JP2014083532A - Water softening apparatus - Google Patents

Water softening apparatus Download PDF

Info

Publication number
JP2014083532A
JP2014083532A JP2012237046A JP2012237046A JP2014083532A JP 2014083532 A JP2014083532 A JP 2014083532A JP 2012237046 A JP2012237046 A JP 2012237046A JP 2012237046 A JP2012237046 A JP 2012237046A JP 2014083532 A JP2014083532 A JP 2014083532A
Authority
JP
Japan
Prior art keywords
water
time
liquid level
flow rate
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012237046A
Other languages
Japanese (ja)
Inventor
Miyuki Okuzaki
美由紀 奥崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2012237046A priority Critical patent/JP2014083532A/en
Publication of JP2014083532A publication Critical patent/JP2014083532A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a water softening apparatus capable of executing a stable regenerating treatment by fixing the flow rate, per unit time, of recycled water fed into a water softening treatment tank.SOLUTION: At the time of implementing a regenerating treatment of feeding recycled water into a water softening treatment tank, an operation of feeding, into the water softening treatment tank, recycled water stored within a storage tank is executed by opening a flow-regulating valve at a specified aperture. During the execution of this operation, furthermore, a drainage time demand for the liquid level of the recycled water stored within the storage tank to reach a specified liquid level is acquired (clocking routine). Moreover, the acquired drainage time demand is compared with a standard time set in advance (time comparison routine), and the aperture of the flow-regulating valve is changed depending on the obtained comparison result.

Description

本発明は、外部から供給された水を軟水化する軟水化装置に関するものである。   The present invention relates to a water softening device that softens water supplied from the outside.

陽イオン交換樹脂が詰められた軟水化処理槽を通過させることにより、水道水や井戸水等を軟水に変えて供給する軟水化装置が知られている。このような軟水化装置は、例えば、入浴時に使用する湯水を軟水化するために使用されている。入浴時に使用する湯水を軟水にすると美容効果があるとされており、さらに浴室にカルシウムやマグネシウムが固まってできる汚れ(所謂スケール)が発生し難くなるので、この種の軟水化装置の需要が高まってきている。   2. Description of the Related Art There is known a water softening device that supplies tap water, well water, or the like to soft water by passing it through a water softening treatment tank packed with a cation exchange resin. Such a water softening device is used, for example, to soften hot water used during bathing. It is said that softening the hot water used during bathing has a cosmetic effect, and furthermore, it is difficult to generate stains (so-called scales) that are formed by hardening calcium and magnesium in the bathroom. It is coming.

このような軟水化装置は、水道水や井戸水等を通過させて軟水化を継続すると、陽イオン交換樹脂の軟水化能力が徐々に低下し、最終的には軟水化ができなくなる。一方、陽イオン交換樹脂の軟水化能力が低下した場合に、塩水(塩化ナトリウム水溶液)を陽イオン交換樹脂に供給する再生処理を行うと、陽イオン交換樹脂に捕捉されていたカルシウムイオンやマグネシウムイオン等が排出され、水道水等を軟水化可能な状態に戻る。   In such a water softening device, when tap water or well water is allowed to pass through and the water softening is continued, the water softening ability of the cation exchange resin gradually decreases, and finally water softening cannot be performed. On the other hand, when the water-softening ability of the cation exchange resin is reduced, when the regeneration treatment is performed to supply salt water (sodium chloride aqueous solution) to the cation exchange resin, calcium ions and magnesium ions captured by the cation exchange resin are performed. Etc. are discharged, and tap water is returned to a state where it can be softened.

このような再生処理が可能な軟水化装置として、特許文献1に開示された軟水装置(軟水化装置)がある。特許文献1に開示された軟水装置では、軟水化処理槽に塩水を供給する再生処理の後に、軟水化処理槽に水道水や井戸水等を供給する洗浄処理を実施している。すなわち、再生処理後に水道水や井戸水等を軟水化処理槽に供給することにより、再生処理によって軟水化処理槽内に残存した再生水(塩水)を排水口へ押し出している。さらに、特許文献1に開示された軟水装置では、再生処理時に塩水が流れる流通経路と、洗浄処理時に水道水や井戸水等が流れる流通経路を同一の経路とすることにより、軟水化処理槽内だけでなく配管経路内における再生水(塩水)の残留をも防止している。   As a water softening device capable of such regeneration treatment, there is a water softening device (water softening device) disclosed in Patent Document 1. In the water softening device disclosed in Patent Document 1, after the regeneration process of supplying salt water to the water softening tank, a cleaning process of supplying tap water, well water, or the like to the water softening tank is performed. That is, by supplying tap water, well water or the like to the water softening tank after the regeneration process, the reclaimed water (salt water) remaining in the water softening tank is pushed out to the drain outlet by the regeneration process. Furthermore, in the water softening device disclosed in Patent Document 1, the flow path through which salt water flows during regeneration processing and the flow path through which tap water, well water, etc. flow during cleaning processing are the same path, so that only in the water softening treatment tank. In addition, residual water (salt water) in the piping path is prevented.

ここで、特許文献1には、再生処理時に再生水(塩水)を貯留させる貯留タンクの液位が低くなるにつれて、貯留タンクと軟水化処理槽との間に設けた流量制御可能なバルブの開度を増加させていく構成が開示されている。すなわち、貯留タンクの液位低下に応じてバルブが開いていく構成が開示されている。   Here, in Patent Document 1, as the liquid level of the storage tank that stores the reclaimed water (salt water) during the regeneration process decreases, the opening degree of the flow-controllable valve provided between the storage tank and the water softening treatment tank is disclosed. A configuration for increasing the number is disclosed. That is, a configuration is disclosed in which the valve is opened in response to a decrease in the liquid level in the storage tank.

具体的に説明すると、貯留タンクに貯留された再生水(塩水)の水頭圧を利用して、軟水化処理槽へ再生水(塩水)を供給する場合、再生水(塩水)を供給し続けることで貯留タンクに貯留された再生水(塩水)の量が減少してくると、水頭圧もまた低下していく。そして、水頭圧が低下していくと、一般的に、軟水化処理槽側へと流れる再生水(塩水)の単位時間当たりの流量も減少していく。そこで、特許文献1に開示された軟水装置(軟水化装置)では、貯留タンクに貯留された再生水(塩水)の量が減少するにつれてバルブを開いていく構成としている。このことにより、再生処理が開始されてから長時間が経過し、貯留タンクに再生水(塩水)が僅かしか貯留されていない状態であっても、流量を大きく減少させることなく軟水化処理槽に再生水(塩水)を供給することができる。すなわち、再生処理が開始されてからの経過時間の長短によらず、再生水(塩水)を軟水化処理槽に一定の流量で供給することができる。   Specifically, when supplying the reclaimed water (salt water) to the water softening tank using the head pressure of the reclaimed water (salt water) stored in the storage tank, the storage tank is maintained by continuously supplying the reclaimed water (salt water). As the amount of reclaimed water (salt water) stored in the water decreases, the water head pressure also decreases. As the water head pressure decreases, generally, the flow rate per unit time of reclaimed water (salt water) flowing toward the water softening treatment tank also decreases. Therefore, in the water softening device (water softening device) disclosed in Patent Document 1, the valve is opened as the amount of reclaimed water (salt water) stored in the storage tank decreases. As a result, even if a long time has passed since the regeneration process was started and only a small amount of reclaimed water (salt water) is stored in the storage tank, the reclaimed water is not reconstituted in the water softening tank without greatly reducing the flow rate. (Salt water) can be supplied. That is, reclaimed water (salt water) can be supplied to the water softening tank at a constant flow rate regardless of the length of time that has elapsed since the start of the regeneration treatment.

このように、再生処理を実施する際には、軟水化処理槽へ供給する再生水(塩水)の単位時間当たりの流量が一定であることが好ましい。すなわち、軟水化処理槽へ供給する再生水(塩水)の流量が一定であれば、陽イオン交換樹脂の再生処理をより安定的に効率よく実施できるので好ましい。   Thus, when implementing a regeneration process, it is preferable that the flow volume per unit time of the regeneration water (salt water) supplied to a water-softening processing tank is constant. That is, it is preferable that the flow rate of the reclaimed water (salt water) supplied to the water softening tank is constant because the regenerating treatment of the cation exchange resin can be carried out more stably and efficiently.

特開2010−247098号公報JP 2010-247098 A

ところで、軟水化装置を運用する際、再生処理時に再生水が流れる配管では、水の中の不純物が配管の内周面で固まることにより、実質的な配管の口径が小さくなってしまうことが考えられる。このように、実質的な配管の口径が小さくなってしまうと、再生処理時の再生水の流量に影響を与えてしまうこととなる。
また、再生水が流れる配管内に空気が混入してしまい、再生処理時の再生水の流量に影響を与えてしまうことも考えられる。
By the way, when the water softening device is operated, in the pipe through which the reclaimed water flows during the regeneration process, it is considered that impurities in the water solidify on the inner peripheral surface of the pipe, so that the diameter of the substantial pipe becomes small. . Thus, if the diameter of a substantial pipe is reduced, the flow rate of reclaimed water during the regeneration process will be affected.
In addition, it is conceivable that air is mixed into the pipe through which the reclaimed water flows, which affects the flow rate of the reclaimed water during the regeneration process.

すなわち、再生処理時における再生水の流量は、貯留タンクに貯留された再生水の水頭圧(再生水を押し出す力)の変化だけでなく、再生水が流れる配管の状態の変化によっても影響を受けることとなる。そのため、特許文献1に開示された軟水装置のように、貯留タンクの液位低下(再生水を押し出す力の低下)に伴ってバルブが開いていく構成では、再生処理時における再生水の時間当たりの流量を必ずしも一定化できない可能性がある。
また、このような構成では、再生水の水頭圧の変化を検知し、検知した値に応じてバルブの開度を調整している間、再生水の供給動作は継続して実施されることとなる。すなわち、すでに実施している再生水の供給動作と並行して、水頭圧の変化の検知とバルブの開度の調整を行い、水頭圧の変化の値に応じた適切な開度で再生水の供給動作を継続せねばならず、制御が比較的困難となってしまうという問題もある。
That is, the flow rate of the reclaimed water during the regeneration process is affected not only by the change in the head pressure of the reclaimed water stored in the storage tank (the force for pushing out the reclaimed water) but also by the change in the state of the piping through which the reclaimed water flows. Therefore, as in the soft water device disclosed in Patent Document 1, in the configuration in which the valve opens as the liquid level of the storage tank decreases (decrease in the force for pushing out the reclaimed water), the flow rate of regenerated water per hour during the regeneration process May not always be constant.
Moreover, in such a structure, while the change of the head pressure of reclaimed water is detected and the opening degree of the valve is adjusted in accordance with the detected value, the reclaimed water supply operation is continuously performed. In other words, in parallel with the regenerative water supply operation that has already been carried out, the water head pressure change is detected and the valve opening is adjusted, and the regenerative water supply operation is performed at an appropriate opening according to the value of the water head pressure change. There is also a problem that control becomes relatively difficult.

そこで本発明は、軟水化処理槽に供給する再生水の時間当たりの流量をより確実に一定化することにより、再生処理をさらに安定して実施可能な軟水化装置を提供することを課題とする。   Then, this invention makes it a subject to provide the water softening apparatus which can implement | achieve a regeneration process more stably by making constant the flow volume per time of the regeneration water supplied to a water softening processing tank.

上記課題を解決するための請求項1に記載の発明は、軟水化処理剤が内蔵された軟水化処理槽と、前記軟水化処理剤を再生するための再生水を貯留可能な貯留タンクと、前記再生水を前記貯留タンクから前記軟水化処理槽を経由して所定の排水口へと導くことが可能な再生水流通経路と、開度を調整することで前記再生水流通経路を流れる液体の流量を調整可能な流量調整弁とを備え、前記流量調整弁を所定の開度で開いた状態で前記貯留タンクに貯留された前記再生水を前記軟水化処理槽へと供給する動作を実施し、当該動作中に前記貯留タンクに所定量の再生水が貯留された状態から前記貯留タンク内の液位が所定の液位となるまでに要する時間である排出所要時間を取得する計時処理を実施するものであり、前記計時処理により取得した前記排出所要時間と予め定められた基準時間とを比較し、比較結果に応じて前記流量調整弁の開度を補正することを特徴とする軟水化装置である。   The invention according to claim 1 for solving the above-described problems includes a water softening tank in which a water softening agent is incorporated, a storage tank capable of storing reclaimed water for regenerating the water softening agent, The reclaimed water distribution path that can guide the reclaimed water from the storage tank to the predetermined drainage port via the water softening treatment tank, and the flow rate of the liquid flowing through the reclaimed water distribution path can be adjusted by adjusting the opening degree. An operation for supplying the reclaimed water stored in the storage tank to the water-softening treatment tank with the flow rate adjustment valve opened at a predetermined opening degree. A time measuring process for obtaining a discharge required time, which is a time required for the liquid level in the storage tank to reach a predetermined liquid level from a state where a predetermined amount of reclaimed water is stored in the storage tank, Acquired by timekeeping It compares the reference time and the predetermined and the discharge duration is a water softening device and correcting the opening of the flow regulating valve in accordance with the comparison result.

本発明の軟水化装置は、流量調整弁を所定の開度で開いた状態で貯留タンクに貯留された再生水を軟水化処理槽へと供給する動作を実施する。そして、この動作において貯留タンクに貯留された再生水の液位が所定の液位となるまでに要する時間である排出所要時間を取得する。さらに、取得した排出所要時間と予め定められた基準時間とを比較し、比較結果に応じて前記流量調整弁の開度を補正している。
このように、所定量の再生水を供給するために必要な時間である排出所要時間を取得し、この排出所要時間と基準時間とを比較する構成によると、望ましい流量で再生水の供給が実施されているか否かの判別が可能となる。すなわち、基準時間に対して排出所要時間が短すぎる場合には、再生水を軟水化処理槽に供給するときの時間当りの流量が大きすぎることが考えられる。また、基準時間に対して排出所要時間が長すぎる場合には、再生水を軟水化処理槽に供給するときの時間当りの流量が小さすぎることが考えられる。
そして、排出所要時間と基準時間の比較の結果に応じて流量調整弁の開度を適宜補正することにより、軟水化処理槽に再生水を供給するときの再生水の時間当たりの流量を望ましい流量で一定化できる。具体的に説明すると、再生水の時間当りの流量が大きすぎる場合には、流量調整弁の開度を狭める補正を実施し、再生水の時間当りの流量を小さくする。また、再生水の時間当りの流量が小さすぎる場合には、流量調整弁の開度を広げる補正を実施し、再生水の時間当りの流量を大きくする。すなわち、本発明の軟水化装置では、実際の再生水の時間当たりの流量に応じて流量調整弁の開度を調整することにより、再生水の時間当たりの流量を適正な流量となるように増減させることができる。このことにより、再生水の時間当たりの流量を望ましい流量で一定化することができる。
The water softening device of the present invention performs an operation of supplying the reclaimed water stored in the storage tank to the water softening tank while the flow rate adjustment valve is opened at a predetermined opening. In this operation, the time required for discharging, which is the time required for the liquid level of the reclaimed water stored in the storage tank to reach a predetermined liquid level, is acquired. Further, the obtained required discharge time is compared with a predetermined reference time, and the opening degree of the flow rate adjusting valve is corrected according to the comparison result.
In this way, according to the configuration in which the required discharge time, which is the time required to supply a predetermined amount of reclaimed water, is obtained and the required discharge time is compared with the reference time, the reclaimed water is supplied at a desired flow rate. It is possible to determine whether or not there is. That is, if the required discharge time is too short with respect to the reference time, it is considered that the flow rate per hour when supplying the reclaimed water to the water softening tank is too large. Moreover, when the discharge required time is too long with respect to the reference time, it is conceivable that the flow rate per hour when supplying the reclaimed water to the water softening treatment tank is too small.
Then, by appropriately correcting the opening of the flow rate adjustment valve according to the result of the comparison between the required discharge time and the reference time, the flow rate per time of reclaimed water when supplying the reclaimed water to the water softening tank is kept constant at a desired flow rate. Can be More specifically, when the flow rate per time of the reclaimed water is too large, correction for narrowing the opening of the flow rate adjusting valve is performed to reduce the flow rate per time of the reclaimed water. When the flow rate per time of reclaimed water is too small, correction for widening the opening of the flow rate adjusting valve is performed to increase the flow rate per time of reclaimed water. That is, in the water softening device of the present invention, by adjusting the opening of the flow rate adjustment valve according to the actual flow rate of reclaimed water per hour, the flow rate per hour of reclaimed water is increased or decreased to an appropriate flow rate. Can do. Thereby, the flow rate per time of reclaimed water can be made constant at a desired flow rate.

また、本発明の軟水化装置では、上記したように、貯留タンクに貯留された再生水の液位が所定の液位となるまでに要する時間である排出所要時間と、予め定められた基準時間とを比較することにより、再生水の供給が望ましい流量で実施されているか否かを判別している。このため、再生水の供給が望ましい流量で実施されているか否かの判別のために新たに流量センサ等を設ける必要がなく、軟水化装置の製造コストを低減することができる。   Further, in the water softening device of the present invention, as described above, the discharge required time that is the time required for the liquid level of the reclaimed water stored in the storage tank to reach a predetermined liquid level, and a predetermined reference time Is compared to determine whether or not the supply of reclaimed water is being carried out at a desired flow rate. For this reason, it is not necessary to newly provide a flow sensor or the like for determining whether or not the supply of reclaimed water is performed at a desired flow rate, and the manufacturing cost of the water softening device can be reduced.

本発明の軟水化装置は、前記貯留タンクに貯留された液体の液位を検出可能な液位検出手段を備え、前記液位検出手段は、高さの異なる液位である第1液位及び第2液位を含む2以上の液位を検知可能であり、前記排出所要時間は、前記貯留タンクに貯留された前記再生水が前記第1液位から前記第2液位に低下するまでに要する時間であることが好ましい(請求項2)。   The water softening device of the present invention includes liquid level detection means capable of detecting the liquid level of the liquid stored in the storage tank, and the liquid level detection means includes a first liquid level and a liquid level having different heights. Two or more liquid levels including the second liquid level can be detected, and the time required for the discharge is required until the regenerated water stored in the storage tank decreases from the first liquid level to the second liquid level. Time is preferred (claim 2).

請求項3に記載の発明は、前記排出所要時間が前記基準時間と比べて所定時間以上長い場合には、前記流量調整弁の開度を増加させる補正を実施するものであり、前記排出所要時間が前記基準時間と比べて所定時間以上短い場合には、前記流量調整弁の開度を低減させる補正を実施するものであって、前記流量調整弁の開度の増加量及び/又は低減量は、前記排出所要時間と前記基準時間の差の大きさに対応して大きくなるように予め設定されていることを特徴とする請求項1又は2に記載の軟水化装置である。   According to a third aspect of the present invention, when the required discharge time is longer than the reference time by a predetermined time or more, a correction for increasing the opening of the flow rate adjusting valve is performed. Is shorter than the reference time by a predetermined time or more, a correction for reducing the opening degree of the flow rate adjustment valve is performed, and an increase amount and / or a reduction amount of the flow rate adjustment valve amount is The water softening device according to claim 1 or 2, wherein the water softening device is preset so as to increase in accordance with a difference between the required discharge time and the reference time.

かかる構成では、流量調整弁の開度の増加量と低減量とは、排出所要時間と基準時間の差の大きさに対応して大きくなるように予め設定されている。このように、予め規定した増加量と低減量により流量調整弁の開度の補正を実施する構成によると、流量調整弁の開度の増加量と低減量を適宜算出する構成に比べて、いち早く流量調整弁の開度の補正を実施できる。また、予め実施した実験等に基づいて規定した適正な増加量と低減量によって流量調整弁の開度の補正を実施することにより、再生水の流量の調整をより高い精度で実施することができる。   In such a configuration, the increase amount and the decrease amount of the opening of the flow rate adjusting valve are set in advance so as to increase in accordance with the magnitude of the difference between the required discharge time and the reference time. As described above, according to the configuration in which the opening degree of the flow rate adjustment valve is corrected by the predetermined increase amount and reduction amount, it is faster than the configuration in which the increase amount and the reduction amount of the flow rate adjustment valve are appropriately calculated. The opening degree of the flow regulating valve can be corrected. Moreover, the flow rate of the reclaimed water can be adjusted with higher accuracy by correcting the opening degree of the flow rate adjustment valve with an appropriate increase amount and reduction amount defined based on experiments or the like performed in advance.

請求項4に記載の発明は、前記再生水を前記軟水化処理槽へ供給して前記軟水化処理剤を再生する再生処理を実施するものであり、少なくとも前記再生処理を含む一連の動作を実施する間に、前記計時処理と前記流量調整弁の開度の補正とを複数回実施することを特徴とする請求項1乃至3のいずれかに記載の軟水化装置である。   Invention of Claim 4 implements the regeneration process which supplies the said reclaimed water to the said water-softening processing tank, and reproduces | regenerates the said water softening agent, and implements a series of operation | movement including the said regeneration process at least. The water softening device according to any one of claims 1 to 3, wherein the timing process and the correction of the opening degree of the flow rate adjusting valve are performed a plurality of times in the meantime.

かかる構成では、少なくとも再生処理を含む一連の動作を実施する間に、計時処理と流量調整弁の開度の補正とを複数回実施する。このことにより、より確実に再生水の時間当たりの流量を望ましい流量で一定化することができる。   In such a configuration, the time measuring process and the correction of the opening degree of the flow rate adjusting valve are performed a plurality of times during a series of operations including at least the regeneration process. This makes it possible to make the flow rate of reclaimed water per hour constant at a desired flow rate more reliably.

本発明では、流量調整弁の開度を補正することにより、再生水の時間当たりの流量を適正な流量となるように増減させることができる。このことにより、再生水の時間当たりの流量を望ましい流量で一定化することができる。   In the present invention, by correcting the opening of the flow rate adjustment valve, the flow rate per time of reclaimed water can be increased or decreased so as to be an appropriate flow rate. Thereby, the flow rate per time of reclaimed water can be made constant at a desired flow rate.

本発明の実施形態にかかる軟水化装置を示す作動原理図である。It is an operation principle figure showing a water softening device concerning an embodiment of the present invention. 図1の軟水化装置において、軟水化処理を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。In the water softening apparatus of FIG. 1, it is an operation | movement principle figure which shows the flow of the water at the time of implementing a water softening process, and the piping path | route through which water flows is shown in black. 図1の軟水化装置において、ストレーナの洗浄工程を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。In the water softening apparatus of FIG. 1, it is an operation | movement principle figure which shows the flow of the water at the time of implementing the washing | cleaning process of a strainer, and the piping path | route through which water flows is shown in black. 図1の軟水化装置において、軟水器の逆洗浄工程を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。In the water softening apparatus of FIG. 1, it is an operation principle figure which shows the flow of the water at the time of implementing the back washing process of a water softener, and the piping path | route through which water flows is shown in black. 図1の軟水化装置において、弁に対する漏れの確認工程を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。In the water softening apparatus of FIG. 1, it is an operation principle figure which shows the flow of the water at the time of implementing the leak confirmation process with respect to a valve, and the piping path | route through which water flows is shown in black. 図1の軟水化装置において、空気抜き工程を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。In the water softening apparatus of FIG. 1, it is an operation | movement principle figure which shows the flow of the water at the time of implementing an air venting process, and the piping path | route through which water flows is shown in black. 図6に続いて、空気抜き工程を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。FIG. 7 is an operation principle diagram illustrating the flow of water when the air venting process is performed following FIG. 6, and a piping path through which water flows is illustrated in black. 図1の軟水化装置において、再生水供給工程を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。In the water softening apparatus of FIG. 1, it is an operation | movement principle figure which shows the flow of the water at the time of implementing a reclaimed water supply process, and the piping path | route through which water flows is shown in black. 図8に続いて、再生水供給工程を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。FIG. 9 is an operation principle diagram illustrating the flow of water when the reclaimed water supply process is performed, and shows a piping path through which water flows in black. 図1の軟水化装置において、再生水押し出し洗浄工程を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。In the water softening apparatus of FIG. 1, it is an operation principle figure which shows the flow of the water at the time of implementing a reproduction | regeneration water extrusion washing | cleaning process, and the piping path | route through which water flows is shown in black. 図1の軟水化装置において、第1追加洗浄工程を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。In the water softening apparatus of FIG. 1, it is an operation | movement principle figure which shows the flow of the water at the time of implementing a 1st additional washing | cleaning process, and the piping path | route through which water flows is shown in black. 図1の軟水化装置において、第2追加洗浄工程を実施する際の水の流れを示す作動原理図であり、水が流れる配管経路を黒塗りで示す。In the water softening apparatus of FIG. 1, it is an operation principle figure which shows the flow of the water at the time of implementing a 2nd additional washing | cleaning process, and the piping path | route through which water flows is shown in black. 図1の軟水化装置が実施する開度補正処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the opening degree correction | amendment process which the water softening apparatus of FIG. 1 implements. 図1の軟水化装置の再生水流通経路を模式的に示す説明図である。It is explanatory drawing which shows typically the recycled water distribution route of the water softening apparatus of FIG. 図1とは異なる実施形態の貯留タンクを示す模式図である。It is a schematic diagram which shows the storage tank of embodiment different from FIG.

以下、本発明の実施形態にかかる軟水化装置1について図面を参照しつつ詳細に説明するが、本発明はこれらの例に限定されるものではない。   Hereinafter, although the water softening apparatus 1 concerning embodiment of this invention is demonstrated in detail, referring drawings, this invention is not limited to these examples.

軟水化装置1は、上水道や井戸等の図示しない給水源から供給された水を軟水化し、軟水化された水を外部に供給するための装置である。   The water softening device 1 is a device for softening water supplied from a water supply source (not shown) such as a water supply or a well and supplying the softened water to the outside.

軟水化装置1は、図1で示されるように、供給された水の硬度を低下させて軟水化するための軟水器2(軟水化処理槽)と、外部から供給された水を一次的に貯留可能な貯留タンク3とを有しており、これらが各種配管で接続されて形成されている。すなわち、本実施形態の軟水化装置1は、大別して、入出水系統5と、再生用水供給系統6と、再生系統7からなる各種配管系統を備えている。   As shown in FIG. 1, the water softening device 1 primarily uses a water softener 2 (water softening treatment tank) for reducing the hardness of supplied water and softening water, and water supplied from the outside. It has a storage tank 3 that can be stored, and these are connected by various pipes. That is, the water softening device 1 of the present embodiment is roughly divided and includes various piping systems including an incoming / outgoing water system 5, a regeneration water supply system 6, and a regeneration system 7.

また、本実施形態の軟水化装置1は、制御装置10を備えており、この制御装置10は軟水化装置1の各部に設けた各種センサからの信号を受信可能となっている。
この制御装置10は、演算手段としてのCPUと、記憶手段としての不揮発性のメモリを備えており、各センサ等により検知された情報、並びに、各センサ等が検知した情報に基づいて演算手段が算出した情報を記憶可能となっている。そして、この制御装置10が軟水化装置1の各部に動作指令を送信することにより、軟水化装置1が各種運転を実施可能な構成となっている。
Moreover, the water softening device 1 of this embodiment is provided with the control apparatus 10, and this control apparatus 10 can receive the signal from the various sensors provided in each part of the water softening device 1.
The control device 10 includes a CPU as a calculation means and a non-volatile memory as a storage means, and the calculation means is based on information detected by each sensor and the information detected by each sensor. The calculated information can be stored. And when this control apparatus 10 transmits an operation command to each part of the water softening device 1, the water softening device 1 becomes a structure which can implement various driving | operations.

軟水器2は、水が含むカルシウムイオンやマグネシウムイオンなどを吸着する陽イオン交換樹脂(軟水化処理剤)を充填したカラムを備えている。そして、この軟水器2では、入水口から上部フィルタ15を介して内部空間に水を導入することにより、内部空間の広域に亘って上方から水を供給可能となっている。つまり、水を上方から供給し、軟水器2の内部に収容及び堆積された陽イオン交換樹脂の層を通過させることで、水の硬度を低下させることが可能となっている。そして、硬度の低下した被処理水(軟水)を下部フィルタ16を介して外部へと流出させることにより、軟水の供給を実施している。   The water softener 2 includes a column filled with a cation exchange resin (softening agent) that adsorbs calcium ions, magnesium ions, and the like contained in water. And in this water softener 2, water can be supplied from upper direction over the wide area of internal space by introduce | transducing water into internal space through the upper filter 15 from a water inlet. That is, the hardness of water can be reduced by supplying water from above and passing through a layer of cation exchange resin accommodated and deposited in the water softener 2. Then, the water to be treated (soft water) having reduced hardness is supplied to the outside through the lower filter 16 to supply soft water.

貯留タンク3は、外部から供給された水を一次的に貯留することにより、陽イオン交換樹脂を再生するための再生水たる塩水を製造することが可能な構造となっている。具体的には、貯留タンク3は、外部から供給された水を貯留するための貯留部19と、再生剤たる塩の塊を配するための再生剤配置部20とを備えている。   The storage tank 3 has a structure capable of producing salt water as reclaimed water for regenerating the cation exchange resin by temporarily storing water supplied from the outside. Specifically, the storage tank 3 includes a storage unit 19 for storing water supplied from the outside, and a regenerant placement unit 20 for arranging a lump of salt as a regenerant.

貯留部19は、樹脂等の適宜な材料で形成された箱体であり、上端側に位置する注水口23と、下端側に位置する排出口24と、注水口23よりやや下方側に位置する溢水排出口25とを備えている。
このことにより、貯留部19は、上側に位置する注水口23を介して内部空間に水を注水することが可能となっている。また、貯留部19は、下側に位置する排出口24を介して、内部空間で生成された塩水等の液体を外部に吐出することが可能となっている。さらに、貯留部19は、何らかの理由により内部の液位が不意に上昇してしまった場合、溢水排出口25を介して内部の液体を外部に排出可能な構成となっている。別言すると、注水口23より下方に位置する溢水排出口25から過剰に貯留された液体を外部に排出することにより、貯留部19の内部の液体が注水口23より上流側に逆流しない構造となっている。
The storage unit 19 is a box formed of an appropriate material such as resin, and is positioned slightly below the water injection port 23 located on the upper end side, the discharge port 24 located on the lower end side, and the water injection port 23. And an overflow outlet 25.
Accordingly, the storage unit 19 can inject water into the internal space through the water injection port 23 located on the upper side. Moreover, the storage part 19 can discharge the liquids, such as salt water produced | generated in internal space, outside via the discharge port 24 located below. Furthermore, the storage unit 19 is configured to be able to discharge the internal liquid to the outside via the overflow discharge port 25 when the internal liquid level has risen unexpectedly for some reason. In other words, by discharging the excessively stored liquid from the overflow outlet 25 located below the water inlet 23 to the outside, the liquid inside the storage portion 19 does not flow backward upstream from the water inlet 23. It has become.

また、貯留部19には、複数の電極28(液位検出手段)が取り付けられており、内部に貯留された液体の液位を検出可能となっている。   In addition, a plurality of electrodes 28 (liquid level detection means) are attached to the storage unit 19 so that the liquid level of the liquid stored therein can be detected.

すなわち、貯留部19に4つの棒状の電極28が取り付けられており、4つの電極28は、それぞれ取付け位置が異なっている。そのうちの2つであるグランド電極28aと低液位検知電極28bとは、貯留部19の下方側の側面に取り付けられており、横倒しされた状態で延びている。対して、他の2つである中液位検知電極28cと高液位検知電極28dとは、貯留部19の上端側となる天面に取り付けられており、直立した状態で延びている。   That is, four rod-shaped electrodes 28 are attached to the storage portion 19, and the attachment positions of the four electrodes 28 are different. Two of them, the ground electrode 28a and the low liquid level detection electrode 28b, are attached to the lower side surface of the reservoir 19 and extend in a laid-down state. On the other hand, the other two medium liquid level detection electrode 28c and high liquid level detection electrode 28d are attached to the top surface which is the upper end side of the reservoir 19 and extend in an upright state.

ここで、高液位検知電極28dの下端は、中液位検知電極28cの下端よりも高く、溢水排出口25よりも低い位置となっている。また、低液位検知電極28bとグランド電極28aとは、中液位検知電極28cの下端よりも低い位置に配されている。さらに、グランド電極28aは、4つの電極28のうちで最も下方に位置しており、低液位検知電極28bは、グランド電極28aと略同じ高さに位置している。
なお、作図の都合上、各図面では、グランド電極28aを低液位検知電極28bよりも低い位置に記載している。
Here, the lower end of the high liquid level detection electrode 28 d is higher than the lower end of the medium liquid level detection electrode 28 c and is lower than the overflow discharge port 25. Further, the low liquid level detection electrode 28b and the ground electrode 28a are disposed at a position lower than the lower end of the middle liquid level detection electrode 28c. Further, the ground electrode 28a is located at the lowest position among the four electrodes 28, and the low liquid level detection electrode 28b is located at substantially the same height as the ground electrode 28a.
For convenience of drawing, in each drawing, the ground electrode 28a is shown at a position lower than the low liquid level detection electrode 28b.

そして、グランド電極28aと他の電極28(低液位検知電極28b、中液位検知電極28c、高液位検知電極28d)が貯留部19に貯留された液体を介して通電することにより、貯留部19に貯留された液体の液位を検知可能となっている。
すなわち、貯留部19の内部に貯留された液体の液位が上昇していくと、グランド電極28aと低液位検知電極28bとが液体に浸った状態となる。すると、グランド電極28aと低液位検知電極28bとがドレン等の液体を介して通電する。そして、グランド電極28aと低液位検知電極28bとが通電された状態となったことを検知することにより、貯留部19の内部の液位が低液位検知電極28bの高さに至ったことを検知する。
Then, the ground electrode 28a and the other electrodes 28 (low liquid level detection electrode 28b, middle liquid level detection electrode 28c, high liquid level detection electrode 28d) are energized through the liquid stored in the storage unit 19, thereby storing the liquid. The liquid level of the liquid stored in the part 19 can be detected.
That is, as the liquid level of the liquid stored in the storage unit 19 rises, the ground electrode 28a and the low liquid level detection electrode 28b are immersed in the liquid. Then, the ground electrode 28a and the low liquid level detection electrode 28b are energized through a liquid such as drain. Then, by detecting that the ground electrode 28a and the low liquid level detection electrode 28b are energized, the liquid level inside the reservoir 19 has reached the height of the low liquid level detection electrode 28b. Is detected.

同様に、貯留部19の内部に貯留された液体の液位がさらに上昇していくと、中液位検知電極28cが液体に浸った状態となる。また、その状態から貯留部19の内部に貯留された液体の液位がさらに上昇していくと、高液位検知電極28dが液体に浸った状態となる。そして、グランド電極28aとこれらの電極28(中液位検知電極28c、高液位検知電極28d)が液体を介して通電した状態となり、貯留部19の内部の液位がこれらの電極28(中液位検知電極28c、高液位検知電極28d)の下端に至ったことを検知する。   Similarly, when the liquid level of the liquid stored in the storage part 19 further rises, the intermediate liquid level detection electrode 28c is immersed in the liquid. Further, when the liquid level of the liquid stored in the storage unit 19 further rises from that state, the high liquid level detection electrode 28d is immersed in the liquid. Then, the ground electrode 28a and these electrodes 28 (medium liquid level detection electrode 28c, high liquid level detection electrode 28d) are energized through the liquid, and the liquid level inside the reservoir 19 is set to these electrodes 28 (medium It is detected that the lower end of the liquid level detection electrode 28c and the high liquid level detection electrode 28d) has been reached.

つまり、グランド電極28aと通電した電極28(低液位検知電極28b、中液位検知電極28c、高液位検知電極28d)を特定することで、貯留部19の液位を検知する。
具体的には、貯留部19に貯留された液体の液位が高液位検知電極28dの下端の高さ(以下第1液位とも称す)以上である状態と、中液位検知電極28c下端の高さ(以下第2液位とも称す)以上である状態と、貯留部19に貯留された液体の液位が低液位検知電極28b下端の高さ(以下第3液位とも称す)以上である状態とをそれぞれ別途検知可能となっている。
That is, the liquid level in the reservoir 19 is detected by specifying the electrode 28 (the low liquid level detection electrode 28b, the middle liquid level detection electrode 28c, and the high liquid level detection electrode 28d) that is energized with the ground electrode 28a.
Specifically, the liquid level stored in the storage unit 19 is equal to or higher than the lower end height of the high liquid level detection electrode 28d (hereinafter also referred to as the first liquid level), and the lower end of the intermediate liquid level detection electrode 28c. And the liquid level stored in the reservoir 19 is equal to or higher than the height of the lower end of the low liquid level detection electrode 28b (hereinafter also referred to as the third liquid level). Each state can be separately detected.

ところで、貯留部19と再生剤配置部20の境界となる連結部30は、中液位検知電極28cの下端より高い位置にあり、高液位検知電極28dの下端よりも低い位置にある。そして、連結部30にはフィルタが設けられており、貯留部19と再生剤配置部20とはフィルタを介して連通している。このフィルタは、水等の液体を通過させることが可能であるので、貯留部19側から再生剤配置部20へは液体が流入可能となっている。同様に、再生剤配置部20側から貯留部19へも液体が流入可能となっている。
なお、再生剤たる粒状の塩の塊は、再生剤配置部20から貯留部19側に入り込まない構成となっている。
By the way, the connection part 30 used as the boundary of the storage part 19 and the regeneration agent arrangement | positioning part 20 exists in a position higher than the lower end of the middle liquid level detection electrode 28c, and is in a position lower than the lower end of the high liquid level detection electrode 28d. And the connection part 30 is provided with the filter, and the storage part 19 and the regeneration agent arrangement | positioning part 20 are connected via the filter. Since this filter can pass liquids such as water, the liquid can flow into the regenerant placement unit 20 from the storage unit 19 side. Similarly, liquid can flow into the storage unit 19 from the regenerant placement unit 20 side.
The granular salt lump as the regenerant is configured not to enter the storage unit 19 side from the regenerant placement unit 20.

このことから、貯留部19の中液位検知電極28cの下端まで水を貯留した場合、水が再生剤配置部20に入り込まない構成となっている。すなわち、貯留部19の液位が中液位検知電極28cの下端と略同じ高さとなるように水を貯留したのでは、再生剤配置部20に配された再生剤が水に溶解しないこととなる。別言すると、貯留部19の液位を連結部30よりも低い位置とすることにより、貯留部19に再生剤が溶解していない水を貯留することができる。   From this, when water is stored up to the lower end of the middle liquid level detection electrode 28c of the storage unit 19, the water does not enter the regenerant arrangement unit 20. That is, when water is stored so that the liquid level in the storage unit 19 is substantially the same height as the lower end of the middle liquid level detection electrode 28c, the regenerant disposed in the regenerant disposition unit 20 does not dissolve in water. Become. In other words, the water in which the regenerant is not dissolved can be stored in the storage unit 19 by setting the liquid level of the storage unit 19 to a position lower than the connecting unit 30.

対して、貯留部19の高液位検知電極28dの下端(連結部30よりも高い位置)に至るまで水を貯留すると、水が再生剤配置部20へと入り込み、再生剤配置部20の再生剤が水に溶け出すこととなる。すなわち、貯留部19の高液位検知電極28dの下端まで水を貯留することにより、再生剤が溶解した水である再生水を生成すること、並びに、再生水を貯留することが可能となる。   On the other hand, when water is stored up to the lower end of the high liquid level detection electrode 28d of the storage unit 19 (a position higher than the connecting unit 30), the water enters the regenerant placement unit 20 and the regeneration agent placement unit 20 is regenerated. The agent will dissolve in the water. That is, by storing water up to the lower end of the high liquid level detection electrode 28d of the storage unit 19, it is possible to generate regenerated water that is water in which the regenerant is dissolved and to store regenerated water.

次に、軟水化装置1の各配管系統について詳細に説明する。   Next, each piping system of the water softening device 1 will be described in detail.

入出水系統5は、主に図示しない外部の給水源から軟水器2に水を供給し、軟水器2で軟水化された水を外部へ供給するための配管である。この入出水系統5は、入水管32と、出水管33と、バイパス管34と、逆洗浄排水管35とを有している。   The incoming / outgoing water system 5 is a pipe for supplying water to the water softener 2 mainly from an external water supply source (not shown) and supplying the water softened by the water softener 2 to the outside. The incoming / outgoing water system 5 includes an incoming water pipe 32, an outgoing water pipe 33, a bypass pipe 34, and a reverse cleaning drain pipe 35.

入水管32は、主に図示しない給水源から供給される水を軟水器2に供給するための配管である。   The water intake pipe 32 is a pipe for mainly supplying water supplied from a water supply source (not shown) to the water softener 2.

出水管33は、主に軟水器2で軟水化された水を外部へと供給するための配管である。   The water discharge pipe 33 is a pipe for supplying water softened mainly by the water softener 2 to the outside.

バイパス管34は、入水管32と出水管33と結んで軟水器2をバイパスする配管である。   The bypass pipe 34 is a pipe that connects the water inlet pipe 32 and the water outlet pipe 33 to bypass the water softener 2.

逆洗浄排水管35は、軟水化装置1の再生運転の際に発生する排水などを外部に排出する際に使用される配管であり、入水管32の中途部分から分岐して後述する排水管51に接続されている。   The reverse cleaning drain pipe 35 is a pipe used when discharging the drainage generated during the regeneration operation of the water softening device 1 to the outside. The drain pipe 51 is branched from a midway portion of the water inlet pipe 32 to be described later. It is connected to the.

なお、入水管32の中途部分でありバイパス管34との接続部分よりも軟水器2よりの部分には、入水弁38が設けられている。
また、出水管33の中途部分でありバイパス管34との接続部分よりも軟水器2よりの部分には、出水弁39が設けられている。
さらに、バイパス管34の中途部分にはバイパス弁40が設けられている。
そして、逆洗浄排水管35の中途部分には、逆洗浄排水弁41(流量調整弁)が設けられている。
In addition, a water inlet valve 38 is provided in the middle portion of the water inlet pipe 32 and in a portion from the water softener 2 rather than a portion connected to the bypass pipe 34.
Further, a water discharge valve 39 is provided in the middle portion of the water discharge pipe 33 and in a portion from the water softener 2 rather than a connection portion with the bypass pipe 34.
Further, a bypass valve 40 is provided in the middle of the bypass pipe 34.
A reverse cleaning drain valve 41 (flow rate adjusting valve) is provided in the middle of the reverse cleaning drain pipe 35.

これら入水弁38、出水弁39、バイパス弁40、逆洗浄排水弁41のそれぞれは開状態と閉状態とを切替え可能となっている。より具体的には、入水弁38、出水弁39、バイパス弁40は電磁弁であり、逆洗浄排水弁41は電動弁となっている。そして、入水弁38、出水弁39、バイパス弁40は、制御装置10と信号を送受信することにより、開状態と閉状態とを切替えることが可能となっている。また、逆洗浄排水弁41は、制御装置10と信号を送受信することにより、開度を調整可能となっている。
これら各弁の開状態と閉状態とを切替えたり、逆洗浄排水弁41の開度を調整することにより、入水管32、出水管33、バイパス管34、逆洗浄排水管35の内部を流れる液体の流れを制御することが可能となっている。
Each of the water inlet valve 38, the water outlet valve 39, the bypass valve 40, and the backwash drain valve 41 can be switched between an open state and a closed state. More specifically, the water inlet valve 38, the water outlet valve 39, and the bypass valve 40 are electromagnetic valves, and the backwash drain valve 41 is an electric valve. The water inlet valve 38, the water outlet valve 39, and the bypass valve 40 can be switched between an open state and a closed state by transmitting and receiving signals to and from the control device 10. Moreover, the back washing | cleaning drain valve 41 can adjust an opening degree by transmitting / receiving a signal with the control apparatus 10. FIG.
The liquid flowing through the water inlet pipe 32, the water outlet pipe 33, the bypass pipe 34, and the reverse cleaning drain pipe 35 by switching between the open state and the closed state of these valves and adjusting the opening degree of the reverse cleaning drain valve 41. It is possible to control the flow.

再生用水供給系統6は、図示しない外部の給水源から貯留タンク3に水を供給するための配管である。この再生用水供給系統6は、補水管45を有している。   The regeneration water supply system 6 is a pipe for supplying water to the storage tank 3 from an external water supply source (not shown). The regeneration water supply system 6 has a supplementary water pipe 45.

補水管45は、入水管32の中途部分であってバイパス管34との接続部分よりも上流側から分岐して延びる配管であり、貯留タンク3の注水口23まで延びている。   The water refilling pipe 45 is a pipe that extends from the upstream side of the connection part with the bypass pipe 34 in the middle of the water inlet pipe 32, and extends to the water inlet 23 of the storage tank 3.

また、補水管45の中途部分には、補水電磁弁46が設けられている。そして、補水電磁弁46の開状態と閉状態とを切替えることにより、補水管45の内部を流れる液体の流れを制御することが可能となっている。   In addition, a water supplement electromagnetic valve 46 is provided in the middle of the water supplement pipe 45. Then, by switching between the open state and the closed state of the water supplement electromagnetic valve 46, it is possible to control the flow of the liquid flowing through the water supplement pipe 45.

再生系統7は、貯留タンク3に貯留された再生水又は洗浄用水を軟水器2に供給するための配管である(再生水の供給動作と配管の洗浄動作については後で詳細に説明する)。
この再生系統7は、再生水供給配管49と、軟水器側配管50と、排水管51とを有している。
The regeneration system 7 is a pipe for supplying the reclaimed water or cleaning water stored in the storage tank 3 to the water softener 2 (the regenerative water supply operation and the pipe cleaning operation will be described in detail later).
The regeneration system 7 includes a regeneration water supply pipe 49, a water softener side pipe 50, and a drain pipe 51.

再生水供給配管49は、貯留タンク3の排出口24から延びる配管であり、下流側で軟水器側配管50と排水管51とに分岐している。
この再生水供給配管49の中途部分であり、軟水器側配管50と排水管51とに分岐する分岐点よりも貯留タンク3よりの位置には、塩水弁52が設けられている。より具体的には、この塩水弁52は電磁弁であり、制御装置10と信号を送受信することにより、塩水弁52の開状態と閉状態とを切替えることが可能となっている。そして、塩水弁52の開状態と閉状態とを切替えることにより、再生水供給配管49の内部を流れる液体の流れを制御することが可能となっている。
The reclaimed water supply pipe 49 is a pipe extending from the discharge port 24 of the storage tank 3, and is branched into a water softener side pipe 50 and a drain pipe 51 on the downstream side.
A salt water valve 52 is provided in the middle of the reclaimed water supply pipe 49 and at a position closer to the storage tank 3 than a branch point where the water softener side pipe 50 and the drain pipe 51 branch. More specifically, the salt water valve 52 is an electromagnetic valve, and can switch between the open state and the closed state of the salt water valve 52 by transmitting and receiving signals to and from the control device 10. Then, by switching between the open state and the closed state of the salt water valve 52, it is possible to control the flow of the liquid flowing inside the reclaimed water supply pipe 49.

軟水器側配管50は、ストレーナ53を介して出水管33と連続する配管である。ここで、このストレーナ53には、軟水器2の出水口から延びる配管もまた接続されている。すなわち、本実施形態の軟水化装置1では、軟水器側配管50と、出水管33と、軟水器2の出水口から延びる配管とが間にストレーナ53を介在させた状態で連続している。
なお、ストレーナ53は、公知のそれと同様のものであり、内部を流れる液体の固形成分を取り除くための器具である。
The water softener side pipe 50 is a pipe continuous with the water discharge pipe 33 through the strainer 53. Here, a pipe extending from the water outlet of the water softener 2 is also connected to the strainer 53. That is, in the water softening device 1 of the present embodiment, the water softener side pipe 50, the water discharge pipe 33, and the pipe extending from the water outlet of the water softener 2 are continuous with the strainer 53 interposed therebetween.
The strainer 53 is similar to a known one, and is a device for removing a solid component of the liquid flowing inside.

排水管51は、再生水供給配管49と、再生水や洗浄用水等の不用水を軟水化装置1の外部へと排出するための排水口54とを接続する配管である。すなわち、排水管51は、再生水供給配管49と排水口54の間で延びる配管である。この排水管51の中途部分には、順洗浄排水弁55が設けられている。詳細には、この順洗浄排水弁55は電磁弁であり、制御装置10と信号を送受信することにより開状態と閉状態とを切替え可能となっている。そして、順洗浄排水弁55の開状態と閉状態とを切替えることにより、排水管51の内部を流れる液体の流れを制御することが可能となっている。   The drain pipe 51 is a pipe connecting the reclaimed water supply pipe 49 and a drain outlet 54 for discharging waste water such as reclaimed water and washing water to the outside of the water softening device 1. That is, the drain pipe 51 is a pipe extending between the recycled water supply pipe 49 and the drain port 54. A forward cleaning drain valve 55 is provided in the middle of the drain pipe 51. Specifically, the forward cleaning drain valve 55 is an electromagnetic valve, and can be switched between an open state and a closed state by transmitting and receiving signals to and from the control device 10. And the flow of the liquid which flows through the inside of the drain pipe 51 can be controlled by switching the open state and the closed state of the forward washing drain valve 55.

次に、本実施形態の軟水化装置1が実施可能な各種動作について詳細に説明する。   Next, various operations that can be performed by the water softening device 1 of the present embodiment will be described in detail.

[軟水化処理]
本実施形態の軟水化装置1は、外部から供給された水の硬度を低下させて軟水化し、軟水化した水を外部へと供給する軟水化処理を行うものである。この軟水化処理では、図2で示されるように、図示しない給水源から供給された水が入水管32を流れ、軟水器2に流入される。軟水器2に流入した水は、軟水器2の内部に収容及び堆積された陽イオン交換樹脂の層を通過して軟水化され、下部フィルタ16、ストレーナ53をそれぞれ通過して出水管33へと流入する。そして、軟水化された水が出水管33を通過し、出水口から供給される。
[Soft water treatment]
The water softening device 1 of the present embodiment performs a water softening process by reducing the hardness of water supplied from the outside to soften the water and supplying the softened water to the outside. In this water softening treatment, as shown in FIG. 2, water supplied from a water supply source (not shown) flows through the water intake pipe 32 and flows into the water softener 2. The water flowing into the water softener 2 passes through the cation exchange resin layer housed and deposited in the water softener 2 and is softened, and passes through the lower filter 16 and the strainer 53 to the drain pipe 33, respectively. Inflow. The softened water passes through the water discharge pipe 33 and is supplied from the water outlet.

[再生処理のための予備処理]
軟水化装置1で軟水化処理を実施し続けると、軟水器2に内蔵された陽イオン交換樹脂の軟水化能力が徐々に低下し、最終的には軟水化ができなくなる。そこで、本実施形態の軟水化装置1では、陽イオン交換樹脂の軟水化能力を回復させるための再生処理(詳しくは後述する)を実施可能となっている。ここで、本実施形態の軟水化装置1では、この再生処理に先立って予備処理を実施している。具体的には、ストレーナ53の洗浄工程、軟水器2の逆洗浄工程、弁に対する漏れの確認工程、空気抜き工程を順次実施している。
[Preliminary processing for playback processing]
If the water softening process is continued in the water softening device 1, the water softening ability of the cation exchange resin built in the water softener 2 gradually decreases, and finally water softening cannot be performed. Therefore, in the water softening device 1 of the present embodiment, a regeneration process (details will be described later) for recovering the water softening ability of the cation exchange resin can be performed. Here, in the water softening apparatus 1 of this embodiment, the preliminary process is implemented prior to this regeneration process. Specifically, the washing process of the strainer 53, the back washing process of the water softener 2, the step of confirming leakage of the valve, and the air venting process are sequentially performed.

[ストレーナの洗浄工程]
ストレーナ53の洗浄処理では、図3で示されるように、入水管32の上流側部分、バイパス管34、出水管33の一部を介してストレーナ53へ水を流す。そして、ストレーナ53を通過させた水を軟水器側配管50、排水管51を介して排水口54へと到達させる。このとき、水がストレーナ53を通過する方向は、軟水化処理時とは逆方向となっている。そして、ストレーナ53を通過した水が軟水器2内を通過しないようになっている。これらのことから、ストレーナ53に捕集されていた固形成分は、軟水器2内へと流入することなく排水口54へと到達する。
[Strainer cleaning process]
In the cleaning process of the strainer 53, as shown in FIG. 3, water is allowed to flow to the strainer 53 through a part of the upstream side of the water inlet pipe 32, the bypass pipe 34, and the water outlet pipe 33. Then, the water that has passed through the strainer 53 is allowed to reach the drain outlet 54 via the water softener side pipe 50 and the drain pipe 51. At this time, the direction in which the water passes through the strainer 53 is opposite to that during the water softening treatment. And the water which passed through the strainer 53 does not pass through the water softener 2. From these things, the solid component collected by the strainer 53 reaches the drain outlet 54 without flowing into the water softener 2.

[軟水器の逆洗浄工程]
軟水器2の逆洗浄処理では、図4で示されるように、入水管32の上流側部分、バイパス管34、出水管33の一部を介して軟水器2へ水を流す。すなわち、軟水化処理時においては排水口となる部分から軟水器2の内部へと水を流す。そして、軟水器2の内部で水を逆流させ、軟水化処理時において注水口となる部分から入水管32へと水を流し、入水管32の一部、逆洗浄排水管35を介して排水口54へ水を到達させる。このように、軟水器2の内部において軟水化処理時とは逆方向となるように水を流すことにより、軟水器2の内部の不純物を排水口54から排出する。
[Reverse washing process of water softener]
In the reverse cleaning process of the water softener 2, as shown in FIG. 4, water is caused to flow to the water softener 2 through the upstream side portion of the water inlet pipe 32, the bypass pipe 34, and part of the water outlet pipe 33. That is, at the time of water softening treatment, water is allowed to flow from the portion serving as a drain port into the water softener 2. Then, the water is made to flow backward in the water softener 2 to flow water from the portion serving as the water injection port to the water inlet pipe 32 during the water softening treatment, and through the part of the water inlet pipe 32 and the reverse cleaning drain pipe 35, the water outlet. Allow water to reach 54. In this way, the water inside the water softener 2 is made to flow in the opposite direction to that during the water softening treatment, whereby the impurities inside the water softener 2 are discharged from the drain outlet 54.

[弁に対する漏れの確認工程]
弁に対する漏れの確認処理では、図5で示されるように、例えば、バイパス弁40と、塩水弁52とを開状態とし、その他の弁(入水弁38、出水弁39、逆洗浄排水弁41、補水電磁弁46、順洗浄排水弁55)を閉状態とする。そして、この状態において、図示しない給水源から水を流す。すると、弁が正常に機能して漏れのない状態では、給水源から流した水は軟水器2や貯留タンク3へと流れることはなく、出水口から排出されることとなる。これに対して、入水弁38、出水弁39、補水電磁弁46等に漏れが生じている場合、水は軟水器2を経て又は直接貯留タンク3へと流入する。そして、水が貯留タンク3へと流入し、貯留タンク3の液位が上昇していくと、電極28によって液位の上昇が検知される。より具体的には、貯留タンク3の液位が上昇していき、グランド電極28aと低液位検知電極28bの間で通電が確認されると、入水弁38、出水弁39、補水電磁弁46等の弁に漏れがあったものと判断する。このとき、必要に応じて警告音を鳴らす等の報知動作を実施し、いずれかの弁で漏れが発生していることを報知する。
[Leak check process for valves]
In the confirmation process of leakage to the valve, as shown in FIG. 5, for example, the bypass valve 40 and the salt water valve 52 are opened, and the other valves (water inlet valve 38, water outlet valve 39, backwash drain valve 41, The water replenishing solenoid valve 46 and the forward washing drain valve 55) are closed. In this state, water is supplied from a water supply source (not shown). Then, in a state where the valve functions normally and there is no leakage, the water flowing from the water supply source does not flow to the water softener 2 or the storage tank 3 but is discharged from the water outlet. On the other hand, when a leak occurs in the water inlet valve 38, the water outlet valve 39, the water supplement electromagnetic valve 46, etc., the water flows into the storage tank 3 through the water softener 2 or directly. Then, when water flows into the storage tank 3 and the liquid level in the storage tank 3 rises, an increase in the liquid level is detected by the electrode 28. More specifically, when the liquid level in the storage tank 3 rises and energization is confirmed between the ground electrode 28 a and the low liquid level detection electrode 28 b, the water inlet valve 38, the water outlet valve 39, and the water replenishing electromagnetic valve 46. Judge that there was a leak in the valve. At this time, a notification operation such as sounding a warning sound is performed as necessary to notify that a leak has occurred in any of the valves.

[空気抜き工程]
空気抜き処理は、貯留タンク3から再生水供給配管49までの流路内に残留した空気を排出することにより、再生処理(詳しくは後述する)を効率よく実施するための処理である。具体的には、まず、図6で示されるように、図示しない給水源から入水管32の一部と補水管45を介して貯留タンク3へ水を貯留する。そして、貯留タンク3の液位が前記第2液位以上(中液位検知電極28c下端の高さ以上)となるまで貯留した後、塩水弁52と順洗浄排水弁55とを開状態とし、貯留タンク3の内部に貯留した水を排水口54まで流す(図7参照)。すなわち、貯留タンク3で再生水が生成されない液位まで水を貯留し、貯留した再生剤が溶解していない水を排水口54まで導く処理を実施する。このことにより、貯留タンク3から再生水供給配管49までの流路内に残留した空気が外部に排出されることとなる。
[Air venting process]
The air venting process is a process for efficiently performing the regeneration process (described in detail later) by discharging the air remaining in the flow path from the storage tank 3 to the recycled water supply pipe 49. Specifically, first, as shown in FIG. 6, water is stored in the storage tank 3 from a water supply source (not shown) through a part of the water inlet pipe 32 and the auxiliary water pipe 45. Then, after storing until the liquid level in the storage tank 3 is equal to or higher than the second liquid level (higher than the lower end of the middle liquid level detection electrode 28c), the salt water valve 52 and the forward washing drain valve 55 are opened, The water stored in the storage tank 3 is allowed to flow to the drain outlet 54 (see FIG. 7). That is, the water is stored up to a liquid level where the regenerated water is not generated in the storage tank 3, and the process of guiding the water in which the stored regenerant is not dissolved to the drain port 54 is performed. As a result, the air remaining in the flow path from the storage tank 3 to the reclaimed water supply pipe 49 is discharged to the outside.

[再生処理]
軟水器2に内蔵された陽イオン交換樹脂の軟水化能力を回復する再生処理では、再生水供給工程と、再生水押し出し洗浄工程と、追加洗浄工程を順次実施している。
[Playback processing]
In the regeneration treatment for recovering the water softening ability of the cation exchange resin incorporated in the water softener 2, a regeneration water supply step, a regeneration water extrusion washing step, and an additional washing step are sequentially performed.

[再生水供給工程]
再生水供給工程では、貯留タンク3に水を供給して再生水を生成し、貯留タンク3で生成した再生水を軟水器2に内蔵された陽イオン交換樹脂に供給する。
[Reclaimed water supply process]
In the reclaimed water supply step, water is supplied to the storage tank 3 to generate reclaimed water, and the regenerated water generated in the storage tank 3 is supplied to a cation exchange resin built in the water softener 2.

具体的には、まず、図8で示されるように、図示しない給水源から入水管32の一部と補水管45を介して貯留タンク3へ水を貯留する。そして、貯留タンク3の液位が前記第1液位以上(高液位検知電極28d下端の高さ以上)となった状態で所定時間経過させることにより、再生剤配置部20に配された再生剤を貯留した水に溶解させ、再生水(例えば、濃度が約10パーセントとなる塩水)を生成する。   Specifically, first, as shown in FIG. 8, water is stored in the storage tank 3 from a water supply source (not shown) through a part of the water inlet pipe 32 and the auxiliary water pipe 45. Then, the regeneration tank disposed in the regenerant placement unit 20 is allowed to elapse for a predetermined time in a state where the liquid level of the storage tank 3 is equal to or higher than the first liquid level (higher than the lower end of the high liquid level detection electrode 28d). The agent is dissolved in the stored water to generate reclaimed water (eg, salt water having a concentration of about 10 percent).

そして、再生水を生成した後、塩水弁52を開状態とし、逆洗浄排水弁41を所定の開度で開いた状態にして、貯留タンク3に貯留された再生水の水頭圧を利用して軟水器2へと再生水を流入させる。具体的には、図9で示されるように、貯留タンク3で生成した再生水を再生水供給配管49、軟水器側配管50を介して軟水器2の内部まで至らせ、軟水器2から入水管32の一部、逆洗浄排水管35、排水管51の一部を介して排水口54まで導く。すなわち、再生水供給配管49、軟水器側配管50、軟水器2、入水管32の一部、逆洗浄排水管35、排水管51の一部によって再生水を流すための再生水流通経路を形成し、貯留タンク3の内部に貯留させた再生水を軟水器2を通過させた後に排水口54から外部へと排出している。   Then, after the reclaimed water is generated, the salt water valve 52 is opened, the backwash drain valve 41 is opened at a predetermined opening, and the water softener is utilized using the head pressure of the reclaimed water stored in the storage tank 3. Reclaimed water flows into 2 Specifically, as shown in FIG. 9, the reclaimed water generated in the storage tank 3 is brought to the inside of the water softener 2 through the reclaimed water supply pipe 49 and the water softener side pipe 50, and the water intake pipe 32 is provided from the water softener 2. , A reverse cleaning drain pipe 35, and a part of the drain pipe 51 to the drain outlet 54. That is, a reclaimed water distribution path for flowing reclaimed water is formed by the reclaimed water supply pipe 49, the water softener side pipe 50, the water softener 2, a part of the water inlet pipe 32, the backwash drain pipe 35, and a part of the drain pipe 51. The reclaimed water stored in the tank 3 is discharged from the drain outlet 54 after passing through the water softener 2.

[再生水押し出し洗浄工程]
再生水押し出し洗浄工程では、まず、図示しない給水源から入水管32の一部と補水管45を介して貯留タンク3へ水を貯留する(図6参照)。詳細には、貯留タンク3で再生水が生成されることのない液位(前記第2液位)まで水を貯留する。続いて、図10で示されるように、塩水弁52を開状態とし、逆洗浄排水弁41を所定の開度で開いた状態として、貯留タンク3に貯留された水の水頭圧を利用して軟水器2へ水を流入させる。そして、軟水器2に流入させた水を入水管32の一部、逆洗浄排水管35、排水管51の一部を介して排水口54まで流す。すなわち、再生水供給工程と同一の経路(図9で示される再生水流通経路)に再生剤が溶解していない水を流すことにより、軟水器2の内部に残留した再生水を軟水器2の内部で撹拌させると共に、経路(再生水流通経路)に残留した再生水を排水口54から外部へと排出する。
[Reclaimed water extrusion washing process]
In the reclaimed water extrusion cleaning step, first, water is stored in the storage tank 3 from a water supply source (not shown) through a part of the water inlet pipe 32 and the water refill pipe 45 (see FIG. 6). Specifically, water is stored up to a liquid level (the second liquid level) at which reclaimed water is not generated in the storage tank 3. Subsequently, as shown in FIG. 10, the salt water valve 52 is opened, the backwash drain valve 41 is opened at a predetermined opening, and the water head pressure stored in the storage tank 3 is used. Water is allowed to flow into the water softener 2. Then, the water that has flowed into the water softener 2 is allowed to flow to the drain outlet 54 through a part of the water inlet pipe 32, the backwash drain pipe 35, and a part of the drain pipe 51. That is, the regenerated water remaining inside the water softener 2 is stirred inside the water softener 2 by flowing water in which the regenerant is not dissolved in the same path (recycled water distribution path shown in FIG. 9) as the reclaimed water supply step. At the same time, the reclaimed water remaining in the route (reclaimed water distribution route) is discharged from the drain port 54 to the outside.

[追加洗浄工程]
追加洗浄工程では、軟水器2の内部や配管内等への再生水の残留をより確実に防止するために、再生水押し出し洗浄工程に続いて各部の洗浄を実施する。具体的には、第1追加洗浄工程と、第2追加洗浄工程とをそれぞれ実施することにより、異なる2つの経路に対してそれぞれ水を流して洗浄を行う。
[Additional cleaning process]
In the additional washing step, each part is washed following the reclaimed water extrusion washing step in order to more reliably prevent the reclaimed water from remaining inside the water softener 2 or in the piping. Specifically, by performing the first additional cleaning step and the second additional cleaning step, respectively, water is supplied to the two different paths for cleaning.

第1追加洗浄工程では、図11で示されるように、図示しない入水源から入水管32を介して軟水器2の内部へと水を流入させ、軟水器2を通過させた後に、軟水器側配管50、排水管51を介して排水口54まで水を流している。   In the first additional cleaning step, as shown in FIG. 11, water is allowed to flow into the water softener 2 through a water intake pipe 32 from a water supply source (not shown), and after passing through the water softener 2, Water flows to the drain outlet 54 through the pipe 50 and the drain pipe 51.

第2追加洗浄工程では、図12で示されるように、図示しない入水源から入水管32の一部であってバイパス管34との接続位置よりも上流側の部分と、バイパス管34と、出水管33の一部を介して軟水器2の内部へと水を流入させる。そして、軟水器2を通過させた後に、入水管32の一部であって逆洗浄排水管35との接続位置よりも軟水器2側の部分と、逆洗浄排水管35と、排水管51を介して排水口54まで水を流している。すなわち、第2追加洗浄工程では、水が軟水器2を通過する方向は、軟水化処理時とは逆方向となっている。   In the second additional cleaning step, as shown in FIG. 12, a part of the water inlet pipe 32 that is upstream from the connection position with the bypass pipe 34 from the incoming water source (not shown), the bypass pipe 34, Water is caused to flow into the water softener 2 through a part of the water pipe 33. And after letting the water softener 2 pass, it is a part of the water intake pipe 32 and the portion closer to the water softener 2 than the connection position with the reverse cleaning drain pipe 35, the reverse cleaning drain pipe 35, and the drain pipe 51 The water is made to flow to the drain port 54 through. That is, in the second additional cleaning step, the direction in which water passes through the water softener 2 is opposite to that during the water softening treatment.

ところで、本実施形態の軟水化装置1では、上記した再生処理時において再生水(又は洗浄水)の流量を一定化させ、効率よく陽イオン交換樹脂を再生するために、逆洗浄排水弁41の開度を補正する開度補正処理を実施している。本発明の特徴的な動作であるところの開度補正処理について、図13を参照しつつ以下で詳細に説明する。   By the way, in the water softening device 1 of the present embodiment, the backwash drain valve 41 is opened in order to make the flow rate of the reclaimed water (or wash water) constant during the above regeneration treatment and to regenerate the cation exchange resin efficiently. An opening correction process is performed to correct the degree. The opening correction process, which is a characteristic operation of the present invention, will be described in detail below with reference to FIG.

まず、開度の補正に先立って、一定量の再生水を貯留タンク3の内部から排出するために必要な時間(排出所要時間)を取得する計時処理を実施する。
より具体的には、上記した再生水供給工程において再生水を軟水器2側へ供給する際に、制御装置10は、貯留タンク3の液位が前記第1液位となっている開始時の時刻を開始時刻として取得する。再生水を供給し続けることで貯留タンク3の液位が減少し、貯留タンク3の液位が前記第2液位となると、制御装置10は前記第2液位となった時刻を終了時刻として取得する。そして、制御装置10は、この開始時刻と終了時刻から貯留タンク3の液位が前記第1液位から前記第2液位となるまでの時間を算出し、算出した時間を排出所要時間として取得する。
First, prior to the correction of the opening degree, a time measuring process for acquiring a time (required discharge time) necessary for discharging a certain amount of reclaimed water from the inside of the storage tank 3 is performed.
More specifically, when supplying the reclaimed water to the water softener 2 side in the above-described reclaimed water supply step, the control device 10 determines the time at which the liquid level in the storage tank 3 starts to be the first liquid level. Get as start time. If the liquid level in the storage tank 3 decreases by continuing to supply the reclaimed water and the liquid level in the storage tank 3 becomes the second liquid level, the control device 10 acquires the time when the second liquid level is reached as the end time. To do. Then, the control device 10 calculates the time from the start time and the end time until the liquid level in the storage tank 3 changes from the first liquid level to the second liquid level, and acquires the calculated time as the required discharge time. To do.

計時処理に続いて、排出所要時間と予め算出しておいた基準時間とを比較する時間比較処理を実施する。
ここで、基準時間は、一定量の再生水を貯留タンク3の内部から排出する動作に要する時間であって、実験等により予め定められた最適な所要時間である。この基準時間は、実験等により算出した再生処理における再生水(又は洗浄水)の望ましい流量、すなわち、再生水流通経路を流れる再生水(又は洗浄水)の望ましい流量(例えば0.5L/min)に基づいて規定される。
基準時間の一例として、例えば、貯留タンク3の液位が前記第1液位から前記第2液位となるまでに貯留タンク3内から外部に排出された液量がXLであり(図14参照)、再生水流通経路を流れる再生水の望ましい流量がQ1である場合、基準時間であるTを下記式(1)を満たすように規定してもよい。
T=XL/Q1・・・(1)
Subsequent to the time measurement process, a time comparison process for comparing the required discharge time with a previously calculated reference time is performed.
Here, the reference time is a time required for the operation of discharging a certain amount of reclaimed water from the inside of the storage tank 3, and is an optimal required time determined in advance by an experiment or the like. This reference time is based on the desired flow rate of the reclaimed water (or wash water) in the regeneration process calculated by experiments or the like, that is, the desired flow rate of the reclaimed water (or wash water) flowing through the reclaimed water circulation path (for example, 0.5 L / min). It is prescribed.
As an example of the reference time, for example, the amount of liquid discharged from the storage tank 3 until the liquid level of the storage tank 3 changes from the first liquid level to the second liquid level is XL (see FIG. 14). ) If the desired flow rate of the reclaimed water flowing through the reclaimed water distribution channel is Q1, the reference time T may be defined so as to satisfy the following formula (1).
T = XL / Q1 (1)

この場合、前記第1液位から前記第2液位となるまでに貯留タンク3内から外部に排出された液量が6Lであり、再生水流通経路を流れる再生水の望ましい流量が0.5L/minであるのならば、基準時間は12minとなる。   In this case, the amount of liquid discharged from the storage tank 3 to the outside from the first liquid level to the second liquid level is 6 L, and a desirable flow rate of reclaimed water flowing through the reclaimed water circulation path is 0.5 L / min. If so, the reference time is 12 min.

そして、排出所要時間と基準時間との差に応じて逆洗浄排水弁41の開度を補正する。このときの補正量は、表1の通りである。   Then, the opening degree of the backwash drain valve 41 is corrected according to the difference between the required discharge time and the reference time. The correction amount at this time is as shown in Table 1.

Figure 2014083532
Figure 2014083532

具体的に説明すると、排出所要時間が基準時間よりも1分長い場合(+1minの場合)には、所定量Aだけ開度を広げる(開度を−Aとする)。反対に排出所要時間が基準時間よりも1分短い場合(−1minの場合)には、所定量Aだけ開度を狭める(開度を+Aとする)。すなわち、仮に補正前の逆洗浄排水弁41の開度がS1であり、排出所要時間が基準時間よりも1分長い場合には、補正後の逆洗浄排水弁41の開度S2は、下記式(2)を満たす値となる。
S2=S1−A・・・(2)
同様に、排出所要時間と基準時間の差が2分であれば所定量2Aだけ補正し、排出所要時間と基準時間の差が3分であれば所定量3Aだけ補正する。
More specifically, when the required discharge time is longer by 1 minute than the reference time (in the case of +1 min), the opening is widened by a predetermined amount A (the opening is -A). On the contrary, when the required discharge time is shorter by 1 minute than the reference time (in the case of -1 min), the opening is narrowed by a predetermined amount A (the opening is set as + A). That is, if the opening degree of the backwash drain valve 41 before correction is S1 and the required discharge time is 1 minute longer than the reference time, the opening degree S2 of the backwash drain valve 41 after correction is expressed by the following equation: The value satisfies (2).
S2 = S1-A (2)
Similarly, if the difference between the required discharge time and the reference time is 2 minutes, the predetermined amount 2A is corrected. If the difference between the required discharge time and the reference time is 3 minutes, the predetermined amount 3A is corrected.

すなわち、逆洗浄排水弁41の開度を補正するときの開度の増加量と低減量は、排出所要時間と基準時間の差の大きさに対応して大きくなるようになっている。より詳細には、排出所要時間と基準時間の差の絶対値と、逆洗浄排水弁41の開度の補正量とは比例するようになっている。そして、排出所要時間が基準時間がよりも長いのであれば、逆洗浄排水弁41の開度を所定量だけ狭める補正を行い、排出所要時間が基準時間よりも短いのであれば、逆洗浄排水弁41の開度を所定量だけ広げる補正を行う。
なお、排出所要時間と基準時間の差の値が規定以上に大きい場合には、何らかの異常が発生しているものと判断し、エラーメッセージを図示しないリモコン等に表示したり、警告音を発する等の報知動作を実施する。
That is, the increase amount and the decrease amount when the opening degree of the backwash drain valve 41 is corrected are increased according to the difference between the required discharge time and the reference time. More specifically, the absolute value of the difference between the required discharge time and the reference time is proportional to the correction amount of the opening degree of the backwash drain valve 41. Then, if the required discharge time is longer than the reference time, a correction is made to narrow the opening degree of the reverse cleaning drain valve 41 by a predetermined amount. If the required discharge time is shorter than the reference time, the reverse cleaning drain valve Correction for expanding the opening of 41 by a predetermined amount is performed.
If the difference between the required discharge time and the reference time is greater than the specified value, it is determined that some abnormality has occurred and an error message is displayed on a remote controller (not shown) or a warning sound is emitted. The notification operation is performed.

このように、排出所要時間に応じて逆洗浄排水弁41の開度を補正することにより、再生水流通経路を流れる再生水や洗浄水の流量を一定にすることが可能となる。つまり、逆洗浄排水弁41の開度の補正を繰り返すことで、再生水流通経路を流れる再生水や洗浄水の流量を大きく変化することのない安定した状態にできる。このことにより、本実施形態の軟水化装置1では、効率のよい再生処理が可能となる。   In this way, by correcting the opening degree of the backwash drain valve 41 according to the required discharge time, it becomes possible to make the flow rates of the reclaimed water and the wash water flowing through the reclaimed water circulation path constant. That is, by repeating the correction of the opening degree of the backwash drain valve 41, it is possible to achieve a stable state in which the flow rate of the reclaimed water and the wash water flowing through the reclaimed water circulation path is not greatly changed. Thereby, in the water softening apparatus 1 of this embodiment, an efficient regeneration process is attained.

ところで、本実施形態の軟水化装置1では、再生処理を実施するとき、再生水供給工程を1回実施した後、再生水押し出し洗浄工程を4回実施し、さらに追加洗浄工程を1回実施する一連の動作を行っている。ここで、上記した計時処理、時間比較処理、並びに逆洗浄排水弁41の開度の変更は、この一連の動作の間に複数回実施してもよい。
具体的には、例えば、再生水供給工程と並行して1回目の計時処理と、1回目の時間比較処理とを実施し、最初の再生水押し出し洗浄工程の実施中に1回目の逆洗浄排水弁41の開度の変更を実施してもよい。そして、2回目以降の再生水押し出し洗浄工程の実施中に、再度、計時処理、時間比較処理、並びに逆洗浄排水弁41の開度の変更を複数回実施してもよい。
By the way, in the water softening device 1 of this embodiment, when performing a regeneration process, after implementing a regeneration water supply process once, a regeneration water extrusion washing process is implemented 4 times, and also an additional washing process is implemented once. It is operating. Here, the time measurement process, the time comparison process, and the change in the opening degree of the backwash drain valve 41 may be performed a plurality of times during this series of operations.
Specifically, for example, the first timekeeping process and the first time comparison process are performed in parallel with the reclaimed water supply process, and the first backwash drain valve 41 is performed during the first reclaimed water extrusion washing process. You may change the opening degree. Then, during the second and subsequent regeneration water extrusion cleaning steps, the timekeeping process, the time comparison process, and the opening of the backwash drain valve 41 may be changed a plurality of times again.

このように、再生処理の一連の動作を実施している間に逆洗浄排水弁41の開度の変更(開度の補正)を複数回実施する構成によると、再生処理の一連の動作の実施中に一回だけ逆洗浄排水弁41の開度の変更を実施する構成に比べて、再生水流通経路を流れる再生水や洗浄水の流量をより確実に一定にすることが可能となるので好ましい。   As described above, according to the configuration in which the change of the opening degree of the backwash drain valve 41 (correction of the opening degree) is performed a plurality of times while the series of operations of the regeneration process is being performed, the series of operations of the regeneration process is performed. Compared to a configuration in which the opening degree of the backwash drain valve 41 is changed only once, it is preferable because the flow rate of the reclaimed water and the wash water flowing through the reclaimed water circulation path can be more reliably made constant.

また、再生水供給工程、再生水押し出し洗浄工程、追加洗浄工程からなる再生処理における一連の動作を実施した後、次回の再生処理を実施するまでの間に逆洗浄排水弁41の開度の変更を実施してもよい。
例えば、一度目の再生処理における一連の動作と並行して前記計時処理を実施し、二度目の再生処理の開始前に時間比較処理と、逆洗浄排水弁41の開度の変更とを実施してもよい。すなわち、事前に実施した再生処理における再生水等の流量に基づいて、次回以降の再生処理における逆洗浄排水弁41の開度を変更してもよい。しかしながら、いち早く再生水流通経路を流れる再生水や洗浄水を適正な流量とするという観点から、このように一度目の再生処理の終了後に逆洗浄排水弁41の開度を変更する構成に比べ、一度目の再生処理と並行して逆洗浄排水弁41の開度の変更する構成がより好ましい。
In addition, after performing a series of operations in a regeneration process including a recycled water supply process, a recycled water extrusion cleaning process, and an additional cleaning process, the opening degree of the backwash drain valve 41 is changed until the next regeneration process is performed. May be.
For example, the timing process is performed in parallel with a series of operations in the first regeneration process, and the time comparison process and the opening degree of the backwash drain valve 41 are changed before the second regeneration process is started. May be. That is, the opening degree of the backwash drain valve 41 in the subsequent regeneration process may be changed based on the flow rate of the reclaimed water or the like in the regeneration process performed in advance. However, from the viewpoint of promptly setting the reclaimed water and the wash water flowing through the reclaimed water distribution path to an appropriate flow rate, the first time is compared with the configuration in which the opening degree of the backwash drain valve 41 is changed after the completion of the first regeneration process. A configuration in which the opening degree of the backwash drain valve 41 is changed in parallel with the regeneration process is more preferable.

ところで、再生水供給工程、再生水押し出し洗浄工程、追加洗浄工程からなる一連の動作の実施中に逆洗浄排水弁41の開度の変更(開度の補正)を複数回実施する構成と、一連の動作の終了後に開度の変更(開度の補正)を実施する構成の例を示したが、本発明はこれに限るものではない。この一連の動作には、再生処理のための予備処理における各工程を含めてもよい。すなわち、再生処理のための予備処理における工程を含めた一連の動作の実施中に逆洗浄排水弁41の開度の変更(開度の補正)を複数回実施してもよい。   By the way, a configuration in which the change in the opening degree of the backwash drain valve 41 (correction of the opening degree) is performed a plurality of times during the execution of a series of operations including a recycled water supply process, a recycled water extrusion washing process, and an additional washing process, and a series of actions Although the example of the structure which implements a change of an opening degree (correction | amendment of an opening degree) after completion | finish of this was shown, this invention is not limited to this. This series of operations may include each step in the preliminary process for the reproduction process. In other words, the opening degree of the backwash drain valve 41 may be changed a plurality of times during the execution of a series of operations including the steps in the preliminary process for the regeneration process.

上記した実施形態では、貯留タンク3の液位が第1液位から第2液位となるまでの時間を排出所要時間とし、逆洗浄排水弁41の開度の変更を実施したが、本発明はこれに限るものではない。例えば、貯留タンク3の電極28の数を増加させてより多くの液位を検知できる構成とし、一定量の再生水が貯留タンク3の内部から排出するされるまでの間に計時処理を複数回実施してもよい。より具体的には、一定量の再生水が貯留タンク3の内部から排出するされるまでの間に、計時処理、時間比較処理、並びに逆洗浄排水弁41の開度の変更をそれぞれ複数回ずつそれぞれ実施してもよい。このことにつき、以下で例を挙げて具体的に説明する。   In the above-described embodiment, the time required until the liquid level in the storage tank 3 changes from the first liquid level to the second liquid level is defined as the required discharge time, and the opening degree of the backwash drain valve 41 is changed. Is not limited to this. For example, the number of electrodes 28 in the storage tank 3 can be increased so that more liquid levels can be detected, and the timing process is performed multiple times before a certain amount of reclaimed water is discharged from the inside of the storage tank 3. May be. More specifically, the time measurement process, the time comparison process, and the change in the opening degree of the backwash drain valve 41 are each performed several times before a certain amount of reclaimed water is discharged from the inside of the storage tank 3. You may implement. This will be specifically described below with an example.

例えば、図15で示されるように、高液位検知電極28dより長く中液位検知電極28cより短い電極28を2つ追加したとする。すなわち、高液位検知電極28dより長い第1追加電極28αと、第1追加電極28αより長く中液位検知電極28cより短い第2追加電極28βとを追加したとする。すると、貯留タンク103の液位が高液位検知電極28dの下端(前記第1液位と同じ液位)から、中液位検知電極28cの下端(前記第2液位と同じ液位)まで減少するまでの間に、4つの液位(L1乃至L4)を検知可能となる。したがって、貯留タンク103の液位が1つめの液位L1から2つめの液位L2となるまでの時間、2つめの液位L2から3つめの液位L3となるまでの時間、3つめの液位L3から4つめの液位L4となるまでの時間のそれぞれを排出所要時間とし、それぞれ開度補正処理を実行することが可能となる。別言すると、上記した再生水供給工程の実施と並行して複数回の開度補正処理を実行することが可能となる。このように、再生水供給工程の実施中に複数回の開度の補正を実行する構成によると、再生水流通経路を流れる再生水の流量をいち早く一定にできるので好ましい。   For example, as shown in FIG. 15, it is assumed that two electrodes 28 longer than the high liquid level detection electrode 28d and shorter than the middle liquid level detection electrode 28c are added. That is, it is assumed that a first additional electrode 28α that is longer than the high liquid level detection electrode 28d and a second additional electrode 28β that is longer than the first additional electrode 28α and shorter than the middle liquid level detection electrode 28c are added. Then, the liquid level of the storage tank 103 is from the lower end of the high liquid level detection electrode 28d (the same liquid level as the first liquid level) to the lower end of the intermediate liquid level detection electrode 28c (the same liquid level as the second liquid level). Until it decreases, four liquid levels (L1 to L4) can be detected. Therefore, the time until the liquid level in the storage tank 103 becomes the second liquid level L2 from the first liquid level L1, the time until the liquid level L3 from the second liquid level L2 becomes the third liquid level L3. Each of the time from the liquid level L3 to the fourth liquid level L4 is set as the required discharge time, and the opening degree correction process can be executed. In other words, it is possible to execute the opening degree correction processing a plurality of times in parallel with the implementation of the reclaimed water supply step. As described above, the configuration in which the correction of the opening degree is performed a plurality of times during the regeneration water supply process is preferable because the flow rate of the regeneration water flowing through the regeneration water circulation path can be made constant quickly.

上記した実施形態では、排出所要時間と基準時間の差が1min増加するごとに、補正量が所定量Aずつ増加する構成としたが、本発明はこれに限るものではない。例えば、補正量を排出所要時間と基準時間の差の値に依存して決まる値とし、補正を実施する毎に補正量を演算によって算出してもよい。すなわち、逆洗浄排水弁41の開度の補正における補正量は、排出所要時間と基準時間の差の値に所定の係数を加える、減ずる、乗じる、除する等して算出される値であってよい。この構成によると、補正量の変化幅をより細分化することが可能となるので、逆洗浄排水弁41の開度の補正をより正確に実施することができる。   In the above-described embodiment, the correction amount increases by the predetermined amount A every time the difference between the discharge required time and the reference time increases by 1 minute. However, the present invention is not limited to this. For example, the correction amount may be a value determined depending on the difference between the required discharge time and the reference time, and the correction amount may be calculated by calculation every time correction is performed. That is, the correction amount in the correction of the opening degree of the backwash drain valve 41 is a value calculated by adding, subtracting, multiplying, or dividing a predetermined coefficient to the value of the difference between the required discharge time and the reference time. Good. According to this configuration, the change width of the correction amount can be further subdivided, so that the opening degree of the backwash drain valve 41 can be corrected more accurately.

さらに、本発明の軟水化装置は、計時処理によって取得した排出所要時間と基準時間の差を記憶していく構成であってもよい。このような構成によると、逆洗浄排水弁41の開度を変更する補正を実施したとき、開度の変更前と変更後で流量がどのように変化したのか判別することが可能となる。そして、事前の補正の結果に応じた逆洗浄排水弁41の開度の補正が可能となる。このことにつき、以下で詳細に説明する。   Further, the water softening device of the present invention may be configured to store the difference between the required discharge time acquired by the time measurement process and the reference time. According to such a configuration, when the correction for changing the opening degree of the backwash drain valve 41 is performed, it is possible to determine how the flow rate has changed before and after the opening degree change. And it becomes possible to correct the opening degree of the backwash drain valve 41 according to the result of the prior correction. This will be described in detail below.

ここで、逆洗浄排水弁41の開度の補正を実施する毎に排出所要時間と基準時間の差を記憶していき、所定の開度の補正を実施する前の排出所要時間と基準時間の差と、所定のの開度の補正を実施した後の排出所要時間と基準時間の差とを比較可能な構成としたとする。この場合、逆洗浄排水弁41の開度の補正が適切であるのならば、排出所要時間は理想的な時間である基準時間に近づくので、補正の前後で排出所要時間と基準時間の差は小さくなることが想定される。   Here, every time the opening degree of the backwash drain valve 41 is corrected, the difference between the required discharge time and the reference time is stored, and the required discharge time and the reference time before the predetermined opening degree correction is performed. Assume that the difference can be compared with the difference between the required discharge time after correcting the predetermined opening and the reference time. In this case, if the correction of the opening degree of the backwash drain valve 41 is appropriate, the required discharge time approaches a reference time which is an ideal time, so the difference between the required discharge time and the reference time before and after the correction is It is assumed to be smaller.

このことから、開度の補正を実施した後の排出所要時間と基準時間の差が、開度の補正を実施する前の排出所要時間と基準時間の差に比べて小さくなっているのであれば、適切な補正が実施されたものと判断できる。別言すると、開度の補正を実施する度に排出所要時間と基準時間の差が0に近づいていくのであれば、適切な補正が実施されているものと判断できる。
対して、開度の補正を実施しても排出所要時間と基準時間の差が小さくならず、補正の前後で排出所要時間と基準時間の差が依然一定以上となる場合には、適切な補正が実施されていないものと判断できる。
Therefore, if the difference between the required discharge time after performing the opening correction and the reference time is smaller than the difference between the required discharge time before performing the opening correction and the reference time, Therefore, it can be determined that appropriate correction has been performed. In other words, if the difference between the required discharge time and the reference time approaches 0 each time the opening degree is corrected, it can be determined that an appropriate correction is performed.
On the other hand, even if the opening is corrected, the difference between the required discharge time and the reference time is not reduced, and if the difference between the required discharge time and the reference time is still more than a certain value before and after the correction, an appropriate correction is made. It can be judged that is not implemented.

そして、適切な補正が実施されていないものと判断された場合、その原因として補正量が適切でないことが考えられる。すなわち、逆洗浄排水弁41の開度を補正するとき、開度をより広げたり、開度をより狭めることで排出所要時間と基準時間の差を小さくできる可能性がある。そこで、このように適切な補正が実施されていないものと判断された場合、次回の補正で開度を広げるのであれば、より多く広げるように補正することが好ましい。また、次回の補正で開度を狭めるのであれば、より狭くなるように補正することが好ましい。つまり、次回の補正で補正量をより大きくすることが好ましい。   And when it is judged that appropriate correction | amendment is not implemented, it is possible that the correction amount is not appropriate as the cause. That is, when the opening degree of the backwash drain valve 41 is corrected, there is a possibility that the difference between the required discharge time and the reference time can be reduced by increasing the opening degree or narrowing the opening degree. Therefore, when it is determined that appropriate correction has not been performed in this way, it is preferable that the correction is performed so as to increase more if the opening is increased in the next correction. Further, if the opening degree is narrowed in the next correction, it is preferable to correct so as to become narrower. That is, it is preferable to increase the correction amount in the next correction.

以上のことから、本発明の軟水化装置は以下のような構成であってもよい。すなわち、排出所要時間と基準時間の差を記憶し、補正の前後における排出所要時間と基準時間の差を比較して適切な補正が実施されているか否かを判別してもよい。そして、適切な補正が実施されていないと判別された場合には、次回に実施する補正の補正量を増加する構成であってもよい。このような構成によると、逆洗浄排水弁41の開度の補正をより高い精度で実施できるので好ましい。   From the above, the water softening device of the present invention may have the following configuration. That is, the difference between the required discharge time and the reference time may be stored, and the difference between the required discharge time and the reference time before and after correction may be compared to determine whether or not appropriate correction has been performed. When it is determined that appropriate correction has not been performed, the correction amount for the next correction may be increased. Such a configuration is preferable because the degree of opening of the backwash drain valve 41 can be corrected with higher accuracy.

1 軟水化装置
2 軟水器(軟水化処理槽)
3,103 貯留タンク
28 電極(水位検出手段)
41 逆洗浄排水弁(流量調整弁)
54 排水口
1 Water softener 2 Water softener (water softening tank)
3,103 Storage tank 28 Electrode (water level detection means)
41 Backwash drain valve (flow adjustment valve)
54 Drain outlet

Claims (4)

軟水化処理剤が内蔵された軟水化処理槽と、
前記軟水化処理剤を再生するための再生水を貯留可能な貯留タンクと、
前記再生水を前記貯留タンクから前記軟水化処理槽を経由して所定の排水口へと導くことが可能な再生水流通経路と、
開度を調整することで前記再生水流通経路を流れる液体の流量を調整可能な流量調整弁とを備え、
前記流量調整弁を所定の開度で開いた状態で前記貯留タンクに貯留された前記再生水を前記軟水化処理槽へと供給する動作を実施し、当該動作中に前記貯留タンクに所定量の再生水が貯留された状態から前記貯留タンク内の前記再生水の液位が所定の液位となるまでに要する時間である排出所要時間を取得する計時処理を実施するものであり、
前記計時処理により取得した前記排出所要時間と予め定められた基準時間とを比較し、比較結果に応じて前記流量調整弁の開度を補正することを特徴とする軟水化装置。
A water softening tank containing a water softening agent;
A storage tank capable of storing reclaimed water for regenerating the water softening agent;
A reclaimed water distribution path capable of guiding the reclaimed water from the storage tank to a predetermined drain through the water softening treatment tank;
A flow rate adjustment valve capable of adjusting the flow rate of the liquid flowing through the recycled water flow path by adjusting the opening;
An operation of supplying the reclaimed water stored in the storage tank to the water softening tank while the flow rate adjustment valve is opened at a predetermined opening is performed, and a predetermined amount of reclaimed water is supplied to the storage tank during the operation. Is carried out to acquire the time required for discharging, which is the time required for the level of the reclaimed water in the storage tank to reach a predetermined level from the stored state,
The water softening device characterized by comparing the discharge required time acquired by the time measuring process with a predetermined reference time and correcting the opening of the flow rate adjusting valve according to the comparison result.
前記貯留タンクに貯留された液体の液位を検出可能な液位検出手段を備え、
前記液位検出手段は、高さの異なる液位である第1液位及び第2液位を含む2以上の液位を検知可能であり、
前記排出所要時間は、前記貯留タンクに貯留された前記再生水が前記第1液位から前記第2液位に低下するまでに要する時間であることを特徴とする請求項1に記載の軟水化装置。
Comprising a liquid level detection means capable of detecting the liquid level of the liquid stored in the storage tank;
The liquid level detecting means is capable of detecting two or more liquid levels including a first liquid level and a second liquid level that are liquid levels having different heights,
2. The water softening device according to claim 1, wherein the required discharge time is a time required for the reclaimed water stored in the storage tank to drop from the first liquid level to the second liquid level. .
前記排出所要時間が前記基準時間と比べて所定時間以上長い場合には、前記流量調整弁の開度を増加させる補正を実施するものであり、
前記排出所要時間が前記基準時間と比べて所定時間以上短い場合には、前記流量調整弁の開度を低減させる補正を実施するものであって、
前記流量調整弁の開度の増加量及び/又は低減量は、前記排出所要時間と前記基準時間の差の大きさに対応して大きくなるように予め設定されていることを特徴とする請求項1又は2に記載の軟水化装置。
When the required discharge time is longer than the reference time by a predetermined time or longer, the correction for increasing the opening of the flow rate adjusting valve is performed.
When the required discharge time is shorter than the reference time by a predetermined time or more, the correction for reducing the opening of the flow rate adjustment valve is performed,
The increase amount and / or decrease amount of the opening degree of the flow rate adjusting valve is preset so as to increase in accordance with the difference between the required discharge time and the reference time. The water softening device according to 1 or 2.
前記再生水を前記軟水化処理槽へ供給して前記軟水化処理剤を再生する再生処理を実施するものであり、
少なくとも前記再生処理を含む一連の動作を実施する間に、前記計時処理と前記流量調整弁の開度の補正とを複数回実施することを特徴とする請求項1乃至3のいずれかに記載の軟水化装置。
The regeneration water is supplied to the water softening treatment tank to regenerate the water softening treatment agent,
The timekeeping process and the correction of the opening degree of the flow rate adjustment valve are performed a plurality of times during a series of operations including at least the regeneration process. Water softener.
JP2012237046A 2012-10-26 2012-10-26 Water softening apparatus Pending JP2014083532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012237046A JP2014083532A (en) 2012-10-26 2012-10-26 Water softening apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012237046A JP2014083532A (en) 2012-10-26 2012-10-26 Water softening apparatus

Publications (1)

Publication Number Publication Date
JP2014083532A true JP2014083532A (en) 2014-05-12

Family

ID=50787132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012237046A Pending JP2014083532A (en) 2012-10-26 2012-10-26 Water softening apparatus

Country Status (1)

Country Link
JP (1) JP2014083532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017029913A (en) * 2015-07-31 2017-02-09 前澤工業株式会社 Method for regenerating ion-exchange resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017029913A (en) * 2015-07-31 2017-02-09 前澤工業株式会社 Method for regenerating ion-exchange resin

Similar Documents

Publication Publication Date Title
JP4507270B2 (en) Water softening device and regeneration control method thereof
JP2013027802A (en) Water treatment system
JP2009056403A (en) Water softening unit and hot water supply system
JP5076222B2 (en) Method for regenerating water softening agent in water softener and water softener
JP5787040B2 (en) Membrane separator
JP2014083532A (en) Water softening apparatus
JP2009178641A (en) Apparatus for softening water and hot-water supply system
CN114931984B (en) Resin regeneration method of water softening device and water softening device
JP2778461B2 (en) Water softener regeneration control method and apparatus
US20080236400A1 (en) Method for Controlling and Managing the Water Flow to a Coffee Machine Provided with a Water Softener Device of Ion Exchange Resin Type, and Coffee Machine for Implementing the Method
JP2778462B2 (en) Water regeneration control method
JP2010104907A (en) Water softening system and hot-water supply system
JP3918465B2 (en) Salt water concentration detector in soft water device
JP5030025B2 (en) Salt water generation and storage device
WO2013021468A1 (en) Water treatment system
JP5030026B2 (en) Ion exchange system
JP2009178664A (en) Water softening device and hot-water supply system
JP2009285575A (en) Water-softening system and hot water supplying system
JP6535532B2 (en) Method of regenerating ion exchange resin
JP2015098029A (en) Water treatment system
JPH11104635A (en) Water softener
JP2009160487A (en) Water softening apparatus and hot water supply system
JP2776279B2 (en) Control method of water softener
JP2795169B2 (en) Method for detecting salt water supply and rehydration in salt water tank of water softener
KR101086538B1 (en) Manufacturing unit for regenerating water provided in water softening apparatus