JP2014082882A - Magnet embedded type rotor and method of manufacturing magnet embedded type rotor - Google Patents

Magnet embedded type rotor and method of manufacturing magnet embedded type rotor Download PDF

Info

Publication number
JP2014082882A
JP2014082882A JP2012230006A JP2012230006A JP2014082882A JP 2014082882 A JP2014082882 A JP 2014082882A JP 2012230006 A JP2012230006 A JP 2012230006A JP 2012230006 A JP2012230006 A JP 2012230006A JP 2014082882 A JP2014082882 A JP 2014082882A
Authority
JP
Japan
Prior art keywords
rotor
core
magnet
embedded
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012230006A
Other languages
Japanese (ja)
Inventor
Naotake Kanda
尚武 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2012230006A priority Critical patent/JP2014082882A/en
Publication of JP2014082882A publication Critical patent/JP2014082882A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnet embedded type rotor capable of securing output torque of a motor although a rotor core comprises a plurality of split cores.SOLUTION: A magnet embedded type rotor includes a cylindrical rotor core and a permanent magnet 42 embedded in the rotor core. The rotor core has a split core 41, having an N pole on an outer peripheral side, and a split core 41, having an S pole on the outer peripheral side, alternately in a peripheral direction. Here the split core 41 is so molded as to satisfy "α>360°/n", where α is the angle "°" that both end faces in the peripheral direction contain and "n" is the number of split cores 41.

Description

本発明は、磁石埋込型ロータ、及びその製造方法に関する。   The present invention relates to a magnet-embedded rotor and a manufacturing method thereof.

近年、ロータの内部に永久磁石を埋め込んだ構造からなるモータ(Interior Permanent Magnet Motor、IPMモータ)が知られている。このIPMモータに用いられるロータとしては、特許文献1に記載のロータがある。   In recent years, a motor (Internal Permanent Magnet Motor, IPM motor) having a structure in which a permanent magnet is embedded in a rotor is known. As a rotor used in this IPM motor, there is a rotor described in Patent Document 1.

特許文献1に記載のロータは、複数の磁石挿入孔が形成された円筒状のロータコア、及びロータコアに埋め込まれた複数の永久磁石を備えている。ロータコアは、略扇状をなす複数の分割コアにより周方向に等角度間隔で分割されて構成されている。互いに隣接する分割コアの対向面には、嵌合可能な凹部及び凸部からなる嵌合部が形成されており、この嵌合部を通じて、隣接する分割コアが互いに周方向に連結されている。こうした嵌合構造を通じて全ての分割コアが円筒状に組み付けられることでロータコアが構成されている。   The rotor described in Patent Document 1 includes a cylindrical rotor core in which a plurality of magnet insertion holes are formed, and a plurality of permanent magnets embedded in the rotor core. The rotor core is configured to be divided at equal angular intervals in the circumferential direction by a plurality of divided cores having a substantially fan shape. A fitting portion including a concave portion and a convex portion that can be fitted is formed on opposing surfaces of the divided cores adjacent to each other, and the adjacent divided cores are connected to each other in the circumferential direction through the fitting portion. The rotor core is configured by assembling all the divided cores into a cylindrical shape through such a fitting structure.

特開2002−262496号公報Japanese Patent Laid-Open No. 2002-262496

ところで、特許文献1に記載のロータのように互いに隣接する分割コアを嵌合部を用いて結合した場合、それらの対向面を密着させることが難しく、隣接する分割コア間に空隙が形成されてしまう。こうした空隙が、ロータにおいて各磁極を構成する永久磁石間に存在すると、それがロータの磁気回路にとって大きな磁気抵抗となるため、ロータから発せられる磁束量が減少してしまう。これがモータの出力トルクを低下させる要因となっている。   By the way, when the split cores adjacent to each other are coupled using the fitting portion as in the rotor described in Patent Document 1, it is difficult to closely contact the facing surfaces, and a gap is formed between the adjacent split cores. End up. If such a gap exists between the permanent magnets constituting the magnetic poles in the rotor, it becomes a large magnetic resistance for the magnetic circuit of the rotor, so that the amount of magnetic flux generated from the rotor is reduced. This is a factor that reduces the output torque of the motor.

本発明は、こうした実情に鑑みてなされたものであり、その目的は、ロータコアを複数の分割コアで構成しながらも、モータの出力トルクを確保できる磁石埋込型ロータ、及びその製造方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a magnet-embedded rotor that can secure the output torque of the motor while the rotor core is composed of a plurality of divided cores, and a method for manufacturing the same. There is to do.

上記課題を解決するために、円筒状のロータコアと、前記ロータコアに埋め込まれる複数の永久磁石と、を備え、前記ロータコアが、外周側にN極を有する分割コア、及び外周側にS極を有する分割コアを周方向に交互に有してなる磁石埋込型ロータにおいて、前記分割コアを、その周方向両端面のなす角をα[°]、分割コアの個数をnとするとき、次式「α>360°/n」なる関係を満たすように成形することとした。   In order to solve the above problems, a cylindrical rotor core and a plurality of permanent magnets embedded in the rotor core are provided, and the rotor core has a split core having an N pole on the outer peripheral side, and an S pole on the outer peripheral side. In a magnet embedded rotor having divided cores alternately in the circumferential direction, when the angle between the circumferential ends of the divided core is α [°] and the number of divided cores is n, Molding was performed so as to satisfy the relationship of “α> 360 ° / n”.

磁石埋込型ロータにおいて各磁極を構成する永久磁石間の磁束密度は、ロータコアの内周側よりもその外周側の方が高い。したがって、各磁極を構成する永久磁石間のロータコア外周側に空隙が存在すると、それがロータの磁気回路にとって大きな磁気抵抗となり易い。換言すれば、各磁極をなす永久磁石間のロータコア外周側に存在する空隙を少なくできれば、ロータの磁気抵抗を小さくできる。この点、上記構成によれば、複数の分割コアを組み付けて円筒状のロータコアを成形したとき、隣接する分割コア同士がロータコア外周側で接触し易くなるため、各磁極をなす永久磁石間に分割コアの境界線が存在する構造であっても、永久磁石間のロータコア外周側に空隙が形成され難くなる。これによりロータから発せられる磁束量の低下を抑制できるため、モータの出力トルクを確保できる。   The magnetic flux density between the permanent magnets constituting each magnetic pole in the magnet-embedded rotor is higher on the outer peripheral side than on the inner peripheral side of the rotor core. Therefore, if a gap exists on the outer periphery side of the rotor core between the permanent magnets constituting each magnetic pole, it tends to be a large magnetic resistance for the magnetic circuit of the rotor. In other words, the magnetic resistance of the rotor can be reduced if the gap existing on the outer periphery side of the rotor core between the permanent magnets forming the magnetic poles can be reduced. In this regard, according to the above configuration, when a plurality of divided cores are assembled to form a cylindrical rotor core, adjacent divided cores are easily brought into contact with each other on the outer periphery side of the rotor core. Even in the structure where the boundary line of the core exists, it is difficult to form a gap on the outer periphery side of the rotor core between the permanent magnets. Thereby, since the fall of the magnetic flux amount emitted from a rotor can be suppressed, the output torque of a motor is securable.

上記磁石埋込型ロータについて、前記分割コアを、隣接する分割コアと前記ロータコアの外周側で接触して且つ、前記ロータコアの内周側の端部で離間するように設けることが好ましい。   In the magnet-embedded rotor, the divided cores are preferably provided so as to be in contact with the adjacent divided cores on the outer peripheral side of the rotor core and to be separated at the end on the inner peripheral side of the rotor core.

この構成によれば、分割コア同士をロータコア外周側で確実に接触させることができるため、各磁極をなす永久磁石間のロータコア外周側に空隙が更に形成され難くなる。これによりロータから発せられる磁束量の低下を更に抑制できるため、モータの出力トルクが向上する。   According to this configuration, since the split cores can be reliably brought into contact with each other on the outer periphery side of the rotor core, it is difficult to further form a gap on the outer periphery side of the rotor core between the permanent magnets forming the magnetic poles. Thereby, since the fall of the amount of magnetic flux emitted from a rotor can further be controlled, the output torque of a motor improves.

上記磁石埋込型ロータについて、前記ロータコアの外周に設けられて前記複数の分割コアを円筒状に固定する円筒状部材を更に備えることが好ましい。
この構成によれば、複数の分割コアを円筒状に組み合わせた後、それらの外周を円筒状部材で固定するだけで円筒状のロータを容易に成形できる。
The magnet-embedded rotor preferably further includes a cylindrical member that is provided on the outer periphery of the rotor core and fixes the plurality of divided cores in a cylindrical shape.
According to this configuration, after combining a plurality of divided cores into a cylindrical shape, a cylindrical rotor can be easily formed by simply fixing the outer periphery thereof with a cylindrical member.

上記磁石埋込型ロータの製造方法について、磁石用磁性部材が埋め込まれた複数の分割コアを用意し、前記磁石用磁性部材を着磁して前記永久磁石とする着磁工程を前記複数の分割コア毎に行った後、前記着磁工程を経た複数の分割コアを円筒状に組み合わせて前記ロータコアを成形することが好ましい。   For the above-described magnet-embedded rotor manufacturing method, a step of preparing a plurality of divided cores with magnet magnetic members embedded therein and magnetizing the magnet magnetic members to form the permanent magnet After performing every core, it is preferable to form the rotor core by combining a plurality of divided cores that have undergone the magnetizing step into a cylindrical shape.

この製造方法のように複数の分割コア毎に着磁を行えば、分割コアの周方向両端面や内周面側に着磁装置を配置できるため、分割コアの内周側に十分な磁束を通すことができる。これにより、磁石用磁性部材のロータコア内周側に位置する部分を着磁し易くなるため、ロータから発せられる磁束を増やすことができる。その結果、モータの出力トルクを高めることができる。   If magnetization is performed for each of the plurality of divided cores as in this manufacturing method, a magnetizing device can be disposed on both end surfaces in the circumferential direction and on the inner peripheral surface side of the divided cores. Can pass through. Thereby, since it becomes easy to magnetize the part located in the rotor core inner peripheral side of the magnetic member for magnets, the magnetic flux emitted from a rotor can be increased. As a result, the output torque of the motor can be increased.

上記磁石埋込型ロータについて、前記着磁工程としては、前記分割コアの周方向両端面及びその内周面を着磁用磁性部材で覆い、前記分割コアの外周面を覆うように着磁ヨークを配置した後、前記着磁ヨークに巻回されたコイルへの通電に基づき前記磁石用磁性部材を着磁することが好ましい。   In the magnet-embedded rotor, the magnetizing yoke includes a magnetizing yoke that covers both the circumferential end surfaces of the split core and the inner peripheral surface thereof with a magnetizing magnetic member, and covers the outer peripheral surface of the split core. It is preferable to magnetize the magnet magnetic member based on energization of a coil wound around the magnetizing yoke.

この製造方法によれば、磁石用磁性部材のロータコア内周側に位置している部分を的確に着磁できる。   According to this manufacturing method, the part located in the rotor core inner peripheral side of the magnetic member for magnets can be magnetized exactly.

このような磁石埋込型ロータ、及びその製造方法によれば、ロータコアを複数の分割コアで構成しながらも、モータの出力トルクを確保できる。   According to such a magnet-embedded rotor and a manufacturing method thereof, the output torque of the motor can be ensured while the rotor core is constituted by a plurality of divided cores.

磁石埋込型ロータの一実施形態について同ロータを用いたIPMモータの断面構造を示す断面図。Sectional drawing which shows the cross-section of the IPM motor using the rotor about one Embodiment of a magnet embedded type rotor. 図1の領域Aの拡大断面構造を示す断面図。Sectional drawing which shows the expanded sectional structure of the area | region A of FIG. 実施形態の磁石埋込型ロータについてそのロータコアを構成する分割コアの平面構造を示す平面図。The top view which shows the planar structure of the split core which comprises the rotor core about the magnet embedded type rotor of embodiment. (a)は、実施形態の磁石埋込型ロータの製造方法について分割コアに埋め込まれた磁石用磁性部材を着磁する工程を示す断面図。(b)は、4つの分割コアの外周に円筒状部材を固着する工程を示す平面図。(A) is sectional drawing which shows the process of magnetizing the magnetic member for magnets embedded in the division | segmentation core about the manufacturing method of the magnet embedded type rotor of embodiment. (B) is a top view which shows the process of adhering a cylindrical member to the outer periphery of four division | segmentation cores.

以下、磁石埋込型ロータの一実施形態について説明する。はじめに、図1を参照して、本実施形態の磁石埋込型ロータを用いたIPMモータの構造について説明する。
図1に示すように、このIPMモータは、ハウジング1の内周面に固定された円筒状のステータ2、図示しない軸受けを介してハウジング1により回転可能に支持される出力軸3、及び出力軸3の外周に一体的に取り付けられるロータ4を備えている。
Hereinafter, an embodiment of an embedded magnet rotor will be described. First, the structure of an IPM motor using the magnet-embedded rotor of this embodiment will be described with reference to FIG.
As shown in FIG. 1, this IPM motor includes a cylindrical stator 2 fixed to the inner peripheral surface of a housing 1, an output shaft 3 rotatably supported by the housing 1 via a bearing (not shown), and an output shaft. 3 is provided with a rotor 4 that is integrally attached to the outer periphery of 3.

ステータ2は、その軸方向に複数枚の電磁鋼板を積層した構造からなる。ステータ2の内周面には、径方向内側に向かって延びる6個のティース20が形成されている。各ティース20にはステータコイル21が巻回されている。   The stator 2 has a structure in which a plurality of electromagnetic steel plates are laminated in the axial direction. Six teeth 20 extending radially inward are formed on the inner peripheral surface of the stator 2. A stator coil 21 is wound around each tooth 20.

ロータ4は、その軸方向に複数枚の電磁鋼板を積層した構造からなる円筒状のロータコア40、及びロータコア40の内部に埋め込まれた略U字状の4つの永久磁石42を備えている。   The rotor 4 includes a cylindrical rotor core 40 having a structure in which a plurality of electromagnetic steel plates are laminated in the axial direction, and four substantially U-shaped permanent magnets 42 embedded in the rotor core 40.

ロータコア40は、その軸方向に直交する方向の断面が略扇形状をなす4つの分割コア41により等角度間隔で分割されて構成されている。各分割コア41には、永久磁石42が挿入される略U字状の磁石挿入孔43が軸方向に貫通するようにして形成されている。各分割コア41は、磁石挿入孔43に挿入された永久磁石42により外周側にN極及びS極のいずれかの磁極を有している。そしてロータコア40は、外周側にN極を有する分割コア41、及び外周側にS極を有する分割コア41が周方向に交互に配置された4極構造を有している。   The rotor core 40 is configured such that a cross section in a direction orthogonal to the axial direction is divided at equal angular intervals by four divided cores 41 having a substantially fan shape. Each split core 41 is formed with a substantially U-shaped magnet insertion hole 43 into which the permanent magnet 42 is inserted so as to penetrate in the axial direction. Each divided core 41 has a magnetic pole of either an N pole or an S pole on the outer peripheral side by a permanent magnet 42 inserted into the magnet insertion hole 43. The rotor core 40 has a four-pole structure in which split cores 41 having N poles on the outer peripheral side and split cores 41 having S poles on the outer peripheral side are alternately arranged in the circumferential direction.

ロータコア40の外周には円筒状部材44が焼き嵌めされており、この円筒状部材44により4つの分割コア41が円筒状に組み合わされた状態で固定されている。また、図中の一点鎖線で囲まれた領域Aの拡大図を図2に示すように、隣接する2つの分割コア41は、ロータコア40の外周側で接触して且つ、ロータコア40の内周側の端部で離間するように設けられている。なお円筒状部材44には、磁束の漏洩を防ぐために、SUS等の非磁性の金属材料が用いられている。   A cylindrical member 44 is shrink-fitted around the outer periphery of the rotor core 40, and the four divided cores 41 are fixed in a cylindrical combination by the cylindrical member 44. Further, as shown in FIG. 2 which is an enlarged view of the region A surrounded by the one-dot chain line in the figure, the adjacent two split cores 41 are in contact with the outer peripheral side of the rotor core 40 and the inner peripheral side of the rotor core 40 Are provided so as to be separated from each other at the end. The cylindrical member 44 is made of a nonmagnetic metal material such as SUS in order to prevent leakage of magnetic flux.

このように構成されたモータでは、図1に示すステータコイル21に三相の励磁電流が供給されると、ステータ2により回転磁界が形成される。この回転磁界に基づいてロータ4の内部の永久磁石42が吸引されることによりロータ4にトルクが付与され、出力軸3が回転する。   In the motor configured as described above, when a three-phase excitation current is supplied to the stator coil 21 shown in FIG. 1, a rotating magnetic field is formed by the stator 2. Torque is applied to the rotor 4 by attracting the permanent magnet 42 inside the rotor 4 based on this rotating magnetic field, and the output shaft 3 rotates.

次に、本実施形態のロータ4の作用について説明する。
図2に示すように、ロータ4において周方向に並ぶ2つの永久磁石42間の磁束密度は、ロータコア40の内周側よりもその外周側の方が高い。したがって、周方向に並ぶ2つの永久磁石42間のロータコア外周側に空隙が存在すると、それがロータ4の磁気回路にとって大きな磁気抵抗となり易い。換言すれば、周方向に並ぶ2つの永久磁石42間のロータコア外周側に存在する空隙を少なくできれば、ロータ4の磁気抵抗を小さくできる。
Next, the operation of the rotor 4 of this embodiment will be described.
As shown in FIG. 2, the magnetic flux density between the two permanent magnets 42 arranged in the circumferential direction in the rotor 4 is higher on the outer peripheral side than on the inner peripheral side of the rotor core 40. Therefore, if there is a gap on the outer periphery side of the rotor core between the two permanent magnets 42 arranged in the circumferential direction, it tends to be a large magnetic resistance for the magnetic circuit of the rotor 4. In other words, the magnetic resistance of the rotor 4 can be reduced if the gap existing on the outer periphery side of the rotor core between the two permanent magnets 42 arranged in the circumferential direction can be reduced.

この点、本実施形態では、隣接する分割コア41がロータコア外周側で密着しているため、2つの永久磁石42間に分割コア41の境界線が存在する構造であっても、2つの永久磁石42間のロータコア外周側に空隙が形成され難くなる。これによりロータ4から発せられる磁束量の低下を抑制できるため、モータの出力トルクを確保できる。   In this respect, in the present embodiment, since the adjacent divided cores 41 are in close contact with each other on the outer periphery side of the rotor core, even if the boundary line of the divided core 41 exists between the two permanent magnets 42, the two permanent magnets It becomes difficult to form a gap on the outer periphery side of the rotor core between 42. Thereby, since the fall of the amount of magnetic flux emitted from the rotor 4 can be suppressed, the output torque of a motor is securable.

次に、ロータ4の製造方法についてその作用とともに説明する。はじめに図3を参照して分割コア41の形状について詳述する。なお図3では、ロータコア40の中心軸をO、ロータコア40の外径をD、ロータコア40の内径をdでそれぞれ示している。また、ロータ4の中心軸Oを中心とし、中心角を90°、外径をDとする扇形の外形を二点鎖線で示している。   Next, a method for manufacturing the rotor 4 will be described together with its operation. First, the shape of the split core 41 will be described in detail with reference to FIG. In FIG. 3, the central axis of the rotor core 40 is indicated by O, the outer diameter of the rotor core 40 is indicated by D, and the inner diameter of the rotor core 40 is indicated by d. A fan-shaped outer shape centered on the central axis O of the rotor 4 with a central angle of 90 ° and an outer diameter of D is indicated by a two-dot chain line.

図3に示すように、分割コア41は、その外径側円弧直線距離をL1、その内径側円弧直線距離をL2、ロータ4の極数をpとするとき、次式(1),(2)を満たす形状を有している。   As shown in FIG. 3, the split core 41 has the following equations (1), (2), where L1 is the outer arc-side arc linear distance, L2 is the inner-arc linear distance, and p is the number of poles of the rotor 4. It has a shape satisfying.

L1>2×D/2×sin(360°/(2×p))・・・(1)
L2<2×d/2×sin(360°/(2×p))・・・(2)
ここで、本実施形態ではロータ4の極数が4極であるため、分割コア41は、次式(3),(4)を満たす形状を有している。
L1> 2 × D / 2 × sin (360 ° / (2 × p)) (1)
L2 <2 × d / 2 × sin (360 ° / (2 × p)) (2)
Here, in this embodiment, since the number of poles of the rotor 4 is 4, the split core 41 has a shape that satisfies the following expressions (3) and (4).

L1>D×√2・・・(3)
L2<d×√2・・・(4)
換言すれば、分割コア41は、その周方向両端面のなす角をα「°」、ロータ4を構成する分割コア41の個数をnとするとき、次式(5)を満たす形状を有している。
L1> D × √2 (3)
L2 <d × √2 (4)
In other words, the split core 41 has a shape that satisfies the following expression (5), where α “°” is an angle formed by both circumferential end surfaces, and n is the number of the split cores 41 constituting the rotor 4. ing.

α>360°/n・・・(5)
ここで、本実施形態ではロータ4を構成する分割コア41の個数が4個であるため、分割コア41は、次式(6)を満たす形状を有している。
α> 360 ° / n (5)
Here, in this embodiment, since the number of the split cores 41 constituting the rotor 4 is four, the split cores 41 have a shape that satisfies the following expression (6).

α>90°・・(6)
次に、図3及び図4を参照してロータ4の製造方法について説明する。
ロータ4の製造に際してはまず、図3に示すような形状を有する分割コア41を4つ成形し、それらの磁石挿入孔43に着磁前の磁石用磁性部材45を埋め込む。磁石用磁性部材45としては、例えばボンド磁石や焼結磁石などが用いられる。
α> 90 ° (6)
Next, a method for manufacturing the rotor 4 will be described with reference to FIGS.
When manufacturing the rotor 4, first, four divided cores 41 having a shape as shown in FIG. 3 are formed, and the magnet magnetic member 45 before magnetizing is embedded in the magnet insertion holes 43. As the magnet magnetic member 45, for example, a bond magnet or a sintered magnet is used.

続いて、図4(a)に示すような着磁装置5を用いて分割コア41毎に磁石用磁性部材45の着磁を行う。着磁装置5は、分割コア41が載置される台座50、及びコイル51が巻回された着磁ヨーク52からなる。   Subsequently, the magnet magnetic member 45 is magnetized for each divided core 41 using the magnetizing device 5 as shown in FIG. The magnetizing device 5 includes a pedestal 50 on which the split core 41 is placed, and a magnetizing yoke 52 around which a coil 51 is wound.

台座50は、例えば鉄などの磁性部材からなる。本実施形態では、台座50が着磁用磁性部材となっている。台座50の上面には、分割コア41の周方向両端面及びその内周面を覆うことが可能な凹部50aが形成されている。   The pedestal 50 is made of a magnetic member such as iron. In the present embodiment, the pedestal 50 is a magnetic member for magnetization. On the upper surface of the pedestal 50, recesses 50 a that can cover both end surfaces in the circumferential direction of the split core 41 and the inner peripheral surface thereof are formed.

そして、磁石用磁性部材45の着磁を行う際には、図中に示すように台座50の凹部50aに分割コア41を載置した後、分割コア41の外周面を覆うように着磁ヨーク52を配置する。この状態でコイル51への通電を行うと、図中に矢印で示すように着磁ヨーク52から発せられる磁束が分割コア41の外周面からその周方向両端面及び内周面を通過して台座50へと流れ、磁石用磁性部材45が着磁される。こうした着磁工程を4つの分割コア41毎に行うことで、永久磁石42が埋め込まれた4つの分割コア41の成形が完了する。   And when magnetizing the magnetic member 45 for magnets, as shown in the figure, after placing the split core 41 in the recess 50a of the pedestal 50, the magnetized yoke so as to cover the outer peripheral surface of the split core 41 52 is arranged. When the coil 51 is energized in this state, the magnetic flux generated from the magnetized yoke 52 passes from the outer peripheral surface of the split core 41 through the circumferential end surfaces and the inner peripheral surface as indicated by the arrows in the figure, and the pedestal. The magnet magnetic member 45 is magnetized. By performing such a magnetization process for each of the four divided cores 41, the molding of the four divided cores 41 with the permanent magnets 42 embedded therein is completed.

次いで、図4(b)に示すように、4つの分割コア41を、それらの周方向両端面の外周端を接触させながら円環状に配置する。そして、これら4つの分割コア41の外周に円筒状部材44を焼き嵌めすることにより、4つの分割コア41の外周に円筒状部材44を固着させる。   Next, as shown in FIG. 4B, the four divided cores 41 are arranged in an annular shape while contacting the outer peripheral ends of both circumferential end surfaces thereof. The cylindrical member 44 is fixed to the outer periphery of the four divided cores 41 by shrink-fitting the cylindrical member 44 to the outer periphery of the four divided cores 41.

具体的には、円筒状部材44を予め加熱膨張させておき、その内径を、円筒状に配置した4つの分割コア41の外径よりも大きくしておく。そして、加熱膨張した円筒状部材44を、円筒状に配置された4つの分割コア41の外周に外嵌する。その後、円筒状部材44が自然冷却により図中に矢印で示すように縮径すると、その過程で円筒状部材44が各分割コア41の外周面を中心に向かって押圧する。これにより、隣接する分割コア41のそれぞれの対向面はロータコア外周側から密着していく。そして、円筒状部材44の冷却が完了すると、4つの分割コア41の外周に円筒状部材44が固着され、円筒状のロータ4が完成する。   Specifically, the cylindrical member 44 is heated and expanded in advance, and the inner diameter thereof is made larger than the outer diameters of the four divided cores 41 arranged in a cylindrical shape. Then, the heated and expanded cylindrical member 44 is fitted on the outer periphery of the four divided cores 41 arranged in a cylindrical shape. Thereafter, when the diameter of the cylindrical member 44 is reduced by natural cooling as indicated by an arrow in the drawing, the cylindrical member 44 presses the outer peripheral surface of each divided core 41 toward the center in the process. Thereby, each opposing surface of the adjacent division | segmentation core 41 closely_contact | adheres from a rotor core outer peripheral side. When the cooling of the cylindrical member 44 is completed, the cylindrical member 44 is fixed to the outer periphery of the four divided cores 41, and the cylindrical rotor 4 is completed.

このような製造方法によれば、図1及び図2に示したロータ4を容易に製造できる。
一方、従来のロータでは、埋め込まれた磁石用磁性部材を着磁する際、ロータの外周面外側に着磁装置を配置し、そこから発せられる磁束により磁石用磁性部材を着磁するという方法が用いられている。しかしながら、このような着磁方法の場合、ロータの内周側に十分な磁束を通すことができず、磁石用磁性部材のロータコア内周側に位置する部分を着磁することが困難であった。
According to such a manufacturing method, the rotor 4 shown in FIGS. 1 and 2 can be easily manufactured.
On the other hand, in a conventional rotor, when magnetizing an embedded magnetic member for a magnet, a magnetizing device is disposed outside the outer peripheral surface of the rotor, and the magnetic member for a magnet is magnetized by a magnetic flux generated therefrom. It is used. However, in the case of such a magnetizing method, it is difficult to pass a sufficient magnetic flux on the inner peripheral side of the rotor, and it is difficult to magnetize a portion located on the inner peripheral side of the rotor core of the magnet magnetic member. .

この点、図4(a)に示したように分割コア41毎に着磁を行うという製造方法を採用すれば、分割コア41の周方向両端面や内周面を覆うように台座50を配置できるため、分割コア41の内周側に十分な磁束を通すことができる。これにより、磁石用磁性部材45のロータコア内周側に位置する部分を着磁し易くなるため、ロータ4から発せられる磁束が従来の着磁方法を用いる場合と比較して増加する。その結果、モータの出力トルクを高めることができる。   In this regard, if the manufacturing method of performing magnetization for each divided core 41 as shown in FIG. 4A is employed, the pedestal 50 is arranged so as to cover both circumferential end surfaces and the inner peripheral surface of the divided core 41. Therefore, a sufficient magnetic flux can be passed through the inner peripheral side of the split core 41. This makes it easy to magnetize the portion of the magnet magnetic member 45 located on the inner periphery side of the rotor core, so that the magnetic flux generated from the rotor 4 increases as compared with the case where the conventional magnetizing method is used. As a result, the output torque of the motor can be increased.

以上説明したように、本実施形態の磁石埋込型ロータ4及びその製造方法によれば以下の効果が得られる。
(1)ロータコア40を構成する各分割コア41を、隣接する分割コア41とロータコア外周側で接触させて且つ、ロータコア内周側の端部で離間して設けることとした。これにより、ロータ4において各磁極を構成する2つの永久磁石42間に分割コア41の境界線が存在する構造であっても、ロータ4から発せられる磁束量の低下を抑制できるため、モータの出力トルクを確保できる。
As described above, according to the embedded magnet rotor 4 and the manufacturing method thereof of the present embodiment, the following effects can be obtained.
(1) Each divided core 41 constituting the rotor core 40 is provided in contact with the adjacent divided core 41 on the outer periphery side of the rotor core and separated from the end portion on the inner periphery side of the rotor core. As a result, even if the boundary line of the split core 41 exists between the two permanent magnets 42 constituting each magnetic pole in the rotor 4, it is possible to suppress a decrease in the amount of magnetic flux emitted from the rotor 4. Torque can be secured.

(2)分割コア41を上記式(1),(2)を満たすように、あるいは上記式(5)を満たすように成形することとした。これにより、隣接する分割コア41をロータコア外周側で接触させて且つ、ロータコア内周側で離間させるという構造を容易に実現できる。   (2) The split core 41 is molded so as to satisfy the above formulas (1) and (2) or so as to satisfy the above formula (5). Thereby, the structure which makes the adjacent division | segmentation core 41 contact on the rotor core outer peripheral side, and is spaced apart on the rotor core inner peripheral side is easily realizable.

(3)ロータコア40の外周には、4つの分割コア41を円筒状に固定する円筒状部材44を設けることとした。これにより、4つの分割コア41を円筒状に組み合わせた後、それらの外周を円筒状部材44で固定するだけで円筒状のロータ4を容易に成形できる。   (3) The outer periphery of the rotor core 40 is provided with a cylindrical member 44 that fixes the four divided cores 41 in a cylindrical shape. Thereby, after combining the four split cores 41 in a cylindrical shape, the cylindrical rotor 4 can be easily formed simply by fixing the outer periphery thereof with the cylindrical member 44.

(4)ロータ4の製造の際、磁石用磁性部材45が埋め込まれた4つの分割コア41を用意し、磁石用磁性部材45を着磁して永久磁石42とする着磁工程を4つの分割コア41毎に行うこととした。そして、着磁工程を経た4つの分割コア41を円筒状に組み合わせてロータ4を成形することとした。これにより、従来の着磁方法を用いる場合と比較するとロータ4から発せられる磁束が増加するため、モータの出力トルクを高めることができる。また、モータの小型化も期待できる。   (4) When the rotor 4 is manufactured, four divided cores 41 in which the magnet magnetic member 45 is embedded are prepared, and the magnetizing process of magnetizing the magnet magnetic member 45 to make the permanent magnet 42 is divided into four. The determination was made for each core 41. Then, the rotor 4 is formed by combining the four divided cores 41 that have undergone the magnetizing step into a cylindrical shape. Thereby, compared with the case where the conventional magnetization method is used, since the magnetic flux emitted from the rotor 4 increases, the output torque of the motor can be increased. In addition, miniaturization of the motor can be expected.

(5)着磁工程では、磁性部材からなる台座50により分割コア41の周方向両端面及びその内周面を覆い、分割コア41の外周面を覆うように着磁ヨーク52を配置した後、着磁ヨーク52に巻回されたコイル51への通電に基づき分割コア41の内部の磁石用磁性部材45を着磁することとした。これにより、磁石用磁性部材45のロータコア内周側に位置する部分を的確に着磁できる。   (5) In the magnetizing step, the both ends in the circumferential direction of the split core 41 and the inner peripheral surface thereof are covered with the pedestal 50 made of a magnetic member, and the magnetized yoke 52 is disposed so as to cover the outer peripheral surface of the split core 41. The magnet magnetic member 45 inside the split core 41 is magnetized based on energization of the coil 51 wound around the magnetizing yoke 52. Thereby, the part located in the rotor core inner peripheral side of the magnetic member 45 for magnets can be magnetized correctly.

なお、上記実施形態は、これを適宜変更した以下の形態にて実施することもできる。
・上記実施形態では、分割コア41にU字状の永久磁石42を埋め込むこととしたが、これに代えて、例えばV字状の永久磁石やコ字状の永久磁石を分割コア41に埋め込んでもよい。また、一つの分割コア41に複数の永久磁石を埋め込み、それら複数の永久磁石により分割コアの外周にN極及びS極を形成してもよい。
In addition, the said embodiment can also be implemented with the following forms which changed this suitably.
In the above embodiment, the U-shaped permanent magnet 42 is embedded in the split core 41. Alternatively, for example, a V-shaped permanent magnet or a U-shaped permanent magnet may be embedded in the split core 41. Good. Further, a plurality of permanent magnets may be embedded in one divided core 41, and the N pole and the S pole may be formed on the outer periphery of the divided core by the plurality of permanent magnets.

・上記実施形態では、着磁方法として図4(a)に例示した方法を採用したが、分割コア41に埋め込まれる永久磁石の形状によっては、着磁方法を適宜変更してもよい。また、着磁方法の変更に伴い、着磁装置5の形状を適宜変更してもよい。要は、ロータ4の製造の際に分割コア41毎に着磁を行うものであればよい。   In the above embodiment, the method illustrated in FIG. 4A is adopted as the magnetization method, but the magnetization method may be appropriately changed depending on the shape of the permanent magnet embedded in the split core 41. Moreover, you may change the shape of the magnetizing apparatus 5 suitably with the change of the magnetization method. In short, what is necessary is just to magnetize every division | segmentation core 41 in the case of manufacture of the rotor 4. FIG.

・上記実施形態では、ロータコア40の外周に円筒状部材44を焼き嵌めすることにより分割コア41を円筒状に固定したが、分割コア41の固定方法は焼き嵌めに限定されるわけではない。例えばロータコア40の外周に円筒状部材44を圧入するなどして4つの分割コア41を固定してもよい。また、例えば4つの分割コア41の外周を樹脂部材でモールドして4つの分割コア41を固定してもよい。この場合、4つの分割コア41の外周に設けられる樹脂部材が円筒状部材となる。要は、円筒状部材は、ロータコア40の外周に設けられて4つの分割コアを円筒状に固定するものであればよい。   In the above embodiment, the split core 41 is fixed in a cylindrical shape by shrink fitting the cylindrical member 44 on the outer periphery of the rotor core 40. However, the fixing method of the split core 41 is not limited to shrink fit. For example, the four divided cores 41 may be fixed by press-fitting a cylindrical member 44 around the outer periphery of the rotor core 40. Further, for example, the four divided cores 41 may be fixed by molding the outer periphery of the four divided cores 41 with a resin member. In this case, the resin member provided on the outer periphery of the four divided cores 41 is a cylindrical member. In short, the cylindrical member may be any member provided on the outer periphery of the rotor core 40 and fixing the four divided cores in a cylindrical shape.

・上記実施形態では、ロータ4の磁極数が4極であったが、ロータ4の極数は例えば2極や8極などに適宜変更してもよい。また、それに応じてロータコア40を構成する分割コア41の数や、永久磁石42の数、ステータ2の形状などを適宜変更してもよい。   In the above embodiment, the number of magnetic poles of the rotor 4 is four. However, the number of poles of the rotor 4 may be appropriately changed to, for example, two or eight. Further, the number of split cores 41 constituting the rotor core 40, the number of permanent magnets 42, the shape of the stator 2 and the like may be changed as appropriate.

・上記実施形態では、分割コア41の形状として図3に示した形状を採用したが、各分割コア41を、隣接する分割コアとロータコア外周側で接触して且つ、ロータコア内周側の端部で離間するように配置できれば、分割コア41の形状は適宜変更可能である。   In the above embodiment, the shape shown in FIG. 3 is adopted as the shape of the split core 41. However, each split core 41 is in contact with the adjacent split core on the outer periphery side of the rotor core and the end portion on the inner periphery side of the rotor core. If it can arrange | position so that it may space apart, the shape of the division | segmentation core 41 can be changed suitably.

4…磁石埋込型ロータ、40…ロータコア、41…分割コア、42…永久磁石、44…円筒状部材、45…磁石用磁性部材、51…コイル、52…着磁ヨーク。   DESCRIPTION OF SYMBOLS 4 ... Magnet embedded rotor, 40 ... Rotor core, 41 ... Split core, 42 ... Permanent magnet, 44 ... Cylindrical member, 45 ... Magnetic member for magnets, 51 ... Coil, 52 ... Magnetizing yoke.

Claims (5)

円筒状のロータコアと、前記ロータコアに埋め込まれる複数の永久磁石と、を備え、
前記ロータコアは、外周側にN極を有する分割コア、及び外周側にS極を有する分割コアを周方向に交互に有してなる磁石埋込型ロータにおいて、
前記分割コアは、その周方向両端面のなす角をα[°]、分割コアの個数をnとするとき、次式、
α>360°/n
なる関係を満たすように成形されていることを特徴とする磁石埋込型ロータ。
A cylindrical rotor core, and a plurality of permanent magnets embedded in the rotor core,
The rotor core is a magnet-embedded rotor in which split cores having N poles on the outer peripheral side and split cores having S poles on the outer peripheral side are alternately provided in the circumferential direction.
The split core has the following formula, where α [°] is an angle formed by both circumferential end surfaces, and n is the number of split cores:
α> 360 ° / n
A magnet-embedded rotor characterized by being formed so as to satisfy the following relationship.
請求項1に記載の磁石埋込型ロータにおいて、
前記分割コアは、隣接する分割コアと前記ロータコアの外周側で接触して且つ、前記ロータコアの内周側の端部で離間するように設けられることを特徴とする磁石埋込型ロータ。
The embedded magnet rotor according to claim 1,
The embedded core rotor, wherein the split core is provided so as to contact an adjacent split core on the outer peripheral side of the rotor core and to be separated at an end on the inner peripheral side of the rotor core.
請求項1又は2に記載の磁石埋込型ロータにおいて、
前記ロータコアの外周に設けられて前記複数の分割コアを円筒状に固定する円筒状部材を更に備えることを特徴とする磁石埋込型ロータ。
The embedded magnet rotor according to claim 1 or 2,
A magnet-embedded rotor, further comprising a cylindrical member that is provided on an outer periphery of the rotor core and fixes the plurality of divided cores in a cylindrical shape.
請求項1〜3のいずれか一項に記載の磁石埋込型ロータの製造方法において、
磁石用磁性部材が埋め込まれた複数の分割コアを用意し、前記磁石用磁性部材を着磁して前記永久磁石とする着磁工程を前記複数の分割コア毎に行った後、前記着磁工程を経た複数の分割コアを円筒状に組み合わせて前記ロータコアを成形することを特徴とする磁石埋込型ロータの製造方法。
In the manufacturing method of the magnet embedded rotor according to any one of claims 1 to 3,
Preparing a plurality of split cores embedded with magnet magnetic members, and magnetizing the magnet magnetic members to form the permanent magnets for each of the plurality of split cores; The rotor core is formed by combining a plurality of split cores that have undergone the above process into a cylindrical shape.
請求項4に記載の磁石埋込型ロータの製造方法において、
前記着磁工程が、前記分割コアの周方向両端面及びその内周面を着磁用磁性部材で覆い、前記分割コアの外周面を覆うように着磁ヨークを配置した後、前記着磁ヨークに巻回されたコイルへの通電に基づき前記磁石用磁性部材を着磁することで行われることを特徴とする磁石埋込型ロータの製造方法。
In the manufacturing method of the magnet embedded rotor according to claim 4,
In the magnetizing step, both end surfaces in the circumferential direction of the split core and the inner peripheral surface thereof are covered with a magnetizing magnetic member, and the magnetized yoke is disposed so as to cover the outer peripheral surface of the split core, and then the magnetized yoke A magnet-embedded rotor manufacturing method characterized by magnetizing the magnet magnetic member based on energization of a coil wound around the magnet.
JP2012230006A 2012-10-17 2012-10-17 Magnet embedded type rotor and method of manufacturing magnet embedded type rotor Pending JP2014082882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230006A JP2014082882A (en) 2012-10-17 2012-10-17 Magnet embedded type rotor and method of manufacturing magnet embedded type rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230006A JP2014082882A (en) 2012-10-17 2012-10-17 Magnet embedded type rotor and method of manufacturing magnet embedded type rotor

Publications (1)

Publication Number Publication Date
JP2014082882A true JP2014082882A (en) 2014-05-08

Family

ID=50786606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230006A Pending JP2014082882A (en) 2012-10-17 2012-10-17 Magnet embedded type rotor and method of manufacturing magnet embedded type rotor

Country Status (1)

Country Link
JP (1) JP2014082882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074792A (en) * 2017-12-20 2019-06-28 삼성전자주식회사 IPM BLDC Motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074792A (en) * 2017-12-20 2019-06-28 삼성전자주식회사 IPM BLDC Motor
KR102509696B1 (en) 2017-12-20 2023-03-15 삼성전자주식회사 IPM BLDC Motor
US11677284B2 (en) 2017-12-20 2023-06-13 Samsung Electronics Co., Ltd. IPM BLDC motor

Similar Documents

Publication Publication Date Title
US7830057B2 (en) Transverse flux machine
JP2012161226A (en) Rotor for rotary electric machine
US8680732B2 (en) Rotary electric machine
JP6083059B2 (en) Rotor structure of permanent magnet rotating machine
WO2014188628A1 (en) Rotor and motor
JP2012228104A (en) Permanent magnet-embedded motor
JP6001378B2 (en) Rotor and motor
US9490669B2 (en) Rotor and motor
US9225209B2 (en) Permanent magnet rotor and electric motor incorporating the rotor
JP2015133839A (en) Magnet-embedded rotor
US9601952B2 (en) Magnet embedded rotor and method of manufacturing the magnet embedded rotor
JP2014045634A (en) Rotor and rotary electric machine including the same
JP2016072995A (en) Embedded magnet type rotor and electric motor including the same
JP7299531B2 (en) rotor, motor
KR20170062889A (en) Surface permanent magnet synchronous motor
JP2014113036A (en) Embedded magnet rotor, motor, and method of manufacturing embedded magnet rotor
JP2014082882A (en) Magnet embedded type rotor and method of manufacturing magnet embedded type rotor
JP2007116850A (en) Permanent-magnet rotating electric machine and cylindrical linear motor
JP2014183691A (en) Magnet embedded type rotor and manufacturing method therefor
JP2017046386A (en) Permanent magnet electric motor
TWI385899B (en) Rotor structure for permanent-magnet machines and manufacture method thereof
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JP2016220492A (en) Rotor, rotary machine and manufacturing method for rotor
JP2014220879A (en) Permanent magnet rotary electric machine
JP6061826B2 (en) Rotor for IPM motor and IPM motor