JP2014083950A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2014083950A
JP2014083950A JP2012233915A JP2012233915A JP2014083950A JP 2014083950 A JP2014083950 A JP 2014083950A JP 2012233915 A JP2012233915 A JP 2012233915A JP 2012233915 A JP2012233915 A JP 2012233915A JP 2014083950 A JP2014083950 A JP 2014083950A
Authority
JP
Japan
Prior art keywords
tire
tread
layer
inclined belt
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012233915A
Other languages
Japanese (ja)
Inventor
Takayuki Kurata
崇之 藏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2012233915A priority Critical patent/JP2014083950A/en
Publication of JP2014083950A publication Critical patent/JP2014083950A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire having excellent uneven wear resistance and week rolling resistance by optimizing structure of tread part.SOLUTION: The pneumatic tire has at least one layer of carcass as a framework toroidally across between a pair of bead parts. At a position outside of crown part of the carcass in a radial direction, is arranged: at least one layer of inclined belt layer in which a large number of codes extending with inclination relative to the tire equatorial plane are coated with rubber; and tread. At least one layer of the inclined belt layer(s) extends to outside of the grounding edge of the tread in tire width direction. At a region ranging from at a position between the grounding edge of the tread and a position corresponding to the end part in the width direction of the inclined belt layer having the longest width to a position outside in tire width direction of the end part in the width direction of the inclined belt layer having the longest width, a different kind rubber layer having superior wear resistance to the tread rubber at a region other than the region is arranged.

Description

この発明は、ショルダー部の耐偏摩耗性能に優れかつ転がり抵抗の小さい空気入りタイヤに関するものである。   The present invention relates to a pneumatic tire having excellent uneven wear resistance performance at a shoulder portion and low rolling resistance.

近年、より環境負荷の小さい製品の開発が盛んに行われている。これは、地球温暖化をはじめとする環境問題に対処するためであり、タイヤについても例外ではない。タイヤの耐偏摩耗性能を向上させてタイヤ寿命を延ばすことや、タイヤの転がり抵抗を低減して自動車の低燃費化に寄与することも前記環境問題への一対策であり、かような観点から従来様々な技術開発が行われている。   In recent years, development of products with a smaller environmental load has been actively conducted. This is to deal with environmental problems such as global warming, and tires are no exception. From such a viewpoint, improving the uneven wear resistance of the tire and extending the life of the tire, and reducing the rolling resistance of the tire and contributing to lower fuel consumption of the automobile are also measures against the environmental problems. Various technological developments have been made in the past.

例えば、特許文献1では、耐偏摩耗性能を向上させ且つタイヤの転がり抵抗を低減する方法として、タイヤの接地形状の適正化を図る方法が開示されている。具体的には、周方向ベルト層のタイヤ周方向張力をタイヤ幅方向中央領域よりタイヤ幅方向外側域で大きくすることで、タイヤ幅方向中央域とタイヤ幅方向外側域との間の径差を減少し、タイヤの接地形状を均一にしたタイヤが提案されている。これは、タイヤ幅方向中央域と外側域との該径差に起因して、タイヤの転動時に周方向の剪断力がタイヤ幅方向において不均一となり、とりわけ幅方向外側域に生じる制動方向の剪断力によって、トレッドの接地端付近が優先摩耗することを低減する試みである。また、この方法は、タイヤの剪断歪みを低減することから、転がり抵抗の低減にも寄与していた。   For example, Patent Document 1 discloses a method for improving the ground contact shape of a tire as a method for improving uneven wear resistance and reducing rolling resistance of the tire. Specifically, by increasing the tire circumferential direction tension of the circumferential belt layer in the tire width direction outer region than in the tire width direction central region, the radial difference between the tire width direction central region and the tire width direction outer region is reduced. There has been proposed a tire that is reduced and has a uniform ground contact shape. This is because, due to the difference in diameter between the center region in the tire width direction and the outer region, the shearing force in the circumferential direction becomes nonuniform in the tire width direction when the tire rolls, This is an attempt to reduce the preferential wear near the grounded end of the tread due to the shearing force. This method also contributes to reduction of rolling resistance because it reduces the shear strain of the tire.

ところで、上述したようなトレッドの接地端付近の摩耗は、タイヤの走行距離が増すにつれて、トレッドのクラウン形状に沿ってタイヤ幅方向外側へと進行する。つまり、タイヤの接地端がタイヤ幅方向外側へと経時的に移動することになるが、該接地端がバットレス付近に達すると、当該領域ではトレッド幅方向に延びる横溝が浅いことから、当該横溝が摩耗によって消失するまでの時間が他の領域に比べて短いため、トレッドが摩耗末期に至るまでの寿命が前記接地域の拡大に起因して極端に短くなることが、新たな問題として浮上してきた。そこで、走行距離に伴ってタイヤ幅方向外側へ進行する摩耗に適切に対処した、より耐偏摩耗性能に優れかつ転がり抵抗の小さいタイヤが希求されている。   By the way, the wear near the ground contact edge of the tread as described above progresses outward in the tire width direction along the crown shape of the tread as the travel distance of the tire increases. In other words, the ground contact edge of the tire moves with time toward the outside in the tire width direction. Since the time until it disappears due to wear is shorter than in other areas, it has emerged as a new problem that the life until the tread reaches the end of wear becomes extremely short due to the expansion of the contact area. . Accordingly, there is a demand for a tire that is more excellent in uneven wear resistance and has a low rolling resistance that appropriately copes with the wear that progresses outward in the tire width direction with the travel distance.

特開2011−126304号公報JP 2011-126304 A

そこで、本発明の目的は、トレッド部の構造を適正化し、耐偏摩耗性能に優れかつ転がり抵抗の小さいタイヤを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a tire that has an appropriate tread structure, is excellent in uneven wear resistance, and has low rolling resistance.

発明者らは、まず、タイヤのベルト層の幅端位置を規制してトレッドショルダー部の剛性を高めた上で、トレッド幅方向についてトレッドゴムの配置を規制することによって、所期した性能の改良が可能であることの知見を得た。すなわち、ベルト層をタイヤの接地端よりタイヤ幅方向外側まで延在させ、さらにトレッドの接地端よりタイヤ幅方向外側の領域に、該領域以外のゴムよりも耐摩耗性能の高いゴムを配置することによって、転がり抵抗性能を維持しながら耐偏摩耗性能を改良できることを見出した。
さらに、本発明では、前記領域のタイヤ幅方向位置に加えて該領域の厚みを規定することによって、上述の改良をさらに効果的に行うことが可能であることを見出し、本発明を完成するに至った。
The inventors first improved the expected performance by regulating the width end position of the belt layer of the tire to increase the rigidity of the tread shoulder portion and then regulating the arrangement of the tread rubber in the tread width direction. The knowledge that it is possible was obtained. In other words, the belt layer is extended from the ground contact end of the tire to the outside in the tire width direction, and rubber having higher wear resistance than the rubber other than the region is disposed in a region outside the tread contact end in the tire width direction. Thus, it has been found that uneven wear resistance can be improved while maintaining rolling resistance performance.
Furthermore, in the present invention, it is found that the above-described improvement can be further effectively performed by defining the thickness of the region in addition to the position in the tire width direction of the region, and the present invention is completed. It came.

本発明の要旨は、以下のとおりである。
(1)1対のビード部間にトロイダル状に跨る少なくとも1層のカーカスを骨格として、該カーカスのクラウン部の径方向外側に、タイヤ赤道面に対して傾斜して延びるコードの多数本をゴムで被覆した少なくとも1層の傾斜ベルト層およびトレッドを配置した空気入りタイヤであって、
前記傾斜ベルト層の少なくとも1層は、前記トレッドの接地端よりタイヤ幅方向外側まで延び、
前記トレッドの表面における、前記トレッドの接地端と前記傾斜ベルト層の最大幅層の幅方向端部に対応する位置との間から、前記傾斜ベルト層の最大幅層の幅方向端部よりタイヤ幅方向外側までの領域に、該領域以外のトレッドゴムよりも耐摩耗性能の高い異種ゴム層を配置して成ることを特徴とする空気入りタイヤ。
The gist of the present invention is as follows.
(1) Using at least one layer of a carcass straddling a toroidal shape between a pair of bead portions as a skeleton, a large number of cords extending incline with respect to the tire equatorial plane on the radially outer side of the crown portion of the carcass A pneumatic tire in which at least one inclined belt layer coated with a tread and a tread are disposed,
At least one layer of the inclined belt layer extends from the ground contact end of the tread to the outside in the tire width direction,
On the surface of the tread, the width of the tire from the widthwise end of the maximum width layer of the inclined belt layer is between the ground contact end of the tread and the position corresponding to the width direction end of the maximum width layer of the inclined belt layer. A pneumatic tire characterized in that a dissimilar rubber layer having higher wear resistance than a tread rubber other than the region is disposed in a region up to the outer side in the direction.

(2)前記傾斜ベルト層の最大幅層の端部は、前記トレッドの接地端から前記タイヤの最大幅位置までのタイヤ幅方向距離をCとしたとき、前記トレッドの接地端側C/3までの範囲に位置し、前記異種ゴム層のタイヤ幅方向外側端は、前記トレッドの接地端側C/2までの範囲に位置することを特徴とする前記(1)に記載の空気入りタイヤ。   (2) The end portion of the maximum width layer of the inclined belt layer is from the contact end side of the tread to the contact end side C / 3 of the tread when the distance in the tire width direction from the contact end of the tread to the maximum width position of the tire is C. The pneumatic tire according to (1), wherein the outer end in the tire width direction of the dissimilar rubber layer is located in a range up to a contact end side C / 2 of the tread.

(3)前記異種ゴム層のタイヤ径方向の厚みが、前記トレッドの表面からタイヤ径方向内側に向かって、前記傾斜ベルト層の最大幅層の端部におけるトレッドゴムゲージの10%以上60%以下の範囲であることを特徴とする前記(1)または(2)のいずれかに記載の空気入りタイヤ。   (3) The thickness of the different rubber layer in the tire radial direction is from 10% to 60% of the tread rubber gauge at the end of the maximum width layer of the inclined belt layer from the tread surface toward the inner side in the tire radial direction. The pneumatic tire according to any one of (1) and (2) above, wherein

この発明に従って、トレッド接地端よりタイヤ幅方向外側のトレッド表層の領域に、それ以外の領域よりも耐摩耗性能の高いゴム層を配置することによって、走行時にタイヤにかかる荷重やコーナリング時に生じる応力によってもたらされるトレッド接地端付近における摩耗が、タイヤ幅方向外側へと拡大するのを抑制し、タイヤの摩耗寿命を延長させることを、タイヤの転がり抵抗性能を維持しながら実現できる。
さらに、該異種ゴム層の厚みを規制することによって、上述の効果をより確実に得ることができる。
According to the present invention, by placing a rubber layer having higher wear resistance than the other regions in the tread surface layer region on the outer side in the tire width direction from the tread ground contact edge, due to the load applied to the tire during running and the stress generated during cornering The resulting wear near the tread contact edge can be prevented from spreading outward in the tire width direction, and the wear life of the tire can be extended while maintaining the rolling resistance performance of the tire.
Furthermore, the above-mentioned effect can be more reliably obtained by regulating the thickness of the different rubber layer.

本発明の第1実施形態に係る空気入りタイヤの、幅方向右半分の断面図である。It is sectional drawing of the width direction right half of the pneumatic tire which concerns on 1st Embodiment of this invention. (a)は本発明の第2実施形態、および(b)は本発明の第3実施形態に係る空気入りタイヤの、サイド部からショルダー部にかけての幅方向断面図である。(A) is 2nd Embodiment of this invention, (b) is width direction sectional drawing from the side part to a shoulder part of the pneumatic tire which concerns on 3rd Embodiment of this invention. 各供試タイヤの走行距離と、タイヤの接地端Teにおける摩耗量との関係を示したグラフである。It is the graph which showed the relationship between the travel distance of each test tire, and the amount of wear at the contact point Te of the tire. 各供試タイヤの転がり抵抗性能とタイヤの接地端Teにおけるタイヤの摩耗寿命との関係を示したグラフである。It is the graph which showed the relationship between the rolling resistance performance of each test tire, and the wear life of the tire at the ground contact edge Te of the tire.

以下、図面を参照しながら本発明の空気入りタイヤ(以下、タイヤとも称する)を、その実施形態を例示して詳細に説明する。
図1は、本発明の第1実施形態に係る空気入りタイヤの、幅方向右半分の断面を示している。このタイヤ10は、1対のビードコア1と、両ビードコア1間にトロイダル状に跨るとともにその周りにタイヤ幅方向内側から外側に折り返されたカーカスプライからなる少なくとも1層(図示例では1層)のカーカス2を骨格として、該カーカス2のクラウン部の径方向外側に、タイヤ赤道面CLに対して傾斜して延びるコードの多数本をゴムで被覆した傾斜ベルト層3aおよび3bから成る傾斜ベルト3と、該傾斜ベルト3の径方向外側のベルト補強層4およびトレッド6と、を順に備える。
また、タイヤ赤道面CLを中心として、タイヤの最大幅をSW、傾斜ベルト層の最大幅層3bのベルト幅をBW、トレッドの両接地端Te間の距離をTWとして示した(図1は、タイヤ10の幅方向右半分の断面図であるため、図に記載の前記距離はそれぞれSW/2、BW/2およびTe/2である)。
なお、図1では、傾斜ベルト層3aおよび3bのうち、タイヤ径方向内側に位置する傾斜ベルト層3bが最大幅を有しているが、タイヤ径方向外側に位置する傾斜ベルト層3aが最大幅を有してもよい。
また、本発明に係るタイヤは、図1の傾斜ベルト3の径方向外側に、タイヤ周方向に沿って延びるコードの多数本をゴムで被覆した少なくとも1層の周方向ベルト層から成る周方向ベルトを具えることもできる。
DESCRIPTION OF EMBODIMENTS Hereinafter, a pneumatic tire (hereinafter, also referred to as a tire) of the present invention will be described in detail by exemplifying an embodiment thereof with reference to the drawings.
FIG. 1 shows a cross section of the right half in the width direction of the pneumatic tire according to the first embodiment of the present invention. The tire 10 includes a pair of bead cores 1 and at least one layer (in the illustrated example, one layer) composed of a carcass ply that extends between the bead cores 1 in a toroidal shape and is folded around from the inner side to the outer side in the tire width direction. An inclined belt 3 comprising inclined belt layers 3a and 3b having a carcass 2 as a skeleton and a plurality of cords extending obliquely with respect to the tire equatorial plane CL and coated with rubber on the radially outer side of the crown portion of the carcass 2; The belt reinforcing layer 4 and the tread 6 on the radially outer side of the inclined belt 3 are sequentially provided.
Further, centering on the tire equatorial plane CL, the maximum width of the tire is indicated as SW, the belt width of the maximum width layer 3b of the inclined belt layer is indicated as BW, and the distance between the ground contact ends Te of the tread is indicated as TW (FIG. 1). Since it is a cross-sectional view of the right half of the tire 10 in the width direction, the distances shown in the figure are SW / 2, BW / 2, and Te / 2, respectively.
In FIG. 1, among the inclined belt layers 3 a and 3 b, the inclined belt layer 3 b located on the inner side in the tire radial direction has the maximum width, but the inclined belt layer 3 a located on the outer side in the tire radial direction has the maximum width. You may have.
Further, the tire according to the present invention is a circumferential belt comprising at least one circumferential belt layer in which a large number of cords extending along the tire circumferential direction are coated with rubber on the radially outer side of the inclined belt 3 of FIG. Can also be included.

かかるタイヤ10において、傾斜ベルト層の最大幅層3bはトレッドの接地端Teよりタイヤ幅方向外側まで延び、端部eにて終端している。このようにして、傾斜ベルト層3aおよび3bのうち少なくとも1層をタイヤ幅方向外側まで延在させると、タイヤのショルダー部の剛性を向上させる効果が期待できる。
具体的には、特に、キャンバー角を付与した走行時、傾斜ベルト層の最大幅層3bの端部eがトレッドの接地端Teよりタイヤ幅方向外側に位置すると、荷重によって生じる傾斜ベルト3の撓みを最小限に留めることがでるため、タイヤの径差に起因するタイヤ幅方向外側の剪断歪を抑制することができる。
In the tire 10, the maximum width layer 3 b of the inclined belt layer extends from the tread contact end Te to the outer side in the tire width direction and terminates at the end e. In this way, when at least one of the inclined belt layers 3a and 3b is extended to the outside in the tire width direction, an effect of improving the rigidity of the shoulder portion of the tire can be expected.
Specifically, particularly when the camber angle is applied, when the end e of the maximum width layer 3b of the inclined belt layer is positioned on the outer side in the tire width direction from the ground contact end Te of the tread, the bending of the inclined belt 3 caused by the load is caused. Therefore, shear strain on the outer side in the tire width direction due to the tire diameter difference can be suppressed.

また、接地端Teよりタイヤ幅方向外側の斜線で示したトレッド表層の領域に、該領域以外のトレッドゴムよりも耐摩耗性能の高い異種ゴム層Qを配置することが肝要である。
ここにおいて、異種ゴム層Qを、トレッド6の接地端Teと傾斜ベルト層の最大幅層3bの端部eとの間から、前記傾斜ベルト層の最大幅層3bの端部eよりタイヤ幅方向外側にわたる領域に配置している。
In addition, it is important to dispose the dissimilar rubber layer Q having higher wear resistance than the tread rubber other than the region in the region of the tread surface layer indicated by the oblique line on the outer side in the tire width direction from the ground contact end Te.
Here, the dissimilar rubber layer Q is arranged between the ground contact Te of the tread 6 and the end e of the maximum width layer 3b of the inclined belt layer from the end e of the maximum width layer 3b of the inclined belt layer in the tire width direction. It is located in the area extending outside.

かかる構成によれば、横溝が摩耗して消失するまでの時間が他の領域に比べて短いショルダー部の摩耗を遅らせ、その結果、タイヤの摩耗寿命(タイヤが摩耗末期に至るまでの寿命)を延ばすことができる。一般に、トレッドの接地端位置は、トレッド表面における摩耗の進行に伴って、新品タイヤの接地端Teの位置からタイヤ幅方向外側へ移動する。そのため、新品タイヤの接地端Teのタイヤ幅方向外側に耐摩耗性能の高いトレッド領域を設けると、該領域においては、トレッド表面の摩耗の進行を遅らせること、つまり、接地端Teのタイヤ幅方向外側への移動量を減少させることができる。このようにして、接地端Teよりタイヤ幅方向外側のトレッド表面において進行する摩耗を抑制できる。また、トレッドの径方向に異なるゴムを配置することによって、トレッド表面への剪断歪みが伝播しにくくなり、トレッド表面の摩耗を抑制する効果がある。
また、該異種ゴム層Qは、硬度が高く摩耗速度が遅い性質を有する一方で、ヒステリシスロスが大きく、タイヤの転がり抵抗を増加させる傾向にあるが、本発明の配置では、該異種ゴム層Qが定常接地域内にないため転がり抵抗性を阻害しない。
なお、ここでいう接地端Teとは、新品タイヤにおける接地端位置のことである。
According to such a configuration, the time until the lateral groove wears and disappears is delayed compared to other regions, so that the wear of the shoulder portion is delayed. As a result, the wear life of the tire (the life until the tire reaches the end of wear) is reduced. Can be extended. In general, the position of the ground contact edge of the tread moves from the position of the ground contact edge Te of the new tire to the outside in the tire width direction as wear progresses on the tread surface. For this reason, if a tread region having high wear resistance is provided outside the ground contact end Te of the new tire in the tire width direction, the progress of wear on the tread surface is delayed in this region, that is, the tire width direction outside of the contact end Te. The amount of movement to can be reduced. In this manner, wear that proceeds on the tread surface on the outer side in the tire width direction from the ground contact end Te can be suppressed. In addition, by disposing different rubbers in the radial direction of the tread, shear strain on the tread surface becomes difficult to propagate, and there is an effect of suppressing wear on the tread surface.
Further, the different rubber layer Q has a property of high hardness and low wear rate, but has a large hysteresis loss and tends to increase the rolling resistance of the tire. However, in the arrangement of the present invention, the different rubber layer Q Does not hinder rolling resistance because it is not in the steady contact area.
Here, the ground contact Te is a contact end position in a new tire.

次に、図2(a)は、本発明の第2実施形態に係るタイヤの、サイド部からショルダー部にかけての断面図である。図1と同じ構成要素は、図1と同じ参照符号を付してその説明を省略する。かかるタイヤ10において、異種ゴム層Qをトレッド6の接地端Teと傾斜ベルト層の最大幅層3bの端部eとの間から、前記傾斜ベルト層の最大幅層3bの端部eよりタイヤ幅方向外側までの領域に配置している。
ここでは、さらに、トレッドの接地端Teからタイヤの最大幅位置iまでのタイヤ幅方向距離をCとしたとき、傾斜ベルト層の最大幅層3bの端部eをトレッドの接地端Te側C/3の範囲に配置し、異種ゴム層Qのタイヤ幅方向外側端をトレッドの接地端Te側C/2の範囲に配置することが好ましい。
Next, Fig.2 (a) is sectional drawing from the side part to a shoulder part of the tire which concerns on 2nd Embodiment of this invention. The same components as those in FIG. 1 are denoted by the same reference numerals as those in FIG. In such a tire 10, the different rubber layer Q is formed between the ground end Te of the tread 6 and the end e of the maximum width layer 3 b of the inclined belt layer and the tire width from the end e of the maximum width layer 3 b of the inclined belt layer. It is arranged in the area to the outside in the direction.
Here, when the tire width direction distance from the tread grounding end Te to the maximum tire width position i is C, the end e of the maximum width layer 3b of the inclined belt layer is defined as C / It is preferable that the outer end of the different rubber layer Q in the tire width direction is disposed in the range of the contact end Te side C / 2 of the tread.

かかる構成によれば、タイヤの転がり抵抗を抑制しながら、トレッドの耐偏摩耗性能を向上させることが可能である。上述したように、異種ゴム層Qのゴム組成は、硬度が高く摩耗速度が遅い性質を有する一方でヒステリシスロスが大きく、タイヤの転がり抵抗を増加させる傾向にある。そのため、異種ゴム層Qのタイヤ幅方向の長さを、タイヤ幅方向距離Cに応じて適切な範囲に制限することによって、特に、トレッドの接地端が、走行距離が増えるに従って異種ゴム層Qの領域に移動した際の走行において、異種ゴム層Qにおける発熱量を一定量以下に抑制し、タイヤの転がり抵抗が極端に増加することを防ぐことができる。
また、トレッド表面の摩耗に伴う接地端位置の移動量を考慮しても、異種ゴム層Qが上述の範囲であれば、トレッドの偏摩耗を十分に抑制してタイヤの摩耗寿命を延ばすことが可能である。
According to this configuration, it is possible to improve the uneven wear resistance of the tread while suppressing the rolling resistance of the tire. As described above, the rubber composition of the dissimilar rubber layer Q has a property of high hardness and low wear rate, but has a large hysteresis loss and tends to increase the rolling resistance of the tire. Therefore, by limiting the length of the different rubber layer Q in the tire width direction to an appropriate range according to the tire width direction distance C, in particular, the tread contact end of the different rubber layer Q increases as the travel distance increases. During traveling when moving to the region, the amount of heat generated in the different rubber layer Q can be suppressed to a certain amount or less, and the rolling resistance of the tire can be prevented from being extremely increased.
In addition, even if the amount of movement of the ground contact end position due to wear on the tread surface is taken into account, if the different rubber layer Q is in the above range, uneven wear of the tread can be sufficiently suppressed to extend the wear life of the tire. Is possible.

次に、図2(b)は、本発明の第3実施形態に係るタイヤの、サイド部からショルダー部にかけての断面図である。かかるタイヤ10において、異種ゴム層Qをトレッド6の接地端Teと傾斜ベルト層の最大幅層3bの端部eとの間から接地端Te側C/2の範囲に配置しているが、ここでは、さらに、該異種ゴム層Qの径方向の厚みを、トレッド表面からタイヤ径方向内側に向かって、傾斜ベルト層の最大幅層3bの端部eにおけるトレッドゴムケージの10%以上60%以下にすることが好ましい。   Next, FIG.2 (b) is sectional drawing from the side part to a shoulder part of the tire which concerns on 3rd Embodiment of this invention. In such a tire 10, the different rubber layer Q is arranged in a range from the ground end Te of the tread 6 and the end e of the maximum width layer 3b of the inclined belt layer to the ground end Te side C / 2. Then, the thickness of the different rubber layer Q in the radial direction is 10% or more and 60% or less of the tread rubber cage at the end e of the maximum width layer 3b of the inclined belt layer from the tread surface toward the inner side in the tire radial direction. It is preferable to make it.

かかる構成によれば、タイヤの転がり抵抗を確実に抑制しながら、トレッドの耐偏摩耗性能をさらに向上させることが可能である。上述したように、異種ゴム層Qのゴム組成は、硬度が高く摩耗速度が遅い性質を有する一方で、ヒステリシスロスが大きく、タイヤの転がり抵抗性能を阻害する傾向にある。そこで、該異種ゴム層Qの厚みを制限して異種ゴム層の体積を適切な範囲に保つことで、上述の第1実施形態および第2実施形態のタイヤよりも異種ゴム層Qにおける発熱量を低減し、ヒステリシスロスを最小限に留めることが可能になる。
また、異種ゴム層Qの厚みを上記の範囲に制限し、トレッドの表面と内側で異なるゴム層をバランス良く配置すると、トレッド表面への剪断歪みがより伝播しにくくなり、トレッド表面の摩耗を抑制する効果が高まる。
According to this configuration, it is possible to further improve the uneven wear resistance performance of the tread while reliably suppressing the rolling resistance of the tire. As described above, the rubber composition of the different rubber layer Q has a property of high hardness and low wear rate, but has a large hysteresis loss and tends to inhibit the rolling resistance performance of the tire. Therefore, by limiting the thickness of the different rubber layer Q and keeping the volume of the different rubber layer in an appropriate range, the amount of heat generated in the different rubber layer Q can be reduced compared to the tires of the first and second embodiments described above. This makes it possible to reduce hysteresis loss to a minimum.
In addition, if the thickness of the different rubber layer Q is limited to the above range and different rubber layers are arranged in a well-balanced manner on the tread surface, the shear strain on the tread surface is less likely to propagate and the wear on the tread surface is suppressed. The effect to do increases.

以下、本発明の実施例について説明する。
サイズ245/40R18の従来例タイヤ、比較例タイヤおよび発明例タイヤを以下の仕様にて試作した。そして、各供試タイヤを適用リムに組み付け、内圧230kPaを充填した後、車両に装着し、乾いたサーキット路面で走行させて、接地端部における走行距離に対する耐摩耗性能および転がり抵抗性能を評価した。転がり抵抗性能とは、転がり抵抗を低減する性能のことである。
適用リムとは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA YEAR BOOK、欧州ではETRTO STANDARD MANUAL、米国ではTRA YEAR BOOK等に記載されている、適用サイズにおける標準リムをいう。
Examples of the present invention will be described below.
A conventional tire of size 245 / 40R18, a comparative tire, and an inventive tire were prototyped according to the following specifications. And after assembling each test tire to the applicable rim and filling the internal pressure 230 kPa, it was mounted on the vehicle and traveled on a dry circuit road surface to evaluate the wear resistance performance and the rolling resistance performance against the travel distance at the ground contact edge. . Rolling resistance performance refers to the ability to reduce rolling resistance.
Applicable rim is an industrial standard that is effective in the area where tires are produced and used. A standard rim.

各供試タイヤはいずれも1層のカーカス、2層の傾斜ベルト層、および1層の補強ベルトを備えている。
発明例タイヤ1は、図1に示す基本構造を有し、トレッド6の接地端Teのタイヤ幅方向外側から該方向に向かって異種ゴム層Qを備えている。
発明例タイヤ2は、傾斜ベルト層の最大幅層3bの端部eがトレッドの接地端Te側C/3の範囲に位置し、異種ゴム層Qのタイヤ幅方向外側端がトレッドの接地端Te側C/2の範囲に位置していること意外は、発明例タイヤ1と同様である。
発明例タイヤ3は、傾斜ベルト層の最大幅層3bの端部eが、トレッドの接地端Te側C/3の範囲に位置し、異種ゴム層Qのタイヤ幅方向外側端が、トレッドの接地端Te側C/2の範囲に位置し、さらに、異種ゴム層Qの径方向の厚みが、トレッド表面からタイヤ径方向内側に向かって傾斜ベルト層の最大幅層3bの端部eにおけるトレッドゴムケージの30%であること以外は、発明例タイヤ1と同様である。
従来例タイヤは、異種ゴム層Qを備えていないこと以外は、発明例タイヤ1と同様である。
比較例タイヤ1は、異種ゴム層Qがトレッド6の接地端Teを超えてタイヤ幅方向内側まで延在していること以外は、発明例タイヤ1と同様である。
比較例タイヤ2は、異種ゴム層Qの内側端がトレッド6の接地端Teよりタイヤ幅方向内側に、外側端がトレッドの接地端Te側C/2の範囲に位置していること以外は、発明例タイヤ1と同様である。
比較例タイヤ3は、異種ゴム層Qの内側端がトレッド6の接地端Teよりタイヤ幅方向内側に、外側端がトレッドの接地端Te側C/2の範囲に位置し、さらに、異種ゴム層Qの径方向の厚みが、トレッド表面からタイヤ径方向内側に向かって傾斜ベルト層の最大幅層3bの端部eにおけるトレッドゴムケージの30%であること以外は、発明例タイヤ1と同様である。
Each of the test tires includes one carcass, two inclined belt layers, and one reinforcing belt.
The example tire 1 has the basic structure shown in FIG. 1 and includes a different rubber layer Q from the outer side in the tire width direction of the ground contact end Te of the tread 6 toward the direction.
In the tire 2 of the invention, the end e of the maximum width layer 3b of the inclined belt layer is located in a range of the ground contact end Te side C / 3 of the tread, and the outer end in the tire width direction of the different rubber layer Q is the contact end Te of the tread. It is the same as that of the invention example tire 1 except that it is located in the range of the side C / 2.
The tire 3 of the invention is such that the end e of the maximum width layer 3b of the inclined belt layer is located in a range of the tread contact end Te side C / 3, and the outer end in the tire width direction of the different rubber layer Q is the tread contact. The tread rubber at the end e of the maximum width layer 3b of the inclined belt layer is located in the range of the end Te side C / 2, and the radial thickness of the different rubber layer Q is from the tread surface toward the inside in the tire radial direction. Except for 30% of the cage, it is the same as the tire 1 of the invention.
The conventional example tire is the same as the example tire 1 except that the different type rubber layer Q is not provided.
The comparative tire 1 is the same as the inventive tire 1 except that the dissimilar rubber layer Q extends beyond the contact end Te of the tread 6 to the inner side in the tire width direction.
In the comparative example tire 2, the inner end of the different rubber layer Q is located on the inner side in the tire width direction from the contact end Te of the tread 6, and the outer end is positioned in a range of the contact end Te side C / 2 of the tread. It is the same as the tire 1 of the invention.
In the comparative example tire 3, the inner end of the dissimilar rubber layer Q is located on the inner side in the tire width direction from the contact end Te of the tread 6, and the outer end is located in the range of the contact end Te side C / 2 of the tread. The thickness of Q in the radial direction is the same as that of the inventive example tire 1 except that the thickness in the radial direction of the tread is 30% of the tread rubber cage at the end e of the maximum width layer 3b of the inclined belt layer from the tread surface toward the inner side in the tire radial direction. is there.

(耐偏摩耗性能)
図3は、走行距離と接地端Teにおける摩耗量の関係について、摩耗が接地端Teの溝深さに達するまでを示したグラフである。
図中において、緩やかな線の傾きは、摩耗が緩やかに進行していることを示しており、タイヤの摩耗寿命(接地端Teの溝深さ)に達するまでの走行距離が長い方が耐偏摩耗性能に優れているということを意味している。
(Uneven wear resistance)
FIG. 3 is a graph showing the relationship between the travel distance and the wear amount at the ground contact Te until the wear reaches the groove depth of the ground contact Te.
In the figure, the gentle slope of the line indicates that the wear is slowly progressing, and the longer the travel distance until the wear life of the tire (the groove depth of the ground contact Te) is, the more uneven the resistance is. It means that the wear performance is excellent.

(転がり抵抗性能)
図4は、各供試タイヤの接地端Teにおける摩耗寿命と転がり抵抗性能のバランスを示したグラフである。ここでは、グラフ左上に行くほど、摩耗寿命および転がり抵抗性能ともに性能評価は低く、グラフ右下に行くほど、両性能ともに評価が高いことを示している。
(Rolling resistance performance)
FIG. 4 is a graph showing the balance between the wear life and rolling resistance performance at the ground contact Te of each test tire. Here, the performance evaluation is lower for the wear life and the rolling resistance performance as it goes to the upper left of the graph, and the performance is higher for both performances as it goes to the lower right of the graph.

1:ビードコア 2:カーカス 3:傾斜ベルト 3a:傾斜ベルト層 3b:傾斜ベルト層の最大幅層 4:ベルト補強層 6:トレッド 10:空気入りタイヤ e:ベルト端 i:タイヤ最大幅位置 Te:接地端 Q:異種ゴム層 C:接地端Teとタイヤ最大幅位置i間距離 CL:タイヤ赤道面 SW:タイヤ幅 BW:ベルト幅 TW:トレッド幅(接地端間距離)   1: bead core 2: carcass 3: inclined belt 3a: inclined belt layer 3b: maximum width layer of inclined belt layer 4: belt reinforcing layer 6: tread 10: pneumatic tire e: belt end i: maximum tire width position Te: ground contact End Q: Different rubber layer C: Distance between ground contact Te and maximum tire width position i CL: Tire equatorial plane SW: Tire width BW: Belt width TW: Tread width (distance between ground ends)

Claims (3)

1対のビード部間にトロイダル状に跨る少なくとも1層のカーカスを骨格として、該カーカスのクラウン部の径方向外側に、タイヤ赤道面に対して傾斜して延びるコードの多数本をゴムで被覆した少なくとも1層の傾斜ベルト層およびトレッドを配置した空気入りタイヤであって、
前記傾斜ベルト層の少なくとも1層は、前記トレッドの接地端よりタイヤ幅方向外側まで延び、
前記トレッドの表面における、前記トレッドの接地端と前記傾斜ベルト層の最大幅層の幅方向端部に対応する位置との間から、前記傾斜ベルト層の最大幅層の幅方向端部よりタイヤ幅方向外側までの領域に、該領域以外のトレッドゴムよりも耐摩耗性能の高い異種ゴム層を配置して成ることを特徴とする空気入りタイヤ。
With at least one layer of carcass straddling a toroidal shape between a pair of bead portions, a large number of cords extending obliquely with respect to the tire equatorial plane are coated with rubber on the radially outer side of the crown portion of the carcass. A pneumatic tire in which at least one inclined belt layer and a tread are disposed,
At least one layer of the inclined belt layer extends from the ground contact end of the tread to the outside in the tire width direction,
On the surface of the tread, the width of the tire from the widthwise end of the maximum width layer of the inclined belt layer is between the ground contact end of the tread and the position corresponding to the width direction end of the maximum width layer of the inclined belt layer. A pneumatic tire characterized in that a dissimilar rubber layer having higher wear resistance than a tread rubber other than the region is disposed in a region up to the outer side in the direction.
前記傾斜ベルト層の最大幅層の端部は、前記トレッドの接地端から前記タイヤの最大幅位置までのタイヤ幅方向距離をCとしたとき、前記トレッドの接地端側C/3までの範囲に位置し、前記異種ゴム層のタイヤ幅方向外側端は、前記トレッドの接地端側C/2までの範囲に位置することを特徴とする請求項1に記載の空気入りタイヤ。   The end of the maximum width layer of the inclined belt layer is in a range from the contact end of the tread to the maximum width position of the tire in the range from C / 3 to the contact end side C / 3 of the tread, where C is the tire width direction distance. 2. The pneumatic tire according to claim 1, wherein an outer end in the tire width direction of the dissimilar rubber layer is located in a range up to a contact end side C / 2 of the tread. 前記異種ゴム層のタイヤ径方向の厚みが、前記トレッドの表面からタイヤ径方向内側に向かって、前記傾斜ベルト層の最大幅層の端部におけるトレッドゴムゲージの10%以上60%以下の範囲であることを特徴とする請求項1または請求項2に記載の空気入りタイヤ。   The thickness of the different rubber layer in the tire radial direction is in the range of 10% to 60% of the tread rubber gauge at the end of the maximum width layer of the inclined belt layer from the tread surface toward the inner side in the tire radial direction. The pneumatic tire according to claim 1, wherein the pneumatic tire is provided.
JP2012233915A 2012-10-23 2012-10-23 Pneumatic tire Pending JP2014083950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012233915A JP2014083950A (en) 2012-10-23 2012-10-23 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233915A JP2014083950A (en) 2012-10-23 2012-10-23 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2014083950A true JP2014083950A (en) 2014-05-12

Family

ID=50787446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233915A Pending JP2014083950A (en) 2012-10-23 2012-10-23 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2014083950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021049890A (en) * 2019-09-25 2021-04-01 横浜ゴム株式会社 Pneumatic tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021049890A (en) * 2019-09-25 2021-04-01 横浜ゴム株式会社 Pneumatic tire
JP7440734B2 (en) 2019-09-25 2024-02-29 横浜ゴム株式会社 pneumatic tires

Similar Documents

Publication Publication Date Title
JP6186147B2 (en) Pneumatic tire
JP5436439B2 (en) tire
JP4919950B2 (en) Pneumatic radial tire for motorcycles
JP2005324775A (en) Pneumatic tire for heavy load
WO2015163215A1 (en) Pneumatic tyre
JP2011183994A (en) Pneumatic tire
JP6450321B2 (en) tire
JP2007137134A (en) Pneumatic tire
JP2006273240A (en) Pneumatic tire for motorcycle
JP2010012881A (en) Pneumatic tire
JP2009262808A (en) Pneumatic tire
WO2011126077A1 (en) Pneumatic tire
JP4818414B2 (en) tire
JPWO2012176912A1 (en) Pneumatic tires for motorcycles
WO2013073153A1 (en) Pneumatic radial tire for heavy loads
JP2004359145A (en) Run flat tire
JP2014083950A (en) Pneumatic tire
JP5385735B2 (en) tire
JP4586518B2 (en) Heavy duty pneumatic tire
JP2007196964A (en) Pneumatic tire
JP6450111B2 (en) Pneumatic tire
JP2013166397A (en) Pneumatic radial tire for heavy load
JP5623864B2 (en) Pneumatic tire
JP2014205426A (en) Tire
JPWO2014065298A1 (en) Pneumatic tire