JP2014085490A - Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system - Google Patents

Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system Download PDF

Info

Publication number
JP2014085490A
JP2014085490A JP2012233963A JP2012233963A JP2014085490A JP 2014085490 A JP2014085490 A JP 2014085490A JP 2012233963 A JP2012233963 A JP 2012233963A JP 2012233963 A JP2012233963 A JP 2012233963A JP 2014085490 A JP2014085490 A JP 2014085490A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
variable magnification
end state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012233963A
Other languages
Japanese (ja)
Other versions
JP6070053B2 (en
Inventor
Masafumi Yamashita
雅史 山下
Akihiko Kohama
昭彦 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012233963A priority Critical patent/JP6070053B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to CN201710561371.0A priority patent/CN107390353A/en
Priority to CN201710560719.4A priority patent/CN107450170A/en
Priority to PCT/JP2013/078539 priority patent/WO2014065264A1/en
Priority to CN201710560940.XA priority patent/CN107450172A/en
Priority to CN201380055140.2A priority patent/CN104797969B/en
Publication of JP2014085490A publication Critical patent/JP2014085490A/en
Priority to US14/693,920 priority patent/US9989744B2/en
Application granted granted Critical
Publication of JP6070053B2 publication Critical patent/JP6070053B2/en
Priority to US15/981,523 priority patent/US10831007B2/en
Priority to US16/935,189 priority patent/US11892610B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a compact variable magnification optical system and an optical device which exhibit a high variable magnification ratio, and good optical performances, and to provide a manufacturing method for the variable magnification optical system.SOLUTION: A variable magnification optical system comprises a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, a third lens group G3 having a positive refractive power, and a rear lens group GR in this order from the object side. When magnification from a wide angle-end state to a telephoto end state, at least the rear lens group GR moves toward the object side and a distance between the first lens group G1 and the second lens group G2, a distance between the second lens group G2 and the third lens group G3, and a distance between the third lens group G3 and the rear lens group GR are changed. The entire third lens group G3 moves along an optical axis when shifting a focus from an object at infinity to an object at a short distance. At least some lenses of the rear lens group GR function as an anti-vibration lens group by moving in a direction having a component perpendicular to the optical axis. The anti-vibration lens group has a negative refractive power.

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照。)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開2009−251114号公報JP 2009-251114 A

しかしながら、上述のような従来の変倍光学系は、高変倍比化、小型化及び高性能化が十分に図られていないという問題があった。   However, the conventional variable magnification optical system as described above has a problem that a high variable magnification ratio, size reduction, and high performance are not sufficiently achieved.

そこで本発明は上記問題点に鑑みてなされたものであり、高変倍比を有し、小型で、良好な光学性能を備えた変倍光学系、光学装置、及び変倍光学系の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and has a high zoom ratio, a small size, and a good optical performance, a zoom optical system, an optical device, and a zoom optical system manufacturing method The purpose is to provide.

上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、後側レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、少なくとも前記後側レンズ群が物体側へ移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記後側レンズ群との間隔が変化し、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群全体が光軸方向へ移動し、
前記後側レンズ群中の少なくとも一部のレンズが防振レンズ群として光軸と直交する方向の成分を含むように移動し、
前記防振レンズ群が負の屈折力を有することを特徴とする変倍光学系を提供する。
In order to solve the above problems, the present invention
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, a third lens group having a positive refractive power, and a rear lens group, Have
At the time of zooming from the wide-angle end state to the telephoto end state, at least the rear lens group moves toward the object side, the distance between the first lens group and the second lens group, the second lens group and the third lens group. The distance between the lens group, and the distance between the third lens group and the rear lens group,
When focusing from an object at infinity to a near object, the entire third lens group moves in the optical axis direction,
At least a part of the lenses in the rear lens group moves so as to include a component in a direction orthogonal to the optical axis as an anti-vibration lens group,
There is provided a variable magnification optical system characterized in that the anti-vibration lens group has a negative refractive power.

また本発明は、
前記変倍光学系を有することを特徴とする光学装置を提供する。
The present invention also provides
Provided is an optical device comprising the variable magnification optical system.

また本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、後側レンズ群とを有する変倍光学系の製造方法であって、
広角端状態から望遠端状態への変倍時に、少なくとも前記後側レンズ群が物体側へ移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記後側レンズ群との間隔が変化するようにし、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群全体が光軸方向へ移動するようにし、
前記後側レンズ群中の少なくとも一部のレンズが防振レンズ群として光軸と直交する方向の成分を含むように移動するようにし、
前記防振レンズ群が負の屈折力を有するようにすることを特徴とする変倍光学系の製造方法を提供する。
The present invention also provides
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, a third lens group having a positive refractive power, and a rear lens group, A method of manufacturing a variable magnification optical system having
At the time of zooming from the wide-angle end state to the telephoto end state, at least the rear lens group moves toward the object side, the distance between the first lens group and the second lens group, the second lens group and the third lens group. The distance between the lens group and the distance between the third lens group and the rear lens group are changed,
The entire third lens group is moved in the optical axis direction when focusing from an object at infinity to an object at a short distance,
At least a part of the lenses in the rear lens group is moved so as to include a component in a direction orthogonal to the optical axis as an anti-vibration lens group,
A method of manufacturing a variable magnification optical system is provided in which the vibration-proof lens group has negative refractive power.

本発明によれば、高変倍比を有し、小型で、良好な光学性能を備えた変倍光学系、光学装置、及び変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable magnification optical system, an optical device, and a variable magnification optical system manufacturing method that have a high variable magnification ratio, are small, and have good optical performance.

(a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views in the wide-angle end state, intermediate focal length state, and telephoto end state, respectively, of the variable magnification optical system according to the first example of the present application. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various figures at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional lateral aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the first example of the present application. It is. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views of the variable magnification optical system according to the second example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional transverse aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the second example of the present application. It is. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views of the variable magnification optical system according to the third example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional transverse aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the third example of the present application. It is. 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system of this application.

以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、後側レンズ群とを有し、広角端状態から望遠端状態への変倍時に、少なくとも前記後側レンズ群が物体側へ移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記後側レンズ群との間隔が変化し、無限遠物体から近距離物体への合焦時に、前記第3レンズ群全体が光軸方向へ移動し、前記後側レンズ群中の少なくとも一部のレンズが防振レンズ群として光軸と直交する方向の成分を含むように移動し、前記防振レンズ群が負の屈折力を有することを特徴としている。
Hereinafter, a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system of the present application will be described.
The variable magnification optical system of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a third lens having a positive refractive power. And a rear lens group. At the time of zooming from the wide-angle end state to the telephoto end state, at least the rear lens group moves to the object side, and the first lens group and the second lens group , The distance between the second lens group and the third lens group, and the distance between the third lens group and the rear lens group are changed, and when focusing from an object at infinity to a near object, The entire third lens group is moved in the optical axis direction, and at least a part of the lenses in the rear lens group is moved so as to include a component in a direction orthogonal to the optical axis as the anti-vibration lens group. The lens group has a negative refractive power.

上記のように本願の変倍光学系は、無限遠物体から近距離物体への合焦を、開口絞りの近傍に位置するレンズ群である第3レンズ群全体を光軸方向へ移動させることによって行う。この構成により、近距離物体合焦時の像面湾曲の変動を抑えることができるので好ましい。
上記のように本願の変倍光学系は、後側レンズ群中の少なくとも一部のレンズが防振レンズ群として光軸と直交する方向の成分を含むように移動し、防振レンズ群が負の屈折力を有する。これにより、手ぶれ発生時の像ぶれの補正、即ち防振を行うことができる。また、小径のレンズ群で防振を行うことができるため、防振機構の小型軽量化、延いてはレンズ鏡筒の小型化を図ることができるので好ましい。
以上の構成により、高変倍比を有し、小型で、良好な光学性能を備えた変倍光学系を実現することができる。
As described above, the variable magnification optical system of the present application moves the entire third lens unit, which is a lens unit located in the vicinity of the aperture stop, in the optical axis direction by focusing from an object at infinity to a close object. Do. This configuration is preferable because fluctuations in field curvature when focusing on a short-distance object can be suppressed.
As described above, the variable magnification optical system of the present application moves so that at least a part of the lenses in the rear lens group includes a component in a direction orthogonal to the optical axis as the anti-vibration lens group, and the anti-vibration lens group is negative. Have a refractive power of. Thereby, it is possible to correct image blur when camera shake occurs, that is, to perform image stabilization. In addition, since it is possible to perform vibration isolation with a small-diameter lens group, it is preferable because the vibration isolation mechanism can be reduced in size and weight, and thus the lens barrel can be reduced in size.
With the above configuration, a variable power optical system having a high zoom ratio, a small size, and good optical performance can be realized.

また本願の変倍光学系は、以下の条件式(1)を満足することが望ましい。
(1) 0.60 < f1/f3 < 2.60
但し、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (1).
(1) 0.60 <f1 / f3 <2.60
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group

条件式(1)は、第3レンズ群の焦点距離に対する第1レンズ群の焦点距離を規定したものである。本願の変倍光学系は、条件式(1)を満足することにより、望遠端状態における近距離物体合焦時の球面収差と、望遠端状態における球面収差を良好に補正することができる。
本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、第3レンズ群の屈折力が大きくなる。このため、望遠端状態における近距離物体合焦時の球面収差を補正することが困難になってしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(1)の上限値を2.50とすることがより好ましい。
一方、本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなる。このため、望遠端状態において球面収差の発生を招いてしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(1)の下限値を0.40とすることがより好ましい。
Conditional expression (1) defines the focal length of the first lens group with respect to the focal length of the third lens group. By satisfying conditional expression (1), the variable magnification optical system of the present application can satisfactorily correct spherical aberration at the time of focusing on a short distance object in the telephoto end state and spherical aberration in the telephoto end state.
When the corresponding value of conditional expression (1) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the third lens group increases. For this reason, it is difficult to correct spherical aberration when focusing on a short-distance object in the telephoto end state, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 2.50.
On the other hand, when the corresponding value of conditional expression (1) of the variable magnification optical system of the present application is lower than the lower limit value, the refractive power of the first lens unit increases. For this reason, spherical aberration is caused in the telephoto end state, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1) to 0.40.

また本願の変倍光学系は、以下の条件式(2)を満足することが望ましい。
(2) 5.00 < f1/(−f2) < 10.00
但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (2).
(2) 5.00 <f1 / (− f2) <10.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

条件式(2)は、第2レンズ群の焦点距離に対して第1レンズ群の焦点距離を規定したものである。本願の変倍光学系は、条件式(2)を満足することにより、広角端状態における像面湾曲と、望遠端状態における球面収差を良好に補正することができる。
本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、第2レンズ群の屈折力が大きくなる。このため、広角端状態において像面湾曲を補正することが困難になってしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(2)の上限値を8.00とすることがより好ましい。
一方、本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなる。このため、望遠端状態において球面収差の発生を招いてしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(2)の下限値を6.00とすることがより好ましい。
Conditional expression (2) defines the focal length of the first lens group with respect to the focal length of the second lens group. The variable magnification optical system of the present application can satisfactorily correct the field curvature in the wide-angle end state and the spherical aberration in the telephoto end state by satisfying conditional expression (2).
When the corresponding value of conditional expression (2) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the second lens group increases. This is not preferable because it becomes difficult to correct curvature of field in the wide-angle end state. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 8.00.
On the other hand, when the corresponding value of conditional expression (2) of the variable magnification optical system of the present application is lower than the lower limit value, the refractive power of the first lens group increases. For this reason, spherical aberration is caused in the telephoto end state, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 6.00.

また本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 0.20 < (−fVR)/f3 < 1.20
但し、
fVR:前記防振レンズ群の焦点距離
f3 :前記第3レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (3).
(3) 0.20 <(− fVR) / f3 <1.20
However,
fVR: focal length of the image stabilizing lens group f3: focal length of the third lens group

条件式(3)は、第3レンズ群の焦点距離に対して防振レンズ群の焦点距離を規定したものである。本願の変倍光学系は、条件式(3)を満足することにより、望遠端状態における近距離物体合焦時の球面収差と、防振時の偏芯コマ収差を良好に補正することができる。
本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、第3レンズ群の屈折力が大きくなる。このため、望遠端状態における近距離物体合焦時の球面収差を補正することが困難になってしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(3)の上限値を1.00とすることがより好ましい。
一方、本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、防振レンズ群の屈折力が大きくなる。このため、防振時に偏芯コマ収差の発生を招いてしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(3)の下限値を0.40とすることがより好ましい。
Conditional expression (3) defines the focal length of the image stabilizing lens group with respect to the focal length of the third lens group. By satisfying conditional expression (3), the variable magnification optical system of the present application can satisfactorily correct spherical aberration at the time of focusing on a short distance object in the telephoto end state and decentering coma aberration at the time of image stabilization. .
When the corresponding value of conditional expression (3) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the third lens group increases. For this reason, it is difficult to correct spherical aberration when focusing on a short-distance object in the telephoto end state, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 1.00.
On the other hand, when the corresponding value of conditional expression (3) of the variable magnification optical system of the present application is lower than the lower limit value, the refractive power of the image stabilizing lens group is increased. For this reason, the occurrence of decentration coma aberration is caused at the time of image stabilization, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 0.40.

また本願の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.10 < (−f2)/f3 < 0.38
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (4).
(4) 0.10 <(− f2) / f3 <0.38
However,
f2: focal length of the second lens group f3: focal length of the third lens group

条件式(4)は、第3レンズ群の焦点距離に対して第2レンズ群の焦点距離を規定したものである。本願の変倍光学系は、条件式(4)を満足することにより、望遠端状態における近距離物体合焦時の球面収差と、広角端状態における像面湾曲を良好に補正することができる。
本願の変倍光学系の条件式(4)の対応値が上限値を上回ると、第3レンズ群の屈折力が大きくなる。このため、望遠端状態における近距離物体合焦時の球面収差を補正することが困難になってしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(4)の上限値を0.36とすることがより好ましい。
一方、本願の変倍光学系の条件式(4)の対応値が下限値を下回ると、第2レンズ群の屈折力が大きくなる。このため、広角端状態において像面湾曲を補正することが困難になってしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(4)の下限値を0.15とすることがより好ましい。
Conditional expression (4) defines the focal length of the second lens group with respect to the focal length of the third lens group. By satisfying conditional expression (4), the variable magnification optical system of the present application can satisfactorily correct the spherical aberration when focusing on a short distance object in the telephoto end state and the curvature of field in the wide angle end state.
When the corresponding value of conditional expression (4) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the third lens group increases. For this reason, it is difficult to correct spherical aberration when focusing on a short-distance object in the telephoto end state, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4) to 0.36.
On the other hand, when the corresponding value of conditional expression (4) of the variable magnification optical system of the present application is lower than the lower limit value, the refractive power of the second lens group increases. This is not preferable because it becomes difficult to correct curvature of field in the wide-angle end state. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 0.15.

また本願の変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5) 0.42 < f3/fR < 0.80
但し、
f3:前記第3レンズ群の焦点距離
fR:広角端状態における前記後側レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (5).
(5) 0.42 <f3 / fR <0.80
However,
f3: focal length of the third lens group fR: focal length of the rear lens group in the wide-angle end state

条件式(5)は、第3レンズ群の焦点距離に対して広角端状態における後側レンズ群の焦点距離を規定したものである。なお、後側レンズ群が複数のレンズ群で構成される場合には、fRは当該複数のレンズ群の広角端状態における合成焦点距離を示す。本願の変倍光学系は、条件式(5)を満足することにより、望遠端状態における近距離物体合焦時の球面収差と、防振時の偏芯コマ収差を良好に補正することができる。
本願の変倍光学系の条件式(5)の対応値が上限値を上回ると、第3レンズ群の屈折力が大きくなる。このため、望遠端状態における近距離物体合焦時の球面収差を補正することが困難になってしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(5)の上限値を1.00とすることがより好ましい。
一方、本願の変倍光学系の条件式(5)の対応値が下限値を下回ると、後側レンズ群の屈折力が大きくなる。このため、防振時に偏芯コマ収差の発生を招いてしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(5)の下限値を0.40とすることがより好ましい。
Conditional expression (5) defines the focal length of the rear lens unit in the wide-angle end state with respect to the focal length of the third lens unit. When the rear lens group is composed of a plurality of lens groups, fR indicates the combined focal length in the wide-angle end state of the plurality of lens groups. By satisfying conditional expression (5), the variable magnification optical system of the present application can satisfactorily correct the spherical aberration at the time of focusing on a short distance object in the telephoto end state and the decentering coma aberration at the time of image stabilization. .
When the corresponding value of conditional expression (5) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the third lens group increases. For this reason, it is difficult to correct spherical aberration when focusing on a short-distance object in the telephoto end state, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5) to 1.00.
On the other hand, when the corresponding value of conditional expression (5) of the variable magnification optical system of the present application is lower than the lower limit value, the refractive power of the rear lens unit increases. For this reason, the occurrence of decentration coma aberration is caused at the time of image stabilization, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5) to 0.40.

また本願の変倍光学系は、前記防振レンズ群が正レンズと負レンズとからなる接合レンズで構成されていることが望ましい。この構成により、防振時の偏芯コマ収差を良好に補正することができる。   In the variable power optical system of the present application, it is desirable that the image stabilizing lens group is composed of a cemented lens including a positive lens and a negative lens. With this configuration, it is possible to satisfactorily correct decentration coma during image stabilization.

また本願の変倍光学系は、前記第1レンズ群が以下の条件式(6)を満足する負レンズを有することが望ましい。
(6) 1.90 < nd1
但し、
nd1:前記第1レンズ群中の前記負レンズのd線(波長587.6nm)に対する屈折率
In the variable magnification optical system of the present application, it is desirable that the first lens group has a negative lens that satisfies the following conditional expression (6).
(6) 1.90 <nd1
However,
nd1: Refractive index for the d-line (wavelength 587.6 nm) of the negative lens in the first lens group

条件式(6)は、第1レンズ群中の前記負レンズのd線(波長587.6nm)に対する屈折率を規定したものである。本願の変倍光学系は、条件式(6)を満足することにより、望遠端状態において球面収差を良好に補正することができる。
本願の変倍光学系の条件式(6)の対応値が下限値を下回ると、望遠端状態において球面収差を補正することが困難になってしまうので好ましくない。なお、本願の効果をより確実にするために、条件式(6)の下限値を1.92とすることがより好ましい。
Conditional expression (6) defines the refractive index for the d-line (wavelength 587.6 nm) of the negative lens in the first lens group. The variable magnification optical system of the present application can satisfactorily correct spherical aberration in the telephoto end state by satisfying conditional expression (6).
If the corresponding value of conditional expression (6) of the variable magnification optical system of the present application is below the lower limit value, it is difficult to correct spherical aberration in the telephoto end state, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (6) to 1.92.

また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群が光軸方向へ移動することが望ましい。この構成により、像面湾曲を良好に補正することができる。   In the zoom optical system of the present application, it is preferable that the second lens group moves in the optical axis direction when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to favorably correct curvature of field.

また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸方向へ移動することが望ましい。この構成により、球面収差を良好に補正することができる。   In the zoom optical system of the present application, it is desirable that the third lens group moves in the optical axis direction when zooming from the wide-angle end state to the telephoto end state. With this configuration, spherical aberration can be corrected satisfactorily.

また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群が光軸方向へ移動することが望ましい。この構成により、さらなる高変倍比化を達成することができる。   In the zoom optical system according to the present application, it is desirable that the first lens group moves in the optical axis direction when zooming from the wide-angle end state to the telephoto end state. With this configuration, a further higher zoom ratio can be achieved.

本願の光学装置は、上述した構成の変倍光学系を有することを特徴としている。これにより、高変倍比を有し、小型で、良好な光学性能を備えた光学装置を実現することができる。   The optical device of the present application is characterized by having the variable magnification optical system having the above-described configuration. As a result, an optical device having a high zoom ratio, a small size, and good optical performance can be realized.

本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、後側レンズ群とを有する変倍光学系の製造方法であって、広角端状態から望遠端状態への変倍時に、少なくとも前記後側レンズ群が物体側へ移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記後側レンズ群との間隔が変化するようにし、無限遠物体から近距離物体への合焦時に、前記第3レンズ群全体が光軸方向へ移動するようにし、前記後側レンズ群中の少なくとも一部のレンズが防振レンズ群として光軸と直交する方向の成分を含むように移動するようにし、前記防振レンズ群が負の屈折力を有するようにすることを特徴としている。これにより、高変倍比を有し、小型で、良好な光学性能を備えた変倍光学系を製造することができる。   The variable magnification optical system manufacturing method of the present application has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, and a positive refractive power. A method of manufacturing a zoom optical system having a third lens group and a rear lens group, wherein at least the rear lens group moves to the object side during zooming from the wide-angle end state to the telephoto end state, The distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the distance between the third lens group and the rear lens group are changed. The entire third lens group is moved in the optical axis direction when focusing from an object at infinity to an object at short distance, and at least a part of the lenses in the rear lens group is used as an anti-vibration lens group. The anti-vibration lens moves so as to include a component in a direction orthogonal to There is characterized in that to have a negative refractive power. As a result, it is possible to manufacture a variable magnification optical system that has a high variable magnification ratio, is small, and has good optical performance.

以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1(a)、図1(b)、及び図1(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する後側レンズ群GRとから構成されている。なお、後側レンズ群GRは、物体側から順に、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
Hereinafter, a variable magnification optical system according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
1A, 1B, and 1C are cross-sectional views of the zoom optical system according to the first example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a rear lens group GR having positive refractive power. The rear lens group GR includes, in order from the object side, a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、第2レンズ群G2において最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面を非球面形状とした非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface directed toward the object side, in order from the object side. And a negative meniscus lens L24. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric lens surface on the object side.
The third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side. An aperture stop S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、正の屈折力を有する第1部分群G41と、負の屈折力を有する第2部分群G42とからなる。
第1部分群G41は、物体側から順に、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合レンズからなる。
第2部分群G42は、物体側から順に、両凹形状の負レンズL43と物体側に凸面を向けた正メニスカスレンズL44との接合レンズからなる。なお、第2部分群G42において最も物体側に位置する負レンズL43は、物体側のレンズ面を非球面形状とした非球面レンズである。
第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズとからなる。なお、第5レンズ群G5において最も物体側に位置する正レンズL51は、物体側のレンズ面を非球面形状とした非球面レンズである。
The fourth lens group G4 includes, in order from the object side, a first partial group G41 having a positive refractive power and a second partial group G42 having a negative refractive power.
The first partial group G41 includes, in order from the object side, a cemented lens of a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
The second partial group G42 includes, in order from the object side, a cemented lens of a biconcave negative lens L43 and a positive meniscus lens L44 having a convex surface directed toward the object side. The negative lens L43 located closest to the object side in the second partial group G42 is an aspheric lens having an aspheric lens surface on the object side.
The fifth lens group G5 includes, in order from the object side, a biconvex positive lens L51, a cemented lens of a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object. The positive lens L51 located closest to the object side in the fifth lens group G5 is an aspheric lens having an aspheric lens surface on the object side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が変化し、第4レンズ群G4と第5レンズ群G5との空気間隔が減少するように、第1レンズ群G1、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5が光軸に沿って物体側へ移動し、第2レンズ群G2及び開口絞りSが光軸に沿って移動する。
また本実施例に係る変倍光学系は、第3レンズ群G3全体を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
With the above configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The air gap between the second lens group G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 changes, and the fourth lens group G4 and the fifth lens group G5 change. The first lens group G1, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 move toward the object side along the optical axis so that the air gap decreases, and the second lens group G2 and the aperture The stop S moves along the optical axis.
The variable magnification optical system according to the present example performs focusing from an object at infinity to a short-distance object by moving the entire third lens group G3 along the optical axis toward the image side.

また本実施例に係る変倍光学系は、手ぶれ等の発生時に、第4レンズ群G4中の第2部分群G42のみを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
ここで、レンズ全系の焦点距離がf、防振係数(防振時の防振レンズ群の移動量に対する像面I上での像の移動量の比)がKであるレンズにおいて、角度θの回転ぶれを補正するためには、防振レンズ群を(f・tanθ)/Kだけ光軸と直交する方向へ移動させればよい。
したがって、本実施例に係る変倍光学系は、広角端状態において防振係数が−1.03、焦点距離が10.30(mm)であるため、0.62°の回転ぶれを補正するための第2部分群G42の移動量は−0.11(mm)となる。また、望遠端状態においては防振係数が−1.87、焦点距離が97.00(mm)であるため、0.20°の回転ぶれを補正するための第2部分群G42の移動量は−0.18(mm)となる。
In addition, the zoom optical system according to the present example moves so as to include a component in a direction perpendicular to the optical axis using only the second partial group G42 in the fourth lens group G4 as an anti-vibration lens group when camera shake or the like occurs. To prevent vibration.
Here, in a lens in which the focal length of the entire lens system is f and the image stabilization coefficient (ratio of the image movement amount on the image plane I to the movement amount of the image stabilization lens group during image stabilization) is K, the angle θ In order to correct the rotational blur of the lens, the anti-vibration lens group may be moved in a direction orthogonal to the optical axis by (f · tan θ) / K.
Therefore, the variable magnification optical system according to the present example has a vibration isolation coefficient of −1.03 and a focal length of 10.30 (mm) in the wide-angle end state, and thus corrects a rotational shake of 0.62 °. The amount of movement of the second partial group G42 is -0.11 (mm). In the telephoto end state, since the image stabilization coefficient is −1.87 and the focal length is 97.00 (mm), the amount of movement of the second subgroup G42 for correcting the rotation blur of 0.20 ° is as follows. -0.18 (mm).

以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。また、非球面には面番号に*を付して曲率半径rの欄には近軸曲率半径を示している。
Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
In Table 1, f indicates the focal length, and BF indicates the back focus (the distance on the optical axis between the lens surface closest to the image side and the image plane I).
In [Surface data], the surface number is the order of the optical surfaces counted from the object side, r is the radius of curvature, d is the surface interval (the interval between the nth surface (n is an integer) and the n + 1th surface), and nd is The refractive index for d-line (wavelength 587.6 nm) and νd indicate the Abbe number for d-line (wavelength 587.6 nm), respectively. In addition, the object plane indicates the object plane, the variable indicates the variable plane spacing, the stop S indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane. Further, the aspherical surface is marked with * as the surface number, and the paraxial radius of curvature is shown in the column of the radius of curvature r.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2
+A4h+A6h+A8h+A10h10
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1−κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, h is the height in the direction perpendicular to the optical axis, x is the distance (sag amount) from the tangent plane of the apex of the aspheric surface to the aspheric surface at the height h, and κ is the conic constant. , A4, A6, A8, A10 are aspherical coefficients, and r is the radius of curvature of the reference sphere (paraxial radius of curvature). “E−n” (n is an integer) indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”. The secondary aspherical coefficient A2 is 0 and is not shown.

[各種データ]において、FNOはFナンバー、2ωは画角(単位は「°」)、Yは像高、TLは変倍光学系の全長(第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔、βは0.45mmの被写体に合焦を行った場合の撮影倍率をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
In [Various data], FNO is the F number, 2ω is the angle of view (unit is “°”), Y is the image height, TL is the total length of the variable magnification optical system (on the optical axis from the first surface to the image surface I) (Distance), dn is a variable distance between the n-th surface and the (n + 1) -th surface, and β is a photographing magnification when a 0.45 mm subject is focused. W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state.
[Lens Group Data] indicates the start surface and focal length of each lens group.
[Conditional Expression Corresponding Value] shows the corresponding value of each conditional expression of the variable magnification optical system according to the present example.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 149.869 1.600 1.94967 27.56
2 44.374 6.840 1.49782 82.51
3 -243.506 0.100 1.00000
4 45.376 5.351 1.86790 41.78
5 311.414 可変 1.00000

*6 89.024 1.200 1.83481 42.73
7 8.490 3.758 1.00000
8 -15.726 1.000 1.83481 42.73
9 250.000 0.100 1.00000
10 25.275 3.293 1.80809 22.74
11 -17.475 0.548 1.00000
12 -12.620 1.000 1.81600 46.59
13 -33.425 可変 1.00000

14(絞りS) ∞ 可変 1.00000

15 29.168 1.000 1.88904 39.77
16 18.240 3.207 1.59313 66.16
17 -26.526 可変 1.00000

18 14.286 3.565 1.49782 82.51
19 -21.978 1.000 1.90200 25.23
20 -82.840 2.205 1.00000
*21 -52.307 1.000 1.84898 43.01
22 9.141 2.692 1.95000 29.37
23 25.864 可変 1.00000

*24 35.441 3.335 1.58913 61.22
25 -21.319 0.300 1.00000
26 42.310 4.403 1.58144 40.98
27 -10.198 1.200 1.95400 33.46
28 -300.472 BF 1.00000
像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10
6 1.00000 3.46E-05 -1.39E-07 -5.60E-11 1.26E-11
21 1.00000 1.74E-06 1.28E-07 -2.64E-09
24 1.00000 -1.23E-05 1.47E-07 -5.49E-10

[各種データ]
変倍比 9.42

W M T
f 10.30 50.00 97.00
FNO 3.50 5.20 5.60
2ω 79.80 18.04 9.37
Y 8.19 8.19 8.19
TL 99.26 129.21 139.68

<無限遠物体合焦時>
W M T
f 10.30 50.00 97.00
d5 2.000 30.682 41.260
d13 18.534 4.142 2.000
d14 3.765 2.963 1.400
d17 3.542 4.343 5.907
d23 8.018 3.307 3.300
BF 14.70 35.08 37.11

<近距離物体合焦時>
W M T
β -0.025 -0.103 -0.153
d5 2.000 30.682 41.260
d13 18.534 4.142 2.000
d14 4.216 4.444 5.211
d17 3.090 2.863 2.096
d23 8.018 3.307 3.300
BF 14.70 35.08 37.11

[レンズ群データ]
群 始面 f
1 1 66.85
2 6 -9.36
3 15 27.88
4 18 -160.92
5 24 33.56
R 18 53.0

[条件式対応値]
(1) f1/f3= 2.40
(2) f1/(−f2)= 7.14
(3) (−fVR)/f3= 0.85
(4) (−f2)/f3= 0.34
(5) f3/fR= 0.53
(6) nd1 = 1.94967
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞
1 149.869 1.600 1.94967 27.56
2 44.374 6.840 1.49782 82.51
3 -243.506 0.100 1.00000
4 45.376 5.351 1.86790 41.78
5 311.414 Variable 1.00000

* 6 89.024 1.200 1.83481 42.73
7 8.490 3.758 1.00000
8 -15.726 1.000 1.83481 42.73
9 250.000 0.100 1.00000
10 25.275 3.293 1.80809 22.74
11 -17.475 0.548 1.00000
12 -12.620 1.000 1.81600 46.59
13 -33.425 Variable 1.00000

14 (Aperture S) ∞ Variable 1.00000

15 29.168 1.000 1.88904 39.77
16 18.240 3.207 1.59313 66.16
17 -26.526 Variable 1.00000

18 14.286 3.565 1.49782 82.51
19 -21.978 1.000 1.90200 25.23
20 -82.840 2.205 1.00000
* 21 -52.307 1.000 1.84898 43.01
22 9.141 2.692 1.95000 29.37
23 25.864 Variable 1.00000

* 24 35.441 3.335 1.58913 61.22
25 -21.319 0.300 1.00000
26 42.310 4.403 1.58144 40.98
27 -10.198 1.200 1.95400 33.46
28 -300.472 BF 1.00000
Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10
6 1.00000 3.46E-05 -1.39E-07 -5.60E-11 1.26E-11
21 1.00000 1.74E-06 1.28E-07 -2.64E-09
24 1.00000 -1.23E-05 1.47E-07 -5.49E-10

[Various data]
Scaling ratio 9.42

W M T
f 10.30 50.00 97.00
FNO 3.50 5.20 5.60
2ω 79.80 18.04 9.37
Y 8.19 8.19 8.19
TL 99.26 129.21 139.68

<When focusing on an object at infinity>
W M T
f 10.30 50.00 97.00
d5 2.000 30.682 41.260
d13 18.534 4.142 2.000
d14 3.765 2.963 1.400
d17 3.542 4.343 5.907
d23 8.018 3.307 3.300
BF 14.70 35.08 37.11

<When focusing on a short-distance object>
W M T
β -0.025 -0.103 -0.153
d5 2.000 30.682 41.260
d13 18.534 4.142 2.000
d14 4.216 4.444 5.211
d17 3.090 2.863 2.096
d23 8.018 3.307 3.300
BF 14.70 35.08 37.11

[Lens group data]
Group start surface f
1 1 66.85
2 6 -9.36
3 15 27.88
4 18 -160.92
5 24 33.56
R 18 53.0

[Conditional expression values]
(1) f1 / f3 = 2.40
(2) f1 / (− f2) = 7.14
(3) (-fVR) /f3=0.85
(4) (-f2) /f3=0.34
(5) f3 / fR = 0.53
(6) nd1 = 1.94967

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図3(a)、及び図3(b)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.62°の回転ぶれに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.20°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
2 (a), 2 (b), and 2 (c) respectively show infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the first example of the present application. It is an aberration diagram at the time of focusing on an object.
FIGS. 3 (a) and 3 (b) each show vibration isolation against 0.62 ° rotational blur when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the first example of the present application. FIG. 6 is a meridional lateral aberration diagram when performing the zooming, and a meridional lateral aberration diagram when performing anti-vibration for 0.20 ° rotation blur when focusing on an object at infinity in the telephoto end state.

各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
In each aberration diagram, FNO represents an F number, and Y represents an image height. d indicates the aberration at the d-line (wavelength 587.6 nm), and g indicates the aberration at the g-line (wavelength 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

(第2実施例)
図4(a)、図4(b)、及び図4(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する後側レンズ群GRとから構成されている。なお、後側レンズ群GRは、物体側から順に、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
(Second embodiment)
FIGS. 4A, 4B, and 4C are cross-sectional views of the zoom optical system according to the second example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a rear lens group GR having positive refractive power. The rear lens group GR includes, in order from the object side, a fourth lens group G4 having a negative refractive power and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、第2レンズ群G2において最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面を非球面形状とした非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a negative surface having a concave surface directed toward the object side. It consists of a cemented lens with a meniscus lens L24. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric lens surface on the object side.
The third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side. An aperture stop S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、正の屈折力を有する第1部分群G41と、負の屈折力を有する第2部分群G42とからなる。
第1部分群G41は、物体側から順に、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合レンズからなる。
第2部分群G42は、物体側から順に、両凹形状の負レンズL43と物体側に凸面を向けた正メニスカスレンズL44との接合レンズからなる。なお、第2部分群G42において最も物体側に位置する負レンズL43は、物体側のレンズ面を非球面形状とした非球面レンズである。
第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合レンズとからなる。なお、第5レンズ群G5において最も物体側に位置する正レンズL51は、物体側のレンズ面を非球面形状とした非球面レンズである。
The fourth lens group G4 includes, in order from the object side, a first partial group G41 having a positive refractive power and a second partial group G42 having a negative refractive power.
The first partial group G41 includes, in order from the object side, a cemented lens of a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
The second partial group G42 includes, in order from the object side, a cemented lens of a biconcave negative lens L43 and a positive meniscus lens L44 having a convex surface directed toward the object side. The negative lens L43 located closest to the object side in the second partial group G42 is an aspheric lens having an aspheric lens surface on the object side.
The fifth lens group G5 includes, in order from the object side, a biconvex positive lens L51, a cemented lens of a biconvex positive lens L52, and a negative meniscus lens L53 having a concave surface facing the object. The positive lens L51 located closest to the object side in the fifth lens group G5 is an aspheric lens having an aspheric lens surface on the object side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が変化し、第4レンズ群G4と第5レンズ群G5との空気間隔が減少するように、第1レンズ群G1、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5が光軸に沿って物体側へ移動し、第2レンズ群G2及び開口絞りSが光軸に沿って移動する。
また本実施例に係る変倍光学系は、第3レンズ群G3全体を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
With the above configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The air gap between the second lens group G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 changes, and the fourth lens group G4 and the fifth lens group G5 change. The first lens group G1, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 move toward the object side along the optical axis so that the air gap decreases, and the second lens group G2 and the aperture The stop S moves along the optical axis.
The variable magnification optical system according to the present example performs focusing from an object at infinity to a short-distance object by moving the entire third lens group G3 along the optical axis toward the image side.

また本実施例に係る変倍光学系は、手ぶれ等の発生時に、第4レンズ群G4中の第2部分群G42のみを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
本実施例に係る変倍光学系は、広角端状態において防振係数が−1.43、焦点距離が10.30(mm)であるため、0.62°の回転ぶれを補正するための第2部分群G42の移動量は−0.08(mm)となる。また、望遠端状態においては防振係数が−2.59、焦点距離が97.00(mm)であるため、0.20°の回転ぶれを補正するための第2部分群G42の移動量は−0.13(mm)となる。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
In addition, the zoom optical system according to the present example moves so as to include a component in a direction perpendicular to the optical axis using only the second partial group G42 in the fourth lens group G4 as an anti-vibration lens group when camera shake or the like occurs. To prevent vibration.
The variable magnification optical system according to the present example has an anti-vibration coefficient of −1.43 and a focal length of 10.30 (mm) in the wide-angle end state. The moving amount of the two subgroup G42 is −0.08 (mm). Further, in the telephoto end state, since the image stabilization coefficient is −2.59 and the focal length is 97.00 (mm), the movement amount of the second subgroup G42 for correcting the rotation blur of 0.20 ° is -0.13 (mm).
Table 2 below provides values of specifications of the variable magnification optical system according to the present example.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 161.271 1.600 1.95000 29.37
2 49.424 6.736 1.49782 82.51
3 -163.134 0.100 1.00000
4 42.661 5.130 1.80400 46.60
5 174.429 可変 1.00000

*6 81.138 1.200 1.81600 46.59
7 8.430 3.674 1.00000
8 -20.479 1.000 1.88300 40.76
9 120.000 0.100 1.00000
10 20.642 3.336 1.80809 22.74
11 -21.855 1.000 1.83481 42.73
12 -2443.660 可変 1.00000

13(絞りS) ∞ 可変 1.00000

14 32.818 1.000 1.95400 33.46
15 12.652 3.417 1.75484 52.35
16 -38.178 可変 1.00000

17 14.363 4.402 1.49782 82.51
18 -19.407 1.000 1.88087 27.51
19 -31.773 2.035 1.00000
*20 -36.627 1.000 1.88300 40.66
21 7.873 2.750 1.95000 29.37
22 20.460 可変 1.00000

*23 34.272 3.115 1.61800 63.34
24 -25.939 0.100 1.00000
25 29.742 4.552 1.58144 40.98
26 -10.558 1.200 1.95400 33.46
27 -228.600 BF 1.00000
像面 ∞

[非球面データ]
面番号 κ A4 A6 A8
6 1.00000 -2.03E-06 2.60E-08 -4.85E-10
20 1.00000 2.72E-05 -6.63E-08
23 1.00000 -9.13E-06 3.14E-08

[各種データ]
変倍比 9.42

W M T
f 10.30 50.00 97.00
FNO 3.50 5.20 5.60
2ω 79.80 18.04 9.37
Y 8.19 8.19 8.19
TL 98.69 127.23 138.71

<無限遠物体合焦時>
W M T
f 10.30 50.00 97.00
d5 2.000 30.607 41.889
d12 18.865 3.375 2.000
d13 5.283 4.127 1.400
d16 2.502 3.658 6.385
d22 7.241 3.302 3.300
BF 14.35 33.71 35.29

<近距離物体合焦時>
W M T
β -0.025 -0.103 -0.152
d5 2.000 30.607 41.889
d12 18.865 3.375 2.000
d13 5.785 5.785 5.774
d16 2.000 2.000 2.011
d22 7.241 3.302 3.300
BF 14.35 33.71 35.29

[レンズ群データ]
群 始面 f
1 1 69.02
2 6 -10.07
3 14 30.75
4 17 -167.27
5 23 28.42
R 17 46.2

[条件式対応値]
(1) f1/f3= 2.24
(2) f1/(−f2)= 6.85
(3) (−fVR)/f3= 0.51
(4) (−f2)/f3= 0.33
(5) f3/fR= 0.67
(6) nd1 = 1.95000
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞
1 161.271 1.600 1.95000 29.37
2 49.424 6.736 1.49782 82.51
3 -163.134 0.100 1.00000
4 42.661 5.130 1.80400 46.60
5 174.429 Variable 1.00000

* 6 81.138 1.200 1.81600 46.59
7 8.430 3.674 1.00000
8 -20.479 1.000 1.88300 40.76
9 120.000 0.100 1.00000
10 20.642 3.336 1.80809 22.74
11 -21.855 1.000 1.83481 42.73
12 -2443.660 Variable 1.00000

13 (Aperture S) ∞ Variable 1.00000

14 32.818 1.000 1.95400 33.46
15 12.652 3.417 1.75484 52.35
16 -38.178 Variable 1.00000

17 14.363 4.402 1.49782 82.51
18 -19.407 1.000 1.88087 27.51
19 -31.773 2.035 1.00000
* 20 -36.627 1.000 1.88300 40.66
21 7.873 2.750 1.95000 29.37
22 20.460 Variable 1.00000

* 23 34.272 3.115 1.61800 63.34
24 -25.939 0.100 1.00000
25 29.742 4.552 1.58144 40.98
26 -10.558 1.200 1.95400 33.46
27 -228.600 BF 1.00000
Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8
6 1.00000 -2.03E-06 2.60E-08 -4.85E-10
20 1.00000 2.72E-05 -6.63E-08
23 1.00000 -9.13E-06 3.14E-08

[Various data]
Scaling ratio 9.42

W M T
f 10.30 50.00 97.00
FNO 3.50 5.20 5.60
2ω 79.80 18.04 9.37
Y 8.19 8.19 8.19
TL 98.69 127.23 138.71

<When focusing on an object at infinity>
W M T
f 10.30 50.00 97.00
d5 2.000 30.607 41.889
d12 18.865 3.375 2.000
d13 5.283 4.127 1.400
d16 2.502 3.658 6.385
d22 7.241 3.302 3.300
BF 14.35 33.71 35.29

<When focusing on a short-distance object>
W M T
β -0.025 -0.103 -0.152
d5 2.000 30.607 41.889
d12 18.865 3.375 2.000
d13 5.785 5.785 5.774
d16 2.000 2.000 2.011
d22 7.241 3.302 3.300
BF 14.35 33.71 35.29

[Lens group data]
Group start surface f
1 1 69.02
2 6 -10.07
3 14 30.75
4 17 -167.27
5 23 28.42
R 17 46.2

[Conditional expression values]
(1) f1 / f3 = 2.24
(2) f1 / (− f2) = 6.85
(3) (-fVR) /f3=0.51
(4) (-f2) /f3=0.33
(5) f3 / fR = 0.67
(6) nd1 = 1.95000

図5(a)、図5(b)、及び図5(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図6(a)、及び図6(b)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.62°の回転ぶれに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.20°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
FIGS. 5 (a), 5 (b), and 5 (c) respectively show infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application. It is an aberration diagram at the time of focusing on an object.
6 (a) and 6 (b) respectively show anti-vibration against rotation blur of 0.62 ° when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the second example of the present application. FIG. 6 is a meridional lateral aberration diagram when performing the zooming, and a meridional lateral aberration diagram when performing anti-vibration for 0.20 ° rotation blur when focusing on an object at infinity in the telephoto end state.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。   From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

(第3実施例)
図7(a)、図7(b)、及び図7(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する後側レンズ群GRとから構成されている。なお、後側レンズ群GRは、正の屈折力を有する第4レンズ群G4からなる。
(Third embodiment)
FIGS. 7A, 7B, and 7C are cross-sectional views of the zoom optical system according to the third example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a rear lens group GR having positive refractive power. The rear lens group GR includes a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた平凸形状の正レンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、第2レンズ群G2において最も物体側に位置する負メニスカスレンズL21は、物体側のガラスレンズ面に樹脂層を設けて非球面を形成した非球面レンズである。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a plano-convex positive lens having a convex surface facing the object side. L13.
In order from the object side, the second lens group G2 includes a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, a biconvex positive lens L23, and a concave surface facing the object side. And a cemented lens with a negative meniscus lens L24. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the glass lens surface on the object side.
The third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side. An aperture stop S is provided on the object side of the third lens group G3.

第4レンズ群G4は、物体側から順に、正の屈折力を有する第1部分群G41と、負の屈折力を有する第2部分群G42と、正の屈折力を有する第3部分群G43とからなる。
第1部分群G41は、物体側から順に、両凸形状の正レンズL401と物体側に凹面を向けた負メニスカスレンズL402との接合レンズからなる。
第2部分群G42は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL403と両凹形状の負レンズL404との接合レンズからなる。なお、第2部分群G42において最も像側に位置する負レンズL404は、像側のレンズ面を非球面形状とした非球面レンズである。
第3部分群G43は、物体側から順に、両凸形状の正レンズL405と、両凸形状の正レンズL406と両凹形状の負レンズL407との接合レンズと、両凸形状の正レンズL408と物体側に凹面を向けた負メニスカスレンズL409との接合レンズと、物体側に凹面を向けた負メニスカスレンズL410とからなる。なお、第3部分群G43において最も像側に位置する負メニスカスレンズL410は、像側のレンズ面を非球面形状とした非球面レンズである。
The fourth lens group G4 includes, in order from the object side, a first partial group G41 having a positive refractive power, a second partial group G42 having a negative refractive power, and a third partial group G43 having a positive refractive power. Consists of.
The first partial group G41 includes, in order from the object side, a cemented lens of a biconvex positive lens L401 and a negative meniscus lens L402 having a concave surface facing the object side.
The second partial group G42 includes, in order from the object side, a cemented lens of a positive meniscus lens L403 having a concave surface facing the object side and a biconcave negative lens L404. The negative lens L404 located closest to the image side in the second partial group G42 is an aspherical lens having an aspherical lens surface on the image side.
The third partial group G43 includes, in order from the object side, a biconvex positive lens L405, a cemented lens of a biconvex positive lens L406 and a biconcave negative lens L407, and a biconvex positive lens L408. It consists of a cemented lens with a negative meniscus lens L409 with a concave surface facing the object side, and a negative meniscus lens L410 with a concave surface facing the object side. Note that the negative meniscus lens L410 located closest to the image side in the third partial group G43 is an aspherical lens having an aspherical lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4が光軸に沿って物体側へ移動し、第2レンズ群G2及び開口絞りSが光軸に沿って移動する。
また本実施例に係る変倍光学系は、第3レンズ群G3全体を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
With the above configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The first lens group G1 and the third lens group G3 so that the air gap between the second lens group G2 and the third lens group G3 decreases and the air gap between the third lens group G3 and the fourth lens group G4 changes. The fourth lens group G4 moves toward the object side along the optical axis, and the second lens group G2 and the aperture stop S move along the optical axis.
The variable magnification optical system according to the present example performs focusing from an object at infinity to a short-distance object by moving the entire third lens group G3 along the optical axis toward the image side.

また本実施例に係る変倍光学系は、手ぶれ等の発生時に、第4レンズ群G4中の第2部分群G42のみを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
本実施例に係る変倍光学系は、広角端状態において防振係数が−0.92、焦点距離が10.30(mm)であるため、0.62°の回転ぶれを補正するための第2部分群G42の移動量は−0.12(mm)となる。また、望遠端状態においては防振係数が−1.68、焦点距離が97.00(mm)であるため、0.20°の回転ぶれを補正するための第2部分群G42の移動量は−0.20(mm)となる。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
In addition, the zoom optical system according to the present example moves so as to include a component in a direction perpendicular to the optical axis using only the second partial group G42 in the fourth lens group G4 as an anti-vibration lens group when camera shake or the like occurs. To prevent vibration.
The variable magnification optical system according to the present example has an anti-vibration coefficient of −0.92 and a focal length of 10.30 (mm) in the wide-angle end state. The moving amount of the two subgroup G42 is −0.12 (mm). In the telephoto end state, since the image stabilization coefficient is −1.68 and the focal length is 97.00 (mm), the movement amount of the second subgroup G42 for correcting the rotation blur of 0.20 ° is -0.20 (mm).
Table 3 below lists values of specifications of the variable magnification optical system according to the present example.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 145.183 1.700 2.00100 29.14
2 36.639 8.100 1.49782 82.57
3 -399.352 0.100 1.00000
4 43.208 6.000 1.88300 40.66
5 ∞ 可変 1.00000

*6 436.597 0.100 1.55389 38.09
7 87.003 1.100 1.83481 42.73
8 8.300 5.350 1.00000
9 -12.607 1.000 1.75500 52.34
10 -32.799 0.800 1.00000
11 41.120 2.950 1.80809 22.74
12 -19.604 0.900 1.88300 40.66
13 -73.132 可変 1.00000

14(絞りS) ∞ 可変 1.00000

15 22.373 0.900 1.90265 35.73
16 12.230 3.450 1.67003 47.14
17 -59.699 可変 1.00000

18 13.739 3.600 1.49782 82.57
19 -24.820 0.900 2.00069 25.46
20 -270.014 2.200 1.00000
21 -117.055 2.050 1.84666 23.80
22 -15.985 1.000 1.77377 47.25
*23 24.175 2.084 1.00000
24 66.365 2.800 1.56883 56.00
25 -15.447 0.100 1.00000
26 44.994 2.750 1.51742 52.20
27 -15.201 0.900 1.90366 31.27
28 29.993 0.300 1.00000
29 14.609 5.050 1.67270 32.19
30 -9.200 0.900 2.00069 25.46
31 -24.389 1.400 1.00000
32 -12.862 1.000 1.85135 40.10
*33 -27.495 BF 1.00000

像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10
6 20.00000 9.17E-05 -6.52E-07 2.70E-09 -1.24E-11
23 0.48230 -7.25E-06 -3.60E-07 4.06E-09
33 -20.00000 -1.23E-04 8.28E-07 -6.05E-09 -9.89E-11

[各種データ]
変倍比 9.42

W M T
f 10.30 30.00 96.99
FNO 4.12 5.48 5.80
2ω 80.89 29.72 9.45
Y 8.19 8.19 8.19
TL 103.03 121.38 143.32

<無限遠物体合焦時>
W M T
f 10.30 30.00 96.99
d5 2.106 20.131 40.209
d13 19.664 6.244 1.800
d14 4.279 4.974 1.800
d17 3.438 2.743 5.916
BF 14.06 27.81 34.12

<近距離物体合焦時>
W M T
β -0.032 -0.068 -0.116
d5 2.106 20.131 40.209
d13 19.664 6.244 1.800
d14 4.983 5.899 5.217
d17 2.733 1.818 2.499
BF 14.06 27.81 34.12

[レンズ群データ]
群 始面 f
1 1 64.10
2 6 -10.17
3 15 31.06
4(R) 18 67.06

[条件式対応値]
(1) f1/f3= 2.06
(2) f1/(−f2)= 6.30
(3) (−fVR)/f3= 0.92
(4) (−f2)/f3= 0.33
(5) f3/fR= 0.46
(6) nd1 = 2.00100
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞
1 145.183 1.700 2.00100 29.14
2 36.639 8.100 1.49782 82.57
3 -399.352 0.100 1.00000
4 43.208 6.000 1.88300 40.66
5 ∞ Variable 1.00000

* 6 436.597 0.100 1.55389 38.09
7 87.003 1.100 1.83481 42.73
8 8.300 5.350 1.00000
9 -12.607 1.000 1.75500 52.34
10 -32.799 0.800 1.00000
11 41.120 2.950 1.80809 22.74
12 -19.604 0.900 1.88300 40.66
13 -73.132 Variable 1.00000

14 (Aperture S) ∞ Variable 1.00000

15 22.373 0.900 1.90265 35.73
16 12.230 3.450 1.67003 47.14
17 -59.699 Variable 1.00000

18 13.739 3.600 1.49782 82.57
19 -24.820 0.900 2.00069 25.46
20 -270.014 2.200 1.00000
21 -117.055 2.050 1.84666 23.80
22 -15.985 1.000 1.77377 47.25
* 23 24.175 2.084 1.00000
24 66.365 2.800 1.56883 56.00
25 -15.447 0.100 1.00000
26 44.994 2.750 1.51742 52.20
27 -15.201 0.900 1.90366 31.27
28 29.993 0.300 1.00000
29 14.609 5.050 1.67270 32.19
30 -9.200 0.900 2.00069 25.46
31 -24.389 1.400 1.00000
32 -12.862 1.000 1.85135 40.10
* 33 -27.495 BF 1.00000

Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10
6 20.00000 9.17E-05 -6.52E-07 2.70E-09 -1.24E-11
23 0.48230 -7.25E-06 -3.60E-07 4.06E-09
33 -20.00000 -1.23E-04 8.28E-07 -6.05E-09 -9.89E-11

[Various data]
Scaling ratio 9.42

W M T
f 10.30 30.00 96.99
FNO 4.12 5.48 5.80
2ω 80.89 29.72 9.45
Y 8.19 8.19 8.19
TL 103.03 121.38 143.32

<When focusing on an object at infinity>
W M T
f 10.30 30.00 96.99
d5 2.106 20.131 40.209
d13 19.664 6.244 1.800
d14 4.279 4.974 1.800
d17 3.438 2.743 5.916
BF 14.06 27.81 34.12

<When focusing on a short-distance object>
W M T
β -0.032 -0.068 -0.116
d5 2.106 20.131 40.209
d13 19.664 6.244 1.800
d14 4.983 5.899 5.217
d17 2.733 1.818 2.499
BF 14.06 27.81 34.12

[Lens group data]
Group start surface f
1 1 64.10
2 6 -10.17
3 15 31.06
4 (R) 18 67.06

[Conditional expression values]
(1) f1 / f3 = 2.06
(2) f1 / (− f2) = 6.30
(3) (-fVR) /f3=0.92
(4) (-f2) /f3=0.33
(5) f3 / fR = 0.46
(6) nd1 = 2.00100

図8(a)、図8(b)、及び図8(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図9(a)、及び図9(b)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.62°の回転ぶれに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.20°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
8 (a), 8 (b), and 8 (c) respectively show infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example of the present application. It is an aberration diagram at the time of focusing on an object.
9 (a) and 9 (b) respectively show anti-vibration against rotation blur of 0.62 ° when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the third example of the present application. FIG. 6 is a meridional lateral aberration diagram when performing the zooming, and a meridional lateral aberration diagram when performing anti-vibration for 0.20 ° rotation blur when focusing on an object at infinity in the telephoto end state.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。   From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

上記各実施例によれば、高変倍比を有し、小型で、良好な光学性能を備えた変倍光学系を実現することができる。特に、各実施例に係る変倍光学系は、防振機能を備えており、変倍比が10倍程度で、小型軽量であり、広角端状態において70°以上の画角を有し、近距離物体合焦時にも収差の変動を良好に補正することができる。   According to each of the above embodiments, it is possible to realize a variable magnification optical system having a high variable magnification ratio, a small size, and good optical performance. In particular, the variable magnification optical system according to each example has an anti-vibration function, has a variable magnification ratio of about 10 times, is small and lightweight, has a field angle of 70 ° or more in the wide-angle end state, It is possible to satisfactorily correct aberration fluctuations when focusing on a distance object.

なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
本願の変倍光学系の数値実施例として4群や5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.
As numerical examples of the variable magnification optical system of the present application, the four-group or five-group configuration is shown, but the present application is not limited to this, and constitutes a variable-magnification optical system having other group configurations (for example, six groups). You can also Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used. The lens group refers to a portion having at least one lens separated by an air interval.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第3レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   In addition, the variable magnification optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group for focusing from an object at infinity to a near object. It is good also as a structure moved to an axial direction. In particular, it is preferable that at least a part of the third lens group is a focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.

また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願の変倍光学系では第4レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   Further, in the variable magnification optical system of the present application, any lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis A configuration in which image blur caused by camera shake or the like is corrected by rotationally moving (swinging) inward is also possible. In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the fourth lens group is an anti-vibration lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第3レンズ群中又は第3レンズ群の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
また、本願の変倍光学系は、変倍比が5〜20程度である。
In the variable magnification optical system of the present application, the aperture stop is preferably arranged in the third lens group or in the vicinity of the third lens group, and the role of the aperture stop is replaced by a lens frame without providing a member. Also good.
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
Further, the zoom optical system of the present application has a zoom ratio of about 5 to 20.

次に、本願の変倍光学系を備えたカメラを図10に基づいて説明する。
図10は、本願の変倍光学系を備えたカメラの構成を示す図である。
図10に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
Next, a camera provided with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 10 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
As shown in FIG. 10, the camera 1 is a so-called mirrorless camera of an interchangeable lens provided with the variable magnification optical system according to the first example as the photographing lens 2.
In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.
When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、高変倍比を有し、小型で、良好な光学性能を備えた変倍光学系である。したがって本カメラ1は、高変倍比化と小型化とを図りながら、良好な光学性能を実現することができる。なお、上記第2、第3実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, the zoom optical system according to the first embodiment mounted as the photographing lens 2 in the camera 1 is a zoom optical system having a high zoom ratio, a small size, and good optical performance. . Accordingly, the present camera 1 can achieve good optical performance while achieving a high zoom ratio and a reduction in size. Even if a camera equipped with the variable magnification optical system according to the second and third examples as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. it can.

最後に、本願の変倍光学系の製造方法の概略を図11に基づいて説明する。
図11に示す本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、後側レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1〜S4を含むものである。
Finally, the outline of the manufacturing method of the variable magnification optical system of this application is demonstrated based on FIG.
The manufacturing method of the variable magnification optical system of the present application shown in FIG. 11 includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, A method for manufacturing a variable magnification optical system having a third lens group having refractive power and a rear lens group, and includes the following steps S1 to S4.

ステップS1:各レンズ群及び開口絞りをレンズ鏡筒内に物体側から順に配置し、レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、少なくとも後側レンズ群が物体側へ移動し、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、及び第3レンズ群と後側レンズ群との間隔が変化するようにする。   Step S1: Each lens group and aperture stop are arranged in order from the object side in the lens barrel, and a known moving mechanism is provided in the lens barrel, for example, at the time of zooming from the wide-angle end state to the telephoto end state. At least the rear lens group moves to the object side, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the distance between the third lens group and the rear lens group. Allow the interval to change.

ステップS2:レンズ鏡筒に公知の移動機構を設ける等することで、無限遠物体から近距離物体への合焦時に、第3レンズ群全体が光軸方向へ移動するようにする。
ステップS3:レンズ鏡筒に公知の移動機構を設ける等することで、後側レンズ群中の少なくとも一部のレンズが防振レンズ群として光軸と直交する方向の成分を含むように移動するようにする。
ステップS4:防振レンズ群が負の屈折力を有するようにする。
Step S2: A known moving mechanism is provided in the lens barrel so that the entire third lens unit moves in the optical axis direction when focusing from an object at infinity to an object at a short distance.
Step S3: By providing a known moving mechanism in the lens barrel, at least a part of the lenses in the rear lens group moves so as to include a component in a direction perpendicular to the optical axis as a vibration-proof lens group. To.
Step S4: The anti-vibration lens group has negative refractive power.

斯かる本願の変倍光学系の製造方法によれば、高変倍比を有し、小型で、良好な光学性能を備えた変倍光学系を製造することができる。   According to the method for manufacturing a variable power optical system of the present application, it is possible to manufacture a variable power optical system that has a high variable power ratio, is small, and has good optical performance.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G41 第1部分群
G42 第2部分群
G43 第3部分群
G5 第5レンズ群
GR 後側レンズ群
S 開口絞り
I 像面
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G41 1st partial group G42 2nd partial group G43 3rd partial group G5 5th lens group GR Rear side lens group S Aperture stop I Image surface

Claims (12)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、後側レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、少なくとも前記後側レンズ群が物体側へ移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記後側レンズ群との間隔が変化し、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群全体が光軸方向へ移動し、
前記後側レンズ群中の少なくとも一部のレンズが防振レンズ群として光軸と直交する方向の成分を含むように移動し、
前記防振レンズ群が負の屈折力を有することを特徴とする変倍光学系。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, a third lens group having a positive refractive power, and a rear lens group, Have
At the time of zooming from the wide-angle end state to the telephoto end state, at least the rear lens group moves toward the object side, the distance between the first lens group and the second lens group, the second lens group and the third lens group. The distance between the lens group, and the distance between the third lens group and the rear lens group,
When focusing from an object at infinity to a near object, the entire third lens group moves in the optical axis direction,
At least a part of the lenses in the rear lens group moves so as to include a component in a direction orthogonal to the optical axis as an anti-vibration lens group,
A variable magnification optical system, wherein the vibration-proof lens group has negative refractive power.
以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
0.60 < f1/f3 < 2.60
但し、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
0.60 <f1 / f3 <2.60
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の変倍光学系。
5.00 < f1/(−f2) < 10.00
但し、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
The zoom lens system according to claim 1 or 2, wherein the following conditional expression is satisfied.
5.00 <f1 / (− f2) <10.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
以下の条件式を満足することを特徴とする請求項1から請求項3のいずれか一項に記載の変倍光学系。
0.20 < (−fVR)/f3 < 1.20
但し、
fVR:前記防振レンズ群の焦点距離
f3 :前記第3レンズ群の焦点距離
The zoom lens system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.20 <(− fVR) / f3 <1.20
However,
fVR: focal length of the image stabilizing lens group f3: focal length of the third lens group
以下の条件式を満足することを特徴とする請求項1から請求項4のいずれか一項に記載の変倍光学系。
0.10 < (−f2)/f3 < 0.38
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
The zoom lens system according to claim 1, wherein the following conditional expression is satisfied.
0.10 <(− f2) / f3 <0.38
However,
f2: focal length of the second lens group f3: focal length of the third lens group
以下の条件式を満足することを特徴とする請求項1から請求項5のいずれか一項に記載の変倍光学系。
0.42 < f3/fR < 0.80
但し、
f3:前記第3レンズ群の焦点距離
fR:広角端状態における前記後側レンズ群の焦点距離
The zoom lens system according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
0.42 <f3 / fR <0.80
However,
f3: focal length of the third lens group fR: focal length of the rear lens group in the wide-angle end state
前記防振レンズ群が正レンズと負レンズとからなる接合レンズで構成されていることを特徴とする請求項1から請求項6のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 6, wherein the vibration-proof lens group includes a cemented lens including a positive lens and a negative lens. 前記第1レンズ群が以下の条件式を満足する負レンズを有することを特徴とする請求項1から請求項7のいずれか一項に記載の変倍光学系。
1.90 < nd1
但し、
nd1:前記第1レンズ群中の前記負レンズのd線(波長587.6nm)に対する屈折率
The variable magnification optical system according to any one of claims 1 to 7, wherein the first lens group includes a negative lens that satisfies the following conditional expression.
1.90 <nd1
However,
nd1: Refractive index for the d-line (wavelength 587.6 nm) of the negative lens in the first lens group
広角端状態から望遠端状態への変倍時に、前記第2レンズ群が光軸方向へ移動することを特徴とする請求項1から請求項8のいずれか一項に記載の変倍光学系。   9. The zoom optical system according to claim 1, wherein the second lens unit moves in the optical axis direction during zooming from the wide-angle end state to the telephoto end state. 10. 広角端状態から望遠端状態への変倍時に、前記第3レンズ群が光軸方向へ移動することを特徴とする請求項1から請求項9のいずれか一項に記載の変倍光学系。   10. The zoom optical system according to claim 1, wherein the third lens unit moves in the optical axis direction during zooming from the wide-angle end state to the telephoto end state. 請求項1から請求項10のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to any one of claims 1 to 10. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、開口絞りと、正の屈折力を有する第3レンズ群と、後側レンズ群とを有する変倍光学系の製造方法であって、
広角端状態から望遠端状態への変倍時に、少なくとも前記後側レンズ群が物体側へ移動し、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記後側レンズ群との間隔が変化するようにし、
無限遠物体から近距離物体への合焦時に、前記第3レンズ群全体が光軸方向へ移動するようにし、
前記後側レンズ群中の少なくとも一部のレンズが防振レンズ群として光軸と直交する方向の成分を含むように移動するようにし、
前記防振レンズ群が負の屈折力を有するようにすることを特徴とする変倍光学系の製造方法。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, an aperture stop, a third lens group having a positive refractive power, and a rear lens group, A method of manufacturing a variable magnification optical system having
At the time of zooming from the wide-angle end state to the telephoto end state, at least the rear lens group moves toward the object side, the distance between the first lens group and the second lens group, the second lens group and the third lens group. The distance between the lens group and the distance between the third lens group and the rear lens group are changed,
The entire third lens group is moved in the optical axis direction when focusing from an object at infinity to an object at a short distance,
At least a part of the lenses in the rear lens group is moved so as to include a component in a direction orthogonal to the optical axis as an anti-vibration lens group,
A method of manufacturing a variable magnification optical system, wherein the vibration-proof lens group has negative refractive power.
JP2012233963A 2012-10-23 2012-10-23 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method Active JP6070053B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012233963A JP6070053B2 (en) 2012-10-23 2012-10-23 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
CN201710560719.4A CN107450170A (en) 2012-10-23 2013-10-22 Variable-power optical system, Optical devices
PCT/JP2013/078539 WO2014065264A1 (en) 2012-10-23 2013-10-22 Variable magnification optical system, optical device, and method for producing variable magnification optical system
CN201710560940.XA CN107450172A (en) 2012-10-23 2013-10-22 Variable-power optical system, Optical devices
CN201710561371.0A CN107390353A (en) 2012-10-23 2013-10-22 Variable-power optical system, Optical devices
CN201380055140.2A CN104797969B (en) 2012-10-23 2013-10-22 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system
US14/693,920 US9989744B2 (en) 2012-10-23 2015-04-23 Variable magnification optical system, optical device, and method for producing variable magnification optical system
US15/981,523 US10831007B2 (en) 2012-10-23 2018-05-16 Variable magnification optical system, optical device, and method for producing variable magnification optical system
US16/935,189 US11892610B2 (en) 2012-10-23 2020-07-22 Variable magnification optical system, optical device, and method for producing variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233963A JP6070053B2 (en) 2012-10-23 2012-10-23 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Publications (2)

Publication Number Publication Date
JP2014085490A true JP2014085490A (en) 2014-05-12
JP6070053B2 JP6070053B2 (en) 2017-02-01

Family

ID=50788603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233963A Active JP6070053B2 (en) 2012-10-23 2012-10-23 Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Country Status (1)

Country Link
JP (1) JP6070053B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894933A (en) * 1994-09-26 1996-04-12 Nikon Corp High magnifying power zoom lens
JPH10197794A (en) * 1997-01-14 1998-07-31 Nikon Corp Zoom lens
JPH11271614A (en) * 1998-03-25 1999-10-08 Nikon Corp Variable focus distance lens system
JP2001194590A (en) * 1999-10-29 2001-07-19 Minolta Co Ltd Image pickup lens device
JP2001330778A (en) * 2000-03-13 2001-11-30 Nikon Corp Variable focal distance lens system
JP2002107625A (en) * 2000-09-26 2002-04-10 Canon Inc Zoom lens and optical equipment using the same
JP2003295250A (en) * 2002-04-05 2003-10-15 Canon Inc Optical system and optical equipment with it
JP2007279587A (en) * 2006-04-11 2007-10-25 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
JP2012181525A (en) * 2011-02-28 2012-09-20 Tamron Optical (Foshan) Co Ltd Zoom lens

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0894933A (en) * 1994-09-26 1996-04-12 Nikon Corp High magnifying power zoom lens
JPH10197794A (en) * 1997-01-14 1998-07-31 Nikon Corp Zoom lens
JPH11271614A (en) * 1998-03-25 1999-10-08 Nikon Corp Variable focus distance lens system
JP2001194590A (en) * 1999-10-29 2001-07-19 Minolta Co Ltd Image pickup lens device
JP2001330778A (en) * 2000-03-13 2001-11-30 Nikon Corp Variable focal distance lens system
JP2002107625A (en) * 2000-09-26 2002-04-10 Canon Inc Zoom lens and optical equipment using the same
JP2003295250A (en) * 2002-04-05 2003-10-15 Canon Inc Optical system and optical equipment with it
JP2007279587A (en) * 2006-04-11 2007-10-25 Olympus Imaging Corp Zoom lens and imaging apparatus using the same
JP2012181525A (en) * 2011-02-28 2012-09-20 Tamron Optical (Foshan) Co Ltd Zoom lens

Also Published As

Publication number Publication date
JP6070053B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2014065264A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP6182868B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6127462B2 (en) Variable magnification optical system, optical device
WO2014112176A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP2014085488A (en) Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP6264924B2 (en) Variable magnification optical system and optical apparatus
JP6098176B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6102269B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6070055B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2014085495A (en) Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2013152371A (en) Zoom lens, optical device, and manufacturing method of zoom lens
JP6268697B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6070054B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2010170063A (en) Zoom lens system, image capturing apparatus, and method of manufacturing the zoom lens system
WO2014065266A1 (en) Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP2014235283A (en) Zoom optical system, imaging apparatus, and method for manufacturing the zoom optical system
JP6197489B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6241141B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6070053B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP2018045261A (en) Variable magnification optical system, and optical device
JP2016156903A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP6031942B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6323045B2 (en) Variable magnification optical system
JP2015045839A (en) Zoom lens, optical device, and method for manufacturing the zoom lens
JP6241143B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250