JP2014085221A - Surface defect inspection method and device - Google Patents

Surface defect inspection method and device Download PDF

Info

Publication number
JP2014085221A
JP2014085221A JP2012234237A JP2012234237A JP2014085221A JP 2014085221 A JP2014085221 A JP 2014085221A JP 2012234237 A JP2012234237 A JP 2012234237A JP 2012234237 A JP2012234237 A JP 2012234237A JP 2014085221 A JP2014085221 A JP 2014085221A
Authority
JP
Japan
Prior art keywords
defect
defects
moving average
inspected
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012234237A
Other languages
Japanese (ja)
Other versions
JP6028520B2 (en
Inventor
Yuji Uehara
裕二 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012234237A priority Critical patent/JP6028520B2/en
Publication of JP2014085221A publication Critical patent/JP2014085221A/en
Application granted granted Critical
Publication of JP6028520B2 publication Critical patent/JP6028520B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface defect inspection method and device capable of rating an object to be inspected on the basis of a minute defect that becomes a problem if occurring in series.SOLUTION: A surface defect inspection method includes: a first step of extracting a minute defect in each unit area formed by dividing an object to be inspected in a longitudinal direction and a width direction and calculating the number of defects in the unit area; a second step of calculating the longitudinal moving average number of defects in the unit areas adjacent in the longitudinal direction; a third step of comparing the calculated longitudinal moving average number of defects with a predetermined threshold and extracting the calculated longitudinal moving average number of defects as an area exceeding the threshold of the longitudinal moving average number of defects when the number exceeds the threshold; and a fourth step of calculating the number of extracted areas exceeding the threshold of the longitudinal moving average number of defects and rating the object to be inspected on the basis of the calculated number of the areas exceeding the threshold of the longitudinal moving average number of defects.

Description

本発明は、連続的に搬送される帯状の被検査体の表面欠陥を検査する表面欠陥検査方法および装置に関し、特に、鋼板やアルミニウム板等の金属帯やフィルム等の被検査体の格付けに関するものである。   The present invention relates to a surface defect inspection method and apparatus for inspecting a surface defect of a strip-shaped object to be continuously conveyed, and particularly relates to a rating of an object to be inspected such as a metal band or a film such as a steel plate or an aluminum plate. It is.

従来より、鋼板やアルミニウム板などの帯状の被検査体の表面欠陥を検査することが行われている。このような検査において表面欠陥が検出された場合、表面欠陥部を除去したり、表面欠陥部の再検査が容易なように表面欠陥部にマーキングを施したりした後に、被検査体は顧客側に出荷される。しかしながら、表面欠陥部を除去したり、表面欠陥部にマーキングを施したりすることは、顧客側の要求品質によってはオーバーアクションとなり、被検査体の製造コストが増加する要因になる。   Conventionally, surface defects of a strip-shaped object such as a steel plate or an aluminum plate have been inspected. If a surface defect is detected in such an inspection, remove the surface defect part or mark the surface defect part so that the surface defect part can be easily re-inspected. Shipped. However, removing the surface defect portion or marking the surface defect portion is an over action depending on the quality required by the customer, and increases the manufacturing cost of the object to be inspected.

このような背景から、近年、被検査体が顧客側の要求品質に応じて出荷可能なものであるかを判断するために被検査体を格付けする表面欠陥検査装置が提案されている(特許文献1参照)。具体的には、この装置は、欠陥の種別および程度に基づいて被検査体を単位長さ毎に分割して形成される各単位長さ領域の代表欠陥を決定し、決定した代表欠陥が被検査体に混入する割合と予め設定された許容範囲とに基づいて被検査体の合否判定を行う。このような表面欠陥検査装置によれば、表面欠陥部を除去したり、表面欠陥部にマーキングしたりするなどのオーバーアクションを防止し、顧客側での要求品質に応じた被検査体を出荷できると共に、製造コストを下げることができる。   Against this background, in recent years, surface defect inspection devices have been proposed that rank an object to be inspected in order to determine whether the object to be inspected can be shipped according to the quality required by the customer (Patent Literature). 1). Specifically, this apparatus determines a representative defect of each unit length region formed by dividing the object to be inspected for each unit length based on the type and degree of the defect, and the determined representative defect is covered. The pass / fail determination of the object to be inspected is performed based on the ratio of being mixed into the inspection object and the preset allowable range. According to such a surface defect inspection apparatus, it is possible to prevent overaction such as removing the surface defect portion or marking the surface defect portion, and to ship the inspection object according to the required quality on the customer side. At the same time, the manufacturing cost can be reduced.

特開2006−242906号公報JP 2006-242906 A

近年、被検査体の表面品質に対する顧客の要求レベルが高くなっており、従来までは問題にならなかったφ0.2〜0.5mm程度の微小欠陥が客先で問題となるケースが増えてきている。このような微小欠陥は、単発では問題にはならないが、群発すると問題になるレベルのものである。しかしながら、特許文献1に記載の表面欠陥検査装置は、単発で問題となる欠陥に基づく被検査体の格付けを行うことはできるが、群発すると問題になるレベルの欠陥に基づく被検査体の格付けを行うことはできない。このため、群発すると問題になる微小欠陥に基づいて被検査体を格付け可能な技術の提供が期待されていた。   In recent years, the level of customer requirements for the surface quality of the object to be inspected has increased, and there have been an increasing number of cases where minute defects of φ0.2 to 0.5 mm, which have not been a problem until now, become a problem at customers. Yes. Such a micro defect is not a problem with a single shot, but is a level that causes a problem when swarmed. However, the surface defect inspection apparatus described in Patent Document 1 can perform the rating of the inspected object based on the defect that causes a problem in a single shot. Can't do it. For this reason, it has been expected to provide a technique capable of grading an object to be inspected based on minute defects that become a problem when swarming.

本発明は、上記課題に鑑みてなされたものであって、その目的は、群発すると問題になる微小欠陥に基づいて被検査体を格付け可能な表面欠陥検査方法および装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a surface defect inspection method and apparatus capable of grading an object to be inspected based on minute defects that are problematic when clustered.

上記課題は、以下の発明によって解決できる。   The above problems can be solved by the following invention.

[1] 被検査体を長手方向および幅方向に分割することによって形成される各単位領域における微小欠陥を抽出し、単位領域における欠陥数を算出する第1ステップと、
長手方向に隣接する単位領域の長手方向移動平均欠陥数を算出する第2ステップと、
算出した長手方向移動平均欠陥数と所定の閾値とを比較し、算出した長手方向移動平均欠陥数が前記閾値越えである場合、長手方向移動平均欠陥数閾値越え領域として抽出する第3ステップと、
抽出した長手方向移動平均欠陥数閾値越え領域の数を算出し、算出した長手方向移動平均欠陥数閾値越え領域の数に基づいて被検査体を格付けする第4ステップと、
を有することを特徴とする表面欠陥検査方法。
[1] A first step of extracting a minute defect in each unit region formed by dividing the object to be inspected in the longitudinal direction and the width direction, and calculating the number of defects in the unit region;
A second step of calculating the number of moving average defects in the longitudinal direction of unit regions adjacent in the longitudinal direction;
A third step of comparing the calculated number of moving average defects in the longitudinal direction with a predetermined threshold value and, if the calculated number of moving average defects in the length direction exceeds the threshold value, extracting as a region exceeding the threshold value in the lengthwise moving average defect number;
A fourth step of calculating the number of the areas that exceed the extracted longitudinal moving average defect count threshold value, and classifying the object to be inspected based on the calculated number of areas exceeding the longitudinal moving average defect count threshold value;
A surface defect inspection method characterized by comprising:

[2] 上記[1]に記載の表面欠陥検査方法において、
前記第1ステップは、表面欠陥の種別および程度に応じて定められた所定の重み係数を前記欠陥数に乗算することにより、重み付き欠陥数を算出し、算出した重み付き欠陥数の総和を各単位領域における欠陥数として算出するステップを含むことを特徴とする表面欠陥検査方法。
[2] In the surface defect inspection method according to [1] above,
The first step calculates the number of weighted defects by multiplying the number of defects by a predetermined weighting factor determined according to the type and degree of surface defects, and calculates the sum of the calculated number of weighted defects. A surface defect inspection method comprising the step of calculating the number of defects in a unit region.

[3] 上記[1]または[2]に記載の表面欠陥検査方法において、
表面欠陥の種別および程度に基づいて、被検査体を長手方向に分割することによって形成される各単位長さ領域における代表欠陥を決定し、被検査体内における代表欠陥の混入率を算出する算出ステップと、
前記代表欠陥の混入率に基づいて被検査体を格付けし、格付け結果に基づいて被検査体の合否判定を行う判定ステップと、
を有することを特徴とする表面欠陥検査方法。
[3] In the surface defect inspection method according to [1] or [2] above,
A calculation step for determining a representative defect in each unit length region formed by dividing the object to be inspected in the longitudinal direction based on the type and degree of the surface defect, and calculating a mixing rate of the representative defect in the object to be inspected When,
A rating step that ranks the object to be inspected based on the mixing ratio of the representative defects, and performs pass / fail determination of the object to be inspected based on the rating result;
A surface defect inspection method characterized by comprising:

[4] 上記[3]に記載の表面欠陥検査方法において、
前記算出ステップと前記判定ステップとを前記第1〜第4ステップを実行する前に実行し、前記代表欠陥の混入率に基づく格付けによって合格と判定された被検査体に対してのみ、前記第1〜第4ステップを実行することを特徴とする表面欠陥検査方法。
[4] In the surface defect inspection method according to [3] above,
The calculation step and the determination step are executed before executing the first to fourth steps, and only the first object to be inspected is determined to be acceptable by the rating based on the mixing rate of the representative defects. A surface defect inspection method characterized by executing the fourth step.

[5] 被検査体を長手方向および幅方向に分割することによって形成される各単位領域における微小欠陥を抽出し、単位領域における欠陥数を算出する第1手段と、
長手方向に隣接する単位領域の長手方向移動平均欠陥数を算出する第2手段と、
算出した長手方向移動平均欠陥数と所定の閾値とを比較し、算出した長手方向移動平均欠陥数が前記閾値越えである場合、長手方向移動平均欠陥数閾値越え領域として抽出する第3手段と、
抽出した長手方向移動平均欠陥数閾値越え領域の数を算出し、算出した長手方向移動平均欠陥数閾値越え領域の数に基づいて被検査体を格付けする第4手段と、
を具備することを特徴とする表面欠陥検査装置。
[5] First means for extracting a minute defect in each unit region formed by dividing the object to be inspected in the longitudinal direction and the width direction, and calculating the number of defects in the unit region;
A second means for calculating the number of moving average defects in the longitudinal direction of unit regions adjacent in the longitudinal direction;
A third means for comparing the calculated number of moving average defects in the longitudinal direction with a predetermined threshold and, if the calculated number of moving average defects in the longitudinal direction exceeds the threshold value, extracting as a region exceeding the threshold value in the lengthwise moving average defect number;
A fourth means for calculating the number of the longitudinal moving average defect count exceeding the threshold value extracted, and grading the object to be inspected based on the calculated longitudinal moving average defect count threshold exceeding area number;
A surface defect inspection apparatus comprising:

本発明に係る表面欠陥検査方法および装置によれば、群発すると問題になる微小欠陥に基づいて被検査体を格付けすることができる。   According to the surface defect inspection method and apparatus according to the present invention, it is possible to rank an object to be inspected based on a minute defect that becomes a problem when clustering.

本発明の一実施形態である表面欠陥検査装置の構成を示すブロック図である。It is a block diagram which shows the structure of the surface defect inspection apparatus which is one Embodiment of this invention. 本発明の一実施形態である単発欠陥格付け処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the single defect rating process which is one Embodiment of this invention. 単位長さ領域を説明するための模式図である。It is a schematic diagram for demonstrating a unit length area | region. 本発明の一実施形態である群発欠陥格付け処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the cluster defect rating process which is one Embodiment of this invention. 単位領域を説明するための模式図である。It is a schematic diagram for demonstrating a unit area | region. 長手方向移動平均欠陥数閾値越え領域の判定処理を説明するための模式図である。It is a schematic diagram for demonstrating the determination process of a longitudinal direction moving average defect number threshold value excess area | region. 本発明の一実施形態である合否判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the pass / fail determination process which is one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態である表面欠陥検査装置およびその表面欠陥検査方法について説明する。
〔表面欠陥検査装置の構成〕
始めに、図1を参照して、本発明の一実施形態である表面欠陥検査装置の構成について説明する。
Hereinafter, a surface defect inspection apparatus and a surface defect inspection method thereof according to an embodiment of the present invention will be described with reference to the drawings.
[Configuration of surface defect inspection equipment]
First, with reference to FIG. 1, the structure of the surface defect inspection apparatus which is one Embodiment of this invention is demonstrated.

図1は、本発明の一実施形態である表面欠陥検査装置の構成を示すブロック図である。図1に示すように、本発明の一実施形態である表面欠陥検査装置は、連続的に搬送される鋼板やアルミニウム板などの比較的厚さが薄い帯状の被検査体10の表面側および裏面側にそれぞれ対向して画像入力部11a,11bを備えている。画像入力部11a,11bは、CCDカメラや光電子倍増管などの画像入力手段と、被検査体10の表面又は裏面からの光を画像入力手段に導くための光学系と、光学的な補正を行うためのフィルタと、を備えている。   FIG. 1 is a block diagram showing a configuration of a surface defect inspection apparatus according to an embodiment of the present invention. As shown in FIG. 1, the surface defect inspection apparatus according to an embodiment of the present invention includes a front surface side and a back surface of a strip-shaped object 10 having a relatively thin thickness, such as a steel plate or an aluminum plate that is continuously conveyed. Image input units 11a and 11b are provided opposite to each other. The image input units 11a and 11b perform optical correction with an image input unit such as a CCD camera or a photomultiplier tube, an optical system for guiding light from the front or back surface of the inspection object 10 to the image input unit. And a filter.

画像入力部11a,11bにはそれぞれ画像処理部12a,12bが接続されている。画像処理部12a,12bは、画像入力部11a,11bからの電気信号を増幅する増幅器と、画像入力部11a,11bからの電気信号に含まれるノイズ信号をカットするフィルタ、画像入力部11a,11bからのアナログ信号をデジタル信号に変換するA/D変換器などの入力手段、入力信号から地合ノイズの影響を除去するためのシェーディング補正などの各種補正処理や空間フィルタなどの前処理、および得られた画像を2値以上にクラス分けするn値化処理や所定の閾値により欠陥(疵)候補を抽出する抽出処理などの処理を実行する処理部と、を備えている。   Image processing units 12a and 12b are connected to the image input units 11a and 11b, respectively. The image processing units 12a and 12b include an amplifier that amplifies the electric signal from the image input units 11a and 11b, a filter that cuts a noise signal included in the electric signal from the image input units 11a and 11b, and the image input units 11a and 11b. Input means such as an A / D converter that converts an analog signal from a digital signal into a digital signal, various correction processes such as shading correction to remove the influence of formation noise from the input signal, preprocessing such as a spatial filter, and A processing unit that executes processing such as n-value conversion processing for classifying the obtained image into two or more values and extraction processing for extracting defect (fats) candidates based on a predetermined threshold.

画像処理部12a,12bには、それぞれ特徴量演算部13a,13bが接続されている。特徴量演算部13a,13bは、画像処理部12a,12bによって抽出された欠陥候補の長さ、幅、面積、被検査体基準線からの長手方向の距離、被検査体基準端部からの幅方向の距離などの欠陥候補の特徴量を演算する。そして、特徴量演算部13a,13bには、記憶部16が接続されている。記憶部16は、特徴量演算部13a,13bが演算した欠陥候補の特徴量などを記憶する。   Feature amount calculation units 13a and 13b are connected to the image processing units 12a and 12b, respectively. The feature amount calculation units 13a and 13b are the length, width, and area of the defect candidates extracted by the image processing units 12a and 12b, the distance in the longitudinal direction from the inspected object reference line, and the width from the inspected object reference end. A feature amount of a defect candidate such as a direction distance is calculated. A storage unit 16 is connected to the feature amount calculation units 13a and 13b. The storage unit 16 stores the feature amounts of defect candidates calculated by the feature amount calculation units 13a and 13b.

欠陥種別判定部14は、後述するような所定のアルゴリズムに従って欠陥候補の特徴量から欠陥候補の種別を判定する。また、欠陥種別判定部14は、欠陥程度判定部15に接続されており、欠陥程度判定部15は、欠陥候補の特徴量および欠陥種別判定部14で判定された欠陥候補の種別から欠陥候補の程度を判定する。欠陥種別判定部14および欠陥程度判定部15によって得られた欠陥候補の種別および程度に関するデータは記憶部16に記憶される。   The defect type determination unit 14 determines the type of defect candidate from the feature amount of the defect candidate according to a predetermined algorithm as will be described later. Further, the defect type determination unit 14 is connected to the defect degree determination unit 15, and the defect degree determination unit 15 determines the defect candidate from the defect candidate feature amount and the defect candidate type determined by the defect type determination unit 14. Determine the degree. Data relating to the types and degrees of defect candidates obtained by the defect type determination unit 14 and the defect level determination unit 15 are stored in the storage unit 16.

欠陥種別判定部14および欠陥程度判定部15には、判定部17が接続されている。判定部17は、記憶部16に記憶されている欠陥候補の種別および程度に関するデータに基づいて、被検査体の表面、裏面、および両面の欠陥混入率、欠陥程度別欠陥混入率、欠陥発生要因別欠陥混入率、および組み合わせ欠陥混入率を算出し、算出結果に基づいて被検査体10を格付けする。判定部17には結果出力部18が接続されており、結果出力部18は、判定欠陥をCRTなどの表示装置、印刷装置、照明装置、ブザーなどのアナンシエータに出力する。   A determination unit 17 is connected to the defect type determination unit 14 and the defect degree determination unit 15. Based on the data regarding the type and degree of defect candidates stored in the storage unit 16, the determination unit 17 determines the defect contamination rate on the surface, back surface, and both surfaces of the object to be inspected, the defect contamination rate for each defect degree, and the defect occurrence factor. The other defect mixing rate and the combined defect mixing rate are calculated, and the inspected object 10 is rated based on the calculation result. A result output unit 18 is connected to the determination unit 17, and the result output unit 18 outputs the determination defect to a display device such as a CRT, a printing device, a lighting device, and an annunciator such as a buzzer.

このような構成を有する表面欠陥検査装置は、以下に示す単発欠陥格付け処理、群発欠陥格付け処理、および合否判定処理を実行することによって、単発欠陥(単発でも問題となる欠陥)と群発欠陥(単発では問題にならないが、群発すると問題になる微小欠陥)とに基づいて被検査体10を格付けし、格付け結果に基づいて被検査体10の合否判定を行う。   The surface defect inspection apparatus having such a configuration performs a single defect rating process, a cluster defect rating process, and a pass / fail judgment process described below, and a single defect (defect that is a problem even with a single shot) and a cluster defect (single shot). In this case, the inspection object 10 is rated based on the minute defect that causes a problem when swarming, and the pass / fail determination of the inspection object 10 is performed based on the rating result.

なお、本実施形態では、微小欠陥の大きさは、0.5〜1.0mmの範囲内に定められる閾値未満の大きさを有し、単発欠陥の大きさは、前記閾値以上に新たに定める閾値以上の大きさを有するものとする。但し、この閾値は被検査体10に要求される品質レベルに応じて調整できる。また、群発欠陥については、微小欠陥が単位領域内に2個以上ある場合にそれらの微小欠陥の集まりを総称して群発欠陥と称する。
以下、図2、図4、および図7に示すフローチャートを参照して、単発欠陥判定処理、群発欠陥判定処理、および合否判定処理を実行する際の表面欠陥検査装置の動作について説明する。
In the present embodiment, the size of the micro defect has a size less than a threshold value set in the range of 0.5 to 1.0 mm, and the size of the single defect is newly determined to be greater than or equal to the threshold value. It shall have the magnitude | size beyond a threshold value. However, this threshold value can be adjusted according to the quality level required for the device under test 10. As for the cluster defect, when there are two or more micro defects in the unit region, a group of these micro defects is collectively referred to as a cluster defect.
Hereinafter, with reference to the flowcharts shown in FIGS. 2, 4, and 7, the operation of the surface defect inspection apparatus when executing the single defect determination process, the cluster defect determination process, and the pass / fail determination process will be described.

〔単発欠陥格付け処理〕
始めに、図2に示すフローチャートを参照して、単発欠陥に基づいて被検査体10を格付けする単発欠陥格付け処理を実行する際の表面欠陥検査装置の動作について説明する。
[Single defect rating process]
First, with reference to the flowchart shown in FIG. 2, the operation of the surface defect inspection apparatus when executing the single defect rating process for rating the inspected object 10 based on the single defect will be described.

図2は、本発明の一実施形態である単発欠陥格付け処理の流れを示すフローチャートである。図2に示すフローチャートは、欠陥種別判定部14および欠陥程度判定部15によって欠陥候補の種別および程度に関するデータが判定されたタイミングで開始となり、単発欠陥判定処理はステップS1の処理に進む。   FIG. 2 is a flowchart showing a flow of single defect rating processing according to an embodiment of the present invention. The flowchart shown in FIG. 2 starts at the timing when the defect type determination unit 14 and the defect degree determination unit 15 determine data regarding the type and degree of the defect candidate, and the single defect determination process proceeds to step S1.

ステップS1の処理では、判定部17が、記憶部16から単発欠陥のデータを読み出し、被検査体10の単位長さ毎に単発欠陥を抽出する。なお、本実施形態では、判定部17は、図3に示すように、被検査体10の長手方向(長さL)を単位長さnである複数の単位長さ領域Rに分割し、複数の単位長さ領域R毎に単発欠陥を抽出する。また、単発欠陥が単位長さで分割した2つの領域に跨る場合、判定部17は、両方の領域に単発欠陥が存在する、又は、例えば単発欠陥の長さが長い方が単発欠陥の存在する領域であるなど、どちらか一方の領域に存在するとして、単発欠陥を抽出する。 In the process of step S <b> 1, the determination unit 17 reads single defect data from the storage unit 16 and extracts a single defect for each unit length of the inspected object 10. In the present embodiment, as shown in FIG. 3, the determination unit 17 divides the longitudinal direction (length L) of the device under test 10 into a plurality of unit length regions RA having a unit length n, Single defects are extracted for each of a plurality of unit length regions RA . Further, when the single defect extends over two regions divided by the unit length, the determination unit 17 has a single defect in both regions, or, for example, a single defect having a longer single defect exists. A single defect is extracted as existing in either one of the regions.

なお、3つ以上の領域に跨る非常に長い単発欠陥がある場合、判定部17は、例外的に3つ以上の全ての領域に単発欠陥が存在するとしてもよく、長い単発欠陥に対する処理は特に限定されることはない。これにより、ステップS1の処理は完了し、単発欠陥格付け処理はステップS2の処理に進む。   In addition, when there is a very long single defect extending over three or more regions, the determination unit 17 may exceptionally include single defects in all three or more regions. There is no limit. Thereby, the process of step S1 is completed and the single defect rating process proceeds to the process of step S2.

ステップS2の処理では、判定部17が、ステップS1の処理結果に基づいて、被検査体10の単位長さ毎に代表欠陥を決定する。なお、代表欠陥は、最も程度が悪い単発欠陥とする。また、同じ程度の単発欠陥が複数存在する場合には、判定部17は、単発欠陥の優先順序に従って優先順序が最も高い単発欠陥を代表欠陥とする。   In the process of step S2, the determination unit 17 determines a representative defect for each unit length of the object 10 to be inspected based on the process result of step S1. The representative defect is the single defect with the lowest degree. If there are a plurality of single defects of the same degree, the determination unit 17 sets the single defect having the highest priority according to the priority order of single defects as the representative defect.

これは、例えば「欠陥種:ヘゲ、程度:C」、「欠陥種:スリキズ、程度:C」、「欠陥種:押疵、程度:C」が検出された場合であって、優先順序が押疵、スリキズ、およびヘゲの順に高くなっている場合には、判定部17は代表欠陥を「欠陥種:ヘゲ、程度:C」に決定する。これにより、ステップS2の処理は完了し、単発欠陥格付け処理はステップS3の処理に進む。   This is the case where, for example, “Defect type: Hege, degree: C”, “Defect type: Scratch, degree: C”, “Defect type: Pushing, degree: C” is detected, and the priority order is When it is higher in the order of the pressing bar, the scratch, and the scab, the determination unit 17 determines the representative defect as “defect type: scab, degree: C”. Thereby, the process of step S2 is completed and the single defect rating process proceeds to the process of step S3.

ステップS3の処理では、判定部17が、以下に示す(1)式を利用して、ステップS2の処理において決定した代表欠陥の被検査体10内における混入率を欠陥混入率として算出する。なお、(1)式中のパラメータmは、被検査体10全体内における代表欠陥の数、パラメータnは単位長さ、パラメータLは被検査体10の長さを示している。   In the process of step S3, the determination part 17 calculates the mixing rate in the to-be-inspected object 10 of the representative defect determined in the process of step S2 as a defect mixing rate using the following (1) Formula. The parameter m in the equation (1) indicates the number of representative defects in the entire inspection object 10, the parameter n indicates the unit length, and the parameter L indicates the length of the inspection object 10.

そして、判定部17は、以下に説明する表面欠陥混入率、裏面欠陥混入率、両面欠陥混入率、欠陥程度別欠陥混入率、欠陥発生要因別欠陥混入率、および組み合わせ欠陥混入率を算出する。これにより、ステップS3の処理は完了し、単発欠陥格付け処理はステップS4の処理に進む。   Then, the determination unit 17 calculates a surface defect mixing rate, a back surface defect mixing rate, a double-sided defect mixing rate, a defect mixing rate by defect degree, a defect mixing rate by defect occurrence factor, and a combined defect mixing rate described below. Thereby, the process of step S3 is completed and the single defect rating process proceeds to the process of step S4.

[表面欠陥混入率、裏面欠陥混入率、両面欠陥混入率]
判定部17は、表面および裏面それぞれの代表欠陥による欠陥混入率をそれぞれ表面欠陥混入率および裏面欠陥混入率として算出する。また、判定部17は、同じ単位長さ領域における表面および裏面それぞれの代表欠陥を比較することによって両面における代表欠陥を上述の方法と同様にして決定し、決定された代表欠陥から算出された欠陥混入率を両面欠陥混入率として算出する。
[Surface defect contamination rate, back surface defect contamination rate, double-sided defect contamination rate]
The determination unit 17 calculates the defect contamination rate due to the representative defects on the front surface and the back surface as the surface defect contamination rate and the back surface defect contamination rate, respectively. Further, the determination unit 17 determines the representative defects on both surfaces in the same manner as described above by comparing the representative defects on the front and back surfaces in the same unit length region, and the defect calculated from the determined representative defects. The mixing rate is calculated as the double-sided defect mixing rate.

これは、両面欠陥混入率については、表面および裏面を別々にカウントするのではなく、一体物としてカウントすることを意味している。具体的には、表面に「欠陥種:ヘゲ、程度:C」と「欠陥種:スリキズ、程度:B」とがあり、裏面に「欠陥種:押疵、程度:C」がある場合には、判定部17は、表面の「欠陥種:スリキズ、程度:B」を両面の代表欠陥とする。なお、表裏の代表欠陥が同一欠陥種および同一程度であった場合、どちらの面の欠陥を代表欠陥としも同じ結果になるが、例えば、表面側の欠陥を優先的に採用するように設定しておくことが望ましい。   This means that the double-sided defect mixing rate is not counted separately for the front surface and the back surface, but as a single object. Specifically, there are “Defect type: Hege, degree: C” and “Defect type: Scratch, degree: B” on the front surface, and “Defect type: Pushing, degree: C” on the back surface. The determination unit 17 sets “defect type: scratch, degree: B” on the surface as a representative defect on both sides. If the representative defects on the front and back are the same defect type and the same degree, the defect on either side will be the same result as the representative defect, but for example, the defect on the front side is set to be preferentially adopted. It is desirable to keep it.

[欠陥程度別欠陥混入率]
判定部17は、欠陥の程度を複数のランクに分けたときの欠陥程度別の欠陥混入率を、欠陥程度別欠陥混入率として算出する。また、判定部17は、ある欠陥程度より悪い程度の欠陥混入率を、全て累積したものを算出する。
[Defect mixing rate by defect level]
The determination unit 17 calculates the defect mixing rate for each defect level when the defect level is divided into a plurality of ranks as the defect mixing rate for each defect level. Further, the determination unit 17 calculates an accumulation of all defect mixture rates that are worse than a certain defect.

具体的には、以下に示す表1のように、欠陥程度がA〜Eの5ランク(A,B,C,D,Eの順に欠陥程度が悪くなる)に設定されている場合、判定部17はA〜Eの各欠陥程度の欠陥混入率(欠陥程度別欠陥混入率)x1〜x5を算出する。なお、欠陥程度別欠陥混入率x1〜x5の累積値は最大で100%である。また、欠陥程度のランクC〜Eを管理項目とした場合、判定部17は、欠陥程度のランクC〜Eの欠陥混入率x3〜x5を累積した値を算出する。   Specifically, as shown in Table 1 below, when the degree of defects is set to five ranks A to E (the degree of defects worsens in the order of A, B, C, D, and E), the determination unit 17 calculates the defect mixing rate (defect mixing rate by defect level) x1 to x5 for each of the defects A to E. Note that the cumulative value of the defect mixing ratios x1 to x5 according to the degree of defects is 100% at the maximum. Further, when ranks C to E of the degree of defects are set as management items, the determination unit 17 calculates a value obtained by accumulating the defect mixture rates x3 to x5 of the ranks C to E of the degree of defects.

[欠陥発生要因別欠陥混入率]
判定部17は、記憶部16に記憶されているデータを参照して、上工程以前を発生場所とする原板性欠陥、自ラインで発生した自ライン性欠陥など、欠陥発生の要因別に代表欠陥を分類し、代表欠陥の要因毎の欠陥混入率(欠陥発生要因別欠陥混入率)を算出する。具体的には、判定部17は、欠陥の種別に基づいて代表欠陥を分類し、各欠陥種別の程度毎に欠陥混入率を、以下に示す表2のように制御する。
[Defect mixing rate by defect cause]
The determination unit 17 refers to the data stored in the storage unit 16 and displays representative defects according to the cause of the defect such as an original plate defect that occurs before the upper process and a self-line defect that occurs in the self-line. Classify and calculate the defect mixing rate (defect mixing rate by defect occurrence factor) for each factor of the representative defect. Specifically, the determination unit 17 classifies the representative defects based on the defect types, and controls the defect mixture rate for each defect type as shown in Table 2 below.

ここで、欠陥種別と欠陥要因とは、ヘゲ、スリバーは製鋼起因の欠陥、スケールは熱延起因の欠陥、ドロスおよび不めっきはめっき起因の欠陥、スリキズおよび押疵は通板トラブルに起因の欠陥のような関係がある。   Here, the defect types and the cause of defects are as follows: Hege and sliver are caused by steelmaking, scale is caused by hot-rolling, dross and non-plating are caused by plating, and scratches and pressing are caused by plate trouble There is a relationship like a defect.

[組み合わせ欠陥混入率]
判定部17は、以上述べた欠陥混入率を組み合わせた欠陥混入率を算出する。具体的には、判定部17は、表2に示した場合において、製鋼起因の欠陥、熱延起因の欠陥、めっき起因の欠陥、および通板トラブル起因の欠陥のそれぞれにおいて、程度C〜Eの欠陥混入率の累積値を演算したり、製鋼起因欠陥と熱延起因欠陥とを組み合わせた欠陥混入率の累積値を演算したりする。なお、欠陥種類の組み合わせは、必要な情報に合わせて適宜設定される。
[Combination defect mixing rate]
The determination unit 17 calculates a defect mixing rate by combining the above-described defect mixing rates. Specifically, in the case shown in Table 2, the determination unit 17 has a degree of C to E in each of a defect caused by steelmaking, a defect caused by hot rolling, a defect caused by plating, and a defect caused by a plate trouble. The cumulative value of the defect mixing rate is calculated, or the cumulative value of the defect mixing rate that combines the steel-making defect and the hot-rolling defect is calculated. The combination of defect types is appropriately set according to necessary information.

ステップS4の処理では、判定部17が、ステップS3の処理によって算出された各欠陥混入率と顧客要求仕様別に予め定められた欠陥混入率の許容範囲とを比較することによって被検査体10の格付けを行う。欠陥混入率の許容範囲としては、以下のような範囲を例示することができる。これにより、ステップS4の処理は完了し、一連の単発欠陥格付け処理は終了する。   In the process of step S4, the determination unit 17 ranks the inspected object 10 by comparing each defect mixture rate calculated by the process of step S3 with the allowable range of the defect mixture rate determined in advance for each customer requirement specification. I do. Examples of the allowable range of the defect mixing rate include the following ranges. Thereby, the process of step S4 is completed and a series of single defect rating processes are complete | finished.

[欠陥混入率の許容範囲例]
(1)格付けA級品(顧客(又は用途)α、β、γ向けに販売可能な製品) → 程度C以上の欠陥(程度C〜Eを含む悪いもの)の混入率が1%未満
(2)格付けB級品(顧客(又は用途)β、γ向けに販売可能な製品) → 程度C以上の欠陥の混入率が2%未満
(3)格付けC級品(顧客(又は用途)γ向けに販売可能な製品) → 程度C以上の欠陥の混入率が5%未満
(4)スクラップ対象品 → 程度C以上の欠陥の混入率が5%以上
[Example of acceptable range of defect contamination]
(1) Grade A products (products that can be sold to customers (or uses) α, β, γ) → The contamination rate of defects of grade C or higher (bad grades including grades C to E) is less than 1% (2 ) Grade B products (products that can be sold to customers (or uses) β and γ) → Less than 2% of defects with a degree C or higher (3) Grade C products (to customers (or uses) γ) Products that can be sold) → Less than 5% defect mixing rate (4) Products subject to scrap → More than 5% defect mixing rate> 5%

〔群発欠陥格付け処理〕
次に、図4に示すフローチャートを参照して、群発欠陥に基づいて被検査体10を格付けする群発欠陥格付け処理を実行する際の表面欠陥検査装置の動作について説明する。
[Group defect rating processing]
Next, with reference to the flowchart shown in FIG. 4, operation | movement of the surface defect inspection apparatus at the time of performing the cluster defect rating process which ranks the to-be-inspected object 10 based on a cluster defect is demonstrated.

図4は、本発明の一実施形態である群発欠陥格付け処理の流れを示すフローチャートである。図4に示すフローチャートは、欠陥種別判定部14および欠陥程度判定部15によって欠陥候補の種別および程度に関するデータが判定されたタイミングで開始となり、群発欠陥判定処理はステップS11の処理に進む。   FIG. 4 is a flowchart showing a flow of cluster defect rating processing according to an embodiment of the present invention. The flowchart shown in FIG. 4 starts at the timing when the data regarding the type and degree of the defect candidate is determined by the defect type determination unit 14 and the defect degree determination unit 15, and the swarm defect determination process proceeds to the process of step S11.

ステップS11の処理では、判定部17が、被検査体10を複数の単位領域に分割する。具体的には、判定部17は、図5に示すように、長手方向および幅方向に被検査体10を分割することによって複数の単位領域Rを形成する。そして、判定部17は、記憶部16に記憶されている欠陥情報を各単位領域に分割し、欠陥の中心位置が単位領域内にある微小欠陥のデータを単位領域毎に抽出する。これにより、ステップS11の処理は完了し、群発欠陥格付け処理はステップS12の処理に進む。 In the process of step S11, the determination unit 17 divides the device under test 10 into a plurality of unit areas. Specifically, determining unit 17, as shown in FIG. 5, to form a plurality of unit regions R B by dividing the object to be inspected 10 in the longitudinal direction and the width direction. Then, the determination unit 17 divides the defect information stored in the storage unit 16 into each unit region, and extracts data on a minute defect whose center position is within the unit region for each unit region. Thereby, the process of step S11 is completed and the swarm defect rating process proceeds to the process of step S12.

ステップS12の処理では、判定部17が、ステップS11の処理結果を利用して、単位領域毎に微小欠陥の重み付き欠陥数を算出する。具体的には、判定部17は、微小欠陥の種類がm個(m=1〜m)あり、m番目の微小欠陥の欠陥数がNm、m番目の微小欠陥の重みがKmであるとして、以下に示す数式(2)を利用して微小欠陥の種類別の重み付き欠陥数の総和を、単位領域内の重み付き欠陥数として単位領域毎に算出する。   In the process of step S12, the determination unit 17 calculates the number of weighted defects of minute defects for each unit region using the process result of step S11. Specifically, the determination unit 17 assumes that there are m types of minute defects (m = 1 to m), the number of defects of the mth minute defect is Nm, and the weight of the mth minute defect is Km. The sum of the number of weighted defects for each type of micro defect is calculated for each unit region as the number of weighted defects in the unit region by using the following formula (2).

より具体的には、微小欠陥に大、中、小、および微小の4種類(m=4)があり、ある単位領域における各微小欠陥の数(Nm)がそれぞれ0,1,3,4であり、各微小欠陥の重み係数(Km)がそれぞれ10,8,6,2である場合、判定部17は以下に示す表3のようにして単位領域内の重み付き欠陥数を算出する。これにより、ステップS12の処理は完了し、群発欠陥格付け処理はステップS13の処理に進む。   More specifically, there are four types (m = 4) of large, medium, small, and minute micro defects, and the number (Nm) of each micro defect in a unit region is 0, 1, 3, and 4, respectively. If the weight coefficient (Km) of each micro defect is 10, 8, 6, 2, respectively, the determination unit 17 calculates the number of weighted defects in the unit area as shown in Table 3 below. Thereby, the process of step S12 is completed and the swarm defect rating process proceeds to the process of step S13.

ステップS13の処理では、判定部17が、ステップS12の処理によって算出された対象とする単位領域(i,j)の重み付き欠陥数と長手方向に隣接する前方領域(搬送方向下流側の領域)(i―1,j)の重み付き欠陥数が欠陥数から長手方向移動平均欠陥数を算出する。   In the process of step S13, the determination unit 17 determines the number of weighted defects in the target unit area (i, j) calculated by the process of step S12 and the front area adjacent to the longitudinal direction (area on the downstream side in the transport direction). The number of weighted defects (i-1, j) is calculated from the number of defects and the moving average number of defects in the longitudinal direction.

具体的には、欠陥数閾値の値が50であり、単位領域R1、R2、R3、R4、R5、R6、R7、R8の重み付き欠陥数がそれぞれ20,40,70,90,30,70,10,70である場合、図6に示すように、判定部17は、以下に示す(3)式に代入することによって、単位領域R1、R2、R3、R4の長手方向移動平均欠陥数を、それぞれ25、55、40、80と算出する。これにより、ステップS13の処理は完了し、群発欠陥格付け処理はステップS14の処理に進む。 Specifically, the defect number threshold value is 50, and the weights of the unit regions R B 1, R B 2, R B 3, R B 4, R B 5, R B 6, R B 7, R B 8 When the numbers of attached defects are 20, 40, 70, 90, 30, 70, 10, and 70, respectively, as shown in FIG. 6, the determination unit 17 substitutes into the following equation (3) to obtain the unit The longitudinal moving average number of defects in the regions R B 1, R B 2, R B 3 and R B 4 are calculated as 25, 55, 40 and 80, respectively. Thereby, the process of step S13 is completed and the swarm defect rating process proceeds to the process of step S14.

ここでは一例として、単位領域と前方領域の2つの領域を移動平均の対象領域として説明しているが、長手方向、幅方向で3つ以上の領域を移動平均の対象領域として算出しても良い。本発明では、単位領域の大きさ(分割の取り方)、および移動平均をとる対象領域の数を自由に設定することにより、後述する群発欠陥格付けをより正確に行うことができる。   Here, as an example, the two areas of the unit area and the front area are described as moving average target areas, but three or more areas in the longitudinal direction and the width direction may be calculated as moving average target areas. . In the present invention, by setting the size of the unit area (how to divide) and the number of target areas for which a moving average is taken, swarm defect rating described later can be performed more accurately.

ステップS14の処理では、判定部17が、ステップS13の処理結果を利用して、長手方向移動平均欠陥数が欠陥数閾値以上である単位領域(i,j)を、長手方向移動平均欠陥数閾値越え領域と判定する。具体的には、判定部17は、図6に示すように、欠陥数閾値の値が50であり、単位領域R1、R2、R3、R4の長手方向移動平均欠陥数がそれぞれ25,55,40,80である場合、図6に示すように、判定部17は、単位領域R1、R2、R3、R4の判定フラグMの値をそれぞれ0、1、0、1に設定する。 In the process of step S14, the determination unit 17 uses the processing result of step S13 to convert the unit area (i, j) whose longitudinal moving average defect count is equal to or larger than the defect count threshold to the longitudinal moving average defect count threshold. Judged as an over-range. Specifically, as shown in FIG. 6, the determination unit 17 has a defect count threshold value of 50, and the moving average defect in the longitudinal direction of the unit regions R B 1, R B 2, R B 3, R B 4. When the numbers are 25, 55, 40, and 80, respectively, as illustrated in FIG. 6, the determination unit 17 sets the values of the determination flags M of the unit regions R B 1, R B 2, R B 3, and R B 4. Set to 0, 1, 0, 1 respectively.

なお、本実施形態では、判定フラグM=1は長手方向移動平均欠陥数が欠陥数閾値以上であることを示し、判定フラグM=0は長手方向移動平均欠陥数が欠陥数閾値未満であることを示す。また、判定フラグMの初期値は0に設定されている。これにより、ステップS14の処理は完了し、群発欠陥格付け処理はステップS15の処理に進む。   In the present embodiment, the determination flag M = 1 indicates that the number of longitudinal moving average defects is equal to or greater than the defect number threshold, and the determination flag M = 0 indicates that the number of longitudinal moving average defects is less than the defect number threshold. Indicates. The initial value of the determination flag M is set to 0. Thereby, the process of step S14 is completed, and the cluster defect rating process proceeds to the process of step S15.

ステップS15の処理では、判定部17が、ステップS14の処理結果を利用して、被検査体10内における長手方向移動平均欠陥数閾値越え領域の数を算出する。具体的には、判定部17は、各単位領域(i,j)の判定フラグM(i,j)の値を以下に示す(4)式に代入することによって、被検査体10内における長手方向移動平均欠陥数閾値越え領域の数を算出する。これにより、ステップS15の処理は完了し、群発欠陥格付け処理はステップS16の処理に進む。   In the process of step S15, the determination unit 17 calculates the number of longitudinal moving average defect count threshold value exceeding regions in the inspection object 10 using the processing result of step S14. Specifically, the determination unit 17 substitutes the value of the determination flag M (i, j) of each unit region (i, j) into the following expression (4), thereby increasing the length in the object 10 to be inspected. The number of areas whose direction moving average defect count exceeds the threshold is calculated. Thereby, the process of step S15 is completed and the swarm defect rating process proceeds to the process of step S16.

ステップS16の処理では、判定部17が、ステップS15の処理によって算出された被検査体10内における長手方向移動平均欠陥数閾値越え領域の数と顧客要求仕様別に予め定められた長手方向移動平均欠陥数閾値越え領域の数の許容範囲とを比較することによって被検査体10の格付けを行う。長手方向移動平均欠陥数閾値越え領域の数の許容範囲としては、以下のような範囲を例示することができる。これにより、ステップS16の処理は完了し、一連の群発欠陥格付け処理は終了する。   In the process of step S16, the determination unit 17 performs the longitudinal moving average defect determined in advance according to the number of the longitudinal moving average defect number exceeding the threshold value in the inspected object 10 calculated by the process of step S15 and the customer requirement specification. The to-be-inspected object 10 is rated by comparing with the allowable range of the number of areas exceeding the threshold value. Examples of the allowable range of the number of areas that exceed the longitudinal moving average defect count threshold include the following ranges. Thereby, the process of step S16 is completed and a series of swarm defect rating processes are completed.

[長手方向移動平均欠陥数閾値越え領域の数の許容範囲例]
(1)格付けA級品(顧客(又は用途)α、β、γ向けに販売可能な製品) → 長手方向移動平均欠陥数閾値越え領域の数が2未満
(2)格付けB級品(顧客(又は用途)β、γ向けに販売可能な製品) → 長手方向移動平均欠陥数閾値越え領域の数が4未満
(3)格付けC級品(顧客(又は用途)γ向けに販売可能な製品) → 長手方向移動平均欠陥数閾値越え領域の数が6未満
(4)スクラップ対象品 → 長手方向移動平均欠陥数閾値越え領域の数が6以上
[Example of allowable range of the number of moving average defects in the longitudinal direction exceeding the threshold value]
(1) Grade A products (products that can be sold to customers (or applications) α, β, γ) → Number of longitudinal moving average defect count exceeding the threshold is less than 2 (2) Grade B products (customers ( (Or use) Products that can be sold for β and γ) → Number of longitudinal moving average number of defects exceeding the threshold is less than 4 (3) Grade C products (products that can be sold to customers (or uses) γ) → Longitudinal moving average number of defects exceeding the threshold is less than 6 (4) Scrap target product → Longitudinal moving average number of defects exceeding the threshold is 6 or more

〔合否判定処理〕
最後に、図7に示すフローチャートを参照して、単発欠陥格付け処理および群発欠陥格付け処理に基づく被検査体10の合否判定処理を実行する際の表面欠陥検査装置の動作について説明する。
[Pass / fail judgment processing]
Finally, with reference to the flowchart shown in FIG. 7, the operation of the surface defect inspection apparatus when executing the pass / fail determination process of the inspected object 10 based on the single defect rating process and the swarm defect rating process will be described.

図7は、本発明の一実施形態である合否判定処理の流れを示すフローチャートである。図7に示すフローチャートは、単発欠陥格付け処理および群発欠陥格付け処理が終了したタイミングで開始となり、合否判定処理はステップS21の処理に進む。   FIG. 7 is a flowchart showing the flow of pass / fail determination processing according to an embodiment of the present invention. The flowchart shown in FIG. 7 starts at the timing when the single defect rating process and the swarm defect rating process are completed, and the pass / fail determination process proceeds to the process of step S21.

ステップS21の処理では、判定部17が、単発欠陥格付け処理の結果に基づいて、被検査体10の格付け判定が合格であるか否かを判別する。例えば、単発欠陥格付け処理において顧客(又は用途)α向けに製造された被検査体10が格付けB級品に格付けされた場合、判定部17はその被検査体10を不合格と判定する。   In the process of step S21, the determination part 17 determines whether the rating determination of the to-be-inspected object 10 is a pass based on the result of the single defect rating process. For example, in the single defect rating process, when the inspected object 10 manufactured for the customer (or application) α is rated as a rating class B product, the determination unit 17 determines that the inspected object 10 is rejected.

一方、単発欠陥格付け処理において顧客(又は用途)α向けに製造された被検査体10が格付けA級品に格付けされた場合、判定部17はその被検査体10を合格と判定する。判別の結果、被検査体10の格付け判定が合格である場合、判定部17は合否判定処理をステップS22の処理に進める。一方、被検査体10の格付け判定が不合格である場合には、判定部17は合否判定処理をステップS24の処理に進める。   On the other hand, when the inspected object 10 manufactured for the customer (or application) α is rated as a grade A grade product in the single defect rating process, the determination unit 17 determines that the inspected object 10 is acceptable. As a result of the determination, when the rating determination of the device under test 10 is acceptable, the determination unit 17 advances the pass / fail determination process to the process of step S22. On the other hand, when the rating determination of the device under test 10 fails, the determination unit 17 advances the pass / fail determination process to the process of step S24.

ステップS22の処理では、判定部17が、群発欠陥格付け処理の結果に基づいて、被検査体10の格付け判定が合格であるか否かを判別する。例えば、群発欠陥格付け処理において顧客(又は用途)β向けに製造された被検査体10が格付けC級品に格付けされた場合、判定部17はその被検査体10を不合格と判定する。   In the process of step S22, the determination part 17 determines whether the rating determination of the to-be-inspected object 10 is a pass based on the result of a cluster defect rating process. For example, when the inspected object 10 manufactured for the customer (or application) β is rated as a rated C grade product in the cluster defect rating process, the determination unit 17 determines that the inspected object 10 is rejected.

一方、群発欠陥格付け処理において顧客(又は用途)β向けに製造された被検査体10が格付けA級品に格付けされた場合、判定部17はその被検査体10を合格と判定する。
判別の結果、被検査体10の格付け判定が合格である場合、判定部17は合否判定処理をステップS23の処理に進める。一方、被検査体10の格付け判定が不合格である場合には、判定部17は合否判定処理をステップS24の処理に進める。
On the other hand, when the inspected object 10 manufactured for the customer (or application) β is rated as a rated A grade product in the swarm defect rating process, the determination unit 17 determines that the inspected object 10 is acceptable.
As a result of the determination, when the rating determination of the device under test 10 is acceptable, the determination unit 17 advances the pass / fail determination process to the process of step S23. On the other hand, when the rating determination of the device under test 10 fails, the determination unit 17 advances the pass / fail determination process to the process of step S24.

ステップS23の処理では、判定部17が、被検査体10を合格判定し、被検査体10が合格である旨の情報を結果出力部18に出力する。これにより、ステップS23の処理は完了し、一連の合否判定処理は終了する。   In the process of step S <b> 23, the determination unit 17 determines that the inspection object 10 is acceptable, and outputs information indicating that the inspection object 10 is acceptable to the result output unit 18. Thereby, the process of step S23 is completed and a series of pass / fail determination processes are completed.

ステップS24の処理では、判定部17が、被検査体10を不合格判定し、被検査体10が不合格である旨の情報を結果出力部18に出力する。これにより、ステップS24の処理は完了し、一連の合否判定処理は終了する。   In the process of step S <b> 24, the determination unit 17 determines that the object 10 is rejected, and outputs information indicating that the object 10 is rejected to the result output unit 18. Thereby, the process of step S24 is completed and a series of pass / fail determination processes are completed.

以上の説明から明らかなように、本発明の一実施形態である表面検査装置では、判定部17が、表面欠陥の種別および程度に基づいて、被検査体10を長手方向および幅方向に分割することによって形成される各単位領域において、単位領域の重み付き欠陥数と長手方向に隣接する前方領域(搬送方向下流側の領域)の重み付き欠陥数から長手方向移動平均欠陥数を算出し、欠陥数閾値とを比較することによって長手方向移動平均欠陥数が欠陥数閾値より大きい単位領域を長手方向移動平均欠陥数閾値越え領域として抽出し、被検査体10内における長手方向移動平均欠陥数閾値越え領域の数を算出し、算出された長手方向移動平均欠陥数閾値越え領域の数に基づいて被検査体10を格付けする。このような表面検査装置によれば、群発すると問題になる微小欠陥に基づいて被検査体を格付けすることができる。また、単位領域の大きさ、および移動平均をとる対象領域の数を自由に設定することにより、群発欠陥格付けをより正確に行うことができる。   As is clear from the above description, in the surface inspection apparatus according to an embodiment of the present invention, the determination unit 17 divides the device under test 10 in the longitudinal direction and the width direction based on the type and degree of surface defects. In each unit region formed by this, the number of moving average defects in the longitudinal direction is calculated from the number of weighted defects in the unit region and the number of weighted defects in the front region adjacent to the longitudinal direction (region on the downstream side in the transport direction). By comparing with the number threshold, a unit region whose longitudinal moving average defect number is larger than the defect number threshold is extracted as a region exceeding the longitudinal moving average defect number threshold, and exceeds the longitudinal moving average defect number threshold in the inspection object 10. The number of areas is calculated, and the object to be inspected 10 is rated based on the calculated number of areas in the longitudinal direction moving average defect count exceeding the threshold value. According to such a surface inspection apparatus, it is possible to rank an object to be inspected based on a minute defect that becomes a problem when swarming. Moreover, swarm defect rating can be performed more accurately by freely setting the size of the unit area and the number of target areas for which a moving average is taken.

さらに、本発明の一実施形態である表面検査装置では、判定部17が、群発欠陥による被検査体10の格付けに加えて、単発欠陥による被検査体10の格付けも行うので、検査可能な欠陥の大きさの範囲が拡大し、微小欠陥から大きな欠陥までの広範囲の検査が可能となり、検査漏れがなく、高精度な欠陥検査が可能になる。   Furthermore, in the surface inspection apparatus according to the embodiment of the present invention, the determination unit 17 performs the rating of the inspection object 10 due to a single defect in addition to the rating of the inspection object 10 due to the cluster defect, so that the defect that can be inspected As a result, the inspection can be performed in a wide range from a minute defect to a large defect, and there is no inspection omission and a highly accurate defect inspection can be performed.

以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。   Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings that form a part of the disclosure of the present invention according to this embodiment.

10 被検査体
11a,11b 画像入力部
12a,12b 画像処理部
13a,13b 特徴量演算部
14 欠陥種別判定部
15 欠陥程度判定部
16 記憶部
17 判定部
18 結果出力部
DESCRIPTION OF SYMBOLS 10 To-be-inspected object 11a, 11b Image input part 12a, 12b Image processing part 13a, 13b Feature-value calculating part 14 Defect type determination part 15 Defect degree determination part 16 Storage part 17 Determination part 18 Result output part

Claims (5)

被検査体を長手方向および幅方向に分割することによって形成される各単位領域における微小欠陥を抽出し、単位領域における欠陥数を算出する第1ステップと、
長手方向に隣接する単位領域の長手方向移動平均欠陥数を算出する第2ステップと、
算出した長手方向移動平均欠陥数と所定の閾値とを比較し、算出した長手方向移動平均欠陥数が前記閾値越えである場合、長手方向移動平均欠陥数閾値越え領域として抽出する第3ステップと、
抽出した長手方向移動平均欠陥数閾値越え領域の数を算出し、算出した長手方向移動平均欠陥数閾値越え領域の数に基づいて被検査体を格付けする第4ステップと、
を有することを特徴とする表面欠陥検査方法。
A first step of extracting a minute defect in each unit region formed by dividing the object to be inspected in the longitudinal direction and the width direction, and calculating the number of defects in the unit region;
A second step of calculating the number of moving average defects in the longitudinal direction of unit regions adjacent in the longitudinal direction;
A third step of comparing the calculated number of moving average defects in the longitudinal direction with a predetermined threshold value and, if the calculated number of moving average defects in the length direction exceeds the threshold value, extracting as a region exceeding the threshold value in the lengthwise moving average defect number;
A fourth step of calculating the number of the areas that exceed the extracted longitudinal moving average defect count threshold value, and classifying the object to be inspected based on the calculated number of areas exceeding the longitudinal moving average defect count threshold value;
A surface defect inspection method characterized by comprising:
請求項1に記載の表面欠陥検査方法において、
前記第1ステップは、表面欠陥の種別および程度に応じて定められた所定の重み係数を前記欠陥数に乗算することにより、重み付き欠陥数を算出し、算出した重み付き欠陥数の総和を各単位領域における欠陥数として算出するステップを含むことを特徴とする表面欠陥検査方法。
The surface defect inspection method according to claim 1,
The first step calculates the number of weighted defects by multiplying the number of defects by a predetermined weighting factor determined according to the type and degree of surface defects, and calculates the sum of the calculated number of weighted defects. A surface defect inspection method comprising the step of calculating the number of defects in a unit region.
請求項1または2に記載の表面欠陥検査方法において、
表面欠陥の種別および程度に基づいて、被検査体を長手方向に分割することによって形成される各単位長さ領域における代表欠陥を決定し、被検査体内における代表欠陥の混入率を算出する算出ステップと、
前記代表欠陥の混入率に基づいて被検査体を格付けし、格付け結果に基づいて被検査体の合否判定を行う判定ステップと、
を有することを特徴とする表面欠陥検査方法。
The surface defect inspection method according to claim 1 or 2,
A calculation step for determining a representative defect in each unit length region formed by dividing the object to be inspected in the longitudinal direction based on the type and degree of the surface defect, and calculating a mixing rate of the representative defect in the object to be inspected When,
A rating step that ranks the object to be inspected based on the mixing ratio of the representative defects, and performs pass / fail determination of the object to be inspected based on the rating result;
A surface defect inspection method characterized by comprising:
請求項3に記載の表面欠陥検査方法において、
前記算出ステップと前記判定ステップとを前記第1〜第4ステップを実行する前に実行し、前記代表欠陥の混入率に基づく格付けによって合格と判定された被検査体に対してのみ、前記第1〜第4ステップを実行することを特徴とする表面欠陥検査方法。
In the surface defect inspection method according to claim 3,
The calculation step and the determination step are executed before executing the first to fourth steps, and only the first object to be inspected is determined to be acceptable by the rating based on the mixing rate of the representative defects. A surface defect inspection method characterized by executing the fourth step.
被検査体を長手方向および幅方向に分割することによって形成される各単位領域における微小欠陥を抽出し、単位領域における欠陥数を算出する第1手段と、
長手方向に隣接する単位領域の長手方向移動平均欠陥数を算出する第2手段と、
算出した長手方向移動平均欠陥数と所定の閾値とを比較し、算出した長手方向移動平均欠陥数が前記閾値越えである場合、長手方向移動平均欠陥数閾値越え領域として抽出する第3手段と、
抽出した長手方向移動平均欠陥数閾値越え領域の数を算出し、算出した長手方向移動平均欠陥数閾値越え領域の数に基づいて被検査体を格付けする第4手段と、
を具備することを特徴とする表面欠陥検査装置。
A first means for extracting a minute defect in each unit region formed by dividing the object to be inspected in the longitudinal direction and the width direction, and calculating the number of defects in the unit region;
A second means for calculating the number of moving average defects in the longitudinal direction of unit regions adjacent in the longitudinal direction;
A third means for comparing the calculated number of moving average defects in the longitudinal direction with a predetermined threshold and, if the calculated number of moving average defects in the longitudinal direction exceeds the threshold value, extracting as a region exceeding the threshold value in the lengthwise moving average defect number;
A fourth means for calculating the number of the longitudinal moving average defect count exceeding the threshold value extracted, and grading the object to be inspected based on the calculated longitudinal moving average defect count threshold exceeding area number;
A surface defect inspection apparatus comprising:
JP2012234237A 2012-10-24 2012-10-24 Surface defect inspection method and apparatus Active JP6028520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234237A JP6028520B2 (en) 2012-10-24 2012-10-24 Surface defect inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234237A JP6028520B2 (en) 2012-10-24 2012-10-24 Surface defect inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2014085221A true JP2014085221A (en) 2014-05-12
JP6028520B2 JP6028520B2 (en) 2016-11-16

Family

ID=50788408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234237A Active JP6028520B2 (en) 2012-10-24 2012-10-24 Surface defect inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP6028520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911085A (en) * 2022-01-03 2022-08-16 友达光电股份有限公司 Method for analyzing defects

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219177A (en) * 2003-01-10 2004-08-05 Nippon Steel Corp Flaw detector and flaw detecting method
JP2006242906A (en) * 2005-03-07 2006-09-14 Jfe Steel Kk Surface defect inspection method and device therefor
JP2007078455A (en) * 2005-09-13 2007-03-29 Frontier System Kk Inspection device of sheet material
JP2010249624A (en) * 2009-04-15 2010-11-04 Jfe Steel Corp Apparatus and method for determining surface quality of moving material
JP2012073119A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Surface defect inspection method and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219177A (en) * 2003-01-10 2004-08-05 Nippon Steel Corp Flaw detector and flaw detecting method
JP2006242906A (en) * 2005-03-07 2006-09-14 Jfe Steel Kk Surface defect inspection method and device therefor
JP2007078455A (en) * 2005-09-13 2007-03-29 Frontier System Kk Inspection device of sheet material
JP2010249624A (en) * 2009-04-15 2010-11-04 Jfe Steel Corp Apparatus and method for determining surface quality of moving material
JP2012073119A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Surface defect inspection method and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911085A (en) * 2022-01-03 2022-08-16 友达光电股份有限公司 Method for analyzing defects

Also Published As

Publication number Publication date
JP6028520B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
CN109002974A (en) A kind of coil of strip surface quality grading determination method and device
CN108052980B (en) Image-based air quality grade detection method
CN104101600B (en) Cross Section of CC Billet testing of small cracks method
JP4639858B2 (en) Surface defect inspection method and apparatus
EP3088511B1 (en) Image processing device, program, information storage medium, and image processing method
CN104914111A (en) Strip steel surface defect on-line intelligent identification and detection system and detection method
CN109788205B (en) Image adjusting method and device and electronic equipment
CN107967681B (en) Elevator compensation chain impact defect detection method based on machine vision
WO2006063268B1 (en) Computer-implemented methods for detecting and/or sorting defects in a design pattern of a reticle
CN103745454B (en) Method for evaluating image processing algorithms or systems based on rank learning
EP2393276A3 (en) Profile processing apparatus, profile processing method, and storage medium
EP2747431A1 (en) Device and method for detecting whether camera is interfered with, and video monitoring system
US20220044383A1 (en) Learned model generation method, learned model, surface defect inspection method, steel manufacturing method, pass/fail determination method, grade determination method, surface defect determination program, pass/fail determination program, determination system, and steel manufacturing equipment
JP5957250B2 (en) Crack detection method and crack display device
JP5853738B2 (en) Surface defect inspection method and surface defect inspection apparatus
JP6028520B2 (en) Surface defect inspection method and apparatus
CN112653884B (en) Method for evaluating quality of screen
JP6244260B2 (en) Defect analysis apparatus and defect analysis method
JP5967860B2 (en) Surface defect inspection method and apparatus
JP2010287179A (en) Device, method, and program for inspecting image
JP2015105840A (en) Surface flaw checking method and apparatus
JP2010085096A (en) Surface inspecting device
US9412006B1 (en) Continuous tissue analysis scoring scheme based on cell classifications
TWI387492B (en) Adaptation Hot Rolled Strip Image Adjustment Method
JP2738252B2 (en) Edge detection device of strip material by image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R150 Certificate of patent or registration of utility model

Ref document number: 6028520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250