JP2014082292A - Transformer for vacuum capacitor instrument - Google Patents

Transformer for vacuum capacitor instrument Download PDF

Info

Publication number
JP2014082292A
JP2014082292A JP2012228660A JP2012228660A JP2014082292A JP 2014082292 A JP2014082292 A JP 2014082292A JP 2012228660 A JP2012228660 A JP 2012228660A JP 2012228660 A JP2012228660 A JP 2012228660A JP 2014082292 A JP2014082292 A JP 2014082292A
Authority
JP
Japan
Prior art keywords
end plate
side end
primary
vacuum
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012228660A
Other languages
Japanese (ja)
Other versions
JP6064508B2 (en
Inventor
Daizo Takahashi
大造 高橋
Toshimasa Fukai
利眞 深井
Masahiko Ieda
正彦 家田
Toru Tanimizu
徹 谷水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2012228660A priority Critical patent/JP6064508B2/en
Publication of JP2014082292A publication Critical patent/JP2014082292A/en
Application granted granted Critical
Publication of JP6064508B2 publication Critical patent/JP6064508B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transformers For Measuring Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance voltage measurement accuracy of a vacuum VT.SOLUTION: A transformer 1 for vacuum capacitor instrument (vacuum VT) comprises: an outer casing 5 formed by a primary insulation tube 2, a cylindrical part 3 and a ground cylindrical part 4; and a primary capacitor 6 provided in the outer casing 5. The primary capacitor 6 is formed by causing the side face of an internal primary electrode 8a provided on a primary end plate 8 to face the side faces of internal secondary electrodes 11a, 11b provided on a secondary end plate 11 each other. A molded portion 14 is formed by covering the primary insulation tube 2 with an insulation mold. Outer periphery of the molded portion 14 is covered with a metallic film 15. The ratio of lengths of the primary insulation tube 2 and the outer casing 5 is 1:2-1:10.

Description

本発明は、コンデンサ形計器用変圧器に関し、特に、1次側端子と分圧点との間に設けられる主コンデンサに真空コンデンサを用いた真空コンデンサ形計器用変圧器に関する。   The present invention relates to a capacitor-type instrument transformer, and more particularly to a vacuum capacitor-type instrument transformer using a vacuum capacitor as a main capacitor provided between a primary side terminal and a voltage dividing point.

計器用変圧器(VT:Voltage Transformers)は分圧回路によって高電圧を安全な電圧に変換させ、電圧計などの計測器や保護継電器などに入力するために使用する機器である。計器用変圧器には、巻線形、コンデンサ形、抵抗形といくつかの方式がある。   Instrument transformers (VT: Voltage Transformers) are devices used to convert a high voltage into a safe voltage by a voltage dividing circuit and input it to a measuring instrument such as a voltmeter or a protective relay. There are several types of instrument transformers: winding type, capacitor type, and resistance type.

計器用変圧器として、真空コンデンサ(VC:Vacuum Capacitor)を用いた真空コンデンサ形計器用変圧器がある(例えば、特許文献1)。以下、真空コンデンサ形計器用変圧器を真空VTと称する。真空VTは、真空コンデンサの構成上、高い絶縁耐力を有し、また、経年劣化による焼損事故は発生せず信頼性の高い計器用変圧器である。   As a voltage transformer, there is a vacuum capacitor type voltage transformer using a vacuum capacitor (VC) (for example, Patent Document 1). Hereinafter, the vacuum capacitor type instrument transformer is referred to as a vacuum VT. The vacuum VT has a high dielectric strength due to the structure of the vacuum capacitor, and is a highly reliable instrument transformer that does not cause a burnout accident due to aging.

特開2011−54796号公報JP 2011-54796 A

しかし、真空VTにおいて、1次側の真空コンデンサは、周囲環境の影響を受けるなどの理由により、その静電容量が変化するおそれがある。静電容量の変化は、真空VTの電圧測定精度低下の要因となるおそれがある。   However, in the vacuum VT, the capacitance of the primary-side vacuum capacitor may change due to the influence of the surrounding environment. The change in capacitance may cause a decrease in voltage measurement accuracy of the vacuum VT.

そこで、本発明は、真空VTの電圧測定精度の向上に貢献する技術を提供することを目的としている。   Therefore, an object of the present invention is to provide a technique that contributes to the improvement of the voltage measurement accuracy of the vacuum VT.

上記目的を達成する本発明の真空コンデンサ形計器用変圧器の一態様は、筒状の外筐と、前記外筐の開放端を閉塞して設けられる1次側端板と、前記1次側端板面から前記外筐内に立設される内部1次電極と、前記1次側端板の内部1次電極が設けられる面と対向して前記外筐内に設けられる2次側端板と、前記2次側端板面から前記1次側端板方向に立設される内部2次電極と、を有し、前記内部1次電極と前記内部2次電極を対向配置して主コンデンサを形成し、当該主コンデンサが形成される空間を真空とした真空コンデンサ形計器用変圧器であって、前記外筐の少なくとも一部は絶縁筒であり、前記1次側端板及び前記絶縁筒の外周部を絶縁モールドで被覆したモールド部を設け、前記モールド部の外周を金属皮膜で被覆することを特徴としている。   One aspect of the vacuum capacitor-type instrument transformer of the present invention that achieves the above object is a cylindrical outer casing, a primary end plate provided by closing an open end of the outer casing, and the primary side An internal primary electrode erected in the outer casing from the end plate surface, and a secondary side end plate provided in the outer casing facing the surface on which the internal primary electrode of the primary side end plate is provided And an internal secondary electrode erected from the secondary side end plate surface in the direction of the primary side end plate, and the internal primary electrode and the internal secondary electrode are arranged opposite to each other to form a main capacitor A vacuum capacitor type instrument transformer in which a space in which the main capacitor is formed is evacuated, wherein at least a part of the outer casing is an insulating cylinder, and the primary side end plate and the insulating cylinder A mold part in which the outer peripheral part of the mold is covered with an insulating mold, and the outer periphery of the mold part is covered with a metal film. It is a symptom.

また、上記目的を達成する本発明の真空コンデンサ形計器用変圧器の他の態様は、上記真空コンデンサ形計器用変圧器において、前記絶縁筒を前記1次側端板側に偏倚して設けることを特徴としている。   Further, another aspect of the vacuum capacitor-type instrument transformer of the present invention that achieves the above-described object is that in the vacuum-capacitor-type instrument transformer, the insulating tube is provided biased toward the primary side end plate. It is characterized by.

また、上記目的を達成する本発明の真空コンデンサ形計器用変圧器の他の態様は、上記真空コンデンサ形計器用変圧器において、前記絶縁筒の長さと前記外筐の長さの比率は、1:2〜1:10であることを特徴としている。   According to another aspect of the vacuum capacitor-type instrument transformer of the present invention that achieves the above object, in the vacuum capacitor-type instrument transformer, the ratio of the length of the insulating cylinder to the length of the outer casing is 1 : 2 to 1:10.

また、上記目的を達成する本発明の真空コンデンサ形計器用変圧器の他の態様は、上記真空コンデンサ形計器用変圧器において、前記外筐の1次側端板により閉塞されていない開放端に設けられる接地側端板と、当該接地側端板と前記2次側端板との間に設けられる筒状の2次側絶縁筒と、をさらに有し、前記2次側絶縁筒の内周面と前記2次側端板とで形成される空間を真空とし、当該空間に2次側コンデンサを設けることを特徴としている。   Another aspect of the vacuum capacitor-type instrument transformer of the present invention that achieves the above object is that the vacuum capacitor-type instrument transformer has an open end that is not closed by the primary side end plate of the outer casing. A ground-side end plate provided; and a cylindrical secondary-side insulating cylinder provided between the ground-side end plate and the secondary-side end plate; and an inner circumference of the secondary-side insulating cylinder A space formed by the surface and the secondary side end plate is evacuated, and a secondary capacitor is provided in the space.

また、上記目的を達成する本発明の真空コンデンサ形計器用変圧器の他の態様は、上記真空コンデンサ形計器用変圧器において、前記外筐の1次側端板により閉塞されていない開放端に設けられる接地側端板と、当該接地側端板と前記2次側端板との間に設けられる筒状の2次側絶縁筒と、をさらに有し、前記2次側絶縁筒の内周面と前記2次側端板とで形成される空間に不活性ガスまたは乾燥空気を封入し、当該空間に2次側コンデンサを設けることを特徴としている。   Another aspect of the vacuum capacitor-type instrument transformer of the present invention that achieves the above object is that the vacuum capacitor-type instrument transformer has an open end that is not closed by the primary side end plate of the outer casing. A ground-side end plate provided; and a cylindrical secondary-side insulating cylinder provided between the ground-side end plate and the secondary-side end plate; and an inner circumference of the secondary-side insulating cylinder An inert gas or dry air is enclosed in a space formed by the surface and the secondary end plate, and a secondary capacitor is provided in the space.

また、上記目的を達成する本発明の真空コンデンサ形計器用変圧器の他の態様は、上記真空コンデンサ形計器用変圧器において、前記外筐を前記絶縁筒に導体筒を接合して形成し、前記導体筒を前記1次側端板または前記接地側端板を構成する材料で形成することを特徴としている。   Further, another aspect of the vacuum capacitor instrument transformer of the present invention that achieves the above object is the vacuum capacitor instrument transformer, wherein the outer casing is formed by joining a conductor cylinder to the insulating cylinder, The conductor cylinder is formed of a material constituting the primary side end plate or the ground side end plate.

また、上記目的を達成する本発明の真空コンデンサ形計器用変圧器の他の態様は、上記真空コンデンサ形計器用変圧器において、前記モールド部の一部は測定対象の接合部に嵌合するように形成され、当該嵌合部には金属皮膜を被覆しないことを特徴としている。   According to another aspect of the vacuum capacitor-type instrument transformer of the present invention that achieves the above object, in the vacuum capacitor-type instrument transformer, a part of the mold part is fitted to a joint part to be measured. The fitting part is not covered with a metal film.

また、上記目的を達成する本発明の真空コンデンサ形計器用変圧器の他の態様は、上記真空コンデンサ形計器用変圧器において、前記測定対象の接合部と前記モールド部の嵌合部との接触面を密着させることを特徴としている。   Another aspect of the vacuum capacitor-type instrument transformer of the present invention that achieves the above object is the vacuum capacitor-type instrument transformer according to the present invention, wherein the contact portion between the joint portion to be measured and the fitting portion of the mold portion is contacted. It is characterized by closely contacting the surfaces.

また、上記目的を達成する本発明の真空コンデンサ形計器用変圧器の他の態様は、上記真空コンデンサ形計器用変圧器において、前記金属皮膜を接地することを特徴としている。   Another aspect of the vacuum capacitor-type instrument transformer of the present invention that achieves the above object is characterized in that the metal film is grounded in the vacuum capacitor-type instrument transformer.

また、上記目的を達成する本発明の真空コンデンサ形計器用変圧器の他の態様は、上記真空コンデンサ形計器用変圧器において、前記1次側端板及び前記2次側端板には、直径の大きさが異なる円筒状の内部1次電極板及び内部2次側極板をそれぞれ同心円状に設け、前記内部2次電極の直径の最大値を、前記内部1次電極の直径の最大値よりも大きくすることを特徴としている。   Another aspect of the vacuum capacitor-type instrument transformer of the present invention that achieves the above-described object is that in the vacuum capacitor-type instrument transformer, the primary side end plate and the secondary side end plate have a diameter. A cylindrical internal primary electrode plate and an internal secondary electrode plate having different sizes are provided concentrically, and the maximum value of the diameter of the internal secondary electrode is greater than the maximum value of the diameter of the internal primary electrode. It is also characterized by making it larger.

以上の発明によれば、真空VTの電圧測定精度の向上に貢献することができる。   According to the above invention, it can contribute to the improvement of the voltage measurement precision of vacuum VT.

本発明の実施形態に係る真空コンデンサ形計器用変圧器の断面図である。It is sectional drawing of the transformer for vacuum capacitor type instruments which concerns on embodiment of this invention. 本発明の実施形態に係る真空コンデンサ形計器用変圧器をC−GISに接続した例を説明する説明図である。It is explanatory drawing explaining the example which connected the transformer for vacuum capacitor type instruments which concerns on embodiment of this invention to C-GIS. 本発明の実施形態に係る真空コンデンサ形計器用変圧器をC−GISの接続部に接続した状態を説明する説明図(要部拡大断面)である。It is explanatory drawing (principal part expanded cross section) explaining the state which connected the transformer for vacuum capacitor type instruments which concerns on embodiment of this invention to the connection part of C-GIS.

本発明の実施形態に係る真空コンデンサ形計器用変圧器(真空VT)について、図を参照して詳細に説明する。   A vacuum capacitor type instrument transformer (vacuum VT) according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施形態に係る真空VT1の概略断面図である。実施形態に係る真空VT1は、1次側絶縁筒2、円筒部3及び接地円筒部4により形成される外筐5と、外筐5内に設けられる1次側コンデンサ6とを有する。なお、外筐5内に形成される2次側ケース7内には、保護継電器や計測器への出力電圧を分担する2次側コンデンサ(図示せず)が設けられる。   FIG. 1 is a schematic cross-sectional view of a vacuum VT1 according to an embodiment of the present invention. The vacuum VT 1 according to the embodiment includes an outer casing 5 formed by the primary insulating cylinder 2, the cylindrical portion 3, and the grounded cylindrical portion 4, and a primary side capacitor 6 provided in the outer casing 5. Note that a secondary side capacitor (not shown) for sharing the output voltage to the protective relay and the measuring instrument is provided in the secondary side case 7 formed in the outer casing 5.

1次側絶縁筒2は、例えば、セラミック材などの無機絶縁材料を円筒状に形成した部材である。1次側絶縁筒2の一方の開放端には円筒状の導電部材である円筒部3が設けられ、1次側絶縁筒2の他方の開放端には円筒状の導電部材である接地円筒部4が設けられる。   The primary insulating cylinder 2 is a member formed of an inorganic insulating material such as a ceramic material in a cylindrical shape. A cylindrical portion 3 that is a cylindrical conductive member is provided at one open end of the primary side insulating cylinder 2, and a grounded cylindrical portion that is a cylindrical conductive member is provided at the other open end of the primary side insulating cylinder 2. 4 is provided.

円筒部3の開放端には導電部材である1次側端板8が設けられる。一方、接地円筒部4の開放端には、導電部材である接地側端板9が設けられる。接地側端板9には、接地線(図示せず)が接続され、真空VT1の外筐5(接地円筒部4)が接地される。接地側端板9には、外筐5の軸を中心とした円形の孔が形成されており、この孔の外周部から1次側端板8方向に立設して無機絶縁材料で形成された円筒状の2次側絶縁筒10が設けられる。そして、2次側絶縁筒10の1次側端板8側の開放端は導電部材である2次側端板11により密閉される。このように、円筒部3の開放端を1次側端板8で密閉し、接地円筒部4の開放端を接地側端板9、2次側絶縁筒10及び2次側端板11で密閉することで外筐5内部を真空状態にした真空部12が形成される。なお、1次側絶縁筒2に直接1次側端板8を設けて1次側絶縁筒2の開放端を密閉してもよい。また、1次側絶縁筒2の他方の開放端に直接接地側端板9を設けてもよい。また、2次側絶縁筒10と接地側端板9は、直接または導電部材である円筒部13aを介して接続される。同様にして、2次側絶縁筒10と2次側端板11は、直接または導電部材である円筒部13bを介して接続される。   A primary end plate 8 that is a conductive member is provided at the open end of the cylindrical portion 3. On the other hand, a ground side end plate 9 which is a conductive member is provided at the open end of the ground cylindrical portion 4. A ground wire (not shown) is connected to the ground-side end plate 9, and the outer casing 5 (ground cylindrical portion 4) of the vacuum VT1 is grounded. The ground side end plate 9 is formed with a circular hole centered on the axis of the outer casing 5, and is formed of an inorganic insulating material so as to stand from the outer periphery of the hole toward the primary side end plate 8. A cylindrical secondary insulating cylinder 10 is provided. The open end of the secondary side insulating cylinder 10 on the primary side end plate 8 side is sealed by a secondary side end plate 11 which is a conductive member. In this way, the open end of the cylindrical portion 3 is sealed with the primary side end plate 8, and the open end of the ground cylindrical portion 4 is sealed with the ground side end plate 9, the secondary side insulating cylinder 10, and the secondary side end plate 11. As a result, a vacuum portion 12 is formed in which the inside of the outer casing 5 is evacuated. In addition, the primary side end plate 8 may be provided directly on the primary side insulating cylinder 2 to seal the open end of the primary side insulating cylinder 2. Further, the ground side end plate 9 may be provided directly at the other open end of the primary side insulating cylinder 2. The secondary insulating cylinder 10 and the ground end plate 9 are connected directly or via a cylindrical portion 13a which is a conductive member. Similarly, the secondary side insulating cylinder 10 and the secondary side end plate 11 are connected directly or via a cylindrical portion 13b which is a conductive member.

1次側コンデンサ6は、1次側端板8と2次側端板11との間に形成される。1次側端板8の主面であって外筐5内周側の面には、内部1次電極8aが設けられる。内部1次電極8aは、例えば、円筒状の電極であり、2次側端板11方向に延設される。内部1次電極8aを複数設ける場合は、直径が順次小さくなる内部1次電極8aが同心円状に複数配置される。一方、2次側端板11の1次側端板8と対向する面には、内部2次電極11a,11bが設けられる。内部2次電極11a,11bは、例えば、内部1次電極8aと直径の異なる円筒状の電極であり、1次側端板8方向に延設される。すなわち、内部1次電極8aと内部2次電極11a,11bは、その側面が非接触で対向するように交互に配置され1次側コンデンサ6が形成される。   The primary side capacitor 6 is formed between the primary side end plate 8 and the secondary side end plate 11. An inner primary electrode 8 a is provided on the main surface of the primary side end plate 8 and on the inner peripheral surface of the outer casing 5. The internal primary electrode 8a is, for example, a cylindrical electrode and extends in the direction of the secondary side end plate 11. In the case where a plurality of internal primary electrodes 8a are provided, a plurality of internal primary electrodes 8a whose diameters are sequentially reduced are arranged concentrically. On the other hand, on the surface of the secondary side end plate 11 facing the primary side end plate 8, internal secondary electrodes 11a and 11b are provided. The internal secondary electrodes 11a and 11b are, for example, cylindrical electrodes having a diameter different from that of the internal primary electrode 8a, and extend in the direction of the primary side end plate 8. That is, the internal primary electrode 8a and the internal secondary electrodes 11a and 11b are alternately arranged so that the side surfaces thereof face each other in a non-contact manner, and the primary side capacitor 6 is formed.

また、最も大きい直径を有する内部2次電極11aの直径は最も大きい直径を有する内部1次側電極8aの直径よりも大きく、内部2次電極11aの側面が外筐5の内周面(接地円筒部4の内周面)に対向して設けられる。このように、内部2次電極11aと接地円筒部4の内周面とを対向させることで、内部2次電極11aと接地円筒部4との間にコンデンサが形成される。その結果、2次側端板11に2次側コンデンサ(図示せず)を接続した場合、分圧コンデンサの静電容量は、内部2次電極11aと接地円筒部4との間に形成されるコンデンサと2次側コンデンサの合成容量となる。よって、分圧コンデンサの静電容量が大きくなる。   Further, the diameter of the inner secondary electrode 11a having the largest diameter is larger than the diameter of the inner primary electrode 8a having the largest diameter, and the side surface of the inner secondary electrode 11a is the inner peripheral surface of the outer casing 5 (grounding cylinder). (Inner peripheral surface of the part 4). Thus, a capacitor is formed between the internal secondary electrode 11a and the ground cylindrical portion 4 by making the internal secondary electrode 11a and the inner peripheral surface of the ground cylindrical portion 4 face each other. As a result, when a secondary capacitor (not shown) is connected to the secondary end plate 11, the capacitance of the voltage dividing capacitor is formed between the internal secondary electrode 11 a and the ground cylindrical portion 4. This is the combined capacity of the capacitor and secondary capacitor. Therefore, the capacitance of the voltage dividing capacitor is increased.

1次側端板8の内部1次電極8aが設けられる面の反対側の面には、測定対象機器(高電圧側)と接続される接続導体8bが設けられる。この接続導体8b(1次側端板8)と1次側絶縁筒2が絶縁モールドで被覆されモールド部14が形成される。さらに、モールド部14の外周は金属皮膜15で覆われる。金属皮膜15は、金属であれば特に限定されない。また、金属皮膜15は、直接または接地円筒部4を介して接地される。このようにモールド部14を金属皮膜15で覆うことで、真空VT1周辺の電界の影響や、大気の湿度、気圧、汚損の影響が低減される。   A connection conductor 8b connected to the measurement target device (high voltage side) is provided on the surface of the primary side end plate 8 opposite to the surface on which the internal primary electrode 8a is provided. The connecting conductor 8b (primary side end plate 8) and the primary side insulating cylinder 2 are covered with an insulating mold to form a molded portion. Furthermore, the outer periphery of the mold part 14 is covered with a metal film 15. The metal film 15 is not particularly limited as long as it is a metal. Further, the metal film 15 is grounded directly or via the grounding cylindrical portion 4. By covering the mold part 14 with the metal film 15 in this way, the influence of the electric field around the vacuum VT1 and the influence of atmospheric humidity, atmospheric pressure, and fouling are reduced.

2次側ケース7は、2次側絶縁筒10の内周面と2次側端板11により形成される。この2次側ケース7内には、2次側コンデンサ(図示せず)が設けられる。2次側ケース7内を真空にしたり不活性ガス(He、N2、Ar、SF6など)や乾燥空気を充填したりすることで、2次側コンデンサに対する大気の湿度や気圧の影響や2次側コンデンサの汚損の影響が低減される。その結果、2次側端板11から2次側絶縁筒10や2次側コンデンサの表面を伝わって接地側端板9を流れる漏洩電流が小さくなり、真空VT1の出力が安定するとともに真空VT1の電圧測定精度が向上する。 The secondary case 7 is formed by the inner peripheral surface of the secondary insulating cylinder 10 and the secondary end plate 11. A secondary capacitor (not shown) is provided in the secondary case 7. By vacuuming the inside of the secondary side case 7 or filling with inert gas (He, N 2 , Ar, SF 6, etc.) or dry air, the influence of atmospheric humidity or atmospheric pressure on the secondary side capacitor 2 The effect of contamination of the secondary capacitor is reduced. As a result, the leakage current flowing from the secondary side end plate 11 through the surface of the secondary side insulating cylinder 10 and the secondary side capacitor through the ground side end plate 9 is reduced, the output of the vacuum VT1 is stabilized and the vacuum VT1 Voltage measurement accuracy is improved.

2次側コンデンサは、2次側端板11及び接地側端板9と電気的に接続される。2次側コンデンサは適宜周知のコンデンサを用いればよく、例えば、フィルムコンデンサが用いられる。また、2次側ケース7内を真空としその内部に電極を配置し、2次側コンデンサを真空コンデンサとしてもよい。   The secondary side capacitor is electrically connected to the secondary side end plate 11 and the ground side end plate 9. As the secondary capacitor, a known capacitor may be used as appropriate. For example, a film capacitor is used. Alternatively, the inside of the secondary side case 7 may be evacuated, electrodes may be disposed therein, and the secondary side capacitor may be a vacuum capacitor.

図2、3を参照して、本発明の真空VT1についてさらに詳しく説明する。図2では、プラグインタイプの真空VT1をガス絶縁スイッチギヤ16(C−GIS:Cubicle type Gas Insulated Switchgear)に接続する形態を例示して説明する。なお、真空VT1が接続される測定対象となる機器としては、C−GIS16の他に固体絶縁スイッチギヤ(SIS:Solid-Insulated Switchgear)などがある。   The vacuum VT1 of the present invention will be described in more detail with reference to FIGS. FIG. 2 illustrates an example in which a plug-in type vacuum VT1 is connected to a gas-insulated switchgear (C-GIS) 16 (C-GIS). In addition to the C-GIS 16, there is a solid-insulated switchgear (SIS) as an apparatus to be measured to which the vacuum VT1 is connected.

図2に示すように、C−GIS16には、真空VT1のモールド部14が着脱可能なブッシングモールド17が設けられており、このブッシングモールド17によりC−GIS16の外装18とC−GIS16の被測定部19との絶縁が行われる。ブッシングモールド17(及び図3に示すブッシング導体20、接合部20a)は、外装18の気密性を確保した状態で設けられる。そして、外装18内にSF6ガスなどの絶縁ガスが充填される。また、外装18及び真空VT1の外筐5は接地されており、この外装18と真空VT1の外筐5(金属皮膜15)は電気的に接続される。このように接地部を2箇所設けることで、真空VT1の安全性がより向上する。 As shown in FIG. 2, the C-GIS 16 is provided with a bushing mold 17 to which the mold part 14 of the vacuum VT 1 can be attached and detached. Insulation with the part 19 is performed. The bushing mold 17 (and the bushing conductor 20 and the joint 20a shown in FIG. 3) is provided in a state in which the hermeticity of the exterior 18 is ensured. The exterior 18 is filled with an insulating gas such as SF 6 gas. The outer casing 18 and the outer casing 5 of the vacuum VT1 are grounded, and the outer casing 18 and the outer casing 5 (metal coating 15) of the vacuum VT1 are electrically connected. Thus, by providing two grounding portions, the safety of the vacuum VT1 is further improved.

図3に示すように、真空VT1のモールド部14はC−GIS16のブッシングモールド17に嵌設され、C−GIS16のブッシング導体20と真空VT1の接続導体8bとが電気的に接続される。具体的には、モールド部14をブッシングモールド17に嵌設することで、接続導体8bとブッシング導体20の端部に設けられた接合部20a(マルチコンタクトなど)が接合し、真空VT1と被測定部19の接続が行われる。   As shown in FIG. 3, the mold part 14 of the vacuum VT1 is fitted into the bushing mold 17 of the C-GIS 16, and the bushing conductor 20 of the C-GIS 16 and the connection conductor 8b of the vacuum VT1 are electrically connected. Specifically, by fitting the mold part 14 to the bushing mold 17, the connection conductor 8 b and the joint part 20 a (such as multi-contact) provided at the end of the bushing conductor 20 are joined, and the vacuum VT 1 and the measured object The unit 19 is connected.

ブッシングモールド17に真空VT1のモールド部14を嵌合すると、ブッシングモールド17の外側面に設けられた外装18と真空VT1の金属皮膜15とが接触する。C−GIS16は、外装18を直接接地(または、外装18にアース線(図示せず)を接続)して設けられる。一方、金属皮膜15も直接または接地円筒部4を介して接地される。つまり、外装18と金属皮膜15を接触させることで、C−GIS16及び真空VT1は、外装18での接地と、金属皮膜15での接地との2箇所の接地部を有することとなる。   When the mold part 14 of the vacuum VT 1 is fitted to the bushing mold 17, the exterior 18 provided on the outer surface of the bushing mold 17 and the metal film 15 of the vacuum VT 1 come into contact with each other. The C-GIS 16 is provided by directly grounding the exterior 18 (or connecting a ground wire (not shown) to the exterior 18). On the other hand, the metal film 15 is also grounded directly or via the grounding cylindrical portion 4. That is, by bringing the exterior 18 and the metal film 15 into contact, the C-GIS 16 and the vacuum VT <b> 1 have two ground portions, that is, the ground at the exterior 18 and the ground at the metal film 15.

モールド部14は、モールド部14とブッシングモールド17の接触面(図中Aで示す)が密着するように、ブッシングモールド17に設けられる。例えば、モールド部14は、グリスやシリコンカバーなどを介してブッシングモールド17に嵌設される。このようにモールド部14とブッシングモールド17との間の隙間を無くすことで、ブッシング導体20からの閃絡が防止される。また、ブッシング導体20(及び接合部20a)から金属皮膜15への閃絡を防止するために、モールド部14のブッシングモールド17への嵌合部には金属皮膜15を設けない。なお、モールド部14の形状は、ブッシングモールド17に嵌合できる形状であれば、その形状は特に限定されるものではない。   The mold part 14 is provided in the bushing mold 17 so that the contact surface (indicated by A in the drawing) of the mold part 14 and the bushing mold 17 is in close contact. For example, the mold part 14 is fitted into the bushing mold 17 via grease or a silicon cover. By eliminating the gap between the mold part 14 and the bushing mold 17 in this way, a flash from the bushing conductor 20 is prevented. Further, in order to prevent the flashing from the bushing conductor 20 (and the joint 20a) to the metal film 15, the metal film 15 is not provided at the fitting portion of the mold part 14 to the bushing mold 17. In addition, if the shape of the mold part 14 is a shape which can be fitted in the bushing mold 17, the shape will not be specifically limited.

以上のように、本発明の真空VTによれば、1次側絶縁筒を絶縁モールドで覆うことで、外筐の絶縁性を確保することができる。また、1次側絶縁筒を覆うモールド部の外周を金属皮膜で被覆することで、外部環境のノイズが主コンデンサに与える影響を低減し、真空VTの電圧測定精度を向上させることができる。   As described above, according to the vacuum VT of the present invention, the insulation of the outer casing can be ensured by covering the primary side insulating cylinder with the insulating mold. In addition, by covering the outer periphery of the mold part covering the primary insulating cylinder with a metal film, the influence of noise from the external environment on the main capacitor can be reduced, and the voltage measurement accuracy of the vacuum VT can be improved.

また、本発明の真空VTによれば、外筐を構成する1次側絶縁筒を1次側端板側に設けることで、外部環境のノイズが主コンデンサに与える影響を低減し、真空VTの電圧測定精度を向上することができる。つまり、外筐に占める1次側絶縁筒の長さを短くし、外筐の接地側端板が設けられる側を導電部材である接地円筒部とすることで、真空VTの接地部分を大きくすることができる。その結果、真空VTに対する周辺の電界の影響が低減され、真空VTの電圧測定精度が向上する。   In addition, according to the vacuum VT of the present invention, the primary side insulating cylinder constituting the outer casing is provided on the primary side end plate side, so that the influence of noise from the external environment on the main capacitor is reduced. The voltage measurement accuracy can be improved. That is, the length of the primary insulating cylinder in the outer casing is shortened, and the side where the ground side end plate of the outer casing is provided is a grounding cylindrical portion which is a conductive member, thereby increasing the grounding portion of the vacuum VT. be able to. As a result, the influence of the surrounding electric field on the vacuum VT is reduced, and the voltage measurement accuracy of the vacuum VT is improved.

また、1次側絶縁筒を1次側端板近傍に配置することで、1次側端板及び1次側絶縁筒の外周に形成されるモールド部を小さくすることができ、真空VTを小型化することができる。   Further, by arranging the primary side insulating cylinder in the vicinity of the primary side end plate, the mold part formed on the outer periphery of the primary side end plate and the primary side insulating cylinder can be made small, and the vacuum VT can be reduced in size. Can be

1次側絶縁筒の長さは、短くすればするほど、真空VTの大きさを縮小することができる。これは、ステンレス鋼などの金属で形成される円筒部や接地円筒部の厚さは、セラミックなどで形成される1次側絶縁筒よりも薄く加工でき、真空VT1の横幅を縮小することができるためである。一方で、1次側絶縁筒の長さを外筐の長さの1/10以上とすることで、外筐の絶縁性を確保することができる。したがって、1次側絶縁筒の長さと外筐の長さの比率を、1:1〜1:10、より好ましくは1:2〜1:10とすることで、外筐の絶縁性を維持して真空VTを小型化することができる。   As the length of the primary insulating cylinder is shortened, the size of the vacuum VT can be reduced. This is because the thickness of the cylindrical portion formed of a metal such as stainless steel or the grounded cylindrical portion can be made thinner than the primary insulating tube formed of ceramic or the like, and the lateral width of the vacuum VT1 can be reduced. Because. On the other hand, the insulation of the outer casing can be secured by setting the length of the primary insulating cylinder to 1/10 or more of the length of the outer casing. Therefore, the insulation ratio of the outer casing is maintained by setting the ratio of the length of the primary insulating cylinder to the length of the outer casing to 1: 1 to 1:10, more preferably 1: 2 to 1:10. Thus, the vacuum VT can be reduced in size.

また、本発明の真空VTにおいて、接地円筒部を導電部材で形成し、この接地円筒部の内周面に対向するように内部2次電極を設けることで、内部2次電極と接地円筒部との間にコンデンサが形成される。その結果、分圧コンデンサの静電容量は、内部2次電極と接地円筒部との間に形成されたコンデンサと2次側コンデンサとの合成容量となり、分圧コンデンサの静電容量を増加させることができる。   Further, in the vacuum VT of the present invention, the grounding cylindrical portion is formed of a conductive member, and the internal secondary electrode is provided so as to face the inner peripheral surface of the grounding cylindrical portion, whereby the internal secondary electrode, the grounding cylindrical portion, A capacitor is formed between the two. As a result, the capacitance of the voltage dividing capacitor is the combined capacitance of the capacitor formed between the internal secondary electrode and the grounded cylindrical portion and the secondary side capacitor, and increases the capacitance of the voltage dividing capacitor. Can do.

また、1次側端板と内部1次電極、2次側端板と内部2次電極、接地円筒部と接地側端板または円筒部と1次側端板など、接合される各導電部材を同じ材料で形成することで、真空VTの放電電圧、加工性、熱変形性及び強度が向上する。各導電部材を構成する材料としては、例えば、加工性や入手容易性などから、ステンレス鋼(SUS)などが好ましい。なお、1次側端板と内部1次電極、接地円筒部と接地側端板などを異なる種類の導電部材で形成して真空VTを構成した場合、その構造や組み合わせにより放電部や電圧の安定性を考慮しなくてはならない場合がある。   In addition, each conductive member to be joined, such as a primary side end plate and an internal primary electrode, a secondary side end plate and an internal secondary electrode, a ground cylindrical portion and a ground side end plate, or a cylindrical portion and a primary side end plate, By forming with the same material, the discharge voltage, workability, thermal deformability and strength of the vacuum VT are improved. As a material constituting each conductive member, for example, stainless steel (SUS) is preferable from the viewpoint of workability and availability. In addition, when a vacuum VT is formed by forming the primary side end plate and the internal primary electrode, the grounding cylindrical portion and the grounding side end plate with different types of conductive members, the structure and combination thereof stabilize the discharge part and voltage. You may have to consider sex.

また、真空VTの外筐(金属皮膜や接地円筒部)を接地することで、真空VTを測定対象となる機器に設けた場合、真空VTでの接地と測定対象機器の外装での接地との2箇所で接地が行われることとなる。つまり、真空VTの接地と測定対象機器の接地が2箇所設けられることとなり、真空VTの接地及び測定対象機器の接地をより確実に行うことができ、安全性が向上する。   In addition, when the vacuum VT is provided in a device to be measured by grounding the outer casing (metal film or ground cylindrical portion) of the vacuum VT, the grounding in the vacuum VT and the grounding in the exterior of the device to be measured Grounding will be performed at two places. That is, the grounding of the vacuum VT and the ground of the measurement target device are provided in two places, so that the grounding of the vacuum VT and the ground of the measurement target device can be more reliably performed, thereby improving safety.

また、真空VTを測定対象機器の接合部に嵌合させるプラグイン型とした場合、測定対象機器の接合部と真空VTの嵌合部との接触面とを密着させることで、ブッシング導体と他の部材との間に生じる閃絡を防止することができる。また、絶縁モールドの外周を金属皮膜で覆うことで、ブッシング導体と他の部材との間での閃絡をさらに防止することができる。   In addition, in the case of a plug-in type in which the vacuum VT is fitted to the joint portion of the measurement target device, the bushing conductor and the other are brought into close contact with the contact surface between the joint portion of the measurement target device and the fitting portion of the vacuum VT It is possible to prevent a flash between the two members. In addition, by covering the outer periphery of the insulating mold with a metal film, a flash between the bushing conductor and another member can be further prevented.

なお、本発明の真空VTについて具体例を示して詳細に説明したが、本発明の真空VTは、上述した実施形態に限定されるものではなく、本発明の特徴を損なわない範囲で適宜設計変更が可能であり、そのように変更された形態も本発明の真空VTの範囲に属する。   Although the vacuum VT of the present invention has been described in detail with specific examples, the vacuum VT of the present invention is not limited to the above-described embodiment, and the design is appropriately changed within a range not impairing the features of the present invention. Such a modified form also belongs to the scope of the vacuum VT of the present invention.

例えば、本発明の真空VTの内部構造として、特許文献1に記載された真空VTの内部構造を適用してもよい。具体的には、特許文献1に記載された真空VTの絶縁筒を縮小し、一次線路側フランジ側に設けることで、真空VTのサイズの縮小化と真空VTの電圧測定精度の向上を実現することができる。また、2次側端板と接地側端板との間に真空コンデンサを形成することで、分圧コンデンサの静電容量が真空コンデンサと2次側コンデンサ(及び、外筐と内部2次電極で形成されるコンデンサ)の合成容量となり、分圧コンデンサの静電容量を大きくすることができる。   For example, the internal structure of the vacuum VT described in Patent Document 1 may be applied as the internal structure of the vacuum VT of the present invention. Specifically, the vacuum VT insulating cylinder described in Patent Document 1 is reduced and provided on the primary line side flange side, thereby reducing the size of the vacuum VT and improving the voltage measurement accuracy of the vacuum VT. be able to. Also, by forming a vacuum capacitor between the secondary side end plate and the ground side end plate, the capacitance of the voltage dividing capacitor is reduced by the vacuum capacitor and the secondary side capacitor (and the outer casing and the internal secondary electrode). And the capacitance of the voltage dividing capacitor can be increased.

また、真空VTの形状の小型化を考慮しない場合は、絶縁筒長を大きくとったり、真空VT全体を絶縁モールドで覆ったりすることで、真空VTの絶縁性をより向上させることができる。   Moreover, when not considering the miniaturization of the shape of the vacuum VT, the insulation of the vacuum VT can be further improved by increasing the insulating cylinder length or covering the entire vacuum VT with an insulating mold.

また、1次側コンデンサは、内部1次電極と内部2次電極が対向配置された最小構成だけで構成した形態としてもよい。   In addition, the primary capacitor may be configured by only a minimum configuration in which the internal primary electrode and the internal secondary electrode are arranged to face each other.

1…真空コンデンサ形計器用変圧器(真空VT)
2…1次側絶縁筒(絶縁筒)
3,13a,13b…円筒部
4…接地円筒部(導体筒)
5…外筐
6…1次側コンデンサ(主コンデンサ)
7…2次側ケース
8…1次側端板
8a…内部1次電極、8b…接続導体
9…接地側端板
10…2次側絶縁筒
11…2次側端板
11a,11b…内部2次電極
12…真空部
14…モールド部
15…金属皮膜
16…ガス絶縁スイッチギヤ(C−GIS)
17…ブッシングモールド
18…外装
19…被測定部
20…ブッシング導体
20a…接合部
1… Vacuum capacitor type instrument transformer (vacuum VT)
2 ... Primary side insulation cylinder (insulation cylinder)
3, 13a, 13b ... cylindrical part 4 ... grounding cylindrical part (conductor cylinder)
5 ... Outer casing 6 ... Primary side capacitor (main capacitor)
7 ... Secondary side case 8 ... Primary side end plate 8a ... Internal primary electrode, 8b ... Connection conductor 9 ... Ground side end plate 10 ... Secondary side insulating cylinder 11 ... Secondary side end plates 11a, 11b ... Internal 2 Next electrode 12 ... Vacuum part 14 ... Mold part 15 ... Metal film 16 ... Gas insulation switchgear (C-GIS)
17 ... Bushing mold 18 ... Exterior 19 ... Measured part 20 ... Bushing conductor 20a ... Joint part

Claims (10)

筒状の外筐と、
前記外筐の開放端を閉塞して設けられる1次側端板と、
前記1次側端板面から前記外筐内に立設される内部1次電極と、
前記1次側端板の内部1次電極が設けられる面と対向して前記外筐内に設けられる2次側端板と、
前記2次側端板面から前記1次側端板方向に立設される内部2次電極と、
を有し、前記内部1次電極と前記内部2次電極を対向配置して主コンデンサを形成し、当該主コンデンサが形成される空間を真空とした真空コンデンサ形計器用変圧器であって、
前記外筐の少なくとも一部は絶縁筒であり、
前記1次側端板及び前記絶縁筒の外周部を絶縁モールドで被覆したモールド部を設け、
前記モールド部の外周を金属皮膜で被覆する
ことを特徴とする真空コンデンサ形計器用変圧器。
A cylindrical outer casing,
A primary side end plate provided by closing an open end of the outer casing;
An internal primary electrode standing in the outer casing from the primary side end plate surface;
A secondary side end plate provided in the outer casing facing a surface on which the internal primary electrode of the primary side end plate is provided;
An internal secondary electrode erected from the secondary side end plate surface toward the primary side end plate;
A vacuum capacitor type instrument transformer in which a main capacitor is formed by disposing the internal primary electrode and the internal secondary electrode so as to face each other, and a space in which the main capacitor is formed is vacuumed,
At least a part of the outer casing is an insulating cylinder,
Providing a mold part in which an outer peripheral part of the primary side end plate and the insulating cylinder is covered with an insulating mold;
A vacuum capacitor type instrument transformer characterized in that the outer periphery of the mold part is covered with a metal film.
前記絶縁筒を前記1次側端板側に偏倚して設ける
ことを特徴とする請求項1に記載の真空コンデンサ形計器用変圧器。
2. The vacuum capacitor type instrument transformer according to claim 1, wherein the insulating cylinder is provided to be biased toward the primary side end plate.
前記絶縁筒の長さと前記外筐の長さの比率は、1:2〜1:10である
ことを特徴とする請求項1または請求項2に記載の真空コンデンサ形計器用変圧器。
3. The vacuum capacitor-type instrument transformer according to claim 1, wherein a ratio of a length of the insulating cylinder to a length of the outer casing is 1: 2 to 1:10. 4.
前記外筐の1次側端板により閉塞されていない開放端に設けられる接地側端板と、
当該接地側端板と前記2次側端板との間に設けられる筒状の2次側絶縁筒と、
をさらに有し、
前記2次側絶縁筒の内周面と前記2次側端板とで形成される空間を真空とし、当該空間に2次側コンデンサを設ける
ことを特徴とする請求項1から請求項3のいずれか1項に記載の真空コンデンサ形計器用変圧器。
A ground-side end plate provided at an open end that is not blocked by the primary-side end plate of the outer casing;
A cylindrical secondary insulating tube provided between the ground side end plate and the secondary side end plate;
Further comprising
4. The space defined by the inner peripheral surface of the secondary insulating cylinder and the secondary end plate is evacuated, and a secondary capacitor is provided in the space. A vacuum capacitor type instrument transformer according to claim 1.
前記外筐の1次側端板により閉塞されていない開放端に設けられる接地側端板と、
当該接地側端板と前記2次側端板との間に設けられる筒状の2次側絶縁筒と、
をさらに有し、
前記2次側絶縁筒の内周面と前記2次側端板とで形成される空間に不活性ガスまたは乾燥空気を封入し、当該空間に2次側コンデンサを設ける
ことを特徴とする請求項1から請求項3のいずれか1項に記載の真空コンデンサ形計器用変圧器。
A ground-side end plate provided at an open end that is not blocked by the primary-side end plate of the outer casing;
A cylindrical secondary insulating tube provided between the ground side end plate and the secondary side end plate;
Further comprising
2. An inert gas or dry air is enclosed in a space formed by an inner peripheral surface of the secondary insulating cylinder and the secondary end plate, and a secondary capacitor is provided in the space. The vacuum capacitor type instrument transformer according to any one of claims 1 to 3.
前記外筐を前記絶縁筒に導体筒を接合して形成し、
前記導体筒を前記1次側端板または前記接地側端板を構成する材料で形成する
ことを特徴とする請求項1から請求項5のいずれか1項に記載の真空コンデンサ形計器用変圧器。
The outer casing is formed by joining a conductor cylinder to the insulating cylinder,
6. The vacuum capacitor-type instrument transformer according to claim 1, wherein the conductor tube is formed of a material constituting the primary-side end plate or the ground-side end plate. 7. .
前記モールド部の一部は測定対象の接合部に嵌合するように形成され、当該嵌合部には金属皮膜を被覆しない
ことを特徴とする請求項1から請求項6のいずれか1項に記載の真空コンデンサ形計器用変圧器。
A part of said mold part is formed so that it may fit in the junction part of a measuring object, and the metal film is not coat | covered to the said fitting part, The any one of Claims 1-6 characterized by the above-mentioned. The vacuum capacitor type instrument transformer as described.
前記測定対象の接合部と前記モールド部の嵌合部との接触面を密着させる
ことを特徴とする請求項7に記載の真空コンデンサ形計器用変圧器。
The vacuum capacitor-type instrument transformer according to claim 7, wherein a contact surface between the joint portion to be measured and the fitting portion of the mold portion is brought into close contact.
前記金属皮膜を接地する
ことを特徴とする請求項1から請求項8のいずれか1項に記載の真空コンデンサ形計器用変圧器。
The vacuum capacitor type instrument transformer according to any one of claims 1 to 8, wherein the metal film is grounded.
前記1次側端板及び前記2次側端板には、直径の大きさが異なる円筒状の内部1次電極板及び内部2次側極板をそれぞれ同心円状に設け、
前記内部2次電極の直径の最大値を、前記内部1次電極の直径の最大値よりも大きくする
ことを特徴とする請求項1から請求項9のいずれか1項に記載の真空コンデンサ形計器用変圧器。
The primary side end plate and the secondary side end plate are each provided with a cylindrical inner primary electrode plate and an inner secondary electrode plate having different diameters in a concentric manner,
10. The vacuum capacitor-type meter according to claim 1, wherein the maximum value of the diameter of the internal secondary electrode is made larger than the maximum value of the diameter of the internal primary electrode. Transformer.
JP2012228660A 2012-10-16 2012-10-16 Vacuum capacitor type instrument transformer Expired - Fee Related JP6064508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228660A JP6064508B2 (en) 2012-10-16 2012-10-16 Vacuum capacitor type instrument transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228660A JP6064508B2 (en) 2012-10-16 2012-10-16 Vacuum capacitor type instrument transformer

Publications (2)

Publication Number Publication Date
JP2014082292A true JP2014082292A (en) 2014-05-08
JP6064508B2 JP6064508B2 (en) 2017-01-25

Family

ID=50786239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228660A Expired - Fee Related JP6064508B2 (en) 2012-10-16 2012-10-16 Vacuum capacitor type instrument transformer

Country Status (1)

Country Link
JP (1) JP6064508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086867A (en) * 2019-11-26 2021-06-03 株式会社明電舎 Vacuum capacitor type instrument transformer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4513223Y1 (en) * 1967-02-15 1970-06-08
JPS50127614U (en) * 1974-04-02 1975-10-20
JPS5537246U (en) * 1978-08-31 1980-03-10
JPS6021514A (en) * 1983-07-15 1985-02-02 Mitsubishi Electric Corp Gas capacitor type transformer
JPH02129719U (en) * 1988-05-20 1990-10-25
JPH0538855U (en) * 1991-10-21 1993-05-25 日新電機株式会社 Voltage transformer for gas insulated switchgear
JP2009129956A (en) * 2007-11-20 2009-06-11 Meidensha Corp Vacuum capacitor
JP2011054796A (en) * 2009-09-02 2011-03-17 Meidensha Corp Transformer for vacuum capacitor instrumentation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4513223Y1 (en) * 1967-02-15 1970-06-08
JPS50127614U (en) * 1974-04-02 1975-10-20
JPS5537246U (en) * 1978-08-31 1980-03-10
JPS6021514A (en) * 1983-07-15 1985-02-02 Mitsubishi Electric Corp Gas capacitor type transformer
JPH02129719U (en) * 1988-05-20 1990-10-25
JPH0538855U (en) * 1991-10-21 1993-05-25 日新電機株式会社 Voltage transformer for gas insulated switchgear
JP2009129956A (en) * 2007-11-20 2009-06-11 Meidensha Corp Vacuum capacitor
JP2011054796A (en) * 2009-09-02 2011-03-17 Meidensha Corp Transformer for vacuum capacitor instrumentation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086867A (en) * 2019-11-26 2021-06-03 株式会社明電舎 Vacuum capacitor type instrument transformer

Also Published As

Publication number Publication date
JP6064508B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
CN105340026B (en) Conductor assembly
TW201510539A (en) Closure
JP5476524B2 (en) Vacuum capacitor type instrument transformer
JPS6255684B2 (en)
JP2009020008A (en) Insulation monitoring device for gas insulation equipment
KR100699220B1 (en) Partial discharge detection system for underground power cable joint
JP5330192B2 (en) Gas insulated electrical equipment
US20130021709A1 (en) Conductor arrangement for reducing impact of very fast transients
JP2010093968A (en) Gas-insulated switchgear
JP6064508B2 (en) Vacuum capacitor type instrument transformer
CN110542777A (en) Three-phase integrated GIS independent bus voltage measuring device
CN102751622B (en) Signal eduction device and method of sulfur hexafluoride current transformer implanted-type ultrahigh frequency partial discharge sensor
KR20190005536A (en) Power cable for gas insulated underground switch
KR102645010B1 (en) Current transformer modules for switchgear and corresponding switchgear
JP6089573B2 (en) Vacuum capacitor type instrument transformer
JP6269556B2 (en) Sensor and partial discharge detection device
WO2016027494A1 (en) Power switchgear
JP2002131341A (en) Non-contact voltage sensor
JP2002277489A (en) Lightning surge sensor and lightning surge measurement device
WO2012160625A1 (en) Transformer for instruments
JP5987622B2 (en) Vacuum capacitor type instrument transformer
JP2020113723A (en) Vacuum capacitor type instrument transformer
JP3985409B2 (en) Current transformer for gas-insulated electrical equipment
CN211720128U (en) Gas insulated switchgear and partial discharge detection device for the same
US20220413018A1 (en) Voltage sampler and solid-state transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6064508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees