invention has been made in view of the above problems, and provides a variable magnification optical system, an optical apparatus, and a variable magnification optical system that are small in size, have a high zoom ratio, and have high optical performance. For the purpose.

上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記開口絞りとの間隔、前記開口絞りと前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記開口絞りと前記第4レンズ群との距離が一定であり、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
5.300 < f1/fw < 8.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f1:前記第1レンズ群の焦点距離
In order to solve the above problems, the present invention
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, a third lens group having a positive refractive power, and a positive refractive power. A fourth lens group having
At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the aperture stop, the aperture stop and the third lens group And the distance between the third lens group and the fourth lens group are changed, and the distance between the aperture stop and the fourth lens group is constant,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
5.300 <f1 / fw <8.0000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f1: focal length of the first lens group

また本発明は、
前記変倍光学系を有することを特徴とする光学装置を提供する。
The present invention also provides
Provided is an optical device comprising the variable magnification optical system.

また本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、
前記第1レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記開口絞りとの間隔、前記開口絞りと前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記開口絞りと前記第4レンズ群との距離が一定となるようにすることを特徴とする変倍光学系の製造方法を提供する。
5.300 < f1/fw < 8.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f1:前記第1レンズ群の焦点距離
The present invention also provides
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, a third lens group having a positive refractive power, and a positive refractive power. A variable magnification optical system having a fourth lens group,
The first lens group satisfies the following conditional expression:
At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the aperture stop, the aperture stop and the third lens group And the distance between the third lens group and the fourth lens group are changed so that the distance between the aperture stop and the fourth lens group is constant. A method for manufacturing a system is provided.
5.300 <f1 / fw <8.0000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f1: focal length of the first lens group

本発明によれば、小型で、高変倍比を有し、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable magnification optical system, an optical device, and a variable magnification optical system manufacturing method that are small in size, have a high zoom ratio, and have high optical performance.

(a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views in the wide-angle end state, intermediate focal length state, and telephoto end state, respectively, of the variable magnification optical system according to the first example of the present application. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various figures at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. It is an aberration diagram. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views of the variable magnification optical system according to the second example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. It is an aberration diagram. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views of the variable magnification optical system according to the third example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example of the present application, respectively. It is an aberration diagram. 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system of this application.

以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記開口絞りとの間隔、前記開口絞りと前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化することを特徴としている。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍を実現し、変倍に伴う歪曲収差、非点収差、及び球面収差のそれぞれの変動を抑えることができる。
Hereinafter, a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system of the present application will be described.
The variable magnification optical system of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a third lens having a positive refractive power. And a fourth lens group having a positive refractive power, and a distance between the first lens group and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state, the second lens The distance between the group and the aperture stop, the distance between the aperture stop and the third lens group, and the distance between the third lens group and the fourth lens group are changed. With this configuration, the variable magnification optical system of the present application realizes variable magnification from the wide-angle end state to the telephoto end state, and can suppress each variation of distortion aberration, astigmatism, and spherical aberration associated with variable magnification. .

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記開口絞りと前記第4レンズ群との距離が一定であることを特徴としている。この構成により、本願の変倍光学系は、変倍に伴い第3レンズ群で発生する非点収差の変動やコマ収差の変動を抑えることができる。
また、本願の変倍光学系は、以下の条件式(1)を満足することを特徴としている。
(1) 5.300 < f1/fw < 8.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f1:前記第1レンズ群の焦点距離
Further, the zoom optical system of the present application is characterized in that the distance between the aperture stop and the fourth lens group is constant during zooming from the wide-angle end state to the telephoto end state. With this configuration, the variable power optical system of the present application can suppress fluctuations in astigmatism and coma aberration that occur in the third lens group due to zooming.
The variable magnification optical system of the present application is characterized by satisfying the following conditional expression (1).
(1) 5.300 <f1 / fw <8.0000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f1: focal length of the first lens group

条件式(1)は、第1レンズ群の焦点距離の適切な範囲を規定するものである。本願の変倍光学系は、条件式(1)を満足することにより、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、変倍時に第1レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1)の下限値を5.900とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1)の下限値を6.135とすることがより好ましい。
一方、本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、所定の変倍比を得るために、変倍時の第1レンズ群と第2レンズ群との間隔の変化量を大きくする必要がある。これにより、小型化しづらくなるだけでなく、第1レンズ群へ入射する軸上光束の径と第2レンズ群へ入射する軸上光束の径との比率が変倍に伴って大きく変化する。このため、変倍時に球面収差の変動が過大になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1)の上限値を6.900とすることがより好ましい。
以上の構成により、小型で、高変倍比を有し、高い光学性能を有する変倍光学系を実現することができる。
Conditional expression (1) defines an appropriate range of the focal length of the first lens group. By satisfying conditional expression (1), the variable magnification optical system of the present application can suppress variations in spherical aberration and astigmatism during magnification.
If the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application is below the lower limit value, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the first lens group during magnification, It becomes impossible to realize high optical performance. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1) to 5.900. In order to further secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (1) to 6.135.
On the other hand, when the corresponding value of the conditional expression (1) of the zoom optical system of the present application exceeds the upper limit value, in order to obtain a predetermined zoom ratio, the distance between the first lens group and the second lens group at the time of zooming It is necessary to increase the amount of change. This not only makes it difficult to reduce the size, but also the ratio between the diameter of the axial light beam incident on the first lens group and the diameter of the axial light beam incident on the second lens group changes greatly with zooming. For this reason, the variation of the spherical aberration becomes excessive at the time of zooming, and high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 6.900.
With the above configuration, a variable power optical system that is small in size, has a high zoom ratio, and has high optical performance can be realized.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することが望ましい。この構成により、変倍時に第1レンズ群を通過する軸外光束の光軸からの高さの変化を抑えることができる。これにより、第1レンズ群の径を小さくできるだけでなく、変倍時に非点収差の変動を抑えることもできる。   In the zoom optical system according to the present application, it is preferable that the first lens unit moves toward the object side when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to suppress a change in height from the optical axis of the off-axis light beam that passes through the first lens group during zooming. Thereby, not only can the diameter of the first lens group be reduced, but also fluctuations in astigmatism can be suppressed during zooming.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することが望ましい。この構成により、第2レンズ群の倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is desirable that the distance between the first lens group and the second lens group is increased when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to increase the magnification of the second lens group, and it is possible to suppress fluctuations in spherical aberration and astigmatism during zooming while efficiently realizing a high zoom ratio.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することが望ましい。この構成により、第3レンズ群と第4レンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is preferable that the distance between the second lens group and the third lens group is reduced when zooming from the wide-angle end state to the telephoto end state. With this configuration, the combined magnification of the third lens group and the fourth lens group can be increased, and the variation of spherical aberration and astigmatism are suppressed during zooming while efficiently realizing a high zoom ratio. be able to.

また、本願の変倍光学系は、以下の条件式(2)を満足することが望ましい。
(2) 3.250 < (d1t−d1w)/fw < 4.200
但し、
fw :広角端状態における前記変倍光学系の焦点距離
d1w:広角端状態における前記第1レンズ群中の最も像側のレンズ面から前記第2レンズ群中の最も物体側のレンズ面までの距離
d1t:望遠端状態における前記第1レンズ群中の最も像側のレンズ面から前記第2レンズ群中の最も物体側のレンズ面までの距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (2).
(2) 3.250 <(d1t-d1w) / fw <4.200
However,
fw: focal length of the variable magnification optical system in the wide-angle end state d1w: distance from the most image-side lens surface in the first lens group to the most object-side lens surface in the second lens group in the wide-angle end state d1t: Distance from the most image side lens surface in the first lens group to the most object side lens surface in the second lens group in the telephoto end state

条件式(2)は、第1レンズ群中の最も像側のレンズ面から第2レンズ群中の最も物体側のレンズ面までの光軸上の距離、即ち第1レンズ群と第2レンズ群との間隔の変倍時の適切な変化量の範囲を規定するものである。本願の変倍光学系は、条件式(2)を満足することにより、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、所定の変倍比を得るために、第2レンズ群の屈折力を大きくする必要がある。これにより、変倍時に第2レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の下限値を3.450とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の下限値を3.510とすることがより好ましい。
一方、本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、第1レンズ群へ入射する軸上光束の径と第2レンズ群へ入射する軸上光束の径との比率が変倍に伴って大きく変化する。このため、変倍時に球面収差の変動が過大になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の上限値を4.000とすることがより好ましい。また、本願の効果をより確実にするために、条件式(2)の上限値を3.860とすることがより好ましい。
Conditional expression (2) is the distance on the optical axis from the most image side lens surface in the first lens group to the most object side lens surface in the second lens group, that is, the first lens group and the second lens group. The range of an appropriate amount of change at the time of changing the interval between and is specified. By satisfying conditional expression (2), the variable magnification optical system of the present application can suppress variations in spherical aberration and astigmatism during magnification.
When the corresponding value of the conditional expression (2) of the zoom optical system of the present application is below the lower limit value, it is necessary to increase the refractive power of the second lens group in order to obtain a predetermined zoom ratio. As a result, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the second lens group during zooming, and high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 3.450. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 3.510.
On the other hand, when the corresponding value of conditional expression (2) of the variable magnification optical system of the present application exceeds the upper limit value, the diameter of the axial light beam incident on the first lens group and the diameter of the axial light beam incident on the second lens group The ratio changes greatly with zooming. For this reason, the variation of the spherical aberration becomes excessive at the time of zooming, and high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 4.000. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 3.860.

また、本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 0.160 < (d3t−d3w)/fw < 0.550
但し、
fw :広角端状態における前記変倍光学系の焦点距離
d3w:広角端状態における前記第3レンズ群中の最も像側のレンズ面から前記第4レンズ群中の最も物体側のレンズ面までの距離
d3t:望遠端状態における前記第3レンズ群中の最も像側のレンズ面から前記第4レンズ群中の最も物体側のレンズ面までの距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (3).
(3) 0.160 <(d3t-d3w) / fw <0.550
However,
fw: focal length of the zoom optical system in the wide-angle end state d3w: distance from the most image-side lens surface in the third lens group to the most object-side lens surface in the fourth lens group in the wide-angle end state d3t: Distance from the most image side lens surface in the third lens group to the most object side lens surface in the fourth lens group in the telephoto end state

条件式(3)は、第3レンズ群中の最も像側のレンズ面から第4レンズ群中の最も物体側のレンズ面までの光軸上の距離、即ち第3レンズ群と第4レンズ群との間隔の変倍時の適切な変化量の範囲を規定するものである。本願の変倍光学系は、条件式(3)を満足することにより、変倍時にコマ収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生するコマ収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の下限値を0.172とすることがより好ましい。
一方、本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、第3レンズ群と第4レンズ群との間隔の変倍時の変化量を大きくするための機構が必要になる。これにより、小型化しづらくなるだけでなく、第3レンズ群と第4レンズ群との相互偏芯が発生しやすくなる。このため、製造時のばらつきに伴い偏芯コマ収差や非点収差が発生しやすくなり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の上限値を0.450とすることがより好ましい。
Conditional expression (3) is the distance on the optical axis from the most image side lens surface in the third lens group to the most object side lens surface in the fourth lens group, that is, the third lens group and the fourth lens group. The range of an appropriate amount of change at the time of changing the interval between and is specified. By satisfying conditional expression (3), the zoom optical system of the present application can suppress fluctuations in coma and astigmatism during zooming.
If the corresponding value of conditional expression (3) of the variable magnification optical system of the present application is below the lower limit value, it becomes difficult to suppress fluctuations in coma and astigmatism that occur in the third lens group during zooming, It becomes impossible to realize high optical performance. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 0.172.
On the other hand, if the corresponding value of the conditional expression (3) of the zoom optical system of the present application exceeds the upper limit value, a mechanism for increasing the amount of change at the time of zooming of the distance between the third lens group and the fourth lens group. I need it. This not only makes it difficult to reduce the size, but also tends to cause mutual eccentricity between the third lens group and the fourth lens group. For this reason, eccentric coma and astigmatism are likely to occur due to variations during manufacturing, and high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 0.450.

また、本願の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.140 < (d2it−d2iw)/fw < 0.700
但し、
fw :広角端状態における前記変倍光学系の焦点距離
d2iw:広角端状態における前記第2レンズ群中の最も像側のレンズ面から像面までの距離
d2it:望遠端状態における前記第2レンズ群中の最も像側のレンズ面から像面までの距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (4).
(4) 0.140 <(d2it−d2iw) / fw <0.700
However,
fw: focal length of the variable magnification optical system in the wide-angle end state d2iw: distance from the most image side lens surface to the image plane in the second lens group in the wide-angle end state d2it: the second lens group in the telephoto end state The distance from the lens surface closest to the image side to the image surface

条件式(4)は、第2レンズ群中の最も像側のレンズ面から像面までの光軸上の距離、即ち第2レンズ群と像面との間隔の変倍時の適切な変化量の範囲を規定するものである。本願の変倍光学系は、条件式(4)を満足することにより、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(4)の対応値が下限値を下回ると、所定の変倍比を得るために、第2レンズ群の屈折力を大きくする必要がある。これにより、変倍時に第2レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(4)の下限値を0.170とすることがより好ましい。また、本願の効果をより確実にするために、条件式(4)の下限値を0.200とすることがより好ましい。
一方、本願の変倍光学系の条件式(4)の対応値が上限値を上回ると、変倍時に第1レンズ群と第2レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。
Conditional expression (4) indicates that the distance on the optical axis from the most image-side lens surface in the second lens group to the image surface, that is, the appropriate amount of change when the distance between the second lens group and the image surface is changed The range is defined. By satisfying conditional expression (4), the variable magnification optical system of the present application can suppress variations in spherical aberration and astigmatism during magnification.
If the corresponding value of conditional expression (4) of the zoom optical system of the present application is below the lower limit value, it is necessary to increase the refractive power of the second lens group in order to obtain a predetermined zoom ratio. As a result, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the second lens group during zooming, and high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 0.170. In order to further secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 0.200.
On the other hand, if the corresponding value of conditional expression (4) of the variable magnification optical system of the present application exceeds the upper limit value, fluctuations in spherical aberration and astigmatism that occur in the first lens group and the second lens group at the time of zooming are reduced. It becomes difficult to suppress, and high optical performance cannot be realized.

また、本願の変倍光学系は、前記第3レンズ群が2枚のレンズからなることが望ましい。この構成により、第3レンズ群を1枚のレンズで構成する場合に比べて、第3レンズ群で発生する球面収差、コマ収差、及び軸上色収差を抑えることができる。また、変倍時に球面収差、コマ収差、及び軸上色収差のそれぞれの変動を抑えることができる。また、第3レンズ群を3枚以上のレンズで構成する場合に比べて、小型にできるだけでなく、第3レンズ群の質量を抑えることができる。このため、使用状態において光学系の姿勢差による第3レンズ群の偏芯を相対的に抑え、偏芯コマ収差の発生を減らすことができる。
なお、第3レンズ群を2枚のレンズで構成し、当該2枚のレンズを接合することがより好ましい。この構成により、第3レンズ群中のレンズどうしの偏芯を抑え、偏芯コマ収差の発生を減らすことができる。
In the variable magnification optical system of the present application, it is desirable that the third lens group is composed of two lenses. With this configuration, it is possible to suppress spherical aberration, coma aberration, and longitudinal chromatic aberration that occur in the third lens group, as compared to the case where the third lens group is configured by a single lens. In addition, each variation of spherical aberration, coma aberration, and longitudinal chromatic aberration can be suppressed during zooming. Further, as compared with the case where the third lens group is composed of three or more lenses, not only can the size be reduced, but also the mass of the third lens group can be suppressed. For this reason, it is possible to relatively suppress the decentering of the third lens group due to the attitude difference of the optical system in the use state and reduce the occurrence of decentering coma.
It is more preferable that the third lens group is composed of two lenses and the two lenses are joined. With this configuration, it is possible to suppress the decentering of the lenses in the third lens group and reduce the occurrence of decentering coma.

また、本願の変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5) 0.200 < f3/f4 < 0.650
但し、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (5).
(5) 0.200 <f3 / f4 <0.650
However,
f3: focal length of the third lens group f4: focal length of the fourth lens group

条件式(5)は、第3レンズ群と第4レンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(5)を満足することにより、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(5)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(5)の下限値を0.400とすることがより好ましい。
一方、本願の変倍光学系の条件式(5)の対応値が上限値を上回ると、変倍時に第4レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(5)の上限値を0.500とすることがより好ましい。
Conditional expression (5) defines an appropriate focal length ratio range of the third lens group and the fourth lens group. By satisfying conditional expression (5), the variable magnification optical system of the present application can suppress variations in spherical aberration and astigmatism during magnification.
If the corresponding value of conditional expression (5) of the variable magnification optical system of the present application is below the lower limit value, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the third lens group during magnification, It becomes impossible to realize high optical performance. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5) to 0.400.
On the other hand, if the corresponding value of conditional expression (5) of the variable magnification optical system of the present application exceeds the upper limit value, it becomes difficult to suppress the fluctuation of spherical aberration and the fluctuation of astigmatism that occur in the fourth lens group at the time of zooming. Therefore, high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5) to 0.500.

また、本願の変倍光学系は、以下の条件式(6)を満足することが望ましい。
(6) 0.780 < f1/f4 < 1.300
但し、
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (6).
(6) 0.780 <f1 / f4 <1.300
However,
f1: Focal length of the first lens group f4: Focal length of the fourth lens group

条件式(6)は、第1レンズ群と第4レンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(6)を満足することにより、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(6)の対応値が下限値を下回ると、変倍時に第1レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(6)の下限値を0.820とすることがより好ましい。
一方、本願の変倍光学系の条件式(6)の対応値が上限値を上回ると、変倍時に第4レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(6)の上限値を1.100とすることがより好ましい。
Conditional expression (6) defines an appropriate focal length ratio range between the first lens group and the fourth lens group. By satisfying conditional expression (6), the variable magnification optical system of the present application can suppress variations in spherical aberration and astigmatism during magnification.
If the corresponding value of conditional expression (6) of the variable magnification optical system of the present application is below the lower limit value, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the first lens group during magnification, It becomes impossible to realize high optical performance. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (6) to 0.820.
On the other hand, if the corresponding value of conditional expression (6) of the variable magnification optical system of the present application exceeds the upper limit, it is difficult to suppress variations in spherical aberration and astigmatism that occur in the fourth lens group during magnification. Therefore, high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (6) to 1.100.

また、本願の変倍光学系は、以下の条件式(7)を満足することが望ましい。
(7) 0.050 < (−f2)/f4 < 0.250
但し、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (7).
(7) 0.050 <(-f2) / f4 <0.250
However,
f2: focal length of the second lens group f4: focal length of the fourth lens group

条件式(7)は、第2レンズ群と第4レンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(7)を満足することにより、変倍時に球面収差、非点収差、及び歪曲収差のそれぞれの変動を抑えることができる。
本願の変倍光学系の条件式(7)の対応値が下限値を下回ると、変倍時に第2レンズ群で発生する球面収差、非点収差、及び歪曲収差のそれぞれの変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(7)の下限値を0.118とすることがより好ましい。
一方、本願の変倍光学系の条件式(7)の対応値が上限値を上回ると、変倍時に第4レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(7)の上限値を0.180とすることがより好ましい。
Conditional expression (7) defines an appropriate focal length ratio range between the second lens group and the fourth lens group. By satisfying conditional expression (7), the variable magnification optical system of the present application can suppress variations in spherical aberration, astigmatism, and distortion during zooming.
When the corresponding value of conditional expression (7) of the variable magnification optical system of the present application is below the lower limit value, each variation of spherical aberration, astigmatism, and distortion occurring in the second lens group at the time of zooming can be suppressed. This makes it difficult to achieve high optical performance. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (7) to 0.118.
On the other hand, if the corresponding value of conditional expression (7) of the variable magnification optical system of the present application exceeds the upper limit, it is difficult to suppress variations in spherical aberration and astigmatism that occur in the fourth lens group during magnification. Therefore, high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (7) to 0.180.

また、本願の変倍光学系は、以下の条件式(8)を満足することが望ましい。
(8) 0.740 < (−f2)/fw < 1.120
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f2:前記第2レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (8).
(8) 0.740 <(− f2) / fw <1.120
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f2: focal length of the second lens group

条件式(8)は、第2レンズ群の焦点距離の適切な範囲を規定するものである。本願の変倍光学系は、条件式(8)を満足することにより、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(8)の対応値が下限値を下回ると、変倍時に第2レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(8)の下限値を0.860とすることがより好ましい。
一方、本願の変倍光学系の条件式(8)の対応値が上限値を上回ると、所定の変倍比を得るために、変倍時の第1レンズ群と第2レンズ群との間隔の変化量を大きくする必要がある。これにより、小型化しづらくなるだけでなく、第1レンズ群から第2レンズ群へ入射する軸上光束の径が変倍に伴って大きく変化する。このため、変倍時に球面収差の変動が過大になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(8)の上限値を1.040とすることがより好ましい。
Conditional expression (8) defines an appropriate range of the focal length of the second lens group. By satisfying conditional expression (8), the variable magnification optical system of the present application can suppress variations in spherical aberration and astigmatism during magnification.
If the corresponding value of conditional expression (8) of the variable magnification optical system of the present application is below the lower limit value, it becomes difficult to suppress the variation of spherical aberration and astigmatism that occur in the second lens group at the time of zooming, It becomes impossible to realize high optical performance. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (8) to 0.860.
On the other hand, when the corresponding value of the conditional expression (8) of the zoom optical system of the present application exceeds the upper limit value, in order to obtain a predetermined zoom ratio, the distance between the first lens group and the second lens group at the time of zooming It is necessary to increase the amount of change. This not only makes it difficult to reduce the size, but also changes the diameter of the on-axis light beam incident from the first lens group to the second lens group with a change in magnification. For this reason, the variation of the spherical aberration becomes excessive at the time of zooming, and high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (8) to 1.040.

本願の光学装置は、上述した構成の変倍光学系を有することを特徴としている。これにより、小型で、高変倍比を有し、高い光学性能を有する光学装置を実現することができる。   The optical device of the present application is characterized by having the variable magnification optical system having the above-described configuration. Thereby, it is possible to realize an optical device that is small in size, has a high zoom ratio, and has high optical performance.

本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、前記第1レンズ群が以下の条件式(1)を満足するようにし、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記開口絞りとの間隔、前記開口絞りと前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記開口絞りと前記第4レンズ群との距離が一定となるようにすることを特徴としている。これにより、小型で、高変倍比を有し、高い光学性能を有する変倍光学系を製造することができる。
(1) 5.300 < f1/fw < 8.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f1:前記第1レンズ群の焦点距離
The variable magnification optical system manufacturing method of the present application has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a positive refractive power. A variable magnification optical system manufacturing method having a third lens group and a fourth lens group having a positive refractive power, wherein the first lens group satisfies the following conditional expression (1), and a wide angle During zooming from the end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the aperture stop, and the aperture stop and the third lens group And the distance between the third lens group and the fourth lens group are changed so that the distance between the aperture stop and the fourth lens group is constant. As a result, it is possible to manufacture a variable magnification optical system that is small in size, has a high variable magnification ratio, and has high optical performance.
(1) 5.300 <f1 / fw <8.0000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f1: focal length of the first lens group

以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1(a)、図1(b)、及び図1(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
Hereinafter, a variable magnification optical system according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
1A, 1B, and 1C are cross-sectional views of the zoom optical system according to the first example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, a biconvex positive lens L23, and an object side. And a negative meniscus lens L24 having a concave surface. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side. An aperture stop S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、両凸形状の正レンズL401と像側に凸面を向けた負メニスカスレンズL402との接合レンズと、物体側に凹面を向けた正メニスカスレンズL403と両凹形状の負レンズL404との接合レンズと、両凸形状の正レンズL405と、物体側に凹面を向けた正メニスカスレンズL406と両凹形状の負レンズL407との接合レンズと、物体側に凸面を向けた負メニスカスレンズL408と両凸形状の正レンズL409との接合レンズと、物体側に凹面を向けた負メニスカスレンズL410とからなる。なお、正メニスカスレンズL403は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL410は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
The fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L401 and a negative meniscus lens L402 with a convex surface facing the image side, a positive meniscus lens L403 with a concave surface facing the object side, and both A cemented lens of a concave negative lens L404, a biconvex positive lens L405, a cemented lens of a positive meniscus lens L406 having a concave surface facing the object side, and a biconcave negative lens L407, and a convex surface facing the object side Is composed of a negative meniscus lens L408 having a convex surface and a biconvex positive lens L409, and a negative meniscus lens L410 having a concave surface facing the object side. The positive meniscus lens L403 is a glass mold aspheric lens having an aspheric lens surface on the object side, and the negative meniscus lens L410 is a glass mold aspheric lens having an aspheric lens surface on the image side.
In the zoom optical system according to the present embodiment, a low-pass filter, a sensor cover glass, or the like may be disposed between the fourth lens group G4 and the image plane I.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、第2レンズ群G2と開口絞りSとの空気間隔が減少し、開口絞りSと第3レンズ群G3との空気間隔が減少し、開口絞りSと第4レンズ群G4との距離が一定となるように、第1〜第4レンズ群G1〜G4が光軸に沿って移動し、開口絞りSは第4レンズ群G4と一体的に移動する。詳細には、第1レンズ群G1、第3レンズ群G3、及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。   With the above-described configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The air gap between the second lens group G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the second lens group G2 and the aperture stop S. Decreases, the air gap between the aperture stop S and the third lens group G3 decreases, and the distance between the aperture stop S and the fourth lens group G4 is constant, so that the first to fourth lens groups G1 to G4 are constant. Moves along the optical axis, and the aperture stop S moves integrally with the fourth lens group G4. Specifically, the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side during zooming. The second lens group G2 moves toward the object side from the wide-angle end state to the intermediate focal length state, and moves toward the image side from the intermediate focal length state to the telephoto end state.

以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。空気の屈折率nd=1.000000の記載は省略している。
Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
In Table 1, f indicates the focal length, and BF indicates the back focus (the distance on the optical axis between the lens surface closest to the image side and the image plane I).
In [Surface data], the surface number is the order of the optical surfaces counted from the object side, r is the radius of curvature, d is the surface interval (the interval between the nth surface (n is an integer) and the n + 1th surface), and nd is The refractive index for d-line (wavelength 587.6 nm) and νd indicate the Abbe number for d-line (wavelength 587.6 nm), respectively. In addition, the object plane indicates the object plane, the variable indicates the variable plane spacing, the stop S indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane. For the aspherical surface, * is added to the surface number, and the value of the paraxial radius of curvature is indicated in the column of the radius of curvature r. The description of the refractive index of air nd = 1.00000 is omitted.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2
+A4h+A6h+A8h+A10h10
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1−κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, h is the height in the direction perpendicular to the optical axis, x is the distance (sag amount) from the tangent plane of the apex of the aspheric surface to the aspheric surface at the height h, and κ is the conic constant. , A4, A6, A8, A10 are aspherical coefficients, and r is the radius of curvature of the reference sphere (paraxial radius of curvature). “E−n” (n is an integer) indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”. The secondary aspherical coefficient A2 is 0 and is not shown.

[各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLは変倍光学系の全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔、φは開口絞りSの絞り径をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
In [Various data], FNO is the F number, ω is the half angle of view (unit is “°”), Y is the image height, TL is the total length of the variable magnification optical system (image from the first surface when focusing on an object at infinity) (Distance on the optical axis to the surface I), dn represents the variable distance between the nth surface and the (n + 1) th surface, and φ represents the diameter of the aperture stop S. W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state.
[Lens Group Data] indicates the start surface and focal length of each lens group.
[Conditional Expression Corresponding Value] shows the corresponding value of each conditional expression of the variable magnification optical system according to the present example.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 134.9416 1.6000 2.001000 29.14
2 37.4620 7.6500 1.497820 82.57
3 -339.5674 0.1000
4 41.6639 5.5500 1.883000 40.66
5 520.6025 可変

*6 2429.7649 1.0000 1.851350 40.10
7 8.6673 5.7500
8 -10.8429 1.0000 1.487490 70.31
9 -45.5363 0.8500
10 52.5147 3.1000 1.808090 22.74
11 -17.4657 0.3000
12 -16.1357 1.0000 1.954000 33.46
13 -39.2793 可変

14(絞りS) ∞ 可変

15 29.3843 1.0000 1.902650 35.73
16 14.8567 2.8000 1.719990 50.27
17 -55.5590 可変

18 13.5564 3.3500 1.497820 82.57
19 -24.9755 1.0000 1.950000 29.37
20 -183.0794 2.1500
*21 -145.2052 2.2500 1.802440 25.55
22 -14.7800 1.0000 1.766840 46.78
23 23.7425 2.8000
24 25.8106 3.0000 1.516800 63.88
25 -15.0644 0.1000
26 -568.8377 3.0000 1.568830 56.00
27 -9.3137 1.0000 1.954000 33.46
28 98.3635 0.1000
29 15.0059 1.0000 1.950000 29.37
30 7.0809 4.2500 1.647690 33.73
31 -21.2496 1.4500
32 -11.4669 1.0000 1.743300 49.32
*33 -29.8012 BF

像面 ∞

[非球面データ]
第6面
κ -20.0000
A4 9.19258E-05
A6 -6.71049E-07
A8 3.76181E-09
A10 -1.11659E-11

第21面
κ -13.2727
A4 1.25451E-05
A6 1.56196E-07
A8 -2.20815E-09
A10 0.00000E+00

第33面
κ -0.9208
A4 -8.91367E-05
A6 -1.72158E-06
A8 2.40673E-08
A10 -6.77013E-10

[各種データ]
変倍比 9.42

W T
f 10.30 〜 97.00
FNO 4.08 〜 5.83
ω 40.21 〜 4.78°
Y 8.19 〜 8.19
TL 102.69 〜 142.60

W M T
f 10.30000 50.00021 97.00042
ω 40.21108 9.16962 4.78008
FNO 4.08 5.79 5.83
φ 8.40 9.20 10.10
d5 2.10000 29.30442 39.87067
d13 19.87565 4.17251 2.00000
d14 4.49060 3.80672 1.60000
d17 3.02442 3.70831 5.91502
BF 14.04941 32.95254 34.06346

[レンズ群データ]
群 始面 f
1 1 63.95755
2 6 -10.21809
3 15 32.27954
4 18 70.96006

[条件式対応値]
(1) f1/fw = 6.209
(2) (d1t−d1w)/fw = 3.667
(3) (d3t−d3w)/fw = 0.281
(4) (d2it−d2iw)/fw = 0.208
(5) f3/f4 = 0.455
(6) f1/f4 = 0.901
(7) (−f2)/f4 = 0.144
(8) (−f2)/fw = 0.992
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞

1 134.9416 1.6000 2.001000 29.14
2 37.4620 7.6500 1.497820 82.57
3 -339.5674 0.1000
4 41.6639 5.5500 1.883000 40.66
5 520.6025 Variable

* 6 2429.7649 1.0000 1.851350 40.10
7 8.6673 5.7500
8 -10.8429 1.0000 1.487490 70.31
9 -45.5363 0.8500
10 52.5147 3.1000 1.808090 22.74
11 -17.4657 0.3000
12 -16.1357 1.0000 1.954000 33.46
13 -39.2793 Variable

14 (Aperture S) ∞ Variable

15 29.3843 1.0000 1.902650 35.73
16 14.8567 2.8000 1.719990 50.27
17 -55.5590 Variable

18 13.5564 3.3500 1.497820 82.57
19 -24.9755 1.0000 1.950000 29.37
20 -183.0794 2.1500
* 21 -145.2052 2.2500 1.802440 25.55
22 -14.7800 1.0000 1.766840 46.78
23 23.7425 2.8000
24 25.8106 3.0000 1.516800 63.88
25 -15.0644 0.1000
26 -568.8377 3.0000 1.568830 56.00
27 -9.3137 1.0000 1.954000 33.46
28 98.3635 0.1000
29 15.0059 1.0000 1.950000 29.37
30 7.0809 4.2500 1.647690 33.73
31 -21.2496 1.4500
32 -11.4669 1.0000 1.743300 49.32
* 33 -29.8012 BF

Image plane ∞

[Aspherical data]
6th surface κ -20.0000
A4 9.19258E-05
A6 -6.71049E-07
A8 3.76181E-09
A10 -1.11659E-11

21st surface κ -13.2727
A4 1.25451E-05
A6 1.56196E-07
A8 -2.20815E-09
A10 0.00000E + 00

33rd surface κ -0.9208
A4 -8.91367E-05
A6 -1.72158E-06
A8 2.40673E-08
A10 -6.77013E-10

[Various data]
Scaling ratio 9.42

W T
f 10.30 to 97.00
FNO 4.08 to 5.83
ω 40.21 〜 4.78 °
Y 8.19-8.19
TL 102.69-142.60

W M T
f 10.30000 50.00021 97.00042
ω 40.21108 9.16962 4.78008
FNO 4.08 5.79 5.83
φ 8.40 9.20 10.10
d5 2.10000 29.30442 39.87067
d13 19.87565 4.17251 2.00000
d14 4.49060 3.80672 1.60000
d17 3.02442 3.70831 5.91502
BF 14.04941 32.95254 34.06346

[Lens group data]
Group start surface f
1 1 63.95755
2 6 -10.21809
3 15 32.27954
4 18 70.96006

[Conditional expression values]
(1) f1 / fw = 6.209
(2) (d1t-d1w) / fw = 3.667
(3) (d3t−d3w) /fw=0.281
(4) (d2it−d2iw) /fw=0.208
(5) f3 / f4 = 0.455
(6) f1 / f4 = 0.901
(7) (−f2) /f4=0.144
(8) (-f2) / fw = 0.992

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。   2 (a), 2 (b), and 2 (c) respectively show infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the first example of the present application. It is an aberration diagram at the time of focusing on an object.

各収差図において、FNOはFナンバー、Aは光線入射角即ち半画角(単位は「°」)をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示し、d、gの記載のないものはd線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。   In each aberration diagram, FNO denotes an F number, and A denotes a light incident angle, that is, a half angle of view (unit: “°”). d indicates the aberration at the d-line (wavelength 587.6 nm), g indicates the aberration at the g-line (wavelength 435.8 nm), and those without d and g indicate the aberration at the d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第2実施例)
図3(a)、図3(b)、及び図3(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Second embodiment)
FIGS. 3A, 3B, and 3C are cross-sectional views of the zoom optical system according to the second example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた平凸形状の正レンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる複合型非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a plano-convex positive lens having a convex surface facing the object side. L13.
In order from the object side, the second lens group G2 includes a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, a biconvex positive lens L23, and a concave surface facing the object side. And a cemented lens with a negative meniscus lens L24. The negative meniscus lens L21 is a composite aspherical lens formed by forming a resin layer provided on the glass surface on the object side into an aspherical shape.
The third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side.

第4レンズ群G4は、物体側から順に、両凸形状の正レンズL401と像側に凸面を向けた負メニスカスレンズL402との接合レンズと、物体側に凹面を向けた正メニスカスレンズL403と両凹形状の負レンズL404との接合レンズと、両凸形状の正レンズL405と、両凸形状の正レンズL406と両凹形状の負レンズL407との接合レンズと、両凸形状の正レンズL408と像側に凸面を向けた負メニスカスレンズL409との接合レンズと、物体側に凹面を向けた負メニスカスレンズL410とからなる。なお、負レンズL404は像側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL410は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
The fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L401 and a negative meniscus lens L402 with a convex surface facing the image side, a positive meniscus lens L403 with a concave surface facing the object side, and both A cemented lens with a concave negative lens L404, a biconvex positive lens L405, a cemented lens with a biconvex positive lens L406 and a biconcave negative lens L407, and a biconvex positive lens L408. It consists of a cemented lens with a negative meniscus lens L409 having a convex surface facing the image side, and a negative meniscus lens L410 with a concave surface facing the object side. The negative lens L404 is a glass mold aspheric lens having an aspheric lens surface on the image side, and the negative meniscus lens L410 is a glass mold aspheric lens having an aspheric lens surface on the image side.
In the zoom optical system according to the present embodiment, a low-pass filter, a sensor cover glass, or the like may be disposed between the fourth lens group G4 and the image plane I.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が広角端状態から中間焦点距離状態まで減少し中間焦点距離状態から望遠端状態まで増加し、第2レンズ群G2と開口絞りSとの空気間隔が減少し、開口絞りSと第3レンズ群G3との空気間隔が広角端状態から中間焦点距離状態まで増加し中間焦点距離状態から望遠端状態まで減少し、開口絞りSと第4レンズ群G4との距離が一定となるように、第1〜第4レンズ群G1〜G4が光軸に沿って物体側へそれぞれ移動し、開口絞りSは第4レンズ群G4と一体的に移動する。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
With the above-described configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The air gap between the second lens group G2 and the third lens group G3 is reduced, and the air gap between the third lens group G3 and the fourth lens group G4 is reduced from the wide-angle end state to the intermediate focal length state. It increases to the telephoto end state, the air gap between the second lens group G2 and the aperture stop S decreases, and the air gap between the aperture stop S and the third lens group G3 increases from the wide-angle end state to the intermediate focal length state. The first to fourth lens groups G1 to G4 are each moved toward the object side along the optical axis so that the distance from the focal length state to the telephoto end state is reduced and the distance between the aperture stop S and the fourth lens group G4 is constant. The aperture stop S moves integrally with the fourth lens group G4. .
Table 2 below provides values of specifications of the variable magnification optical system according to the present example.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 145.1831 1.7000 2.001000 29.14
2 36.6390 8.1000 1.497820 82.57
3 -399.3519 0.1000
4 43.2076 6.0000 1.883000 40.66
5 ∞ 可変

*6 436.5967 0.1000 1.553890 38.09
7 87.0031 1.1000 1.834810 42.73
8 8.3001 5.3500
9 -12.6073 1.0000 1.755000 52.34
10 -32.7993 0.8000
11 41.1197 2.9500 1.808090 22.74
12 -19.6043 0.9000 1.883000 40.66
13 -73.1316 可変

14(絞りS) ∞ 可変

15 22.3725 0.9000 1.902650 35.73
16 12.2299 3.4500 1.670030 47.14
17 -59.6992 可変

18 13.7390 3.6000 1.497820 82.57
19 -24.8201 0.9000 2.000690 25.46
20 -270.0138 2.2000
21 -117.0547 2.0500 1.846660 23.80
22 -15.9850 1.0000 1.773770 47.25
*23 24.1750 2.0836
24 66.3654 2.8000 1.568830 56.00
25 -15.4473 0.1000
26 44.9939 2.7500 1.517420 52.20
27 -15.2012 0.9000 1.903660 31.27
28 29.9926 0.3000
29 14.6093 5.0500 1.672700 32.19
30 -9.1997 0.9000 2.000690 25.46
31 -24.3892 1.4000
32 -12.8617 1.0000 1.851350 40.10
*33 -27.4946 BF

像面 ∞

[非球面データ]
第6面
κ 20.0000
A4 9.17458E-05
A6 -6.51986E-07
A8 2.69890E-09
A10 -1.23751E-11

第23面
κ 0.4823
A4 -7.24815E-06
A6 -3.60139E-07
A8 4.05630E-09
A10 0.00000E+00

第33面
κ -20.0000
A4 -1.22780E-04
A6 8.28360E-07
A8 -6.05245E-09
A10 -9.88805E-11

[各種データ]
変倍比 9.42

W T
f 10.30 〜 96.99
FNO 4.12 〜 5.81
ω 40.44 〜 4.73°
Y 8.19 〜 8.19
TL 103.03 〜 143.32

W M T
f 10.30260 30.00000 96.99284
ω 40.44283 14.85841 4.72723
FNO 4.12 5.48 5.81
φ 8.12 8.12 9.70
d5 2.10606 20.13084 40.20889
d13 19.66416 6.24359 1.80000
d14 4.27874 4.97381 1.80000
d17 3.43763 2.74256 5.91637
BF 14.05688 27.80535 34.11509

[レンズ群データ]
群 始面 f
1 1 64.09778
2 6 -10.16794
3 15 31.06055
4 18 67.05869

[条件式対応値]
(1) f1/fw = 6.223
(2) (d1t−d1w)/fw = 3.699
(3) (d3t−d3w)/fw = 0.241
(4) (d2it−d2iw)/fw = 0.213
(5) f3/f4 = 0.463
(6) f1/f4 = 0.956
(7) (−f2)/f4 = 0.152
(8) (−f2)/fw = 0.986
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞

1 145.1831 1.7000 2.001000 29.14
2 36.6390 8.1000 1.497820 82.57
3 -399.3519 0.1000
4 43.2076 6.0000 1.883000 40.66
5 ∞ variable

* 6 436.5967 0.1000 1.553890 38.09
7 87.0031 1.1000 1.834810 42.73
8 8.3001 5.3500
9 -12.6073 1.0000 1.755000 52.34
10 -32.7993 0.8000
11 41.1197 2.9500 1.808090 22.74
12 -19.6043 0.9000 1.883000 40.66
13 -73.1316 Variable

14 (Aperture S) ∞ Variable

15 22.3725 0.9000 1.902650 35.73
16 12.2299 3.4500 1.670030 47.14
17 -59.6992 Variable

18 13.7390 3.6000 1.497820 82.57
19 -24.8201 0.9000 2.000690 25.46
20 -270.0138 2.2000
21 -117.0547 2.0500 1.846660 23.80
22 -15.9850 1.0000 1.773770 47.25
* 23 24.1750 2.0836
24 66.3654 2.8000 1.568830 56.00
25 -15.4473 0.1000
26 44.9939 2.7500 1.517420 52.20
27 -15.2012 0.9000 1.903660 31.27
28 29.9926 0.3000
29 14.6093 5.0500 1.672700 32.19
30 -9.1997 0.9000 2.000690 25.46
31 -24.3892 1.4000
32 -12.8617 1.0000 1.851350 40.10
* 33 -27.4946 BF

Image plane ∞

[Aspherical data]
6th surface κ 20.0000
A4 9.17458E-05
A6 -6.51986E-07
A8 2.69890E-09
A10 -1.23751E-11

23rd surface κ 0.4823
A4 -7.24815E-06
A6 -3.60139E-07
A8 4.05630E-09
A10 0.00000E + 00

33rd surface κ -20.0000
A4 -1.22780E-04
A6 8.28360E-07
A8 -6.05245E-09
A10 -9.88805E-11

[Various data]
Scaling ratio 9.42

W T
f 10.30-96.99
FNO 4.12 to 5.81
ω 40.44 〜 4.73 °
Y 8.19-8.19
TL 103.03-143.32

W M T
f 10.30260 30.00000 96.99284
ω 40.44283 14.85841 4.72723
FNO 4.12 5.48 5.81
φ 8.12 8.12 9.70
d5 2.10606 20.13084 40.20889
d13 19.66416 6.24359 1.80000
d14 4.27874 4.97381 1.80000
d17 3.43763 2.74256 5.91637
BF 14.05688 27.80535 34.11509

[Lens group data]
Group start surface f
1 1 64.09778
2 6 -10.16794
3 15 31.06055
4 18 67.05869

[Conditional expression values]
(1) f1 / fw = 6.223
(2) (d1t−d1w) /fw=3.699
(3) (d3t−d3w) /fw=0.241
(4) (d2it−d2iw) /fw=0.213
(5) f3 / f4 = 0.463
(6) f1 / f4 = 0.956
(7) (−f2) /f4=0.152
(8) (-f2) / fw = 0.986

図4(a)、図4(b)、及び図4(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。   4 (a), 4 (b), and 4 (c) respectively show infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application. It is an aberration diagram at the time of focusing on an object.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第3実施例)
図5(a)、図5(b)、及び図5(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
(Third embodiment)
5A, 5B, and 5C are cross-sectional views of the zoom optical system according to the third example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, a biconvex positive lens L23, and an object side. And a negative meniscus lens L24 having a concave surface. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side. An aperture stop S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、両凸形状の正レンズL401と像側に凸面を向けた負メニスカスレンズL402との接合レンズと、物体側に凸面を向けた負メニスカスレンズL403と像側に凹面を向けた正メニスカスレンズL404との接合レンズと、両凸形状の正レンズL405と、物体側に凹面を向けた正メニスカスレンズL406と物体側に凹面を向けた負メニスカスレンズL407との接合レンズと、物体側に凸面を向けた負メニスカスレンズL408と両凸形状の正レンズL409との接合レンズと、物体側に凹面を向けた負メニスカスレンズL410とからなる。なお、負メニスカスレンズL403は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL410は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
なお、本実施例に係る変倍光学系では、第4レンズ群G4と像面Iとの間に、ローパスフィルタやセンサ用カバーガラス等を配置してもよい。
The fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L401 and a negative meniscus lens L402 having a convex surface directed to the image side, a negative meniscus lens L403 having a convex surface directed to the object side, and an image. A cemented lens with a positive meniscus lens L404 having a concave surface facing side, a biconvex positive lens L405, a positive meniscus lens L406 with a concave surface facing the object side, and a negative meniscus lens L407 with a concave surface facing the object side It consists of a cemented lens, a cemented lens of a negative meniscus lens L408 having a convex surface facing the object side and a biconvex positive lens L409, and a negative meniscus lens L410 having a concave surface facing the object side. The negative meniscus lens L403 is a glass mold aspheric lens having an aspheric lens surface on the object side, and the negative meniscus lens L410 is a glass mold aspheric lens having an aspheric lens surface on the image side.
In the zoom optical system according to the present embodiment, a low-pass filter, a sensor cover glass, or the like may be disposed between the fourth lens group G4 and the image plane I.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増加し、第2レンズ群G2と開口絞りSとの空気間隔が減少し、開口絞りSと第3レンズ群G3との空気間隔が減少し、開口絞りSと第4レンズ群G4との距離が一定となるように、第1〜第4レンズ群G1〜G4が光軸に沿って移動し、開口絞りSは第4レンズ群G4と一体的に移動する。詳細には、第1レンズ群G1、第3レンズ群G3、及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から中間焦点距離状態まで物体側へ移動し、中間焦点距離状態から望遠端状態まで像側へ移動する。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
With the above-described configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The air gap between the second lens group G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the second lens group G2 and the aperture stop S. Decreases, the air gap between the aperture stop S and the third lens group G3 decreases, and the distance between the aperture stop S and the fourth lens group G4 is constant, so that the first to fourth lens groups G1 to G4 are constant. Moves along the optical axis, and the aperture stop S moves integrally with the fourth lens group G4. Specifically, the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side during zooming. The second lens group G2 moves toward the object side from the wide-angle end state to the intermediate focal length state, and moves toward the image side from the intermediate focal length state to the telephoto end state.
Table 3 below lists values of specifications of the variable magnification optical system according to the present example.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 100.6708 1.6000 2.003300 28.27
2 38.2945 7.4500 1.497820 82.57
3 -587.4003 0.1000
4 40.2838 5.4500 1.834810 42.73
5 280.5337 可変

*6 202.2993 1.0000 1.851350 40.10
7 7.9721 5.1500
8 -9.9586 1.0000 1.883000 40.66
9 -44.8957 0.1000
10 74.4947 3.1500 1.808090 22.74
11 -13.5735 0.6500
12 -10.3252 1.0000 1.883000 40.66
13 -14.1555 可変

14(絞りS) ∞ 可変

15 26.4355 1.0000 1.954000 33.46
16 14.5535 2.9500 1.700000 48.11
17 -46.9949 可変

18 13.6121 3.5000 1.497820 82.57
19 -26.0652 1.0000 2.000690 25.46
20 -274.8099 2.1500
*21 1292.9454 1.0000 1.806100 40.71
22 10.6698 2.1500 1.808090 22.74
23 23.0448 2.8000
24 19.2818 3.4500 1.548140 45.51
25 -13.8291 0.1000
26 -32.9399 2.8500 1.620040 36.40
27 -8.0721 1.0000 1.954000 33.46
28 -206.7578 0.1000
29 18.5580 1.0000 2.000690 25.46
30 7.4367 4.2000 1.647690 33.73
31 -21.5339 1.7500
32 -9.9511 1.0000 1.743300 49.32
*33 -17.6298 BF

像面 ∞

[非球面データ]
第6面
κ 20.0000
A4 9.82146E-05
A6 -6.04337E-07
A8 2.59138E-09
A10 1.16839E-11

第21面
κ 20.0000
A4 1.53849E-05
A6 1.73734E-07
A8 -2.83188E-09
A10 0.00000E+00

第33面
κ 2.9454
A4 -6.43442E-05
A6 -1.32869E-06
A8 1.61809E-08
A10 -4.99485E-10

[各種データ]
変倍比 9.42

W T
f 10.30 〜 97.00
FNO 4.10 〜 5.82
ω 40.21 〜 4.80°
Y 8.19 〜 8.19
TL 100.18 〜 142.60

W M T
f 10.30000 50.00015 97.00042
ω 40.21026 9.21685 4.79788
FNO 4.11 5.79 5.82
φ 8.50 9.50 10.24
d5 2.10000 28.21026 39.06515
d13 18.62936 3.83407 2.00000
d14 3.55190 3.36681 1.60000
d17 3.19885 3.38394 5.15075
BF 14.04944 35.47291 36.13193

[レンズ群データ]
群 始面 f
1 1 63.38656
2 6 -9.32485
3 15 30.22293
4 18 70.69668

[条件式対応値]
(1) f1/fw = 6.154
(2) (d1t−d1w)/fw = 3.589
(3) (d3t−d3w)/fw = 0.190
(4) (d2it−d2iw)/fw = 0.529
(5) f3/f4 = 0.428
(6) f1/f4 = 0.897
(7) (−f2)/f4 = 0.132
(8) (−f2)/fw = 0.905
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞

1 100.6708 1.6000 2.003300 28.27
2 38.2945 7.4500 1.497820 82.57
3 -587.4003 0.1000
4 40.2838 5.4500 1.834810 42.73
5 280.5337 Variable

* 6 202.2993 1.0000 1.851350 40.10
7 7.9721 5.1500
8 -9.9586 1.0000 1.883000 40.66
9 -44.8957 0.1000
10 74.4947 3.1500 1.808090 22.74
11 -13.5735 0.6500
12 -10.3252 1.0000 1.883000 40.66
13 -14.1555 Variable

14 (Aperture S) ∞ Variable

15 26.4355 1.0000 1.954000 33.46
16 14.5535 2.9500 1.700000 48.11
17 -46.9949 Variable

18 13.6121 3.5000 1.497820 82.57
19 -26.0652 1.0000 2.000690 25.46
20 -274.8099 2.1500
* 21 1292.9454 1.0000 1.806100 40.71
22 10.6698 2.1500 1.808090 22.74
23 23.0448 2.8000
24 19.2818 3.4500 1.548140 45.51
25 -13.8291 0.1000
26 -32.9399 2.8500 1.620040 36.40
27 -8.0721 1.0000 1.954000 33.46
28 -206.7578 0.1000
29 18.5580 1.0000 2.000690 25.46
30 7.4367 4.2000 1.647690 33.73
31 -21.5339 1.7500
32 -9.9511 1.0000 1.743300 49.32
* 33 -17.6298 BF

Image plane ∞

[Aspherical data]
6th surface κ 20.0000
A4 9.82146E-05
A6 -6.04337E-07
A8 2.59138E-09
A10 1.16839E-11

21st surface κ 20.0000
A4 1.53849E-05
A6 1.73734E-07
A8 -2.83188E-09
A10 0.00000E + 00

33rd surface κ 2.9454
A4 -6.43442E-05
A6 -1.32869E-06
A8 1.61809E-08
A10 -4.99485E-10

[Various data]
Scaling ratio 9.42

W T
f 10.30 to 97.00
FNO 4.10 to 5.82
ω 40.21 〜 4.80 °
Y 8.19-8.19
TL 100.18-142.60

W M T
f 10.30000 50.00015 97.00042
ω 40.21026 9.21685 4.79788
FNO 4.11 5.79 5.82
φ 8.50 9.50 10.24
d5 2.10000 28.21026 39.06515
d13 18.62936 3.83407 2.00000
d14 3.55190 3.36681 1.60000
d17 3.19885 3.38394 5.15075
BF 14.04944 35.47291 36.13193

[Lens group data]
Group start surface f
1 1 63.38656
2 6 -9.32485
3 15 30.22293
4 18 70.69668

[Conditional expression values]
(1) f1 / fw = 6.154
(2) (d1t-d1w) /fw=3.589
(3) (d3t−d3w) /fw=0.190
(4) (d2it−d2iw) /fw=0.529
(5) f3 / f4 = 0.428
(6) f1 / f4 = 0.897
(7) (−f2) /f4=0.132
(8) (−f2) /fw=0.905

図6(a)、図6(b)、及び図6(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。   FIGS. 6A, 6B, and 6C are infinite at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example of the present application, respectively. It is an aberration diagram at the time of focusing on an object.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

上記各実施例によれば、小型で、高変倍比を有し、高い光学性能を有する変倍光学系を実現することができる。なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。   According to each of the above embodiments, a variable magnification optical system that is small in size, has a high zoom ratio, and has high optical performance can be realized. In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.

本願の変倍光学系の数値実施例として4群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、5群、6群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   Although a four-group configuration is shown as a numerical example of the variable magnification optical system of the present application, the present application is not limited to this, and a variable magnification optical system of another group configuration (for example, five groups, six groups, etc.) is configured. You can also. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部又は第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   In addition, the variable magnification optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group for focusing from an object at infinity to a near object. It is good also as a structure moved to an axial direction. In particular, it is preferable that at least part of the second lens group, at least part of the third lens group, or at least part of the fourth lens group be the focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.

また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   Further, in the variable magnification optical system of the present application, any lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis A configuration in which image blur caused by camera shake or the like is corrected by rotationally moving (swinging) inward is also possible. In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the third lens group or at least a part of the fourth lens group is an anti-vibration lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第3レンズ群中又は第3レンズ群の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
In the variable magnification optical system of the present application, the aperture stop is preferably arranged in the third lens group or in the vicinity of the third lens group, and the role of the aperture stop is replaced by a lens frame without providing a member. Also good.
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

次に、本願の変倍光学系を備えたカメラを図7に基づいて説明する。
図7は、本願の変倍光学系を備えたカメラの構成を示す図である。
図7に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
Next, a camera provided with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 7 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
As shown in FIG. 7, the camera 1 is a so-called mirrorless camera of an interchangeable lens provided with the variable magnification optical system according to the first example as the photographing lens 2.
In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.
When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、小型で、高変倍比を有し、高い光学性能を有する変倍光学系である。したがって本カメラ1は、小型化と高変倍比化を図りながら、高い光学性能を実現することができる。なお、上記第2、第3実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, the zoom optical system according to the first embodiment mounted as the photographing lens 2 on the camera 1 is a zoom optical system that is small in size, has a high zoom ratio, and has high optical performance. Therefore, the camera 1 can achieve high optical performance while achieving downsizing and a high zoom ratio. Even if a camera equipped with the variable magnification optical system according to the second and third examples as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. it can.

最後に、本願の変倍光学系の製造方法の概略を図8に基づいて説明する。
図8に示す本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1、S2を含むものである。
Finally, the outline of the manufacturing method of the variable magnification optical system of this application is demonstrated based on FIG.
The variable power optical system manufacturing method shown in FIG. 8 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a positive aperture. A variable magnification optical system manufacturing method having a third lens group having a refractive power and a fourth lens group having a positive refractive power, and includes the following steps S1 and S2.

ステップS1:第1レンズ群が以下の条件式(1)を満足するようにし、第1〜第4レンズ群をレンズ鏡筒内に物体側から順に配置する。
(1) 5.300 < f1/fw < 8.000
但し、
fw:広角端状態における変倍光学系の焦点距離
f1:第1レンズ群の焦点距離
Step S1: The first lens group is made to satisfy the following conditional expression (1), and the first to fourth lens groups are sequentially arranged in the lens barrel from the object side.
(1) 5.300 <f1 / fw <8.0000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f1: focal length of the first lens unit

ステップS2:レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔、第2レンズ群と開口絞りとの間隔、開口絞りと第3レンズ群との間隔、及び第3レンズ群と第4レンズ群との間隔が変化し、開口絞りと第4レンズ群との距離が一定となるようにする。   Step S2: By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group, the second lens group and the aperture at the time of zooming from the wide-angle end state to the telephoto end state. The distance between the aperture stop, the distance between the aperture stop and the third lens group, and the distance between the third lens group and the fourth lens group are changed so that the distance between the aperture stop and the fourth lens group becomes constant. .

斯かる本願の変倍光学系の製造方法によれば、小型で、高変倍比を有し、高い光学性能を有する変倍光学系を製造することができる。   According to the method for manufacturing a variable power optical system of the present application, it is possible to manufacture a variable power optical system that is small in size, has a high zoom ratio, and has high optical performance.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
S 開口絞り
I 像面
G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group S Aperture stop I Image plane

Claims (14)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記開口絞りとの間隔、前記開口絞りと前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記開口絞りと前記第4レンズ群との距離が一定であり、
以下の条件式を満足することを特徴とする変倍光学系。
5.300 < f1/fw < 8.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f1:前記第1レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, a third lens group having a positive refractive power, and a positive refractive power. A fourth lens group having
At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the aperture stop, the aperture stop and the third lens group And the distance between the third lens group and the fourth lens group are changed, and the distance between the aperture stop and the fourth lens group is constant,
A zoom optical system characterized by satisfying the following conditional expression:
5.300 <f1 / fw <8.0000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f1: focal length of the first lens group
広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することを特徴とする請求項1に記載の変倍光学系。   The zoom optical system according to claim 1, wherein the first lens unit moves toward the object side during zooming from the wide-angle end state to the telephoto end state. 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することを特徴とする請求項1又は請求項2に記載の変倍光学系。   3. The zoom optical system according to claim 1, wherein an interval between the first lens unit and the second lens unit is increased at the time of zooming from the wide-angle end state to the telephoto end state. 広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することを特徴とする請求項1から請求項3のいずれか一項に記載の変倍光学系。   4. The space between the second lens group and the third lens group decreases during zooming from the wide-angle end state to the telephoto end state. 5. Variable magnification optical system. 以下の条件式を満足することを特徴とする請求項1から請求項4のいずれか一項に記載の変倍光学系。
3.250 < (d1t−d1w)/fw < 4.200
但し、
fw :広角端状態における前記変倍光学系の焦点距離
d1w:広角端状態における前記第1レンズ群中の最も像側のレンズ面から前記第2レンズ群中の最も物体側のレンズ面までの距離
d1t:望遠端状態における前記第1レンズ群中の最も像側のレンズ面から前記第2レンズ群中の最も物体側のレンズ面までの距離
The zoom lens system according to claim 1, wherein the following conditional expression is satisfied.
3.250 <(d1t-d1w) / fw <4.200
However,
fw: focal length of the variable magnification optical system in the wide-angle end state d1w: distance from the most image-side lens surface in the first lens group to the most object-side lens surface in the second lens group in the wide-angle end state d1t: Distance from the most image side lens surface in the first lens group to the most object side lens surface in the second lens group in the telephoto end state
以下の条件式を満足することを特徴とする請求項1から請求項5のいずれか一項に記載の変倍光学系。
0.160 < (d3t−d3w)/fw < 0.550
但し、
fw :広角端状態における前記変倍光学系の焦点距離
d3w:広角端状態における前記第3レンズ群中の最も像側のレンズ面から前記第4レンズ群中の最も物体側のレンズ面までの距離
d3t:望遠端状態における前記第3レンズ群中の最も像側のレンズ面から前記第4レンズ群中の最も物体側のレンズ面までの距離
The zoom lens system according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
0.160 <(d3t−d3w) / fw <0.550
However,
fw: focal length of the zoom optical system in the wide-angle end state d3w: distance from the most image-side lens surface in the third lens group to the most object-side lens surface in the fourth lens group in the wide-angle end state d3t: Distance from the most image side lens surface in the third lens group to the most object side lens surface in the fourth lens group in the telephoto end state
以下の条件式を満足することを特徴とする請求項1から請求項6のいずれか一項に記載の変倍光学系。
0.140 < (d2it−d2iw)/fw < 0.700
但し、
fw :広角端状態における前記変倍光学系の焦点距離
d2iw:広角端状態における前記第2レンズ群中の最も像側のレンズ面から像面までの距離
d2it:望遠端状態における前記第2レンズ群中の最も像側のレンズ面から像面までの距離
The zoom lens system according to any one of claims 1 to 6, wherein the following conditional expression is satisfied.
0.140 <(d2it−d2iw) / fw <0.700
However,
fw: focal length of the variable magnification optical system in the wide-angle end state d2iw: distance from the most image side lens surface to the image plane in the second lens group in the wide-angle end state d2it: the second lens group in the telephoto end state The distance from the lens surface closest to the image side to the image surface
前記第3レンズ群が2枚のレンズからなることを特徴とする請求項1から請求項7のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 7, wherein the third lens group includes two lenses. 以下の条件式を満足することを特徴とする請求項1から請求項8のいずれか一項に記載の変倍光学系。
0.200 < f3/f4 < 0.650
但し、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
0.200 <f3 / f4 <0.650
However,
f3: focal length of the third lens group f4: focal length of the fourth lens group
以下の条件式を満足することを特徴とする請求項1から請求項9のいずれか一項に記載の変倍光学系。
0.780 < f1/f4 < 1.300
但し、
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
The variable magnification optical system according to any one of claims 1 to 9, wherein the following conditional expression is satisfied.
0.780 <f1 / f4 <1.300
However,
f1: Focal length of the first lens group f4: Focal length of the fourth lens group
以下の条件式を満足することを特徴とする請求項1から請求項10のいずれか一項に記載の変倍光学系。
0.050 < (−f2)/f4 < 0.250
但し、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
The zoom lens system according to any one of claims 1 to 10, wherein the following conditional expression is satisfied.
0.050 <(− f2) / f4 <0.250
However,
f2: focal length of the second lens group f4: focal length of the fourth lens group
以下の条件式を満足することを特徴とする請求項1から請求項11のいずれか一項に記載の変倍光学系。
0.740 < (−f2)/fw < 1.120
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f2:前記第2レンズ群の焦点距離
The zoom lens system according to any one of claims 1 to 11, wherein the following conditional expression is satisfied.
0.740 <(− f2) / fw <1.120
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f2: focal length of the second lens group
請求項1から請求項12のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to any one of claims 1 to 12. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、
前記第1レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記開口絞りとの間隔、前記開口絞りと前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記開口絞りと前記第4レンズ群との距離が一定となるようにすることを特徴とする変倍光学系の製造方法。
5.300 < f1/fw < 8.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f1:前記第1レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, a third lens group having a positive refractive power, and a positive refractive power. A variable magnification optical system having a fourth lens group,
The first lens group satisfies the following conditional expression:
At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the aperture stop, the aperture stop and the third lens group And the distance between the third lens group and the fourth lens group are changed so that the distance between the aperture stop and the fourth lens group is constant. Manufacturing method.
5.300 <f1 / fw <8.0000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state f1: focal length of the first lens group
JP2012233969A 2012-10-23 2012-10-23 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method Active JP6031942B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012233969A JP6031942B2 (en) 2012-10-23 2012-10-23 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
PCT/JP2013/078545 WO2014065266A1 (en) 2012-10-23 2013-10-22 Variable magnification optical system, optical device, and method for producing variable magnification optical system
CN201810054204.1A CN108333733B (en) 2012-10-23 2013-10-22 Variable magnification optical system and optical device
CN201380055144.0A CN104755983B (en) 2012-10-23 2013-10-22 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system
CN201810052583.0A CN108227161A (en) 2012-10-23 2013-10-22 Variable-power optical system and Optical devices
US14/693,916 US9709779B2 (en) 2012-10-23 2015-04-23 Variable magnification optical system, optical device, and method for producing variable magnification
US15/636,616 US20170299849A1 (en) 2012-10-23 2017-06-28 Variable magnification optical system, optical device, and method for producing variable magnification
US15/988,845 US10948700B2 (en) 2012-10-23 2018-05-24 Variable magnification optical system, optical device, and method for producing variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233969A JP6031942B2 (en) 2012-10-23 2012-10-23 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Publications (2)

Publication Number Publication Date
JP2014085496A true JP2014085496A (en) 2014-05-12
JP6031942B2 JP6031942B2 (en) 2016-11-24

Family

ID=50788609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233969A Active JP6031942B2 (en) 2012-10-23 2012-10-23 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Country Status (1)

Country Link
JP (1) JP6031942B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075361A (en) * 1993-06-15 1995-01-10 Olympus Optical Co Ltd Zoom lens
JPH0850244A (en) * 1994-08-05 1996-02-20 Canon Inc Zoom lens having high variable power ratio
JPH10133111A (en) * 1996-10-25 1998-05-22 Nikon Corp Inner focal type zoom lens
JPH10282413A (en) * 1997-04-01 1998-10-23 Canon Inc Zoom lens having vibration compensating function
JPH11109241A (en) * 1997-10-03 1999-04-23 Minolta Co Ltd Zoom lens system
JP2000347102A (en) * 1999-06-04 2000-12-15 Konica Corp Zoom lens
JP2001318312A (en) * 2000-03-02 2001-11-16 Ricoh Co Ltd Zoom lens
JP2002072089A (en) * 2000-09-04 2002-03-12 Minolta Co Ltd Imaging device
JP2002228931A (en) * 2001-01-30 2002-08-14 Matsushita Electric Ind Co Ltd Zoom lens and video camera using the same
JP2004286811A (en) * 2003-03-19 2004-10-14 Ricoh Co Ltd Zoom lens, camera, and mobile information terminal device
JP2007047538A (en) * 2005-08-11 2007-02-22 Konica Minolta Photo Imaging Inc Imaging optical system and imaging apparatus
JP2010002684A (en) * 2008-06-20 2010-01-07 Olympus Imaging Corp Zoom lens and image capturing apparatus using the same
JP2012181525A (en) * 2011-02-28 2012-09-20 Tamron Optical (Foshan) Co Ltd Zoom lens

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075361A (en) * 1993-06-15 1995-01-10 Olympus Optical Co Ltd Zoom lens
JPH0850244A (en) * 1994-08-05 1996-02-20 Canon Inc Zoom lens having high variable power ratio
JPH10133111A (en) * 1996-10-25 1998-05-22 Nikon Corp Inner focal type zoom lens
JPH10282413A (en) * 1997-04-01 1998-10-23 Canon Inc Zoom lens having vibration compensating function
JPH11109241A (en) * 1997-10-03 1999-04-23 Minolta Co Ltd Zoom lens system
JP2000347102A (en) * 1999-06-04 2000-12-15 Konica Corp Zoom lens
JP2001318312A (en) * 2000-03-02 2001-11-16 Ricoh Co Ltd Zoom lens
JP2002072089A (en) * 2000-09-04 2002-03-12 Minolta Co Ltd Imaging device
JP2002228931A (en) * 2001-01-30 2002-08-14 Matsushita Electric Ind Co Ltd Zoom lens and video camera using the same
JP2004286811A (en) * 2003-03-19 2004-10-14 Ricoh Co Ltd Zoom lens, camera, and mobile information terminal device
JP2007047538A (en) * 2005-08-11 2007-02-22 Konica Minolta Photo Imaging Inc Imaging optical system and imaging apparatus
JP2010002684A (en) * 2008-06-20 2010-01-07 Olympus Imaging Corp Zoom lens and image capturing apparatus using the same
JP2012181525A (en) * 2011-02-28 2012-09-20 Tamron Optical (Foshan) Co Ltd Zoom lens

Also Published As

Publication number Publication date
JP6031942B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2014065264A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP6182868B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6127462B2 (en) Variable magnification optical system, optical device
WO2014112176A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP6205702B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6102269B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6098176B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6060616B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6268697B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2014065266A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP6662419B2 (en) Variable power optical system, optical device
JP6160060B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6070055B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2014069447A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2014089288A (en) Variable power optical system, optical device, and method of manufacturing variable power optical system
JP6060615B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6060614B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2017102487A (en) Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP6031942B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2014069448A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP2014085489A (en) Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2019204136A (en) Zoom optical system and optical device
JP2019144563A (en) Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP2020034955A (en) Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2014089290A (en) Variable power optical system, optical device, and method of manufacturing variable power optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R150 Certificate of patent or registration of utility model

Ref document number: 6031942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250