JP2014085330A - Method for reducing radioactive cesium in incineration ash and method for storing water containing radioactive cesium - Google Patents

Method for reducing radioactive cesium in incineration ash and method for storing water containing radioactive cesium Download PDF

Info

Publication number
JP2014085330A
JP2014085330A JP2012248814A JP2012248814A JP2014085330A JP 2014085330 A JP2014085330 A JP 2014085330A JP 2012248814 A JP2012248814 A JP 2012248814A JP 2012248814 A JP2012248814 A JP 2012248814A JP 2014085330 A JP2014085330 A JP 2014085330A
Authority
JP
Japan
Prior art keywords
water
radioactive cesium
container
heating
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012248814A
Other languages
Japanese (ja)
Inventor
Kazuyuki Umemura
一之 梅村
Shigeru Sato
繁 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWAKI KASUI KK
Original Assignee
IWAKI KASUI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWAKI KASUI KK filed Critical IWAKI KASUI KK
Priority to JP2012248814A priority Critical patent/JP2014085330A/en
Publication of JP2014085330A publication Critical patent/JP2014085330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing radioactive cesium from incineration ash containing radioactive cesium, and also to provide a method for safely storing water containing radioactive cesium.SOLUTION: A method for reducing radioactive cesium contained in incineration ash puts incineration ash containing radioactive cesium into an extraction container and stores water in a heating container, in an apparatus in which the heating container is placed in a bottom part, the extraction container is placed in a middle part, and a condenser is placed in an uppermost part. Then, the method repeats the steps of: (A) heating the heating container to generate moisture vapor; (B) cooling the moisture vapor in the condenser to generate condensed water; (C) feeding the condensed water into the extraction container; (D) discharging water into the heating container when it accumulates up to a predetermined level in the extraction container; and (E) accumulating the water in a state where radioactive cesium is dissolved in the water. A method for storing water containing radioactive cesium lets water containing radioactive cesium be absorbed in a high water-absorbing material and be filled in a storage container with the water in a solid phase state.

Description

本発明は、放射性セシウムで汚染された環境において発生する被焼却物の焼却灰中に含まれる放射性セシウムの削減方法及び放射性セシウムを含む水の保管方法に関する。  The present invention relates to a method for reducing radioactive cesium contained in incineration ash of incinerated materials generated in an environment contaminated with radioactive cesium and a method for storing water containing radioactive cesium.

福島第一原発の事故により大量の放射性物質が福島県のみならず周辺地域にまき散らされた。それらの地域の生活ゴミや瓦礫を焼却する焼却炉からは高濃度の放射性セシウムを含む焼却灰が排出されているが、その後の適切な処理方法がなく、焼却灰は袋に充填されて生活環境の一部に山積みになっている状態であり、今後も増え続けると予想される。セシウム137の半減期は30年、セシウム134は2年であり人体への影響が懸念され、これらの放射性セシウムを含む焼却灰の減容化あるいはそれらを生活環境から排除することがその地域にとっての喫緊の課題である。放射性物質がまき散らされるという状況は本来あり得べからざることであり、そのような状況を想定した技術の開発は従来ほとんどなかったと言ってよい。事故を起こした福島第1原発では、大量の汚染水から放射性セシウム等を吸着させた吸着材が容器に詰められて、原発敷地内に保管されている。吸着材はゼオライト系と推定されるがゼオライト系吸着剤のセシウムの吸着率は低く、吸着率向上による吸着体の減容化が望まれている。  Due to the accident at the Fukushima Daiichi Nuclear Power Plant, a large amount of radioactive material was scattered not only in Fukushima Prefecture but also in the surrounding areas. Incinerators that incinerate domestic garbage and debris in those areas emit incineration ash containing high concentrations of radioactive cesium, but there is no subsequent proper treatment method, and the incineration ash is filled into bags and the living environment It is expected that it will continue to increase in the future. Cesium 137 has a half-life of 30 years, cesium 134 is 2 years, and there are concerns about the effects on the human body. It is important for the region to reduce the volume of incinerated ash containing these radioactive cesiums or eliminate them from the living environment. It is an urgent issue. The situation where radioactive materials are scattered is impossible from the outset, and it can be said that there has been almost no development of technology that assumes such a situation. At the Fukushima Daiichi nuclear power plant where the accident occurred, adsorbents that adsorbed radioactive cesium and the like from a large amount of contaminated water were packed in containers and stored on the site of the nuclear power plant. Although the adsorbent is presumed to be zeolitic, the cesium adsorption rate of the zeolitic adsorbent is low, and volume reduction of the adsorbent is desired by improving the adsorption rate.

セシウムに関連する特許文献として以下があげられる。特許文献1は、ルビジウムを含むセシウム鉱石から有機溶剤を使って効率よくセシウムを抽出する方法である。  Patent documents related to cesium include the following. Patent Document 1 is a method for efficiently extracting cesium from a cesium ore containing rubidium using an organic solvent.

特許文献2は、放射性物質を環境から取りこんだ生物を爆砕によって細胞レベルまで微粉化し、その微粉の表面に剥き出しになった放射性物質を水に溶解させ、更にその水中の放射性物質を吸着材に吸着させる方法である。  In Patent Document 2, an organism that has taken in a radioactive material from the environment is pulverized to the cellular level by blasting, the radioactive material exposed on the surface of the fine powder is dissolved in water, and the radioactive material in the water is further adsorbed by an adsorbent It is a method to make it.

特許文献3は、水に溶解したセシウムをプルシアンブルー型の吸着材に吸着した後、吸着体に印加することによって脱着するセシウムを回収するというものである。  In Patent Document 3, cesium dissolved in water is adsorbed on a Prussian blue type adsorbent, and then applied to the adsorbent to recover cesium that is desorbed.

特許文献4は、放射性の固体廃棄物を溶融ガラスと混合してガラスに封じ込めるプロセスにおいて、組成の異なるガラス剤を用いて再度ガラス固化する放射性廃棄物の固化処理方法に関する。  Patent Document 4 relates to a method for solidifying radioactive waste, in which radioactive solid waste is mixed with molten glass and contained in glass, and then vitrified again using glass agents having different compositions.

特許文献5は、放射性物質を、高炉スラグとポルトランドセメントなどの固化材を用いて固化する固化方法に関する。  Patent document 5 is related with the solidification method which solidifies a radioactive substance using solidification materials, such as blast furnace slag and Portland cement.

特開平5−5134号公報JP-A-5-5134 特許第5018989号公報Japanese Patent No. 5018989 特開2011−200856号公報JP 2011-200856 A 特開平9−72998号公報Japanese Patent Laid-Open No. 9-72998 特開平9−211194号公報JP-A-9-212194

本発明の第一の目的は、焼却灰から放射性セシウムを削減して焼却灰を安全に生活環境に戻せるようにすることである。また本発明の第二の目的は、焼却灰から取り除いた放射性セシウムを生活環境に影響を及ぼさないよう安全に保管することである。  The first object of the present invention is to reduce radioactive cesium from incineration ash so that the incineration ash can be safely returned to the living environment. The second object of the present invention is to store the radioactive cesium removed from the incineration ash safely so as not to affect the living environment.

本発明者は、上記課題について鋭意検討した結果、下記の発明を完成するに至った。請求項1に係る発明は、ヒーターを備え且つ水を収容できる加熱容器が最下部に配置され、放射性セシウムを含む焼却灰を収容できる濾材を備え且つ水を収容できる抽出容器が中間部に配置され、水蒸気を冷却して凝縮させる凝縮器が最上部に配置された装置であって、前記凝縮器は前記加熱容器で発生した水蒸気を凝縮し、前記凝縮器で生成した凝縮水は前記抽出容器に供給され、前記抽出容器の水は前記濾材を経由して前記加熱容器に供給されるように構成された装置において、前記抽出容器に放射性セシウムを含む焼却灰を投入し、前記加熱容器に水を収納した後に、
(A)前記加熱容器を加熱して水蒸気を発生させ、
(B)前記水蒸気を前記凝縮器で冷却して凝縮水を生成し、
(C)前記凝縮水を前記抽出容器に供給し、
(D)前記抽出容器に一定量の水が溜まった時にその水を加熱容器に排出し、
(E)放射性セシウムを水に溶解した状態で前記加熱容器に蓄積させる、
工程を繰り返すことを特徴とする、焼却灰に含まれる放射性セシウムの削減方法である。
請求項2に係る発明は、前記焼却灰が60メッシュの篩下であることを特徴とする請求項1に記載の焼却灰に含まれる放射性セシウムの削減方法である。
請求項3に係る発明は、前記加熱容器で発生した水蒸気または前記凝縮器の凝縮水を前記装置外に排出する排出手段を備えたことを特徴とする請求項1に記載の焼却灰に含まれる放射性セシウムの削減方法である。
請求項4に係る発明は、放射性セシウムを含む水が高吸水材に吸収されて固相状態で容器に充填されていることを特徴とする放射性セシウムを含む水の保管方法である。
請求項5に係る発明は、前記放射性セシウムを含む水が、前記加熱容器に溜まった水であることを特徴とする請求項4に記載の放射性セシウムを含む水の保管方法である。
As a result of intensive studies on the above problems, the present inventors have completed the following invention. In the first aspect of the invention, a heating vessel equipped with a heater and capable of containing water is disposed at the bottom, and an extraction vessel equipped with a filter medium capable of containing incinerated ash containing radioactive cesium and capable of containing water is arranged in the middle portion. A condenser that cools and condenses the water vapor is disposed at the top, the condenser condenses the water vapor generated in the heating container, and the condensed water generated in the condenser flows into the extraction container. In the apparatus configured to be supplied and the water in the extraction container is supplied to the heating container via the filter medium, incineration ash containing radioactive cesium is charged into the extraction container, and water is supplied to the heating container. After storage
(A) heating the heating container to generate water vapor;
(B) The water vapor is cooled by the condenser to generate condensed water,
(C) supplying the condensed water to the extraction container;
(D) When a certain amount of water has accumulated in the extraction container, the water is discharged into a heating container;
(E) accumulate radioactive cesium in the heating vessel in a state dissolved in water;
It is a method for reducing radioactive cesium contained in incinerated ash, characterized by repeating the process.
The invention according to claim 2 is the method for reducing radioactive cesium contained in the incinerated ash according to claim 1, wherein the incinerated ash is a 60-mesh sieve.
The invention according to claim 3 is provided in the incineration ash according to claim 1, further comprising a discharge means for discharging the water vapor generated in the heating container or the condensed water of the condenser to the outside of the apparatus. This is a method for reducing radioactive cesium.
The invention according to claim 4 is a method for storing water containing radioactive cesium, characterized in that the water containing radioactive cesium is absorbed by a highly water-absorbing material and filled in a container in a solid state.
The invention according to claim 5 is the method for storing water containing radioactive cesium according to claim 4, wherein the water containing radioactive cesium is water accumulated in the heating container.

一般的に焼却灰にはナトリウム、カリウム、カルシウムなどのアルカリ性の金属類を含むので焼却灰を水で抽出するとその抽出水は高いアルカリ性を示す。放射性セシウムは水に溶解するとアルカリ性を示す金属なので、抽出水のpHが高いと水側に抽出され難い。請求項1に係る発明によれば、抽出容器に供給される水は加熱容器からの蒸発水なのでナトリウム、カリウム、カルシウムなどの不純物は含まずpHは中性であり、また放射性セシウムも含まないため、焼却灰から放射性セシウムを効率良く水側に抽出し、焼却灰を生活環境において自由に処理できるようにするという効果を有する。  Generally, incineration ash contains alkaline metals such as sodium, potassium, calcium and the like, and when the incineration ash is extracted with water, the extracted water shows high alkalinity. Since radioactive cesium is a metal that exhibits alkalinity when dissolved in water, it is difficult to extract to the water side when the pH of the extracted water is high. According to the invention of claim 1, since the water supplied to the extraction container is evaporated water from the heating container, it does not contain impurities such as sodium, potassium, calcium, etc., and has a neutral pH and does not contain radioactive cesium. It has the effect of efficiently extracting radioactive cesium from the incineration ash to the water side so that the incineration ash can be freely treated in the living environment.

焼却灰には、焼却炉の炉底に残る焼却残渣である主灰と燃焼ガスに同伴されて集塵機で捕捉される飛灰がある。また、集塵機を備えていない小規模焼却炉の場合は、飛灰は発生せず、焼却残渣である疑似主灰が発生する。いずれの場合も焼却灰は、被焼却物の原型はとどめず微細化されることが多い。しかし、焼却灰は野積みされることや袋に詰めて多段に重ねて保管されることにより固化することがある。請求項2に係る発明によれば、炉から排出された焼却灰だけでなく、固化した焼却灰を粉砕等の手段によって微細化したものも含めて、60メッシュの篩下を使うことを特徴としている。請求項2の発明は、微細化された焼却灰を使うことによって、放射性セシウムが水に抽出され易くなるという効果を有する。  Incineration ash includes main ash that is incineration residue remaining at the bottom of the incinerator and fly ash that is captured by a dust collector accompanying the combustion gas. Further, in the case of a small-scale incinerator without a dust collector, fly ash is not generated, and pseudo main ash that is an incineration residue is generated. In either case, the incineration ash is often refined rather than the original incinerated product. However, incineration ash may be solidified by being piled up in the field or packed in bags and stored in multiple stages. The invention according to claim 2 is characterized in that not only the incineration ash discharged from the furnace but also a solidified incineration ash including those refined by means such as pulverization are used under a 60 mesh sieve. Yes. The invention according to claim 2 has an effect that radioactive cesium is easily extracted into water by using incinerated ash that has been refined.

請求項3に係る発明によれば、加熱容器で発生した水蒸気または凝縮器の凝縮水を前記装置外に排出することによって加熱容器の水中の放射性セシウムの濃度を調節できるという効果を有する。水蒸気や凝縮水を系外に排出することによって、加熱容器の水中の放射性セシウム濃度は高くなり、保管すべき放射性セシウムを含む水の自在な減容化が可能となる。また、水中の放射性セシウムの濃度を自在に調整できることは、その後の放射性セシウムを含む水の処理方法に対する適応の幅が広がるという効果も有する。  According to the invention which concerns on Claim 3, it has the effect that the density | concentration of the radioactive cesium in the water of a heating container can be adjusted by discharging | emitting the water vapor | steam which generate | occur | produced in the heating container, or the condensed water of a condenser outside the said apparatus. By discharging water vapor or condensed water out of the system, the concentration of radioactive cesium in the water in the heating vessel increases, and the volume of water containing radioactive cesium to be stored can be freely reduced. In addition, the ability to freely adjust the concentration of radioactive cesium in water also has the effect of expanding the range of adaptation to a subsequent method for treating water containing radioactive cesium.

請求項1から請求項3に係る発明によれば、放射性セシウムを含むものを液体の状態で取り扱いできる点が、その後の取り扱いの利便性に優れている。例えば、図1の加熱容器1の加熱容器液排出弁(24)から図2の角型保管容器18あるいは図3のフレキシブルコンテナー型保管容器20に、人手をかけず、配管で移送することができる。放射性物質を取り扱う工程は可能な限り無人化することが肝要である。  According to the inventions according to claims 1 to 3, it is excellent in the convenience of subsequent handling in that a substance containing radioactive cesium can be handled in a liquid state. For example, it can be transferred from the heating container liquid discharge valve (24) of the heating container 1 of FIG. 1 to the square storage container 18 of FIG. 2 or the flexible container storage container 20 of FIG. . It is important that processes that handle radioactive materials be unmanned as much as possible.

請求項4は、放射性セシウムを含む水を高吸水剤によって固相状態にして容器に保管するものである。固相状態とは、物質の状態を気相、液相、固相、の三態に分けたときの固相の状態をいう。固相にはゲル状態も含まれる。放射性セシウムを含む水をそのまま容器に保管した場合、容器が劣化すると放射性セシウムを含んだ水が容器外に流出し環境汚染の原因となるが、請求項4に係る発明によれば水が固相状態にあることによって容器外への流出を防止できるという効果を奏する。  According to the fourth aspect of the present invention, the water containing radioactive cesium is stored in a container in a solid phase with a superabsorbent. The solid phase state refers to the state of the solid phase when the state of the substance is divided into three states, gas phase, liquid phase, and solid phase. The solid phase includes a gel state. When water containing radioactive cesium is stored in a container as it is, when the container deteriorates, water containing radioactive cesium flows out of the container and causes environmental pollution. According to the invention of claim 4, the water is in a solid phase. There exists an effect that the outflow outside a container can be prevented by being in a state.

また水は放射線を遮蔽する性質があるため、水中の放射性セシウムは、同じ濃度(ベクレル/kg)の固体中のセシウムよりも空間線量(マイクロシーベルト値)は低くなるので、それらを取り扱う作業者に対する影響が少なくなるという効果を有する。  Since water has the property of shielding radiation, radioactive cesium in water has a lower air dose (microsievert value) than cesium in solids of the same concentration (becquerel / kg). It has the effect that the influence on is reduced.

請求項5は、放射性セシウムを含む水は請求項1または請求項3に記載の加熱容器に溜まった水を高吸水剤によって固相状態にして容器に保管するものであって、容器が劣化した場合に放射性セシウムを含んだ水が容器外に流出し環境汚染の原因となることを防止するという効果を奏するものである。また、本発明においては放射性セシウムの濃度を自在に高濃度化できるので、特許文献4や特許文献5に記載されているような放射性物質をセメントやガラスで固化する場合に比べると、減容化という点において従来の方法よりはるかに優れていると言える。  According to a fifth aspect of the present invention, the water containing radioactive cesium is stored in the container in a solid state by using a superabsorbent in the water stored in the heating container according to the first or third aspect, and the container has deteriorated. In this case, the water containing radioactive cesium is prevented from flowing out of the container and causing environmental pollution. Further, in the present invention, since the concentration of radioactive cesium can be increased freely, the volume can be reduced as compared with the case where a radioactive substance as described in Patent Document 4 or Patent Document 5 is solidified with cement or glass. It can be said that this is far superior to the conventional method.

焼却灰の放射性セシウム抽出装置概略図Schematic diagram of radioactive cesium extraction equipment for incineration ash 放射性セシウムを含む水を高吸水剤に含ませて角型の保管容器に保管した状態の保管容器の側面断面図Side cross-sectional view of a storage container with radioactive cesium-containing water in a superabsorbent and stored in a rectangular storage container 放射性セシウムを含む水を高吸水剤に含ませてフレキシブルコンテナー型の保管容器に保管した状態の保管容器の側面断面図Side sectional view of a storage container in a state where water containing radioactive cesium is contained in a superabsorbent and stored in a flexible container type storage container

以下本発明について詳細に説明する。
セシウムはアルカリ金属であって基本的に水に溶解する性質を有するが、土壌などの自然にまき散らされた状態においては他の元素と複雑に絡み合っていて容易に水には溶けださない。しかし、焼却灰のように1000℃前後の高温と酸素、二酸化炭素あるいは生活ゴミなどの被焼却物に含まれる塩素化合物などに曝されるとセシウムは酸化セシウム、炭酸セシウム、水酸化セシウムあるいは塩化セシウムなどとなって水に溶け出すようになる。また被焼却物は焼却炉内で元の形状が崩れて微粉化されるので水と接触したときに放射性セシウムが水に溶出し易い。本発明は焼却灰のこのような性質に着眼し有効に利用したものである。
The present invention will be described in detail below.
Cesium is an alkali metal and basically has a property of dissolving in water, but in a naturally scattered state such as soil, it is intricately entangled with other elements and does not easily dissolve in water. However, cesium is cesium oxide, cesium carbonate, cesium hydroxide, or cesium chloride when exposed to chlorine compounds contained in incinerators such as oxygen, carbon dioxide, or household waste, such as incinerated ash. It will start to dissolve in water. In addition, since the incineration object loses its original shape in the incinerator and is pulverized, radioactive cesium is likely to elute into water when it comes into contact with water. The present invention pays attention to such properties of incinerated ash and is effectively used.

本発明の放射性セシウム除去の概要は次のとおりである。加熱容器を加熱して水蒸気を発生させ、水蒸気が最上部の冷却管に送られて生成した凝縮水は、抽出容器に供給され焼却灰と接触し焼却灰中の放射性セシウムを溶かしこんだ後、濾材を経由して加熱容器に戻る。凝縮器で凝縮した水は、ナトリウム、カリウム、カルシウムなどのアルカリ性の金属を含まず、また放射性セシウムを含まないので放射性セシウムを効率よく抽出することができる。放射性セシウムは水よりはるかに沸点が高いため蒸発せず加熱容器内に残るので、上記サイクルを繰り返すことによって加熱容器内には放射性セシウムが濃縮される。  The outline of the radioactive cesium removal of the present invention is as follows. The condensed water generated by heating the heating vessel to generate water vapor and sending the water vapor to the uppermost cooling pipe is supplied to the extraction vessel and comes into contact with the incineration ash to dissolve the radioactive cesium in the incineration ash, Return to the heating vessel via the filter media. The water condensed by the condenser does not contain alkaline metals such as sodium, potassium and calcium, and does not contain radioactive cesium, so that radioactive cesium can be extracted efficiently. Since radioactive cesium has a boiling point much higher than that of water and does not evaporate, it remains in the heating vessel. Therefore, by repeating the above cycle, radioactive cesium is concentrated in the heating vessel.

加熱容器は、外部に高温の熱媒(油あるいは高圧スチーム)を供給できるジャケット付きの容器、あるいは容器の内部に熱媒を循環させるパイプを備えたもの、電気式の加熱コイルを備えたものや超音波を使ったものなど、加熱容器内の水を間接的に加熱できるものであればどんな形式のものでもよい。  A heating container is a container with a jacket that can supply a high-temperature heat medium (oil or high-pressure steam) to the outside, a pipe that circulates the heat medium inside the container, a thing that has an electric heating coil, Any type can be used as long as it can indirectly heat the water in the heating vessel, such as one using ultrasonic waves.

本発明の抽出器に供給される水は、加熱容器から蒸発してくる水を凝縮したものであるから、沸点が水よりもはるかに高い放射性セシウムは含まれていないので、焼却灰からの放射性セシウムの抽出能力は高く維持される。また、この水が抽出容器に一定量収容された焼却灰の全量を浸漬する程度に溜まった時、抽出容器の炉材を経由して加熱容器へ水が排出されるので、焼却灰の全量が万遍なく水に洗われる。水の排出は、抽出容器の液レベルと連動した自動開閉弁を経由してもよく、あるいはサイフォンの原理を使って、抽出容器の液面が一定の液面になったとき抽出容器内の液を一度に排出することを繰り返すシステムでもよい。  Since the water supplied to the extractor of the present invention is obtained by condensing water evaporating from the heating container, it does not contain radioactive cesium having a boiling point much higher than that of water. The extraction capacity of cesium is kept high. In addition, when this water accumulates enough to immerse the entire amount of incinerated ash contained in a certain amount in the extraction container, the water is discharged to the heating container through the furnace material of the extraction container, so the total amount of incinerated ash is Washed with water all over. The water can be discharged via an automatic open / close valve linked to the liquid level of the extraction container, or when the liquid level in the extraction container reaches a certain level using the siphon principle, the liquid in the extraction container is discharged. May be a system that repeats discharging at a time.

本発明の凝縮器は、加熱容器から蒸発してきた水蒸気を水で間接的に冷却する。凝縮した水は抽出器に供給され、焼却灰から放射性セシウムを抽出する。このとき、凝縮水の温度は高い方が焼却灰中の放射性セシウムを抽出し易い。従って、凝縮器は凝縮水の温度を調整できるように構成されることが望ましい。  The condenser of the present invention indirectly cools the water vapor evaporated from the heating vessel with water. The condensed water is supplied to an extractor, and radioactive cesium is extracted from the incineration ash. At this time, the higher the temperature of the condensed water, the easier it is to extract radioactive cesium in the incineration ash. Therefore, it is desirable that the condenser is configured so that the temperature of the condensed water can be adjusted.

環境省で定められた“放射性物質汚染対象特措法“には、8000Bq/kgを超える放射性物質を含む廃棄物の処理方法についての留意点が記載されている。また厚生労働省で定められた“除染等業務に従事する労働者の放射線障害防止のためのガイドライン“には、1万ベクレル/kg以上の放射性物質を含む廃棄物を扱う作業者の留意点が記載されている。本発明は、それらの法的基準に適宜対応して保管すべき水に含まれる放射性セシウムの濃度を調整することができる。例えば、本発明の装置全体が自動化によって無人化されたり、装置全体が完全に遮蔽化されたりした場合は、放射性セシウムの濃度を1万Bq/kgを超える濃度にまで濃縮し、放射性セシウムを含む水の自在な減容化を図ることが可能である。また、加熱容器内の水中の放射性セシウム濃度を、作業者の健康に配慮して1万Bq/kg以下にする必要がある場合は、本発明における加熱器への水の投入量の調節によって目的の濃度に薄めることができる。  The “Special Measures for Radioactive Substance Contamination Targets” established by the Ministry of the Environment describes precautions regarding a method for treating waste containing radioactive substances exceeding 8000 Bq / kg. In addition, “Guidelines for the prevention of radiation hazards for workers engaged in decontamination work” established by the Ministry of Health, Labor and Welfare include points to be noted by workers who handle waste containing radioactive materials of 10,000 becquerel / kg or more. Have been described. This invention can adjust the density | concentration of the radioactive cesium contained in the water which should be stored corresponding to those legal standards suitably. For example, when the entire apparatus of the present invention is unmanned by automation or the entire apparatus is completely shielded, the concentration of radioactive cesium is concentrated to a concentration exceeding 10,000 Bq / kg and contains radioactive cesium. It is possible to reduce the volume of water freely. If the radioactive cesium concentration in the water in the heating container needs to be 10,000 Bq / kg or less in consideration of the health of the worker, the purpose is to adjust the input amount of water to the heater in the present invention. Can be diluted to a concentration of

水は放射線を遮蔽する性質があるため、水中の放射性セシウムは、同じ濃度(ベクレル/kg:Bq/kg)の固体中のセシウムよりも空間線量(マイクロシーベルト値)は低いので、人体に対する影響は小さい。従って、同じ濃度(Bq/kg)であれば、放射性セシウム吸着した固形の吸着体よりも、水に溶解した放射性セシウムの方が人体に対する放射線の影響は小さい。  Since water has a property of shielding radiation, radioactive cesium in water has a lower air dose (microsievert value) than cesium in solids of the same concentration (becquerel / kg: Bq / kg), so it has an effect on the human body. Is small. Therefore, at the same concentration (Bq / kg), radioactive cesium dissolved in water is less affected by radiation than the solid adsorbent adsorbed with radioactive cesium.

固体は微粒子化されるほど表面積が大きくなり、その中に含まれる放射性セシウムは水に抽出され易くなるので、本発明請求項1乃至3の発明で処理される焼却灰の粒径は小さい方がよく、60メッシュ以下が好ましく、より好ましくは100メッシュ以下である。  As the solids become finer, the surface area becomes larger, and the radioactive cesium contained therein is easily extracted into water. Therefore, the smaller the particle size of the incinerated ash treated in the inventions of claims 1 to 3 of the present invention, It is preferably 60 mesh or less, and more preferably 100 mesh or less.

放射性セシウムを含む水を減容化するためには、高吸水剤は少なくとも自重と同量以上の水を吸収するものがよい。好ましくは自重の10倍以上、より好ましくは自重の100倍以上の水を吸収するものがよい。自重の10倍以上の吸水剤としてアクリル酸塩系樹脂、ポリアミノ酸系樹脂、セルロース系樹脂などがある。アクリル酸塩系は生分解性が低くポリアミノ酸系、セルロース系は生分解性が高い。また、アクリル酸塩系及びポリアミノ酸系は吸水倍率が高いが、セルロース系はやや低い。放射性セシウムを含む水の保管は長期に及ぶので、請求項4及び5の発明においては、生分解性が低く吸水倍率の高いアクリル酸塩系の高吸水剤を使用することが好ましい。また、焼却灰中の塩分が水の吸収に影響する場合は、耐塩性の高吸水剤が好ましい。  In order to reduce the volume of water containing radioactive cesium, it is preferable that the superabsorbent absorbs at least the same amount of water as its own weight. Preferably, it absorbs water at least 10 times its own weight, more preferably at least 100 times its own weight. Examples of the water-absorbing agent 10 times or more of its own weight include acrylate resin, polyamino acid resin, and cellulose resin. Acrylates have low biodegradability and polyamino acids and celluloses have high biodegradability. The acrylate and polyamino acid systems have a high water absorption capacity, but the cellulose system is slightly low. Since the storage of water containing radioactive cesium lasts for a long period of time, in the inventions of claims 4 and 5, it is preferable to use an acrylate-based superabsorbent having a low biodegradability and a high water absorption capacity. Moreover, when the salt content in incineration ash influences water absorption, a salt-resistant superabsorbent is preferable.

保管容器は放射線を遮蔽する材料で構成されていることが望ましい。特に、加熱容器に溜まった水が高度に減容化されて、放射性セシウムが数10万あるいは数百万Bq/kgとなった場合、放射線が保管容器外に漏れないような遮蔽材を使った保管容器が必要である。  The storage container is preferably made of a material that shields radiation. In particular, when water accumulated in the heating container is highly reduced in volume and radioactive cesium becomes several hundred thousand or several million Bq / kg, a shielding material is used to prevent radiation from leaking out of the storage container. A storage container is required.

以下、実施例により、本発明をより具体的に説明する。  Hereinafter, the present invention will be described more specifically by way of examples.

図1の抽出装置を使って実施した。木質燃料型焼却炉(いわき市遠野興産(株))の炉底から取り出した灰の60メッシュ篩下の放射性セシウム2780Bq/kg(134Cs1030+137Cs1750)を含む焼却灰(17)23.2gを抽出機(2)の円筒濾紙(6)に充填し上部を脱脂綿でカバーした。内容積200mlの加熱容器(1)に蒸留水100g及び沸石としてモレキュラーシーブを少量を投入した。抽出機(2)の円筒濾紙(6)に蒸留水50gを入れた。冷却器(アリーン型)3の冷却水調節弁(9)を全開にして冷却水を流し、ヒーター(4)(100V、500W)の電源(5)を入れた。加熱容器(2)から蒸発した水蒸気が凝縮器(3)で凝縮し凝縮水が抽出容器に流れ込み、抽出容器(2)が満液になると、抽出液が一度に加熱容器に排出された。凝縮液(15)の温度は50℃であった。加熱容器、凝縮器、抽出器の間を水が還流する状態を24時間継続した後、加熱容容器の電源を切った。加熱容器が室温になってから抽出容器(2)の焼却灰の入った円筒濾紙(6)を取り出し、60℃の乾燥機内で減量が確認できなくなるまで2日間乾燥した。乾燥後の重量は17.9g、放射性セシウム濃度(Bq/kg)は、計293(134Cs116+137Cs177)であった。また加熱容器(1)内の水は90ml、pH=13.5、放射性セシウム濃度(Bq/kg)は2902(134Cs1091+137Cs1811)であった。The extraction apparatus shown in FIG. 1 was used. Extracted 23.2 g of incinerated ash (17) containing radioactive cesium 2780 Bq / kg ( 134 Cs1030 + 137 Cs1750) under 60 mesh sieve of ash taken from the bottom of a wood fuel incinerator (Tono Kosan Co., Ltd., Iwaki City) The cylindrical filter paper (6) of the machine (2) was filled and the upper part was covered with absorbent cotton. A heating vessel (1) having an internal volume of 200 ml was charged with 100 g of distilled water and a small amount of molecular sieve as zeolite. Distilled water (50 g) was placed in the cylindrical filter paper (6) of the extractor (2). The cooling water control valve (9) of the cooler (Allen type) 3 was fully opened to flow cooling water, and the power source (5) of the heater (4) (100 V, 500 W) was turned on. The water vapor evaporated from the heating container (2) was condensed in the condenser (3), the condensed water flowed into the extraction container, and when the extraction container (2) became full, the extraction liquid was discharged into the heating container at once. The temperature of the condensate (15) was 50 ° C. The state where water was refluxed between the heating vessel, the condenser and the extractor was continued for 24 hours, and then the heating vessel was turned off. After the heating container reached room temperature, the cylindrical filter paper (6) containing the incinerated ash in the extraction container (2) was taken out and dried in a dryer at 60 ° C. for 2 days until no weight loss could be confirmed. The weight after drying was 17.9 g, and the radioactive cesium concentration (Bq / kg) was 293 in total ( 134 Cs116 + 137 Cs177). The water in the heating vessel (1) was 90 ml, pH = 13.5, and the radioactive cesium concentration (Bq / kg) was 2902 ( 134 Cs1091 + 137 Cs1811).

比較例1Comparative Example 1

実施例1で使用した焼却灰23.5gと蒸留水150gを300mlのナス型フラスコに投入した後、ナス型フラスコの口部にジムロート型冷却器を装着し冷却器に水を流した。ナス型フラスコをオイルバスに浸漬し、フラスコ内を撹拌しながら、オイルバスの温度を130〜140℃、フラスコ内の液温を100℃にして、水がフラスコと冷却器間を還流している状態で、24時間放置した。フラスコを冷却した後、ナス型フラスコ内のスラリーをひだ折り濾紙で濾過した。濾過灰を実施例1と同様に乾燥した。濾過灰の乾燥後の重量は19.5g、放射性セシウム濃度(Bq/kg)は、計702(134Cs269+137Cs433)であった。濾液は106ml、pH=13.5、濾液の放射性セシウム濃度(Bq/kg)は、計372(134Cs134+137Cs238)であった。After injecting 23.5 g of incinerated ash and 150 g of distilled water used in Example 1 into a 300 ml eggplant type flask, a Dimroth type condenser was attached to the mouth of the eggplant type flask, and water was allowed to flow through the condenser. The eggplant-shaped flask is immersed in an oil bath, and while stirring the flask, the temperature of the oil bath is 130 to 140 ° C., the temperature of the liquid in the flask is 100 ° C., and water is refluxed between the flask and the cooler. The state was left for 24 hours. After cooling the flask, the slurry in the eggplant-shaped flask was filtered with a fold filter paper. The filtered ash was dried as in Example 1. The weight of the filtered ash after drying was 19.5 g, and the total concentration of radioactive cesium (Bq / kg) was 702 ( 134 Cs269 + 137 Cs433). The filtrate 106 ml, pH = 13.5, filtrate concentration of radioactive cesium (Bq / kg) was total 372 (134 Cs134 + 137 Cs238) .

実施例1において、加熱容器、凝縮器、抽出器の間を水が還流する状態を24時間継続した後、水蒸気排出弁(18)を解放し、加熱容器(1)の液面が低下してから加熱容器(1)の電源を切った。その他は実施例1と同様に行った。抽出容器(2)の焼却灰を取りだし乾燥した後の重量は19.9g、放射性セシウム濃度(Bq/kg)は、計296(134Cs111+137Cs171)であった。また加熱容器(1)内の水は50mlg、pH=13.6、であった。また加熱容器(1)内の水は20ml、pH=13.6、放射性セシウム濃度(Bq/kg)は7255(134Cs2727+137Cs4528)であった。In Example 1, the state in which water is refluxed between the heating container, the condenser, and the extractor is continued for 24 hours, and then the water vapor discharge valve (18) is released, and the liquid level of the heating container (1) decreases. The heating container (1) was turned off. Others were the same as in Example 1. The weight of the extraction container (2) after taking out the incinerated ash and drying was 19.9 g, and the radioactive cesium concentration (Bq / kg) was 296 in total ( 134 Cs111 + 137 Cs171). The water in the heating vessel (1) was 50 mlg, pH = 13.6. The water of the heating vessel (1) is 20ml, pH = 13.6, concentration of radioactive cesium (Bq / kg) was 7255 (134 Cs2727 + 137 Cs4528) .

(比較例2)
実施例1において、木質燃料型焼却炉(いわき市遠野興産(株))の炉底から取り出した灰の16メッシュの篩下(放射性セシウム濃度(Bq/kg):計2631(134Cs975+137Cs1656)を焼却灰(17)として用いた以外は実施例1に準じて行った。抽出器(2)の焼却灰を取りだし乾燥した後の重量は22.2g、放射性セシウム濃度(Bq/kg)は、計650(134Cs257+137Cs393)であった。また加熱容器(1)内の水は92ml、放射性セシウム濃度(Bq/kg)は、計389(134Cs140+137Cs249)であった。
(Comparative Example 2)
In Example 1, a 16-mesh screen of ash taken from the bottom of a wood-fueled incinerator (Iwaki Tono Kosan Co., Ltd.) (radioactive cesium concentration (Bq / kg): total 2631 ( 134 Cs975 + 137 Cs1656) Was used in accordance with Example 1 except that was used as incineration ash (17), the weight after taking out the incineration ash from the extractor (2) and drying was 22.2 g, and the radioactive cesium concentration (Bq / kg) was The total was 650 ( 134 Cs257 + 137 Cs393), and the water in the heating container (1) was 92 ml, and the radioactive cesium concentration (Bq / kg) was 389 ( 134 Cs140 + 137 Cs249).

実施例1で得られた加熱容器(1)内の水30mlを入れたビーカーに、三洋化成製超吸水剤アクアパールSAPを0.1g入れた。30分後、水はゲル状となって、ビーカーから取り出しても水が流れ出ることはなかった。  In a beaker containing 30 ml of water in the heating container (1) obtained in Example 1, 0.1 g of Sanyo Kasei's super water-absorbing agent Aqua Pearl SAP was added. After 30 minutes, the water became a gel and no water flowed out of the beaker.

(実施例及び比較例のまとめ)
実施例1と比較例1より、使用した焼却灰量と水量及び加熱温度(100℃)が同じであっても、焼却灰中の放射性セシウムの抽出率は、実施例1では(1−17.9×293/23.3/2780)×100=91.2%、比較例2では、(1−90×633/23.5/2780)×100=78.6%であり本発明の実施例1の方法が有効であることは明らかである。
(Summary of Examples and Comparative Examples)
From Example 1 and Comparative Example 1, even when the amount of incinerated ash used, the amount of water and the heating temperature (100 ° C.) were the same, the extraction rate of radioactive cesium in the incinerated ash was (1-17. 9 × 293 / 23.3 / 2780) × 100 = 91.2%, and in Comparative Example 2, (1−90 × 633 / 23.5 / 2780) × 100 = 78.6%, which is an example of the present invention. It is clear that one method is effective.

実施例2において、焼却灰は、放射性セシウム濃度が2780Bq/kgから296Bq/kgに減少したことによってこれを環境中で自由に処理可能となった。また抽出水が10ml、放射性セシウム濃度7255Bq/kg、となったことは、焼却灰約47ml(23.2g:見かけ比重約0.5)を10mlに減容化したことになる。本発明2は、抽出液中の水を蒸発させ、放射性セシウムを濃縮することにより焼却灰の自在な減容化が可能になることを示すものである。  In Example 2, the incinerated ash can be freely treated in the environment by reducing the radioactive cesium concentration from 2780 Bq / kg to 296 Bq / kg. The fact that the extracted water was 10 ml and the radioactive cesium concentration was 7255 Bq / kg was that the volume of incinerated ash about 47 ml (23.2 g: apparent specific gravity about 0.5) was reduced to 10 ml. The present invention 2 shows that the volume of incinerated ash can be freely reduced by evaporating water in the extract and concentrating radioactive cesium.

実施例3は、高濃度の放射性セシウム水溶液を、高吸水剤によって固相状態にできることを示すものである。水溶液として濃縮された放射性セシウムが固相状態にできれば、これを放射線遮蔽容器に入れて長期間保管したときに、容器が劣化したとしても水は外部に漏れ出さず、環境汚染を発生させないので放射性セシウムの保管方法として適切である。  Example 3 shows that a high-concentration radioactive cesium aqueous solution can be made into a solid phase by a superabsorbent. If radioactive cesium concentrated as an aqueous solution can be in a solid state, when it is stored in a radiation shielding container for a long period of time, even if the container deteriorates, water will not leak to the outside and will not cause environmental pollution. It is suitable as a storage method for cesium.

本発明により、焼却灰中の放射性セシウムを効率よく水に抽出し、元の焼却灰は生活環境で自由に処理可能となる。放射性セシウムを抽出した水は、放射性セシウムの濃度を自由に調節して減容化でき、更にその抽出水は高吸水剤によって固相状態として容器に保管でき、容器が劣化しても水は容器外に漏れず、安全に保管することが可能となることから、自治体のごみ焼却施設等での利用が可能である。  According to the present invention, radioactive cesium in incineration ash is efficiently extracted into water, and the original incineration ash can be freely treated in a living environment. The water extracted from radioactive cesium can be reduced in volume by freely adjusting the concentration of radioactive cesium, and the extracted water can be stored in a container in a solid phase with a superabsorbent. Since it can be stored safely without leaking outside, it can be used in municipal waste incineration facilities.

1 加熱容器
2 抽出容器
3 凝縮器
4 ヒーター(加熱コイル)
5 電源
6 濾布
7 水蒸発管
8 抽出液排出管
9 冷却水量調節弁
10 水蒸気
11 水蒸気
12 冷却水入口
13 冷却水出口
14 大気解放
15 凝縮水
16 水
17 焼却灰
18 角型保管容器
19 高吸水剤で固相状になった放射性セシウムを含む水
20 フレキシブルコンテナーバッグ型保管容器
21 高吸水剤で固相状になった放射性セシウムを含む水
22 フレキシブルコンテナーバッグ型保管容器の封止口
23 水蒸気排出弁
24 加熱容器液排出弁
1 Heating vessel 2 Extraction vessel 3 Condenser 4 Heater (heating coil)
5 Power supply 6 Filter cloth 7 Water evaporating pipe 8 Extract liquid discharge pipe 9 Cooling water amount adjusting valve 10 Water vapor 11 Water vapor 12 Cooling water inlet 13 Cooling water outlet 14 Atmospheric release 15 Condensed water 16 Water 17 Incinerated ash 18 Square storage container 19 High water absorption Water containing radioactive cesium in a solid phase with an agent 20 Flexible container bag-type storage container 21 Water containing radioactive cesium in a solid phase with a superabsorbent agent 22 Sealing port 23 of a flexible container bag-type storage container Steam discharge Valve 24 Heating vessel liquid discharge valve

Claims (5)

ヒーターを備え且つ水を収容できる加熱容器が最下部に配置され、放射性セシウムを含む焼却灰を収容できる濾材を備え且つ水を収容できる抽出容器が中間部に配置され、水蒸気を冷却して凝縮させる凝縮器が最上部に配置された装置であって、前記凝縮器は前記加熱容器で発生した水蒸気を凝縮し、前記凝縮器で生成した凝縮水は前記抽出容器に供給され、前記抽出容器の水は前記濾材を経由して前記加熱容器に供給されるように構成された装置において、前記抽出容器に放射性セシウムを含む焼却灰を投入し、前記加熱容器に水を収納した後に、
(A)前記加熱容器を加熱して水蒸気を発生させ、
(B)前記水蒸気を前記凝縮器で冷却して凝縮水を生成し、
(C)前記凝縮水を前記抽出容器に供給し、
(D)前記抽出容器に一定量の水が溜まった時にその水を加熱容器に排出し、
(E)放射性セシウムを水に溶解した状態で前記加熱容器に蓄積させる、
工程を繰り返すことを特徴とする、焼却灰に含まれる放射性セシウムの削減方法。
A heating vessel equipped with a heater and capable of containing water is arranged at the bottom, and an extraction vessel equipped with a filter medium capable of containing incinerated ash containing radioactive cesium and containing water is arranged in the middle part to cool and condense water vapor A condenser is arranged at the top, the condenser condenses water vapor generated in the heating container, and the condensed water generated in the condenser is supplied to the extraction container, and the water in the extraction container Is an apparatus configured to be supplied to the heating vessel via the filter medium, after injecting incinerated ash containing radioactive cesium into the extraction vessel, and storing water in the heating vessel,
(A) heating the heating container to generate water vapor;
(B) The water vapor is cooled by the condenser to generate condensed water,
(C) supplying the condensed water to the extraction container;
(D) When a certain amount of water has accumulated in the extraction container, the water is discharged into a heating container;
(E) accumulate radioactive cesium in the heating vessel in a state dissolved in water;
A method for reducing radioactive cesium contained in incinerated ash, characterized by repeating the process.
前記焼却灰が60メッシュの篩下であることを特徴とする請求項1に記載の焼却灰に含まれる放射性セシウムの削減方法。The method for reducing radioactive cesium contained in incineration ash according to claim 1, wherein the incineration ash is under a 60-mesh sieve. 前記加熱容器で発生した水蒸気または前記凝縮器の凝縮水を前記装置外に排出する排出手段を備えたことを特徴とする請求項1に記載の焼却灰に含まれる放射性セシウムの削減方法。The method for reducing radioactive cesium contained in incinerated ash according to claim 1, further comprising discharge means for discharging water vapor generated in the heating container or condensed water of the condenser to the outside of the apparatus. 放射性セシウムを含む水が高吸水材に吸収され、固相状態で保管容器に充填されていることを特徴とする放射性セシウムを含む水の保管方法。A method for storing water containing radioactive cesium, wherein water containing radioactive cesium is absorbed by a superabsorbent and filled in a storage container in a solid state. 前記放射性セシウムを含む水が、前記加熱容器に溜まった水であることを特徴とする請求項4に記載の放射性セシウムを含む水の保管方法。The method for storing water containing radioactive cesium according to claim 4, wherein the water containing radioactive cesium is water accumulated in the heating container.
JP2012248814A 2012-10-25 2012-10-25 Method for reducing radioactive cesium in incineration ash and method for storing water containing radioactive cesium Pending JP2014085330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248814A JP2014085330A (en) 2012-10-25 2012-10-25 Method for reducing radioactive cesium in incineration ash and method for storing water containing radioactive cesium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248814A JP2014085330A (en) 2012-10-25 2012-10-25 Method for reducing radioactive cesium in incineration ash and method for storing water containing radioactive cesium

Publications (1)

Publication Number Publication Date
JP2014085330A true JP2014085330A (en) 2014-05-12

Family

ID=50788499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248814A Pending JP2014085330A (en) 2012-10-25 2012-10-25 Method for reducing radioactive cesium in incineration ash and method for storing water containing radioactive cesium

Country Status (1)

Country Link
JP (1) JP2014085330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312423A (en) * 2020-02-19 2020-06-19 中国核动力研究设计院 Radioactive boron-containing waste liquid concentration device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312423A (en) * 2020-02-19 2020-06-19 中国核动力研究设计院 Radioactive boron-containing waste liquid concentration device
CN111312423B (en) * 2020-02-19 2022-02-11 中国核动力研究设计院 Radioactive boron-containing waste liquid concentration device

Similar Documents

Publication Publication Date Title
JP6313205B2 (en) Radiocesium removal device and removal method
RU2595260C2 (en) Method for reducing content of radioactive material in object containing radioactive material, to environmentally safe level and device therefor
CA2779580A1 (en) Disposal and decontamination of radioactive polyvinyl alcohol products
JP2012215551A (en) Filter type collection material and collection method of radioactive cesium, strontium and iodine compound
JP2013160666A (en) Method for safely disposing burned ash containing radioactive cesium
JP2017511467A (en) Liquid radioactive waste disposal and reuse methods
JP2014062867A (en) Method for removing radioactive cesium from soil
JP2014174115A (en) Method for removing radioactive cesium from soil
CN107099658A (en) A kind of method of Ore Sintering Process disposal of resources garbage flying ash
ES2779231T3 (en) Activated carbon and carbon combustion residue treatment procedure
JP2013088360A (en) Decontamination system and decontamination method of radioactive substance
JP2014085330A (en) Method for reducing radioactive cesium in incineration ash and method for storing water containing radioactive cesium
JP6173788B2 (en) Radiocesium-contaminated fly ash treatment system and method
JP2014235130A (en) Waste liquid treatment method and waste liquid treatment system
JP2014174090A (en) Method for removing radioactive cesium from incineration ash
JP2013134055A (en) Method for separating cesium from cesium adsorbed solid substance and system for separating cesium by utilizing the method
JP2014134404A (en) Method for decontaminating cesium contamination
JP5767194B2 (en) Radioactive material processing system and processing method
JP2013200295A (en) Sorption device of evaporated substance
JP2014174089A (en) Method for incinerating combustible waste containing radioactive cesium
JP4994509B1 (en) Method for consolidating radioactive materials in sewage sludge containing radioactive materials
JP2014134403A (en) Method for decontaminating cesium contamination
JP5894550B2 (en) Method for removing radioactive cesium from soil
JP2013117450A (en) Method for removing radioactive cesium from aqueous solution containing radioactive cesium
JP6606132B2 (en) Radiocesium removal method and treatment facility