JP2014083284A - Endoscope insertion portion and method for manufacturing the same - Google Patents

Endoscope insertion portion and method for manufacturing the same Download PDF

Info

Publication number
JP2014083284A
JP2014083284A JP2012235445A JP2012235445A JP2014083284A JP 2014083284 A JP2014083284 A JP 2014083284A JP 2012235445 A JP2012235445 A JP 2012235445A JP 2012235445 A JP2012235445 A JP 2012235445A JP 2014083284 A JP2014083284 A JP 2014083284A
Authority
JP
Japan
Prior art keywords
gap
endoscope
pipe material
bending
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012235445A
Other languages
Japanese (ja)
Other versions
JP5877779B2 (en
Inventor
Yasutami Ryu
保民 龍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitec Co Ltd
Original Assignee
Fujitec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitec Co Ltd filed Critical Fujitec Co Ltd
Priority to JP2012235445A priority Critical patent/JP5877779B2/en
Publication of JP2014083284A publication Critical patent/JP2014083284A/en
Application granted granted Critical
Publication of JP5877779B2 publication Critical patent/JP5877779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an endoscope insertion portion which shows high safety, achieves the reduction in a diameter and a cost and easy operability, and has rigidity in a lengthwise direction that can be freely varied, and a method for manufacturing the same.SOLUTION: A helical gap is formed by performing laser processing helically on an outer periphery of a high-strength alloy pipe material. Rigidity in a lengthwise direction of a bending portion 6 is freely varied by combining variations in a pitch of a helix, a helical angle, and a gap width and subsequently performing heat treatment. A wire guide for operating the bending portion is easily provided on an inner periphery of the bending portion, and an endoscope insertion portion 4 which is easy, safe, and inexpensive, exhibits suitable flexibility, and has excellent operability can be manufactured.

Description

本発明は、医療器具として用いられる内視鏡の挿入部及びその製造方法に関する。   The present invention relates to an insertion portion of an endoscope used as a medical instrument and a manufacturing method thereof.

内視鏡は、手術・検査などに伴う痛み、発熱、出血などの、患者への身体的負担が少ない低侵襲治療として広く普及している。そして、その内視鏡における最も重要な部品として、体腔内に挿入される部位の挿入部があり、その構造等については従来から種々の改良が行われている。
内視鏡挿入部は、先端側の湾曲部と、基端側の可撓部を備えている。従来の湾曲部は、複数のアングルリング(湾曲セグメント、湾曲駒、節輪とも称する)を自由度を有して連結して構成され、そのアングルリング中に形成されるワイヤガイドと、このワイヤガイドを通るワイヤの操作により、湾曲部を自在に湾曲させることができる構造となっている。
Endoscopes are widely used as minimally invasive treatments that cause less physical burden on patients, such as pain, fever, and bleeding associated with surgery and examinations. The most important part of the endoscope is an insertion portion of a part to be inserted into a body cavity, and various improvements have been made on the structure and the like.
The endoscope insertion portion includes a distal end side bending portion and a proximal end side flexible portion. A conventional bending portion is configured by connecting a plurality of angle rings (also referred to as bending segments, bending pieces, and node rings) with a degree of freedom, and a wire guide formed in the angle ring, and the wire guide The bending portion can be freely bent by the operation of the wire passing through.

しかしながら、アングルリングを連結した構造からなる従来の内視鏡挿入部の湾曲部は複雑であり、これを製造するためにはかなりの熟練度が要求され、難しく高コストを余儀なくされていた。また湾曲部における湾曲の方向は、アングルリングの自由度が直交する2軸だけであることから大きく制限され、しかも湾曲可能な範囲も限定されていることから、必ずしも操作性は良くなかった。そして、アングルリングの連結構造は、湾曲させた場合の自己回復力がないことから、操作者は湾曲部を湾曲させる際も、元のストレートな状態に戻す際にも、内視鏡の操作部を操作する手間を要していた。その上、アイドルリングの多くの連結個所は、機械的なトラブルが生じる虞があって、安全性、信頼性に不安があった。そのために、湾曲部の柔軟性と剛性の分配(バランス)及び操作性、安全性の向上が以前から望まれていた。如何に安全、安価で、操作性の優れる湾曲部を作るかは、内視鏡挿入部製造の難題であった。さらに、体腔内に挿入する内視鏡挿入部は、できるだけ細くすることが患者への負担が少なくなるのであるが、従来のアングルリングを連設して構成する湾曲部にあっては、アングルリングをこれまで以上に小さくすることは技術的に困難であった。   However, the curved portion of the conventional endoscope insertion portion having a structure in which the angle ring is connected is complicated, and a considerable skill level is required to manufacture the curved portion, and it has been difficult and expensive. Further, the bending direction in the bending portion is greatly limited because the degrees of freedom of the angle ring are only two axes orthogonal to each other, and the range in which the bending is possible is also limited, so the operability is not always good. And, since the connecting structure of the angle ring has no self-healing force when it is bent, the operator can operate the operation portion of the endoscope both when bending the bending portion and returning to the original straight state. It took time and effort to operate. In addition, there are fears of safety and reliability in many connecting parts of the idle ring because there is a possibility that a mechanical trouble may occur. For this reason, it has long been desired to improve flexibility and rigidity distribution (balance), operability, and safety of the curved portion. How to make a curved portion that is safe, inexpensive, and excellent in operability has been a challenge for manufacturing an endoscope insertion portion. Furthermore, the endoscope insertion part to be inserted into the body cavity is made as thin as possible to reduce the burden on the patient. However, in the case of a curved part constituted by connecting conventional angle rings, the angle ring It was technically difficult to make the size smaller than ever.

下記特許文献1及び特許文献2は、従来からアングルリング構造でない、超弾性合金からなる螺旋構造の特徴を持つ内視鏡挿入部の湾曲部を開示している。
特許文献1に記載された内視鏡挿入部は、その先端側の湾曲部に従来のアングルリングを用いることなく、超弾性合金の円筒状のフレームを螺旋形とすることにより、湾曲部の柔軟性と剛性のバランスを好適に設定できるようにしたものである。そして、フレームを長さ方向の複数の部位に分けて、各部位の螺旋のピッチを異なる寸法とすることにより、先端側を基端側よりも柔軟性を持たせることができるものである。
The following Patent Document 1 and Patent Document 2 disclose a bending portion of an endoscope insertion portion having a helical structure characteristic of a superelastic alloy that is not conventionally an angle ring structure.
The endoscope insertion part described in Patent Document 1 is made flexible by making a cylindrical frame of a superelastic alloy spiral without using a conventional angle ring for the bending part on the distal end side. The balance between property and rigidity can be suitably set. Then, by dividing the frame into a plurality of parts in the length direction and setting the spiral pitch of each part to different dimensions, the distal end side can be made more flexible than the proximal end side.

特開2001−346753号公報JP 2001-346753 A 特開平9−192858号公報JP-A-9-192858

しかしながら、上記特許文献1に記載された内視鏡の湾曲部は、螺旋のピッチの異なる複数のフレームを接続する段階的な構造であり、接続個所とその前後の柔軟性や剛性が滑らかに変化するのではなく、急激に変化することから、使用者が思うように操作できないおそれがあった。同様に、基端側の可撓部と先端側の湾曲部の接続部についても、構造の相違からその前後の柔軟性や剛性が急激に変化するものであった。
また、上記特許文献2に記載された内視鏡の湾曲部は、螺旋のピッチと螺旋角度が基端側から先端側に向かって徐々に変化する構造であるが、螺旋の隙間幅については、敢えて隙間幅を形成することはなく、螺旋の切断加工で生じた僅かな一定幅であることから、螺旋構造の柔軟性に隙間幅が寄与することはなく、あくまでも螺旋構造そのもののバネ性による、限定された範囲内にあった。
However, the bending portion of the endoscope described in Patent Document 1 has a stepped structure that connects a plurality of frames having different helical pitches, and the connection portion and the flexibility and rigidity before and after the connection change smoothly. However, since it changes suddenly, there is a possibility that the user cannot operate as expected. Similarly, the flexibility and rigidity before and after the flexible portion on the base end side and the connecting portion between the curved portion on the distal end side change abruptly due to the difference in structure.
In addition, the bending portion of the endoscope described in Patent Document 2 has a structure in which the helical pitch and the helical angle gradually change from the proximal end side toward the distal end side. It does not form a gap width dare, it is a slight constant width generated by cutting the spiral, so the gap width does not contribute to the flexibility of the spiral structure, due to the spring nature of the spiral structure itself, It was within a limited range.

本発明は前述の事情に鑑みて為されたものであって、その目的は、湾曲部における長さ方向の剛性を滑らかに連続的に変化させることにより、シンプルな構造で細径化、高信頼性、低コスト化を可能とし、好適な柔軟性を発揮する操作性に優れた内視鏡を提供することである。   The present invention has been made in view of the above-described circumstances, and its purpose is to reduce the diameter of the curved portion with a simple structure, high reliability by smoothly and continuously changing the rigidity in the length direction of the curved portion. It is possible to provide an endoscope with excellent operability that can be reduced in cost and cost and that exhibits suitable flexibility.

本発明は、高強度合金パイプ材に対してレーザ加工により螺旋状の隙間を設けることにより螺旋構造の内視鏡挿入部を形成し、その螺旋角度を連続的に変化させたり、螺旋のピッチを変化させたり、そして熱処理によって、柔軟性と剛性のバランスを取りながら操作性や安全性の向上、細径化、低コスト化を追求することができる内視鏡を提供するものである。
すなわち、本発明の内視鏡は、体腔内に挿入される先端側の湾曲部と基端側の可撓部とを備える挿入部を有する内視鏡において、パイプ材の外周に対し板厚方向にレーザ加工を施して螺旋状の隙間を形成し、パイプ材の長さ方向に対する前記隙間の螺旋角度を連続的に一方向に変化させるとともに、前記隙間の幅を連続的に一方向に変化させることにより、パイプ材の長さ方向の剛性が連続的に変化する湾曲部を備える挿入部を有することを特徴とするものである。
これにより、従来の複数のアングルリングを連結する複雑な構造の湾曲部と異なり、連結構造の存在しないシンプルな構造の湾曲部が可能となり、安全性、信頼性が向上し、かつ全方位の湾曲が可能となり、かつ湾曲の角度範囲も大きくすることができるとともに、挿入部における長さ方向の剛性が滑らかに連続的に変化し、内視鏡挿入部の優れた操作性が得られるものである。さらに、挿入部が螺旋状でバネ性を有することにより、自己回復力を発揮し、操作者における操作性が向上し、操作疲れの低減に寄与することができる。そして、内視鏡挿入部における長さ方向の剛性、柔軟性の順次変化を、螺旋角度、螺旋ピッチ、螺旋の隙間幅の設定により自在に設定することができる。
In the present invention, a high-strength alloy pipe material is provided with a helical gap by laser processing to form an endoscope insertion portion having a helical structure, and the helical angle is continuously changed, or the helical pitch is changed. It is an object of the present invention to provide an endoscope capable of pursuing improvement in operability and safety, diameter reduction, and cost reduction while maintaining a balance between flexibility and rigidity by changing or heat treatment.
In other words, the endoscope of the present invention is an endoscope having an insertion portion including a distal-end-side bending portion and a proximal-end-side flexible portion that is inserted into a body cavity. To form a spiral gap, continuously changing the spiral angle of the gap with respect to the length direction of the pipe material in one direction, and continuously changing the width of the gap in one direction By this, it has an insertion part provided with the curved part from which the rigidity of the length direction of a pipe material changes continuously, It is characterized by the above-mentioned.
This makes it possible to create a curved portion with a simple structure that does not have a connecting structure, unlike the conventional curved portion that connects multiple angle rings, improving safety and reliability, and bending in all directions. In addition, the angle range of bending can be increased, and the rigidity in the length direction of the insertion portion changes smoothly and continuously, so that excellent operability of the endoscope insertion portion can be obtained. . Furthermore, since the insertion portion is spiral and has a spring property, self-recovering force is exhibited, operability for the operator is improved, and it is possible to contribute to reduction of operational fatigue. Then, the sequential change in the rigidity and flexibility in the length direction in the endoscope insertion portion can be freely set by setting the spiral angle, the spiral pitch, and the spiral gap width.

また本発明の内視鏡は、パイプ材の外周に形成する螺旋状の隙間のピッチを先端方向に向かって小さくなるように変化させることを特徴とする。
これにより、内視鏡挿入部における長さ方向の剛性を先端方向に向かって小さく、すなわち先端方向に向かって柔軟性を増すことができ、操作性に優れた内視鏡挿入部が得られる。
The endoscope of the present invention is characterized in that the pitch of the spiral gap formed on the outer periphery of the pipe material is changed so as to decrease toward the distal end.
Thereby, the rigidity in the length direction of the endoscope insertion portion can be reduced toward the distal direction, that is, the flexibility can be increased toward the distal direction, and an endoscope insertion portion excellent in operability can be obtained.

本発明の内視鏡は、パイプ材の内周面に、内視鏡を湾曲操作するためのワイヤを通すワイヤガイドを設けることを特徴とする。   The endoscope of the present invention is characterized in that a wire guide for passing a wire for bending the endoscope is provided on the inner peripheral surface of the pipe material.

本発明の内視鏡は、可撓部と湾曲部を、一つのパイプ材の外周に対し板厚方向にレーザ加工を施して螺旋状の隙間を形成することにより一体的に構成することを特徴とする。
これにより、可撓部と湾曲部を別体に構成して形成し、後で2つを接続するという手間が不要となるとともに、従来の可撓部と湾曲部の接続部分での柔軟性、剛性のぎこちない変化がなくなり、操作性に優れた内視鏡挿入部が得られる。
In the endoscope of the present invention, the flexible portion and the curved portion are integrally configured by forming a spiral gap by laser processing in the plate thickness direction on the outer periphery of one pipe material. And
As a result, the flexible portion and the bending portion are formed separately and formed, and the trouble of connecting the two later becomes unnecessary, and the flexibility at the connecting portion between the conventional flexible portion and the bending portion, There is no awkward change in rigidity, and an endoscope insertion portion with excellent operability can be obtained.

本発明の内視鏡挿入部の製造方法は、体腔内に挿入される先端側の湾曲部と基端側の可撓部とを備える内視鏡挿入部の製造方法において、パイプ材の外周に対し板厚方向にレーザ加工を施して螺旋状の隙間を形成し、該隙間の長さ方向の螺旋角度を連続的に一方向に変化させるとともに、前記隙間の幅を連続的に一方向に変化させることにより、パイプ材の長さ方向の剛性が連続的に変化する湾曲部を形成することを特徴とする。   An endoscope insertion portion manufacturing method according to the present invention includes a distal end side bending portion and a proximal end side flexible portion to be inserted into a body cavity. On the other hand, laser processing is performed in the plate thickness direction to form a spiral gap, and the spiral angle in the length direction of the gap is continuously changed in one direction, and the width of the gap is continuously changed in one direction. By doing so, a curved portion in which the rigidity in the longitudinal direction of the pipe material continuously changes is formed.

本発明に係る内視鏡全体を示す説明図である。It is explanatory drawing which shows the whole endoscope which concerns on this invention. 本発明に係る内視鏡湾曲部を示す説明図である。It is explanatory drawing which shows the endoscope bending part which concerns on this invention. 本発明に係る内視鏡湾曲部を湾曲させた状態を示す説明図である。It is explanatory drawing which shows the state which curved the endoscope bending part which concerns on this invention. 本発明に係る内視鏡挿入部の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the endoscope insertion part which concerns on this invention.

以下、添付図面を参照しながら、本発明の内視鏡を実施するための形態を詳細に説明する。図2〜図4は、本発明の実施の形態を例示する図であり、これらの図において、同一の符号を付した部分は同一物を表わし、基本的な構成及び動作は同様であるものとする。   Hereinafter, an embodiment for carrying out an endoscope of the present invention will be described in detail with reference to the accompanying drawings. 2 to 4 are diagrams illustrating embodiments of the present invention. In these drawings, the same reference numerals denote the same components, and the basic configuration and operation are the same. To do.

<構成>
一般的な内視鏡1の全体構成は、図1に示すごとく、操作者が把持部2を把持して内視鏡を操作する操作部3の先端側に、体腔内に挿入する細長い挿入部4を備え、その挿入部4の基端側を柔軟に撓曲する可撓部5、先端側を細い体腔内で大きな角度で湾曲することができる湾曲部6とする構成である。湾曲部6の先端部7には、照明、撮影、送気、送水、吸引、鉗子の露呈等のための機構を備えて、その各チャンネルが挿入部4内部を挿通している。
<Configuration>
As shown in FIG. 1, the general configuration of a general endoscope 1 is an elongated insertion portion that is inserted into a body cavity on the distal end side of an operation portion 3 in which an operator grasps the grasping portion 2 and operates the endoscope. 4, a flexible portion 5 that flexibly bends the proximal end side of the insertion portion 4, and a bending portion 6 that can bend the distal end side at a large angle within a narrow body cavity. The distal end portion 7 of the bending portion 6 is provided with mechanisms for illumination, photographing, air supply, water supply, suction, forceps exposure, etc., and each channel passes through the insertion portion 4.

<第1の実施形態>
本実施形態の内視鏡挿入部4の湾曲部6は、図2に示すように、一例としてチタン合金等の高強度合金パイプ材に対して、板厚方向に貫通するようにレーザー加工機からのレーザー光を当てて加工し、そしてそのパイプ材の回転速度と送り速度とレーザー光のパワー等を制御することにより、パイプ材の外周に螺旋状の隙間を、それも先端に向かって隙間の幅が徐々に大きくなるように形成し、これにより螺旋形の湾曲部6が形成される。なお特に図示しないが、挿入部4におけるパイプ材から形成されるフレーム構造の外周は、フレーム構造の湾曲や伸縮に応じて伸縮可能な被覆体で覆われている。
このレーザー加工を行う際に、制御するパラメータは螺旋角度と螺旋ピッチと隙間幅である。すなわち、螺旋角度αと螺旋ピッチは、パイプ材の回転速度を一定とした場合には、パイプ材の送り速度で設定することができ、またパイプ材の回転速度と送り速度の双方を制御することでも可能である。またレーザー加工による隙間幅は、レーザー加工機におけるレーザー光の出力・照射面積等により設定することができる。
<First Embodiment>
As shown in FIG. 2, the bending portion 6 of the endoscope insertion portion 4 of the present embodiment is, as an example, from a laser processing machine so as to penetrate a high-strength alloy pipe material such as a titanium alloy in the plate thickness direction. By controlling the rotation speed and feed rate of the pipe material and the power of the laser light, etc., a spiral gap is formed on the outer circumference of the pipe material, and the gap is also directed toward the tip. It forms so that a width | variety may become large gradually, and, thereby, the helical curved part 6 is formed. Although not particularly illustrated, the outer periphery of the frame structure formed from the pipe material in the insertion portion 4 is covered with a covering body that can expand and contract according to the curvature and expansion and contraction of the frame structure.
When performing this laser processing, parameters to be controlled are a spiral angle, a spiral pitch, and a gap width. In other words, the spiral angle α and the spiral pitch can be set by the pipe material feed speed when the pipe material rotation speed is constant, and both the pipe material rotation speed and feed speed are controlled. But it is possible. The gap width by laser processing can be set by the output / irradiation area of the laser beam in the laser processing machine.

上記螺旋状の隙間をレーザー加工により形成するとともに、図2に示すように、パイプ材の軸方向の一定間隔位置であって、かつ0°、90°、180°、270°の回転方向の位置に、ワイヤガイドを形成するための平行な2本の切れ目もレーザー加工する。そして、この切れ目個所をプレス加工により中心方向に押圧して、パイプの内側に円弧状の突条のワイヤガイド8を形成する。このワイヤガイド8にワイヤを通して操作することにより、湾曲部6は全方位に自由自在に湾曲することができ、これにより優れた操作性を発揮することができる。また、湾曲部6を一旦湾曲させると、螺旋構造の湾曲部6は全方向にバネ性を備えることから、自然に元のストレートな状態に復帰しようとする自己回復力を発揮するものである。   The spiral gap is formed by laser processing, and as shown in FIG. 2, the pipe material is positioned at a constant interval in the axial direction and in the rotational direction of 0 °, 90 °, 180 °, and 270 °. In addition, two parallel cuts for forming the wire guide are also laser processed. And this cut | interruption part is pressed to a center direction by press work, and the wire guide 8 of an arc-shaped protrusion is formed inside a pipe. By operating the wire guide 8 through a wire, the bending portion 6 can be freely bent in all directions, thereby exhibiting excellent operability. Further, once the bending portion 6 is bent, the bending portion 6 having a spiral structure is provided with a spring property in all directions, and thus exhibits a self-recovery force to naturally return to the original straight state.

図3は、湾曲部6の螺旋の複数の隙間において、1個所の隙間が湾曲した状態を示し、その湾曲角度θは、上記隙間の湾曲する自由度であり、隙間の下端が当接して、隙間の上端が自然に開いたときの角度である。湾曲部6における一つの湾曲面から見た隙間の数と、各隙間の幅とから、湾曲部6全体の湾曲角度が計算される。
すなわち、湾曲部6全体の湾曲角度の設計値を、例えば270°に設定する場合に、これを満足させるための隙間の数は、270°/湾曲角度θから求めることができる。この湾曲角度θは、隙間の幅l(la)とパイプ材の内径r(d/2)から計算することができる(図3参照)。さらに、湾曲部6の剛性(柔軟性)については、螺旋角度α(α1)と螺旋ピッチL(La)(さらにパイプ材の材質とその板厚)とから適宜設定することができる。このように、隙間の幅を設定することにより、螺旋構造のバネ性に依存する柔軟性ではなく、隙間を密接させるだけの操作力で湾曲するという柔軟性が、特に必要な先端方向に好適に発揮される。
一般的に、螺旋角度α>α1、螺旋ピッチLa>Lとすることにより、湾曲部6の先端側が基端側よりも柔軟性を有し、かつ基端側が先端側よりも相対的に剛性を有し、これにより内視鏡挿入部4の湾曲部6における優れた挿入性と操作性が得られることとなる。
FIG. 3 shows a state in which a single gap is curved in a plurality of spiral gaps of the bending portion 6, the bending angle θ is the degree of freedom of bending of the gap, and the lower end of the gap is in contact, This is the angle when the upper end of the gap is naturally open. The bending angle of the entire bending portion 6 is calculated from the number of gaps viewed from one curved surface in the bending portion 6 and the width of each gap.
That is, when the design value of the bending angle of the entire bending portion 6 is set to, for example, 270 °, the number of gaps for satisfying this can be obtained from 270 ° / the bending angle θ. This bending angle θ can be calculated from the width l (la) of the gap and the inner diameter r (d / 2) of the pipe material (see FIG. 3). Furthermore, the rigidity (flexibility) of the bending portion 6 can be set as appropriate from the helical angle α (α1) and the helical pitch L (La) (further, the material of the pipe material and its plate thickness). In this way, by setting the width of the gap, not the flexibility depending on the spring property of the spiral structure, but the flexibility of bending with an operating force that brings the gap into close contact with each other is particularly suitable for the necessary tip direction. Demonstrated.
Generally, by setting the spiral angle α> α1 and the spiral pitch La> L, the distal end side of the bending portion 6 is more flexible than the proximal end side, and the proximal end side is relatively more rigid than the distal end side. Thus, excellent insertability and operability in the bending portion 6 of the endoscope insertion portion 4 can be obtained.

<第2の実施形態>
図4は、本発明の第2の実施形態を表し、この内視鏡挿入部4にあっては、可撓部5と湾曲部6をチタン合金等の高強度合金パイプ材を用いて一体的に形成する構成とするものであり、湾曲部6については上述した第1の実施形態と同様にレーザー加工を施し、また可撓部5に対しても湾曲部6と同様にレーザー加工により隙間を形成し、これにより螺旋状の可撓部5を形成する。ただし、可撓部5の隙間幅は、湾曲部6の隙間幅と比較して極小とし、これにより、可撓部5は湾曲部6と比較して大きな剛性を有する。
もちろん上記特徴の有る湾曲部6と可撓部5を一連一体に連続的に製造することも可能である。そして、可撓部5と湾曲部6を通じて、レーザー加工による隙間は、螺旋ピッチを先端側に向かって徐々に狭くするとともに、螺旋角度も徐々に大きくすることとする。これにより、可撓部と湾曲部を別体に構成して形成し、後で2つを接続するという手間が不要となるとともに、従来の可撓部と湾曲部の接続部分での柔軟性、剛性のぎこちない変化がなくなるものである。
実際にレーザ加工する際に制御するパラメータは、パイプ材の送り速度と回転速度であり、この2点の組み合わせにより多種多様な剛性パターンを実現できる。もちろん、レーザー加工以前に、パイプ材の材質、板厚の選定の段階においても、挿入部4の柔軟性、剛性をある範囲内で設定するものである。
この方法により、シンプルな構造で、安全、安価、優れた剛性バランスのとれた内視鏡挿入部4を提供することができる。
<Second Embodiment>
FIG. 4 shows a second embodiment of the present invention. In the endoscope insertion portion 4, the flexible portion 5 and the bending portion 6 are integrally formed using a high-strength alloy pipe material such as titanium alloy. The bending portion 6 is subjected to laser processing in the same manner as in the first embodiment, and the flexible portion 5 is also subjected to laser processing in the same manner as in the bending portion 6. The spiral flexible portion 5 is formed. However, the gap width of the flexible portion 5 is extremely small compared to the gap width of the curved portion 6, and thus the flexible portion 5 has greater rigidity than the curved portion 6.
Of course, it is also possible to continuously manufacture the curved portion 6 and the flexible portion 5 having the above-mentioned characteristics integrally and continuously. Then, through the flexible portion 5 and the bending portion 6, the gap due to laser processing gradually narrows the spiral pitch toward the tip side and gradually increases the spiral angle. As a result, the flexible portion and the bending portion are formed separately and formed, and the trouble of connecting the two later becomes unnecessary, and the flexibility at the connecting portion between the conventional flexible portion and the bending portion, The awkward change in rigidity is eliminated.
The parameters to be controlled when actually performing the laser processing are the feed speed and the rotational speed of the pipe material, and a variety of rigidity patterns can be realized by combining these two points. Of course, before the laser processing, the flexibility and rigidity of the insertion portion 4 are set within a certain range even at the stage of selecting the material and plate thickness of the pipe material.
By this method, it is possible to provide the endoscope insertion portion 4 with a simple structure, which is safe, inexpensive, and has an excellent rigidity balance.

<製造方法>
上述した構成からなる本実施形態の内視鏡挿入部の製造方法について、以下に詳述する。
チタン合金等の高強度合金製のパイプ材に対して、板厚方向に貫通するようにレーザー加工機からのレーザー光を当てて加工し、パイプ材の回転速度と送り速度とレーザー光のパワー等を制御することにより、パイプ材の外周に連続的に螺旋状の隙間を、それも先端に向かって隙間の幅が徐々に大きくなるように形成し、これにより螺旋状の湾曲部6が形成される。
そして、螺旋状の隙間をレーザー加工により形成するとともに、パイプ材の軸方向の一定間隔位置に、ワイヤガイドを形成するための切れ目をレーザー加工する。そして、この切れ目個所をプレス加工によりパイプ内に突出させて円弧状のワイヤガイド8を形成する。
その後、内視鏡挿入部4に対して適宜熱処理を施すものとする。このようにすることにより、湾曲部6を含む挿入部4の長手方向の剛性を自在に設定することができる。
<Manufacturing method>
A method for manufacturing the endoscope insertion portion of the present embodiment having the above-described configuration will be described in detail below.
Pipe material made of high-strength alloys such as titanium alloy is processed by applying laser light from a laser processing machine so that it penetrates in the thickness direction, pipe material rotation speed, feed speed, laser light power, etc. By controlling the above, a spiral gap is formed continuously on the outer periphery of the pipe material so that the width of the gap gradually increases toward the tip, thereby forming the spiral curved portion 6. The
Then, a spiral gap is formed by laser processing, and a cut for forming a wire guide is laser processed at a constant interval position in the axial direction of the pipe material. Then, the cut portion is protruded into the pipe by press working to form an arcuate wire guide 8.
Thereafter, the endoscope insertion portion 4 is appropriately heat treated. By doing in this way, the rigidity of the longitudinal direction of the insertion part 4 containing the curved part 6 can be set freely.

本発明の内視鏡挿入部は、医療機器を製造する産業において利用することができるものである。   The endoscope insertion portion of the present invention can be used in the industry for manufacturing medical devices.

1 内視鏡
4 挿入部
5 可撓部
6 湾曲部
7 先端部
8 ワイヤガイド
L、La 螺旋ピッチ
l、la 隙間幅
α、α1 螺旋角度
DESCRIPTION OF SYMBOLS 1 Endoscope 4 Insertion part 5 Flexible part 6 Bending part 7 Tip part 8 Wire guide L, La Spiral pitch l, la Crevice width α, α1 Spiral angle

Claims (5)

体腔内に挿入される先端側の湾曲部と基端側の可撓部とを備える挿入部を有する内視鏡において、パイプ材の外周に対し板厚方向にレーザ加工を施して螺旋状の隙間を形成し、パイプ材の長さ方向に対する前記隙間の螺旋角度を連続的に一方向に変化させるとともに、前記隙間の幅を連続的に一方向に変化させることにより、パイプ材の長さ方向の剛性が連続的に変化する湾曲部を備える挿入部を有することを特徴とする内視鏡。   In an endoscope having an insertion portion including a distal-end bending portion and a proximal-side flexible portion to be inserted into a body cavity, a spiral gap is formed by applying laser processing to the outer periphery of the pipe material in the plate thickness direction. The spiral angle of the gap with respect to the length direction of the pipe material is continuously changed in one direction, and the width of the gap is continuously changed in one direction. An endoscope having an insertion portion including a curved portion whose rigidity changes continuously. パイプ材の外周に形成する螺旋状の隙間は、そのピッチを先端方向に向かって小さくなるように変化させることを特徴とする請求項1記載の内視鏡。   2. The endoscope according to claim 1, wherein the pitch of the spiral gap formed on the outer periphery of the pipe material is changed so as to decrease toward the distal end. パイプ材の内周面には、内視鏡を湾曲操作するためのワイヤを通すワイヤガイドを設けることを特徴とする請求項1又は2記載の内視鏡。   The endoscope according to claim 1 or 2, wherein a wire guide for passing a wire for bending the endoscope is provided on an inner peripheral surface of the pipe member. 可撓部と湾曲部は、一つのパイプ材の外周に対し板厚方向にレーザ加工を施して螺旋状の隙間を形成することにより一体的に構成されることを特徴とする請求項1乃至3の何れかに記載の内視鏡。   4. The flexible portion and the bending portion are integrally configured by performing laser processing in the thickness direction on the outer periphery of one pipe material to form a spiral gap. The endoscope according to any one of the above. 体腔内に挿入される先端側の湾曲部と基端側の可撓部とを備える内視鏡挿入部の製造方法において、パイプ材の外周に対し板厚方向にレーザ加工を施して螺旋状の隙間を形成し、該隙間の長さ方向の螺旋角度を連続的に一方向に変化させるとともに、前記隙間の幅を連続的に一方向に変化させることにより、パイプ材の長さ方向の剛性が連続的に変化する湾曲部を形成することを特徴とする内視鏡挿入部の製造方法。   In a method of manufacturing an endoscope insertion portion including a distal end side bending portion and a proximal end side flexible portion to be inserted into a body cavity, laser processing is performed in a plate thickness direction on the outer periphery of a pipe material to form a spiral shape. By forming a gap and continuously changing the helical angle in the length direction of the gap in one direction and continuously changing the width of the gap in one direction, the rigidity of the pipe material in the length direction can be increased. A method of manufacturing an endoscope insertion portion, wherein a bending portion that changes continuously is formed.
JP2012235445A 2012-10-25 2012-10-25 Endoscope insertion part and manufacturing method thereof Expired - Fee Related JP5877779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012235445A JP5877779B2 (en) 2012-10-25 2012-10-25 Endoscope insertion part and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012235445A JP5877779B2 (en) 2012-10-25 2012-10-25 Endoscope insertion part and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014083284A true JP2014083284A (en) 2014-05-12
JP5877779B2 JP5877779B2 (en) 2016-03-08

Family

ID=50786928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012235445A Expired - Fee Related JP5877779B2 (en) 2012-10-25 2012-10-25 Endoscope insertion part and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5877779B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109316157A (en) * 2018-10-11 2019-02-12 苏州中科先进技术研究院有限公司 A kind of two-way snake bone and endoscope of unilateral driving

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192858A (en) * 1996-01-11 1997-07-29 Olympus Optical Co Ltd Manufacture of flexible pipe and device therefor
JP2009532085A (en) * 2006-03-31 2009-09-10 ボストン サイエンティフィック リミテッド Flexible endoscope with variable stiffness shaft
JP2009247624A (en) * 2008-04-07 2009-10-29 Olympus Medical Systems Corp Endoscope, connection method of flexible section and bending section in endoscope, production method of endoscope provided with this connection method, endoscope overtube, connection method of flexible section and bending section in endoscope overtube, and production method of endoscope overtube provided with this connection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192858A (en) * 1996-01-11 1997-07-29 Olympus Optical Co Ltd Manufacture of flexible pipe and device therefor
JP2009532085A (en) * 2006-03-31 2009-09-10 ボストン サイエンティフィック リミテッド Flexible endoscope with variable stiffness shaft
JP2009247624A (en) * 2008-04-07 2009-10-29 Olympus Medical Systems Corp Endoscope, connection method of flexible section and bending section in endoscope, production method of endoscope provided with this connection method, endoscope overtube, connection method of flexible section and bending section in endoscope overtube, and production method of endoscope overtube provided with this connection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109316157A (en) * 2018-10-11 2019-02-12 苏州中科先进技术研究院有限公司 A kind of two-way snake bone and endoscope of unilateral driving

Also Published As

Publication number Publication date
JP5877779B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5981080B1 (en) Endoscope bending tube and endoscope provided with the endoscope bending tube
JP5409655B2 (en) Steerable tube
JP5336786B2 (en) Treatment device
WO2015125334A1 (en) Endoscope curved tube
JP2016530968A (en) Laparoscopic forceps assembly
JP5993535B2 (en) Endoscope bending portion and endoscope provided with the endoscope bending portion
JP6061341B2 (en) Guide wire
JP6072384B1 (en) Treatment tool
WO2017216835A1 (en) Medical device
KR20230107330A (en) Maneuverable arm for use in endoscopic surgical procedures
JP2008220971A (en) Treatment instrument
JP5877779B2 (en) Endoscope insertion part and manufacturing method thereof
JP6405274B2 (en) Guide wire
JP2019000215A5 (en)
JP5132846B2 (en) Endoscopic treatment tool
JP5896480B2 (en) Guide wire
JP2018033501A (en) Treatment tool for endoscope
CN107530076A (en) Flexible staple guiding piece
JP2015070896A (en) Shaft and guide wire using the shaft
JP6697291B2 (en) Endoscope bending tube
JP6028136B1 (en) Endoscope
WO2017013908A1 (en) Endoscope
JP4390510B2 (en) Endoscopic high-frequency snare
JP2020525066A5 (en)
WO2016199478A1 (en) Endoscope

Legal Events

Date Code Title Description
A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20140401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160126

R150 Certificate of patent or registration of utility model

Ref document number: 5877779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees