JP2014085210A - Angular velocity sensor device - Google Patents

Angular velocity sensor device Download PDF

Info

Publication number
JP2014085210A
JP2014085210A JP2012233912A JP2012233912A JP2014085210A JP 2014085210 A JP2014085210 A JP 2014085210A JP 2012233912 A JP2012233912 A JP 2012233912A JP 2012233912 A JP2012233912 A JP 2012233912A JP 2014085210 A JP2014085210 A JP 2014085210A
Authority
JP
Japan
Prior art keywords
frequency
angular velocity
drive signal
resonance frequency
velocity sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012233912A
Other languages
Japanese (ja)
Other versions
JP6082227B2 (en
Inventor
Hidekazu Yano
秀和 矢野
Tetsuji Imamura
徹治 今村
Takayuki Nakano
貴之 中野
Ryohei Furukoshi
亮平 古越
Hiromitsu Terasaki
宏光 寺崎
Osamu Kawasaki
修 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Original Assignee
Hokuriku Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP2012233912A priority Critical patent/JP6082227B2/en
Publication of JP2014085210A publication Critical patent/JP2014085210A/en
Application granted granted Critical
Publication of JP6082227B2 publication Critical patent/JP6082227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an angular velocity sensor which is capable of stabilizing the operation while improving element sensitivity with a voltage value of a driving signal equal to or higher than a prescribed voltage.SOLUTION: A piezoelectric layer 9 shows such hysteresis characteristics that, when a voltage value of a driving signal applied to four vibration excitation electrodes 11 is equal to or higher than a prescribed voltage, a gain being a ratio of an output voltage of a displacement detection part to the voltage value becomes a maximum value at a first frequency by continuously increasing the frequency of the driving signal and is reduced by furthermore increasing the frequency and then becomes the maximum value at a second resonance frequency lower than the first frequency by decreasing the frequency of the driving signal. Setting is performed so that the driving signal which has a frequency lower than and close to the second resonance frequency and has the voltage value of the prescribed voltage or higher is applied to the four vibration excitation electrodes 11.

Description

本発明は、角速度センサ装置に関するものである。   The present invention relates to an angular velocity sensor device.

例えば、特開2010−160095号公報(特許文献1)に開示されているタイプの角速度センサを用いる場合、特開2010−160095号公報の[0068]段落〜[0074]段落にも開示されているように、素子の検出感度(素子感度)を高めるための方法として、(1)重錘(振動子)の質量を増加させること、(2)重錘の運動速度を高めること、(3)振動軸方向の共振周波数と、変位軸方向の共振周波数とをできるだけ近づけた設計を行い、コリオリ力によって生じる変位を大きくすることが知られていた。   For example, when an angular velocity sensor of the type disclosed in Japanese Patent Laid-Open No. 2010-160095 (Patent Document 1) is used, it is also disclosed in paragraphs [0068] to [0074] of Japanese Patent Laid-Open No. 2010-160095. Thus, as a method for increasing the detection sensitivity (element sensitivity) of an element, (1) increasing the mass of the weight (vibrator), (2) increasing the movement speed of the weight, (3) vibration It has been known to design the axial resonance frequency and the displacement axial resonance frequency as close as possible to increase the displacement caused by the Coriolis force.

特開2010−160095号公報JP 2010-160095 A

発明者らは、角速度センサ装置において、振動を誘起する振動誘起部に印加する駆動信号の電圧値を上げることで素子感度を向上させることができるという知見を得た。共振周波数を、インピーダンス最小(アドミッタンス最大)を示す周波数と定義すると、同一振幅の交流電圧で駆動した時、共振周波数で振動振幅が最大になる。しかしながら、駆動信号の電圧値を所定の電圧以上にした場合、駆動信号の周波数を低いほうから高いほうへ掃引したときの共振周波数を第1の共振周波数とし、駆動信号の周波数を高いほうから低いほうへ掃引したときの共振周波数を第2の共振周波数とすると、第2の共振周波数が第1の共振周波数よりも低くなるヒステリシス特性を示す角速度センサがあることが判った。より具体的には、この種の角速度センサでは、駆動信号の周波数を低いほうから高いほうへ掃引すると、第1の共振周波数において電圧値に対する変位検出部の出力電圧の比である利得が最大値になり、さらに周波数を増加させると利得が減少し、その後駆動信号の周波数を高いほうから低いほうへ掃引すると、第1の共振周波数よりも低い第2の共振周波数で利得が最大値になるヒステリシス特性を示す。そのため、この種の角速度センサで、ヒステリシス特性が生じる範囲では、動作が不安定になり、自励発振の場合には発振が停止してしまうという問題があった。   The inventors have found that in the angular velocity sensor device, the element sensitivity can be improved by increasing the voltage value of the drive signal applied to the vibration inducing portion that induces vibration. When the resonance frequency is defined as a frequency indicating the minimum impedance (maximum admittance), the vibration amplitude becomes maximum at the resonance frequency when driven by an AC voltage having the same amplitude. However, when the voltage value of the drive signal is equal to or higher than a predetermined voltage, the resonance frequency when the drive signal frequency is swept from low to high is the first resonance frequency, and the drive signal frequency is high to low. Assuming that the resonance frequency when swept to the second resonance frequency is the second resonance frequency, it has been found that there is an angular velocity sensor exhibiting a hysteresis characteristic in which the second resonance frequency is lower than the first resonance frequency. More specifically, in this type of angular velocity sensor, when the frequency of the drive signal is swept from low to high, the gain that is the ratio of the output voltage of the displacement detector to the voltage value at the first resonance frequency is the maximum value. When the frequency is further increased, the gain is decreased. Thereafter, when the frequency of the drive signal is swept from higher to lower, the gain becomes the maximum value at the second resonance frequency lower than the first resonance frequency. Show properties. For this reason, with this type of angular velocity sensor, there is a problem that the operation becomes unstable within the range where hysteresis characteristics occur, and oscillation stops in the case of self-excited oscillation.

本発明の目的は、駆動信号の電圧値を所定の電圧以上にして、素子感度を向上させながら、動作を安定させることができる角速度センサ装置を提供することにある。   An object of the present invention is to provide an angular velocity sensor device that can stabilize the operation while increasing the element sensitivity by setting the voltage value of the drive signal to a predetermined voltage or higher.

本発明が対象とする角速度センサ装置は、可撓性弾性基板と、可撓性弾性基板に形成された圧電体層と、圧電体層に設けられて駆動されると圧電体層を振動させる複数の振動励起用電極と、圧電体層に設けられた複数の角速度検出用電極を含んで構成されて、振動と外部角速度により誘発される変位を複数の角速度検出用電極の出力で検出する変位検出部とを備えた角速度センサと、振動を励起する為に複数の振動励起用電極に駆動信号を印加する駆動回路とを備えている。   An angular velocity sensor device to which the present invention is directed includes a flexible elastic substrate, a piezoelectric layer formed on the flexible elastic substrate, and a plurality of piezoelectric layers that vibrate when provided and driven on the piezoelectric layer. Displacement detection, which includes a plurality of vibration excitation electrodes and a plurality of angular velocity detection electrodes provided on the piezoelectric layer, and detects displacement induced by vibration and external angular velocity by the output of the plurality of angular velocity detection electrodes An angular velocity sensor including a unit, and a drive circuit that applies a drive signal to a plurality of vibration excitation electrodes in order to excite vibration.

本発明では、駆動信号の電圧値として、駆動信号の周波数を低いほうから高いほうへ掃引したときの共振周波数を第1の共振周波数とし、駆動信号の周波数を高いほうから低いほうへ掃引したときの共振周波数を第2の共振周波数としたときに、第2の共振周波数が第1の共振周波数よりも低くなるヒステリシス特性を示す所定電圧以上の電圧値を用いる。そして、本発明においては、駆動回路から出力される駆動信号を、所定電圧以上の電圧値を有し且つヒステリシス特性を示す領域を避けた第2の共振周波数よりも低い周波数に設定されている。   In the present invention, as the voltage value of the drive signal, when the frequency of the drive signal is swept from the lower side to the higher side, the resonance frequency is the first resonance frequency, and when the frequency of the drive signal is swept from the higher side to the lower side When the resonance frequency of the second resonance frequency is the second resonance frequency, a voltage value equal to or higher than a predetermined voltage showing a hysteresis characteristic in which the second resonance frequency is lower than the first resonance frequency is used. In the present invention, the drive signal output from the drive circuit is set to a frequency lower than the second resonance frequency that has a voltage value equal to or higher than a predetermined voltage and avoids a region exhibiting hysteresis characteristics.

なお、本明細書においては、このヒステリシス特性を、「周波数ヒステリシス」と定義する。また、本明細書においては、共振周波数とは、上述のように、振動の振幅が最も大きくなる時の周波数のことである。   In the present specification, this hysteresis characteristic is defined as “frequency hysteresis”. In the present specification, the resonance frequency is a frequency at which the amplitude of vibration becomes the largest as described above.

このように振動励起用電極に印加する駆動信号の電圧及び周波数を設定することにより、素子感度を向上させながら、駆動には不向きな周波数ヒステリシスが発生する周波数領域を避けることができる。そのため、素子感度の向上と、動作の安定とを両立させることができる。   By setting the voltage and frequency of the drive signal applied to the vibration excitation electrode in this manner, it is possible to avoid a frequency region in which frequency hysteresis that is unsuitable for driving occurs while improving device sensitivity. Therefore, both improvement in element sensitivity and stable operation can be achieved.

より具体的には、本発明が対象とする角速度センサ装置は、平板状のダイアフラムと、ダイアフラムの中央部に配置された重錘と、ダイアフラムの外周部を支持する支持部と、ダイアフラム上に形成された圧電体層と、圧電体層に対して設けられた複数の振動励起用電極を含み、駆動信号が複数の振動励起用電極に印加されているときに、重錘に対して、所定の振動軸の方向の運動成分をもった振動を誘起する振動励起部と、圧電体層に対して設けられた複数の角速度検出用電極を含み、コリオリ力に基づいて重錘に生じる変位軸の方向の変位を複数の角速度検出用電極に現れる電圧に基づいて検出する変位検出部とを備えた角速度センサと、角速度センサの複数の振動励起用電極に駆動信号を印加する駆動回路とを備えている。角速度センサは、ダイアフラムの中心位置に原点Oをもち、ダイアフラムの表面がXY平面に含まれるようなXYZ三次元直交座標系を定義したときに、X軸及びZ軸のうちの一方を振動軸、他方を変位軸とし、変位検出部からの検出値に基づいてY軸まわりの角速度を検出する。   More specifically, the angular velocity sensor device to which the present invention is directed is formed on a diaphragm, a flat diaphragm, a weight disposed at the center of the diaphragm, a support part that supports the outer periphery of the diaphragm, and the diaphragm. And a plurality of vibration excitation electrodes provided for the piezoelectric layer, and when a drive signal is applied to the plurality of vibration excitation electrodes, The direction of the displacement axis that occurs in the weight based on the Coriolis force, including a vibration excitation unit that induces vibration with a motion component in the direction of the vibration axis, and a plurality of electrodes for detecting the angular velocity provided for the piezoelectric layer An angular velocity sensor including a displacement detection unit that detects the displacement of the angular velocity based on voltages appearing on the plurality of angular velocity detection electrodes, and a drive circuit that applies a drive signal to the plurality of vibration excitation electrodes of the angular velocity sensor. . The angular velocity sensor has an origin O at the center position of the diaphragm, and when an XYZ three-dimensional orthogonal coordinate system in which the surface of the diaphragm is included in the XY plane is defined, one of the X axis and the Z axis is a vibration axis, The other is the displacement axis, and the angular velocity around the Y axis is detected based on the detection value from the displacement detector.

特に、本発明では、角速度センサが、複数の振動励起用電極に印加する駆動信号の電圧値が所定電圧以上であるときに、駆動信号の周波数を低いほうから高いほうへ連続的に増加させると、第1の共振周波数において電圧値に対する変位検出部の出力電圧の比である利得が最大値になり、さらに周波数を増加させると利得が減少し、その後駆動信号の周波数を高いほうから低いほうへ掃引すると、第1の共振周波数よりも低い第2の共振周波数で利得が最大値になるヒステリシス特性を示すものである。そして、本発明では、駆動回路が、第2の共振周波数より低く該第2の共振周波数に近い周波数を有し且つ所定電圧以上の電圧値を有する駆動信号が印加するように設定している。   In particular, in the present invention, when the angular velocity sensor continuously increases the frequency of the drive signal from the lower to the higher when the voltage value of the drive signal applied to the plurality of vibration excitation electrodes is a predetermined voltage or higher. The gain, which is the ratio of the output voltage of the displacement detector to the voltage value at the first resonance frequency, becomes the maximum value, and the gain decreases as the frequency is further increased, and then the frequency of the drive signal is increased from the higher to the lower one. When swept, the hysteresis characteristic is such that the gain becomes the maximum value at the second resonance frequency lower than the first resonance frequency. In the present invention, the drive circuit is set to apply a drive signal having a frequency lower than the second resonance frequency and close to the second resonance frequency and having a voltage value equal to or higher than a predetermined voltage.

このように振動励起用電極に印加する駆動信号の電圧及び周波数を設定することにより、素子感度を向上させながら、駆動には不向きな周波数ヒステリシスが発生する周波数領域を避けることができる。そのため、素子感度の向上と、動作の安定とを両立させることができる。   By setting the voltage and frequency of the drive signal applied to the vibration excitation electrode in this manner, it is possible to avoid a frequency region in which frequency hysteresis that is unsuitable for driving occurs while improving device sensitivity. Therefore, both improvement in element sensitivity and stable operation can be achieved.

駆動信号の周波数が、第2の共振周波数より低い周波数であれば、駆動による振動は安定することがわかっているが、低くしすぎてしまうと、振動が小さくなり素子感度が低下する。そこで、本発明では、駆動信号の周波数を第2の共振周波数より低い周波数で、しかもヒステリシス特性が現れない駆動信号の電圧値で得られる素子感度よりも高い素子感度が得られる周波数にするのが望ましい。このように設定すれば、確実に素子感度を向上させることができる。   It has been found that if the frequency of the drive signal is lower than the second resonance frequency, the vibration due to the drive is stable, but if it is too low, the vibration becomes smaller and the element sensitivity is lowered. Therefore, in the present invention, the frequency of the drive signal is set to a frequency lower than the second resonance frequency and a frequency at which an element sensitivity higher than the element sensitivity obtained from the voltage value of the drive signal at which no hysteresis characteristic appears. desirable. By setting in this way, the device sensitivity can be improved reliably.

(A)〜(C)は、本発明の角速度センサ装置に用いる角速度センサの実施の形態の一例の平面図、底面図及び断面図である。(A)-(C) are the top view of an example of embodiment of the angular velocity sensor used for the angular velocity sensor apparatus of this invention, a bottom view, and sectional drawing. 本発明の角速度センサ装置の実施の形態のブロック図である。It is a block diagram of an embodiment of an angular velocity sensor device of the present invention. 周波数を低いほうから高いほうへ掃引し、その後、周波数を高いほうから低いほうへ掃引した場合に得られる利得を示す波形図である。It is a wave form diagram which shows the gain obtained when a frequency is swept from low to high, and a frequency is swept from high to low after that. 第2の共振周波数を基準にして、0%〜4%の周波数範囲で駆動信号の周波数を変化させた場合の検出出力を示す図であり、(A)は、ピッチ(Y軸回り)、(B)は、ロール(X軸回り)の図である。It is a figure which shows the detection output at the time of changing the frequency of a drive signal in the frequency range of 0%-4% on the basis of the 2nd resonance frequency, (A) is pitch (around Y-axis), ( B) is a view of a roll (around the X axis). 第2の共振周波数を基準にして、0%〜4%の周波数範囲で駆動信号の周波数を変化させた場合の素子感度及び素子感度変化率を示す図であり、(A)は、ピッチ(Y軸回り)、(B)は、ロール(X軸回り)の図である。It is a figure which shows the element sensitivity at the time of changing the frequency of a drive signal in the frequency range of 0%-4% on the basis of the 2nd resonance frequency, and an element sensitivity change rate, (A) is pitch (Y (Axis rotation) and (B) are views of a roll (X axis rotation). 第2の共振周波数を基準にして、0%〜4%の周波数範囲で駆動信号の周波数を変化させた場合の他軸感度を示す図であり、(A)は、ピッチ(Y軸回り)、(B)は、ロール(X軸回り)の図である。It is a figure which shows the other-axis sensitivity at the time of changing the frequency of a drive signal in the frequency range of 0%-4% on the basis of the 2nd resonance frequency, (A) is a pitch (around Y-axis), (B) is a view of a roll (around the X axis). 駆動信号の電圧値を0.8Vpp、1.0Vpp、1.2Vppにした場合に、駆動信号の周波数を第2の共振周波数から2%下げたときの素子感度を示す図であり、(A)は、ピッチ(Y軸回り)、(B)は、ロール(X軸回り)の図である。It is a figure which shows element sensitivity when the frequency of a drive signal is lowered by 2% from the second resonance frequency when the voltage value of the drive signal is 0.8 Vpp, 1.0 Vpp, and 1.2 Vpp. These are figures of a pitch (around the Y axis) and (B) a roll (around the X axis).

以下、図面を参照して、本発明の蓄電装置の実施の形態の一例について説明する。   Hereinafter, an example of an embodiment of a power storage device of the present invention will be described with reference to the drawings.

本発明の角速度センサ装置GMに用いる角速度センサGSでは、平板状のダイアフラム1と、ダイアフラム1の中央部に配置された重錘3と、ダイアフラムの外周部を支持する支持部5と、ダイアフラムの表面に絶縁膜6を介して形成された下部電極7と、下部電極の上に形成された圧電薄膜(圧電体層)9と、圧電薄膜9の上に形成された4つの振動励起用電極11及び4つの角速度検出用電極13とを備えている。ダイアフラム1は、可撓性弾性基板を構成している。ダイアフラム1と、重錘3と支持部5とは、結晶方位が(100)の半導体基板の一方の面上に重錘3の端面と支持部5の端面に対応する形状を有するマスクを配置し、このマスク側からドライエッチングを施すことにより、一体に形成されている。本実施の形態では、4つの振動励起用電極11により、重錘3に対して、所定の振動軸の方向の運動成分をもった振動を誘起する振動励起部が構成されている。また角速度検出用電極13により、コリオリ力に基づいて重錘3に生じる変位軸の方向の変位を検出する変位検出部が構成されている。   In the angular velocity sensor GS used in the angular velocity sensor device GM of the present invention, a flat diaphragm 1, a weight 3 disposed at the center of the diaphragm 1, a support portion 5 that supports the outer peripheral portion of the diaphragm, and the surface of the diaphragm A lower electrode 7 formed through an insulating film 6, a piezoelectric thin film (piezoelectric layer) 9 formed on the lower electrode, four vibration excitation electrodes 11 formed on the piezoelectric thin film 9, and Four angular velocity detection electrodes 13 are provided. The diaphragm 1 constitutes a flexible elastic substrate. The diaphragm 1, the weight 3, and the support 5 have a mask having a shape corresponding to the end face of the weight 3 and the end face of the support 5 on one surface of the semiconductor substrate having a crystal orientation (100). These are integrally formed by dry etching from the mask side. In the present embodiment, the four vibration excitation electrodes 11 constitute a vibration excitation unit that induces vibration having a motion component in the direction of a predetermined vibration axis with respect to the weight 3. Further, the angular velocity detection electrode 13 constitutes a displacement detector that detects a displacement in the direction of the displacement axis generated in the weight 3 based on the Coriolis force.

重錘3に対して、所定の振動軸の方向の運動成分をもった振動を誘起するためには、4つの振動励起用電極11からなる振動励起部を交流電圧駆動する。そしてコリオリ力に基づいて重錘3に生じる変位軸の方向の変位を、4つの角速度検出用電極13に発生する電圧で検出して、角速度を求める。この角速度センサでは、ダイアフラム1の中心位置に原点Oをもち、ダイアフラム1の表面がXY平面に含まれるようなXYZ三次元直交座標系を定義したときに、X軸及びZ軸のうちの一方を振動軸、他方を変位軸とし、変位検出部を構成する角速度検出用電極13からの検出値に基づいてY軸まわりの角速度を検出する。またX軸周り及びY軸周りの角速度を検出するためには、重錘3をZ方向に振動させることになる。また、Z軸周りの角速度を検出するためには、重錘3をX軸方向またはY軸方向に振動させることになる。   In order to induce a vibration having a motion component in the direction of a predetermined vibration axis with respect to the weight 3, a vibration excitation unit including four vibration excitation electrodes 11 is driven with an alternating voltage. The displacement in the direction of the displacement axis generated in the weight 3 based on the Coriolis force is detected by the voltages generated in the four angular velocity detection electrodes 13 to obtain the angular velocity. In this angular velocity sensor, when an XYZ three-dimensional orthogonal coordinate system in which the origin O is at the center position of the diaphragm 1 and the surface of the diaphragm 1 is included in the XY plane is defined, one of the X axis and the Z axis is defined. Using the vibration axis and the other as the displacement axis, the angular velocity around the Y axis is detected based on the detection value from the angular velocity detection electrode 13 constituting the displacement detector. In order to detect angular velocities around the X axis and the Y axis, the weight 3 is vibrated in the Z direction. In order to detect the angular velocity around the Z axis, the weight 3 is vibrated in the X axis direction or the Y axis direction.

重錘3は、円柱状または円錐状を有している。そしてダイアフラムの外周部の輪郭形状は、四角形(本実施の形態では略正方形)の四隅に直線部SLを有する形状になっている。本実施の形態では、正方形の各辺S1〜S4と直線部SLとの交点部には、小さいアール部が形成されている。   The weight 3 has a columnar shape or a conical shape. And the outline shape of the outer peripheral part of a diaphragm is a shape which has the linear part SL in the four corners of a quadrangle (substantially square in this Embodiment). In the present embodiment, a small rounded portion is formed at the intersection of each of the square sides S1 to S4 and the straight line portion SL.

本実施の形態の角速度センサは、4つの振動励起用電極11を、第1の仮想対角線CL1と第2の仮想対角線CL2によって仕切られた4つの領域内にそれぞれ形成している。そして4つの角速度検出用電極13も、第1の仮想対角線CL1と第2の仮想対角線CL2によって仕切られた4つの領域内にそれぞれ形成されている。本実施の形態では、第1の仮想線L1及び第2の仮想線L2がX軸の軸線及びY軸の軸線とそれぞれ一致している。このような配置では、ダイアフラムの輪郭の第2の仮想線に添う長さ寸法をR1とし、ダイアフラムの輪郭の第1の仮想線に添う長さ寸法をR2とし、第1の仮想対角線及び第2の仮想対角線に添う長さ寸法をR3とした場合に、R1:R2:R3=(0.95±0.02の範囲の値):1:(0.85±0.02の範囲の値)の関係を満たすようにすると、主軸感度及び他軸感度を共にバランスさせることができることが実験により確認されている。なお本実施の形態では、4つの振動励起用電極11は、重錘3の径方向外側に位置する外辺12Aと、この外辺12Aと径方向に対向する内辺12Bと、外辺12Aと内辺12Bとを連結する一対の連結辺12C及び12Dとからなる。外辺12Aの形状は、ダイアフラム1の外周部の一部(隣合う2つの辺SLの一部と直線部S1に亘る部分)の形状と相似形になっている。また振動励起用電極11の輪郭形状の内辺12Bの形状は、円弧形状を有している。4つの振動励起用電極11をこのような形状にすると最も効率良く、しかも安定に振動を生じさせることができることが確認されている。また4つの角速度検出用電極13の輪郭形状は、重錘3の径方向外側に位置する外辺14Aと、外辺14Aと径方向に対向する内辺14Bと、外辺14Aと内辺14Bとを連結する一対の連結辺14C及び14Dとからなる。本実施の形態では、外辺14A及び内辺14Bはそれぞれ同心の円弧形状を有している。4つの振動励起用電極11と4つの角速度検出用電極13をこのように定めると、X軸方向の振動とY軸方向の振動の区分ができる信号を4つの角速度検出用電極13から確実に得ることができることが確認されている。なお本実施の形態では[図1(A)のrで示した部分]、4つの振動励起用電極11及び4つの角速度検出用電極13の角部を湾曲させているので、電極が剥離することを有効に防止することができる。また本実施の形態ではダイアフラム1の輪郭の辺と隅部との連結部[図1(B)のrで示した部分]は湾曲しているので、ダイアフラム1の機械的強度が高い。   In the angular velocity sensor of the present embodiment, four vibration excitation electrodes 11 are formed in four regions partitioned by a first virtual diagonal line CL1 and a second virtual diagonal line CL2, respectively. The four angular velocity detection electrodes 13 are also formed in four regions partitioned by the first virtual diagonal line CL1 and the second virtual diagonal line CL2, respectively. In the present embodiment, the first imaginary line L1 and the second imaginary line L2 coincide with the X-axis axis and the Y-axis axis, respectively. In such an arrangement, the length dimension that follows the second imaginary line of the diaphragm outline is R1, the length dimension that follows the first imaginary line of the diaphragm outline is R2, and the first imaginary diagonal and second R1: R2: R3 = (value in the range of 0.95 ± 0.02): 1: (value in the range of 0.85 ± 0.02) where R3 is the length dimension along the virtual diagonal of It has been experimentally confirmed that both the main axis sensitivity and the other axis sensitivity can be balanced by satisfying the above relationship. In the present embodiment, the four vibration excitation electrodes 11 include an outer side 12A located on the outer side in the radial direction of the weight 3, an inner side 12B that faces the outer side 12A in the radial direction, and an outer side 12A. It consists of a pair of connecting sides 12C and 12D that connect the inner side 12B. The shape of the outer side 12A is similar to the shape of a part of the outer peripheral part of the diaphragm 1 (a part extending between two adjacent sides SL and the straight line part S1). The shape of the inner side 12B of the contour shape of the vibration excitation electrode 11 has an arc shape. It has been confirmed that when the four vibration excitation electrodes 11 have such a shape, vibration can be generated most efficiently and stably. The contour shapes of the four angular velocity detection electrodes 13 are as follows: an outer side 14A located on the radially outer side of the weight 3, an inner side 14B that faces the outer side 14A in the radial direction, an outer side 14A, and an inner side 14B. It comprises a pair of connecting sides 14C and 14D that connect the two. In the present embodiment, the outer side 14A and the inner side 14B each have a concentric arc shape. When the four vibration excitation electrodes 11 and the four angular velocity detection electrodes 13 are determined in this way, a signal capable of classifying the vibration in the X-axis direction and the vibration in the Y-axis direction is reliably obtained from the four angular velocity detection electrodes 13. It has been confirmed that it can. In the present embodiment, [the part indicated by r in FIG. 1A] the corners of the four vibration excitation electrodes 11 and the four angular velocity detection electrodes 13 are curved, so that the electrodes are peeled off. Can be effectively prevented. Further, in the present embodiment, since the connecting portion [the portion indicated by r in FIG. 1B] between the edge and the corner of the outline of the diaphragm 1 is curved, the mechanical strength of the diaphragm 1 is high.

図2は、本実施の形態の角速度センサ装置GMのブロック図である。本実施の形態の角速度センサ装置GMは、大きく分けて、上述の角速度センサGSと、角速度センサGSを駆動する駆動装置DCとから構成されている。駆動装置DCは、振動励起用電極11に入力する駆動信号を発生させる発振回路21と、角速度検出用電極13の出力を増幅させる増幅器23と、増幅器23の出力の所定の周波数以外の周波数を減衰させるバンドパスフィルタ25と、利得比較器27とから構成されている。利得比較器27は、所定の周波数で角速度センサGSを駆動してバンドパスフィルタ25から出力される電圧の利得と周波数をデクリメントされてバンドパスフィルタ25から出力される電圧の利得とを比較し、第2の共振周波数を決定する機能を有している。位相比較器29については、後述する。   FIG. 2 is a block diagram of the angular velocity sensor device GM of the present embodiment. The angular velocity sensor device GM of the present embodiment is roughly composed of the above-described angular velocity sensor GS and a driving device DC that drives the angular velocity sensor GS. The drive device DC attenuates frequencies other than a predetermined frequency of the output of the oscillation circuit 21 that generates a drive signal to be input to the vibration excitation electrode 11, an amplifier 23 that amplifies the output of the angular velocity detection electrode 13, and the output of the amplifier 23. It comprises a band pass filter 25 and a gain comparator 27. The gain comparator 27 drives the angular velocity sensor GS at a predetermined frequency to compare the gain of the voltage output from the bandpass filter 25 with the gain of the voltage output from the bandpass filter 25 by decrementing the frequency. It has a function of determining the second resonance frequency. The phase comparator 29 will be described later.

図3を用いて、本実施の形態で振動励起用電極11に印加する駆動信号を説明する。本実施の形態では、X軸周り及びY軸周りの角速度を検出するために、重錘3をZ方向に振動させて、測定を行っている。図3は、横軸が駆動信号の周波数[kHz]であり、縦軸が利得(印加する駆動信号の電圧値に対する変位検出部の出力電圧の比)[dB]である。図2では、本実施の形態の駆動信号における利得特性(sweep up 1Vpp及びsweep down 1Vpp)と、その比較のために、従来の角速度センサ装置で用いる駆動信号における利得特性(sweep up 0.5Vpp及びsweep down 0.5Vpp)も図示してある。   A drive signal applied to the vibration excitation electrode 11 in this embodiment will be described with reference to FIG. In the present embodiment, in order to detect angular velocities around the X axis and the Y axis, the weight 3 is vibrated in the Z direction and measurement is performed. In FIG. 3, the horizontal axis represents the frequency [kHz] of the drive signal, and the vertical axis represents the gain (ratio of the output voltage of the displacement detector to the voltage value of the applied drive signal) [dB]. In FIG. 2, the gain characteristics (sweep up 1 Vpp and sweep down 1 Vpp) of the drive signal of the present embodiment and the gain characteristics (sweep up 0.5 Vpp) of the drive signal used in the conventional angular velocity sensor device are compared for comparison. (Sweep down 0.5Vpp) is also shown.

従来の角速度センサ装置においては、動作を安定させるために、駆動信号の周波数を変化させた場合でも、利得がヒステリシス特性を示さない電圧値を用いている。角速度センサGSの場合、この電圧値の一例は0.5Vppであり、図3に示したように、周波数を連続的に上げた場合(低いほうから高いほうに掃引した場合〔sweep up〕)、利得は増加し、34.42kHzの時の−4.0dBを最大値にして、利得は連続的に減少する特性を示す。最大値を示す周波数、すなわち、振幅が最大になる周波数が、「共振周波数」である。その後、周波数を連続的に下げた場合(高いほうから低いほうに掃引した場合〔sweep down〕)、利得は増加し、周波数を連続的に上げた場合と同様、34.42kHzの時の−4.0dBを最大値にして、利得は連続的に減少する特性を示す。周波数を連続的に上げた場合と周波数を連続的に下げた場合の利得の変化はほぼ同じであるため、図3においては、2つの波形は、ほぼ重なって表示されている。   In the conventional angular velocity sensor device, in order to stabilize the operation, even when the frequency of the drive signal is changed, a voltage value at which the gain does not exhibit hysteresis characteristics is used. In the case of the angular velocity sensor GS, an example of this voltage value is 0.5 Vpp. As shown in FIG. 3, when the frequency is continuously increased (sweep from low to high [sweep up]), The gain increases, and the maximum gain is -4.0 dB at 34.42 kHz, and the gain continuously decreases. The frequency indicating the maximum value, that is, the frequency at which the amplitude is maximum is the “resonance frequency”. After that, when the frequency is continuously lowered (when swept down from higher to lower [sweep down]), the gain increases, as in the case where the frequency is continuously raised, at -4 at 34.42 kHz. The gain decreases continuously with 0.0 dB as the maximum value. Since the change in gain when the frequency is continuously increased and when the frequency is continuously decreased is substantially the same, in FIG. 3, the two waveforms are displayed so as to overlap each other.

本実施の形態の角速度センサGSに印加する駆動信号は、周波数を連続的に上げて、その後、連続的に下げた場合に、利得がヒステリシス特性を示す領域を有する電圧値を用いる。本実施の形態の角速度センサGSの場合、この電圧値の一例は1.0Vppである。図3に示したように、周波数を連続的に上げた場合(sweep up)、利得は増加し、34.91kHz(第1の共振周波数)の時の−4.1dBを最大値にして、34.92kHzを超えた直後に、利得は急激に減少する特性を示す。その後、周波数を連続的に下げた場合(sweep down)、利得は34.83kHzを超えた時に、急激に増加する特性を示し、直後の34.82kHz(第2の共振周波数)の時に、周波数を連続的に下げた場合の利得の最大値である−4.4dBになる。図3からも明らかなように、電圧値1.0Vppの場合には、周波数に対して、利得はヒステリシス特性を示す。この特性は、弾性体と圧電薄膜の非線形特性によるものであり、特に圧電薄膜の非線形効果によるものであると推測される。本明細書においては、このヒステリシス特性を、「周波数ヒステリシス」と定義する。図3は一例であり、周波数変化や利得やヒステリシス領域などは異なる場合もある。   The drive signal applied to the angular velocity sensor GS of the present embodiment uses a voltage value having a region where the gain exhibits hysteresis characteristics when the frequency is continuously increased and then continuously decreased. In the case of the angular velocity sensor GS of the present embodiment, an example of this voltage value is 1.0 Vpp. As shown in FIG. 3, when the frequency is continuously increased (sweep up), the gain increases, and -4.1 dB at the time of 34.91 kHz (first resonance frequency) is maximized. Immediately after exceeding .92 kHz, the gain exhibits a characteristic of rapidly decreasing. After that, when the frequency is continuously lowered (sweep down), the gain increases rapidly when it exceeds 34.83 kHz, and when the frequency is immediately after 34.82 kHz (second resonance frequency), the frequency is decreased. It becomes -4.4 dB which is the maximum value of the gain when continuously lowered. As is apparent from FIG. 3, when the voltage value is 1.0 Vpp, the gain exhibits a hysteresis characteristic with respect to the frequency. This characteristic is due to the non-linear characteristic of the elastic body and the piezoelectric thin film, and is presumed to be particularly due to the non-linear effect of the piezoelectric thin film. In the present specification, this hysteresis characteristic is defined as “frequency hysteresis”. FIG. 3 is an example, and the frequency change, gain, hysteresis region, and the like may be different.

本実施の形態においては、図3に示される周波数ヒステリシスを示す電圧値(1.0Vpp)の駆動信号を用いて、安定した駆動を実現するため、周波数ヒステリシスが発生する周波数領域を避けるように、第2の共振周波数より低い範囲の周波数を用いるように設定する。図4乃至図6は、第2の共振周波数を基準にして、0%〜4%の周波数範囲で駆動信号の周波数を変化させた場合の各要素の変化を示すものである。なお、図4乃至図6においては、(A)は、重錘3をZ軸方向に振動させ、X軸を変位軸として、Y軸回りの角速度を検出する場合(ピッチ)であり、(B)は、重錘3をZ軸方向に振動させ、Y軸を変位軸として、X軸回りの角速度を検出する場合(ロール)である。   In the present embodiment, in order to realize stable driving using a driving signal having a voltage value (1.0 Vpp) indicating the frequency hysteresis shown in FIG. 3, in order to avoid a frequency region in which frequency hysteresis occurs, The frequency is set to be lower than the second resonance frequency. 4 to 6 show changes in each element when the frequency of the drive signal is changed in the frequency range of 0% to 4% with reference to the second resonance frequency. 4A to 6A, (A) is a case (pitch) in which the weight 3 is vibrated in the Z-axis direction and the angular velocity around the Y-axis is detected using the X-axis as the displacement axis. ) Is a case (roll) in which the weight 3 is vibrated in the Z-axis direction and the angular velocity around the X-axis is detected using the Y-axis as the displacement axis.

図4(A)及び(B)は、第2の共振周波数を基準にして、0%〜4%の周波数範囲で駆動信号の周波数を変化させた場合の検出出力[mVpp]を示す図である。凡例の記号X1,X2,Y1,Y2は、図1(A)の4つの振動励起用電極11に付した記号に対応するものであり、点線の丸で囲ったデータは駆動信号の電圧値を0.5Vppにした場合の比較のためのデータである。0%〜2%程度の間であれば、駆動信号の電圧値を1.0Vppとした場合の方が、4つの振動励起用電極11全てにおいて、駆動信号の電圧値を0.5Vppにした場合よりも検出出力が高いことが読み取れる。   4A and 4B are diagrams showing the detection output [mVpp] when the frequency of the drive signal is changed in the frequency range of 0% to 4% with reference to the second resonance frequency. . Legend symbols X1, X2, Y1, and Y2 correspond to the symbols attached to the four vibration excitation electrodes 11 in FIG. 1A, and the data surrounded by dotted circles indicate the voltage values of the drive signals. Data for comparison when 0.5 Vpp is set. If it is between 0% and 2%, when the voltage value of the drive signal is 1.0 Vpp, the voltage value of the drive signal is 0.5 Vpp in all four vibration excitation electrodes 11. It can be seen that the detection output is higher than that.

図5(A)及び(B)は、第2の共振周波数を基準にして、0%〜4%の周波数範囲で駆動信号の周波数を変化させた場合の素子感度[μV/dps]及び素子感度変化率[%]を示す図である。点線の丸で囲ったデータは駆動信号の電圧値を0.5Vppにした場合の比較のためのデータである。図5(A)及び(B)より、0%〜1.5%程度の間であれば、駆動信号の電圧値を1.0Vppとした場合の方が、駆動信号の電圧値を0.5Vppにした場合よりも素子感度が高くなることが読み取れる。   5A and 5B show device sensitivity [μV / dps] and device sensitivity when the frequency of the drive signal is changed in the frequency range of 0% to 4% with reference to the second resonance frequency. It is a figure which shows change rate [%]. Data enclosed by a dotted circle is data for comparison when the voltage value of the drive signal is 0.5 Vpp. 5A and 5B, when the voltage value of the drive signal is 1.0 Vpp, the voltage value of the drive signal is 0.5 Vpp when the voltage value is approximately 0% to 1.5%. It can be read that the device sensitivity is higher than in the case of the above.

図6(A)及び(B)は、第2の共振周波数を基準にして、0%〜4%の周波数範囲で駆動信号の周波数を変化させた場合の他軸感度[%]を示す図である。点線の丸で囲ったデータは駆動信号の電圧値を0.5Vppにした場合の比較のためのデータである。図6(A)及び(B)より、0%〜2%の間で、駆動信号の電圧値を1.0Vppとした場合に、駆動信号の電圧値を0.5Vppにした場合に比べて、他軸感度が悪化することはないことが読み取れる。   FIGS. 6A and 6B are diagrams showing other-axis sensitivity [%] when the frequency of the drive signal is changed in a frequency range of 0% to 4% with reference to the second resonance frequency. is there. Data enclosed by a dotted circle is data for comparison when the voltage value of the drive signal is 0.5 Vpp. 6A and 6B, when the voltage value of the drive signal is 1.0 Vpp between 0% and 2%, compared to the case where the voltage value of the drive signal is 0.5 Vpp, It can be seen that the sensitivity of other axes does not deteriorate.

以上の実験結果により、駆動信号の電圧値を1.0Vppとした場合、本実施の形態では、動作を安定させるために、駆動信号の周波数を第2の共振周波数から1.5%以内の周波数範囲内の周波数に決定している。ただし、角速度センサGSが温度や経時変化等による影響を受けやすいため、この周波数の範囲は一例にすぎないものであり、図7に示すように、駆動信号の電圧値が1.0Vppの場合には、駆動信号の周波数を第2の共振周波数から2%以内にすることを目安としている。   From the above experimental results, when the voltage value of the drive signal is 1.0 Vpp, in this embodiment, the frequency of the drive signal is a frequency within 1.5% from the second resonance frequency in order to stabilize the operation. The frequency is determined within the range. However, since the angular velocity sensor GS is easily affected by temperature, changes with time, etc., this frequency range is only an example, and when the voltage value of the drive signal is 1.0 Vpp as shown in FIG. Is based on setting the frequency of the drive signal within 2% of the second resonance frequency.

図7は、駆動信号の電圧値を周波数ヒステリシスが発生する0.8Vpp、1.0Vpp、1.2Vppにした場合に、駆動信号の周波数を第2の共振周波数から2%下げたときの素子感度[μV/dps]を示した図である。(A)は、重錘3をZ軸方向に振動させ、X軸を変位軸として、Y軸回りの角速度を検出する場合(ピッチ)であり、(B)は、重錘3をZ軸方向に振動させ、Y軸を変位軸として、X軸回りの角速度を検出する場合(ロール)である。図7(A)及び(B)より、この場合には、駆動信号の電圧値が0.8Vppの場合には、0.5Vppのときよりも低下してしまうのに対して、1.0Vpp及び1.2Vppの場合には、周波数を2%下げたとしても、0.5Vppのときよりも高くすることができることが読み取れる。したがって、駆動信号の電圧値や、角速度センサ装置GMを利用する環境に応じて、駆動信号の周波数を第2の共振周波数から何%下げるかを決定することになる。   FIG. 7 shows device sensitivity when the frequency of the drive signal is lowered by 2% from the second resonance frequency when the voltage value of the drive signal is set to 0.8 Vpp, 1.0 Vpp, and 1.2 Vpp at which frequency hysteresis occurs. It is the figure which showed [microvolt / dps]. (A) is a case where the weight 3 is vibrated in the Z-axis direction and the angular velocity around the Y-axis is detected using the X-axis as the displacement axis (pitch), and (B) is the weight 3 in the Z-axis direction. When the angular velocity around the X axis is detected with the Y axis as the displacement axis (roll). 7A and 7B, in this case, when the voltage value of the drive signal is 0.8 Vpp, it is lower than that at 0.5 Vpp, whereas 1.0 Vpp and In the case of 1.2 Vpp, it can be seen that even if the frequency is lowered by 2%, it can be made higher than that in the case of 0.5 Vpp. Therefore, it is determined how much the frequency of the drive signal is lowered from the second resonance frequency according to the voltage value of the drive signal and the environment in which the angular velocity sensor device GM is used.

以上より、本発明においては、次の工程から決定した電圧値及び周波数の駆動信号を用いることで、素子感度を向上させ、且つ、動作を安定させることができる。   As described above, in the present invention, the device sensitivity can be improved and the operation can be stabilized by using the drive signal having the voltage value and frequency determined from the following steps.

(1)周波数ヒステリシスを示す電圧値の駆動信号を印加して、駆動信号の周波数を連続的に上げた後(この動作を必要としない場合もある)、周波数を連続的に下げて、利得比較器27によって第2の共振周波数を見つける。なお、第2の共振周波数を見つけるにあたっては、図3のグラフを図示しない表示画面に表示しておき、目視によって見つけてもよい。 (1) Applying a drive signal having a voltage value indicating frequency hysteresis to continuously increase the frequency of the drive signal (this operation may not be necessary), and then decreasing the frequency continuously to compare the gain. The second resonance frequency is found by means of the device 27. When finding the second resonance frequency, the graph of FIG. 3 may be displayed on a display screen (not shown) and found by visual observation.

(2)第2の共振周波数より低い周波数であって、第2の共振周波数から数%以内の適切な周波数範囲内の周波数を決定する。 (2) A frequency that is lower than the second resonance frequency and within an appropriate frequency range within several percent of the second resonance frequency is determined.

上記工程は、角速度センサ装置GMについて予め行っておき、予め駆動信号の電圧値と周波数を決定しておけば角速度センサ装置を容易に利用することができる。また、利用する際に、必要に応じて(例えば、一定時間おき、起動時、温度変化時等)上記工程を実行し、駆動信号の電圧値と周波数を決定する(キャリブレーションを行う)ようにしてもよいのはもちろんである。このようにすれば、環境や状況に合わせた適切な駆動信号を用いることができる。   The above steps are performed in advance for the angular velocity sensor device GM, and the angular velocity sensor device can be easily used if the voltage value and frequency of the drive signal are determined in advance. In addition, when using it, the above steps are executed as necessary (for example, at regular intervals, at startup, when the temperature changes, etc.), and the voltage value and frequency of the drive signal are determined (calibration is performed). Of course. In this way, it is possible to use an appropriate drive signal that matches the environment and situation.

上記数値は一例であり、条件や環境が異なることにより、数値は変化する。特に、角速度センサは、環境温度により特性が変化することがあることが知られているため、温度による変化は予想される。その場合でも、本発明と同様の工程により駆動信号の電圧値及び周波数を決定することにより、素子感度を向上させ、且つ、動作を安定させることができる。本実施の形態では、さらに、動作を安定させるために、駆動回路DCに位相比較器29を備えている。位相比較器29は、発振回路21の出力電圧の位相と、バンドパスフィルタ25の出力電圧の位相とを比較し、初期状態(利得から算出して決定した駆動信号の周波数での振動状態)から位相がずれないように発振回路21の出力電圧の周波数を補正するフィードバック信号を発生する。このようにしてフィードバック信号に基づいて発振回路21を制御することにより、温度や経時変化により発生する位相のずれを防止し、初期状態を維持することができる。   The above numerical value is an example, and the numerical value changes due to different conditions and environments. In particular, since it is known that the characteristics of an angular velocity sensor may change depending on the environmental temperature, a change due to temperature is expected. Even in such a case, the device sensitivity can be improved and the operation can be stabilized by determining the voltage value and frequency of the drive signal by the same process as in the present invention. In the present embodiment, a phase comparator 29 is further provided in the drive circuit DC in order to stabilize the operation. The phase comparator 29 compares the phase of the output voltage of the oscillation circuit 21 with the phase of the output voltage of the bandpass filter 25, and from the initial state (vibration state at the frequency of the drive signal determined by calculation from the gain). A feedback signal for correcting the frequency of the output voltage of the oscillation circuit 21 is generated so as not to shift the phase. In this way, by controlling the oscillation circuit 21 based on the feedback signal, it is possible to prevent a phase shift caused by a change in temperature and time and maintain the initial state.

また、本実施の形態では、角速度センサの形状・電極の配置として、図1(A)乃至(C)のものを用いたが、角速度センサの形状・電極の配置は、これに限られるものではない。他の材料及び他の形状・電極の配置のものにおいても、本発明と同様の工程により駆動信号の電圧値及び周波数を決定することにより、素子感度を向上させ、且つ、動作を安定させることができる。   In the present embodiment, the shape and electrode arrangement of the angular velocity sensor are the same as those shown in FIGS. 1A to 1C. However, the shape and electrode arrangement of the angular velocity sensor are not limited to this. Absent. Even with other materials and other shapes and electrode arrangements, the device sensitivity can be improved and the operation can be stabilized by determining the voltage value and frequency of the drive signal by the same process as in the present invention. it can.

本発明によれば、駆動信号の電圧値を上げて素子感度を向上させ、且つ、周波数ヒステリシスが発生しない領域の周波数を用いることで、動作を安定させることができる角速度センサ装置を得ることができる。   According to the present invention, it is possible to obtain an angular velocity sensor device capable of stabilizing the operation by increasing the voltage value of the drive signal to improve element sensitivity and using a frequency in a region where no frequency hysteresis occurs. .

GM 角速度センサ装置
GS 角速度センサ
1 ダイアフラム
3 重錘
5 支持部
6 絶縁膜
7 下部電極
9 圧電薄膜(圧電体層)
11 振動励起用電極
12A 外辺
12B 内辺
12C,12D 連結辺
13 角速度検出用電極
14A 外辺
14B 内辺
14C,14D 連結辺
S1〜S4 辺
CL1 第1の仮想対角線
CL2 第2の仮想対角線
L1 第1の仮想線
L2 第2の仮想線
DC 駆動回路
21 発振回路
23 増幅器
25 バンドパスフィルタ
27 利得比較器
29 位相比較器
GM Angular velocity sensor device GS Angular velocity sensor 1 Diaphragm 3 Weight 5 Support part 6 Insulating film 7 Lower electrode 9 Piezoelectric thin film (piezoelectric layer)
11 vibration excitation electrode 12A outer side 12B inner side 12C, 12D connecting side 13 angular velocity detection electrode 14A outer side 14B inner side 14C, 14D connecting side S1 to S4 side CL1 first virtual diagonal line CL2 second virtual diagonal line L1 first 1 virtual line L2 2nd virtual line DC drive circuit 21 oscillation circuit 23 amplifier 25 band pass filter 27 gain comparator 29 phase comparator

Claims (3)

可撓性弾性基板と、
前記可撓性弾性基板に形成された圧電体層と、
前記圧電体層に設けられて駆動されると前記圧電体層と前記可撓性弾性基板を振動させる複数の振動励起用電極と、
前記圧電体層に設けられた複数の検出用電極とを含んで構成されて、前記振動と外部角速度により誘発される変位を前記複数の角速度検出用電極の出力で検出する変位検出部とを備えた角速度センサと、
前記振動を励起する為に前記複数の振動励起用電極に駆動信号を印加する駆動回路とを備えた角速度センサ装置であって、
前記角速度センサが、前記複数の振動励起用電極に印加する前記駆動信号の電圧値が所定電圧以上であるときに、前記駆動信号の周波数を低いほうから高いほうへ掃引したときの共振周波数を第1の共振周波数とし、前記駆動信号の周波数を高いほうから低いほうへ掃引したときの共振周波数を第2の共振周波数としたときに、前記第2の共振周波数が前記第1の共振周波数よりも低くなるヒステリシス特性を示し、
前記駆動回路から出力される前記駆動信号が、前記所定電圧以上の電圧値を有し且つ前記ヒステリシス特性を示す領域を避けた前記第2の共振周波数よりも低い周波数に設定されていることを特徴とする角速度センサ装置。
A flexible elastic substrate;
A piezoelectric layer formed on the flexible elastic substrate;
A plurality of vibration excitation electrodes that vibrate the piezoelectric layer and the flexible elastic substrate when provided and driven on the piezoelectric layer;
A displacement detector configured to include a plurality of detection electrodes provided on the piezoelectric layer, and to detect a displacement induced by the vibration and an external angular velocity by an output of the plurality of angular velocity detection electrodes. Angular velocity sensor,
An angular velocity sensor device comprising a drive circuit that applies a drive signal to the plurality of vibration excitation electrodes to excite the vibration,
When the angular velocity sensor sweeps the frequency of the drive signal from low to high when the voltage value of the drive signal applied to the plurality of vibration excitation electrodes is equal to or higher than a predetermined voltage, a resonance frequency is obtained. When the resonance frequency when the drive signal frequency is swept from higher to lower is the second resonance frequency, the second resonance frequency is higher than the first resonance frequency. Shows lower hysteresis characteristics,
The drive signal output from the drive circuit is set to a frequency lower than the second resonance frequency having a voltage value equal to or higher than the predetermined voltage and avoiding a region exhibiting the hysteresis characteristic. An angular velocity sensor device.
平板状のダイアフラムと、
前記ダイアフラムの中央部に配置された重錘と、
前記ダイアフラムの外周部を支持する支持部と、
前記ダイアフラム上に形成された圧電体層と、
前記圧電体層に対して設けられた複数の振動励起用電極を含み、駆動信号が前記複数の振動励起用電極に印加されているときに、前記重錘に対して、所定の振動軸の方向の運動成分をもった振動を誘起する振動励起部と、
前記圧電体層に対して設けられた複数の検出用電極を含み、コリオリ力に基づいて前記重錘に生じる変位軸の方向の変位を前記複数の角速度検出用電極に現れる電圧に基づいて検出する変位検出部とを備え、
前記ダイアフラムの中心位置に原点Oをもち、前記ダイアフラムの表面がXY平面に含まれるようなXYZ三次元直交座標系を定義したときに、前記X軸及びZ軸のうちの一方を前記振動軸、他方を前記変位軸とし、前記変位検出部からの検出値に基づいてY軸まわりの角速度を検出する角速度センサと、
前記角速度センサの前記複数の振動励起用電極に前記駆動信号を印加する駆動回路とを備えてなる角速度センサ装置であって、
前記角速度センサが、前記複数の振動励起用電極に印加する前記駆動信号の電圧値が所定電圧以上であるときに、前記駆動信号の周波数を低いほうから高いほうへ掃引すると、第1の共振周波数において前記電圧値に対する前記変位検出部の出力電圧の比である利得が最大値になり、さらに前記周波数を増加させると前記利得が減少し、その後前記駆動信号の周波数を高いほうから低いほうへ掃引すると、前記第1の共振周波数よりも低い第2の共振周波数で前記利得が最大値になるヒステリシス特性を示すものであり、
前記駆動回路は、前記第2の共振周波数より低く該第2の共振周波数に近い周波数を有し且つ前記所定電圧以上の電圧値を有する前記駆動信号が印加することを特徴とする角速度センサ装置。
A flat diaphragm,
A weight disposed in the center of the diaphragm;
A support portion for supporting an outer peripheral portion of the diaphragm;
A piezoelectric layer formed on the diaphragm;
A plurality of vibration excitation electrodes provided for the piezoelectric layer, and when a drive signal is applied to the plurality of vibration excitation electrodes, a direction of a predetermined vibration axis with respect to the weight A vibration excitation part for inducing vibrations having a motion component of
A plurality of detection electrodes provided for the piezoelectric layer, and detecting displacement in a direction of a displacement axis generated in the weight based on Coriolis force based on voltages appearing on the plurality of angular velocity detection electrodes; A displacement detector,
When an XYZ three-dimensional orthogonal coordinate system having an origin O at the center position of the diaphragm and a surface of the diaphragm included in an XY plane is defined, one of the X axis and the Z axis is the vibration axis, An angular velocity sensor that detects the angular velocity around the Y axis based on a detection value from the displacement detector, the other being the displacement axis;
An angular velocity sensor device comprising: a drive circuit that applies the drive signal to the plurality of vibration excitation electrodes of the angular velocity sensor;
When the angular velocity sensor sweeps the frequency of the drive signal from lower to higher when the voltage value of the drive signal applied to the plurality of vibration excitation electrodes is equal to or higher than a predetermined voltage, the first resonance frequency The gain, which is the ratio of the output voltage of the displacement detector to the voltage value, reaches a maximum value, and further increases the frequency, the gain decreases, and then the drive signal frequency is swept from higher to lower Then, it shows a hysteresis characteristic in which the gain reaches a maximum value at a second resonance frequency lower than the first resonance frequency,
The angular velocity sensor device, wherein the drive circuit applies the drive signal having a frequency lower than the second resonance frequency and close to the second resonance frequency and having a voltage value equal to or higher than the predetermined voltage.
前記駆動信号の周波数が、前記ヒステリシス特性が現れない前記駆動信号の電圧値で得られる素子感度よりも高い素子感度が得られる周波数である請求項1または2に記載の角速度センサ装置。   The angular velocity sensor device according to claim 1, wherein the frequency of the drive signal is a frequency at which an element sensitivity higher than an element sensitivity obtained by a voltage value of the drive signal at which the hysteresis characteristic does not appear.
JP2012233912A 2012-10-23 2012-10-23 Angular velocity sensor device Expired - Fee Related JP6082227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012233912A JP6082227B2 (en) 2012-10-23 2012-10-23 Angular velocity sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233912A JP6082227B2 (en) 2012-10-23 2012-10-23 Angular velocity sensor device

Publications (2)

Publication Number Publication Date
JP2014085210A true JP2014085210A (en) 2014-05-12
JP6082227B2 JP6082227B2 (en) 2017-02-15

Family

ID=50788400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233912A Expired - Fee Related JP6082227B2 (en) 2012-10-23 2012-10-23 Angular velocity sensor device

Country Status (1)

Country Link
JP (1) JP6082227B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018951A (en) * 1998-06-30 2000-01-21 Aisin Seiki Co Ltd Angular velocity detecting method and device thereof
JP2000028364A (en) * 1998-07-10 2000-01-28 Matsushita Electric Ind Co Ltd Angular velocity sensor and its driving method
JP2000055670A (en) * 1998-08-07 2000-02-25 Toyota Central Res & Dev Lab Inc Oscillating type detector
JP2007114078A (en) * 2005-10-21 2007-05-10 Sony Corp Drive unit and method for mems sensor, and active sensor using mems sensor
JP2010160095A (en) * 2009-01-09 2010-07-22 Wacoh Corp Angular velocity sensor
US8505382B2 (en) * 2011-02-10 2013-08-13 Ut-Battelle, Llc Nonlinear nanomechanical oscillators for ultrasensitive inertial detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018951A (en) * 1998-06-30 2000-01-21 Aisin Seiki Co Ltd Angular velocity detecting method and device thereof
JP2000028364A (en) * 1998-07-10 2000-01-28 Matsushita Electric Ind Co Ltd Angular velocity sensor and its driving method
JP2000055670A (en) * 1998-08-07 2000-02-25 Toyota Central Res & Dev Lab Inc Oscillating type detector
JP2007114078A (en) * 2005-10-21 2007-05-10 Sony Corp Drive unit and method for mems sensor, and active sensor using mems sensor
JP2010160095A (en) * 2009-01-09 2010-07-22 Wacoh Corp Angular velocity sensor
US8505382B2 (en) * 2011-02-10 2013-08-13 Ut-Battelle, Llc Nonlinear nanomechanical oscillators for ultrasensitive inertial detection

Also Published As

Publication number Publication date
JP6082227B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6190866B2 (en) MEMS gyro with quadrature reduction spring
US9851373B2 (en) Vibrator and vibrating gyroscope
KR101078587B1 (en) Angular velocity sensor
US10809061B2 (en) Vibratory gyroscope including a plurality of inertial bodies
US9466430B2 (en) Variable capacitor and switch structures in single crystal piezoelectric MEMS devices using bimorphs
US20120137774A1 (en) Non-Degenerate Mode MEMS Gyroscope
JP5524045B2 (en) Vibrating gyroscope using piezoelectric film
JP2001304872A (en) Angular velocity sensor
US20130047726A1 (en) Angular rate sensor with different gap sizes
JP4911690B2 (en) Vibrating gyro vibrator
JP2001174264A (en) Resonance element and its vibration adjusting method
JP6082227B2 (en) Angular velocity sensor device
JP3553418B2 (en) Vibration gyroscope, method of forming vibration gyroscope and adjustment method
US9726490B2 (en) Angular velocity sensor
JP2010160095A (en) Angular velocity sensor
JP2012112819A (en) Vibration gyro
JP2006308359A (en) Inertia sensor element, and manufacturing method of inertia sensor element
JP2008267983A (en) Piezoelectric vibrating gyroscope and its adjusting method
JP5810685B2 (en) Vibrator and vibratory gyro
WO2019017277A1 (en) Vibration type angular velocity sensor
JP2013096882A (en) Physical quantity detection element, physical quantity detection device and electronic apparatus
JP2011027562A (en) Vibration gyro using piezoelectric film
JP2006226924A (en) Dynamic quantity sensor
JPH10132572A (en) Angular speed sensor of electrostatic actuation type
JP2000088580A (en) Silicon gyro

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170120

R150 Certificate of patent or registration of utility model

Ref document number: 6082227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees