JP2014081251A - Water cooled type transmission oil heat exchanger test system - Google Patents

Water cooled type transmission oil heat exchanger test system Download PDF

Info

Publication number
JP2014081251A
JP2014081251A JP2012228530A JP2012228530A JP2014081251A JP 2014081251 A JP2014081251 A JP 2014081251A JP 2012228530 A JP2012228530 A JP 2012228530A JP 2012228530 A JP2012228530 A JP 2012228530A JP 2014081251 A JP2014081251 A JP 2014081251A
Authority
JP
Japan
Prior art keywords
oil
cooling water
heat exchanger
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012228530A
Other languages
Japanese (ja)
Other versions
JP5951440B2 (en
Inventor
Mitsutaka Oguri
光貴 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2012228530A priority Critical patent/JP5951440B2/en
Publication of JP2014081251A publication Critical patent/JP2014081251A/en
Application granted granted Critical
Publication of JP5951440B2 publication Critical patent/JP5951440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a test system which can execute a performance test of a water cooled type transmission oil heat exchanger relatively easily.SOLUTION: A water cooled type transmission oil heat exchanger test system 1 executing a performance test of a water cooled type transmission oil heat exchanger 2 cooling ATF (automatic transmission fluid) using LLC (long life coolant) of a radiator comprises a coolant circulation device 3 circulating and supplying the LLC to upstream of the water cooled type transmission oil heat exchanger 2, and an oil circulation device 4 circulating and supplying the ATF to downstream of the water cooled type transmission oil heat exchanger. The coolant circulation device 3 comprises a coolant side pump 11 circulating the LLC, a coolant thermometer 12 measuring the temperature of the LLC, a coolant side cooling system 13 cooling the LLC, and a coolant side electric heater 14 heating the LLC. The oil circulation device 4 comprises an oil side pump 41 circulating the ATF, an oil thermometer 42 measuring the temperature of the ATF, an oil side cooling system 43 cooling the ATF, and an oil side electric heater 44 heating the ATF.

Description

本発明は、自動車などに搭載され、原動機からの駆動系の一部を受け持つオートマチックトランスミッション等の変速機に供されるオートマチックトランスミッションフルード等の変速機オイル(以降、ATFともいう。)を、エンジン等の冷却のためのラジエータの冷却水を利用して冷却する水冷式変速機オイル熱交換器の性能試験を行うための水冷式変速機オイル熱交換器試験システムに関するものである。   The present invention is applied to a transmission oil such as an automatic transmission fluid (hereinafter also referred to as ATF) used for a transmission such as an automatic transmission mounted on an automobile or the like and responsible for a part of a drive system from a prime mover. The present invention relates to a water-cooled transmission oil heat exchanger test system for performing a performance test of a water-cooled transmission oil heat exchanger that cools using cooling water of a radiator for cooling.

従来、エンジンあるいはハイブリッド方式や電気自動車なら電動機(以降、まとめて原動機という。)を、車両に搭載する前の形で試験室の試験台に載せて、原動機の性能を試験することが知られている(例えば、特許文献1参照。)。また、かかる原動機に、地面に駆動力を伝える車輪への伝達系の一部の変速機を駆動系の一部として接続し、原動機や変速機等の試験を行う際、水冷式変速機オイル熱交換器の性能についても試験する場合がある。ちなみに、この変速機オイルは、現状普及しているオートマチックトランスミッションに使われるオートマチックトランスミッションフルード(ATF)と呼ばれるものであるが、マニュアルトランスミッションに用いられるオイルも同様である。   Conventionally, it has been known to test the performance of a prime mover by mounting an electric motor (hereinafter collectively referred to as a prime mover) on an engine or a hybrid system or an electric vehicle on a test bench in a test room before being mounted on a vehicle. (For example, refer to Patent Document 1). In addition, when a part of the transmission system to the wheels that transmit driving force to the ground is connected to such a prime mover as part of the drive system, and when testing the prime mover and the transmission, etc., the water-cooled transmission oil heat The performance of the exchanger may also be tested. By the way, this transmission oil is called automatic transmission fluid (ATF) used in automatic transmissions that are currently popular, but the same applies to oil used in manual transmissions.

この水冷式変速機オイル熱交換器は、内燃機関であるエンジンのエンジン冷却水の外気との熱交換器であるラジエータと一体に横付けされた形式が実際の車載形式として多い(例えば、特許文献2参照。)が、近年のハイブリッド原動機や電気自動車の普及と共に別体形式のものも出てきている。   As for this water-cooled transmission oil heat exchanger, there are many actual vehicle-mounted types that are integrated with a radiator that is a heat exchanger with the outside air of engine cooling water of an engine that is an internal combustion engine (for example, Patent Document 2). However, with the recent spread of hybrid prime movers and electric vehicles, separate types are also emerging.

特開平9−257653号公報JP-A-9-257653 特開2007−16651号公報JP 2007-16651 A

しかしながら、水冷式変速機オイル熱交換器の性能のみを試験できれば十分な状況であっても、原動機及び変速機を用意して駆動させるとともに、エンジンから排出される排気ガスを排出したりするための各種設備を用意するのでは、手間とコストが掛かり過ぎてしまうことが懸念される。   However, even if it is sufficient to test only the performance of the water-cooled transmission oil heat exchanger, the prime mover and the transmission are prepared and driven, and the exhaust gas discharged from the engine is discharged. There is a concern that the preparation of various facilities would take too much effort and cost.

また、試験室を備える試験施設では、他用途の原動機ベンチ試験室や、シャシダイナモ試験室などが備わっている場合があり、それらの室で冷却水として必要な工水冷却水が、中央機械室に設置された大きな冷凍機で冷却され提供されており、この冷却水を用いる冷却系は利用しやすい。   In addition, a test facility equipped with a test room may have a motor bench test room for other purposes, a chassis dynamo test room, etc. The cooling system using this cooling water is easy to use.

そして、水冷式変速機オイル熱交換器は、ATFなどの効率の良い駆動力伝達や、オイル劣化防止のため、始動時に最適にATFを冷却水側からの加熱で温め、原動機からの高負荷駆動力伝達時のATF高温化による劣化防止や駆動伝達効率低下防止のため、冷却しなければならないが、これを試験台において、工水冷却水を利用して各種条件で精度よく試験する試験システムは無かった。   The water-cooled transmission oil heat exchanger heats the ATF optimally at the start by heating from the cooling water side in order to efficiently transmit driving force such as ATF and prevent oil deterioration, and drive with high load from the prime mover. In order to prevent deterioration due to high temperature of ATF during power transmission and to prevent reduction in drive transmission efficiency, it must be cooled, but a test system that accurately tests this under various conditions using industrial water cooling water on a test bench is There was no.

本発明は、上記例示した問題点等を解決するためになされたものであって、その目的は、水冷式変速機オイル熱交換器の性能試験を比較的容易に実施することのできる水冷式変速機オイル熱交換器試験システムを提供することにある。   The present invention has been made to solve the above-described problems and the like, and its purpose is to provide a water-cooled transmission that can perform a performance test of a water-cooled transmission oil heat exchanger relatively easily. It is to provide a machine oil heat exchanger test system.

以下、上記目的等を解決するのに適した各手段につき項分けして説明する。なお、必要に応じて対応する手段に特有の作用効果等を付記する。   In the following, each means suitable for solving the above-mentioned purpose will be described in terms of items. In addition, the effect etc. peculiar to the means to respond | correspond as needed are added.

手段1.原動機の軸回転力を地面への車両駆動力へ伝達する駆動系の一部をなす変速機に使用される変速機オイルを冷却可能な水冷式変速機オイル熱交換器と、
前記水冷式変速機オイル熱交換器の一次側へ冷却水を循環供給可能な試験室付帯の冷却水循環装置と、
前記水冷式変速機オイル熱交換器の二次側へ変速機オイルを循環供給可能な試験室付帯のオイル循環装置とを備え、
前記水冷式変速機オイル熱交換器の性能試験を行う水冷式変速機オイル熱交換器試験システムにおいて、
前記冷却水循環装置は、
冷却水を循環させるための冷却水側ポンプと、
冷却水の温度を計測可能な冷却水温度計と、
冷却水を冷却可能な冷却水側冷却手段と、
冷却水を加熱可能な冷却水側加熱手段とを備え、
前記オイル循環装置は、
変速機オイルを循環させるためのオイル側ポンプと、
変速機オイルの温度を計測可能なオイル温度計と、
変速機オイルを冷却可能なオイル側冷却手段と、
変速機オイルを加熱可能なオイル側加熱手段とを備えていることを特徴とする水冷式変速機オイル熱交換器試験システム。
Means 1. A water-cooled transmission oil heat exchanger capable of cooling transmission oil used in a transmission that forms part of a drive system that transmits the shaft rotational force of the prime mover to the vehicle driving force to the ground;
A cooling water circulation device attached to a test chamber capable of circulating and supplying cooling water to a primary side of the water-cooled transmission oil heat exchanger;
An oil circulation device attached to a test chamber capable of circulating and supplying transmission oil to the secondary side of the water-cooled transmission oil heat exchanger,
In the water-cooled transmission oil heat exchanger test system for performing the performance test of the water-cooled transmission oil heat exchanger,
The cooling water circulation device is
A cooling water side pump for circulating the cooling water;
A cooling water thermometer capable of measuring the temperature of the cooling water;
A cooling water side cooling means capable of cooling the cooling water;
A cooling water side heating means capable of heating the cooling water,
The oil circulation device is
An oil-side pump for circulating transmission oil;
An oil thermometer capable of measuring the temperature of transmission oil,
Oil-side cooling means capable of cooling transmission oil;
A water-cooled transmission oil heat exchanger test system comprising an oil side heating means capable of heating transmission oil.

手段1によれば、冷却水循環装置で冷却水の試験条件(温度条件)を作り、オイル循環装置で変速機オイルの試験条件(温度条件)を作ることのできる水冷式変速機オイル熱交換器試験システムによって、水冷式変速機オイル熱交換器の単体の試験を行うことが可能となる。このため、原動機、変速機、原動機や変速機を設置するための設備、エンジンが原動機の場合の排気ガスを排出するための設備、原動機を駆動させるための燃料や電気サプライ等を用意する必要がなくなり、比較的スムースかつ簡素に水冷式変速機オイル熱交換器の性能試験を行うことができる。従って、水冷式変速機オイル熱交換器の性能試験に要する手間とコストを抑制することができる上、手間やコストの懸念から水冷式変速機オイル熱交換器の性能試験の機会が控えられ、開発がスムースに進まなくなってしまうといった事態を抑制することができる。また、実際に原動機等を動かして変速機オイルの温度や流量を所望とする試験条件となるように調節する場合に比べ、かかる調節を比較的素早くかつ正確に行うことができ、試験効率及び試験精度の向上を図ることができる。   According to means 1, a water-cooled transmission oil heat exchanger test capable of creating a test condition (temperature condition) for cooling water with a cooling water circulation device and a test condition (temperature condition) for transmission oil with an oil circulation device The system allows a single test of the water-cooled transmission oil heat exchanger. Therefore, it is necessary to prepare a prime mover, a transmission, equipment for installing the prime mover and the transmission, equipment for exhausting exhaust gas when the engine is a prime mover, fuel and electric supply for driving the prime mover, etc. The performance test of the water-cooled transmission oil heat exchanger can be performed relatively smoothly and simply. Therefore, the labor and cost required for the performance test of the water-cooled transmission oil heat exchanger can be reduced, and the opportunity for the performance test of the water-cooled transmission oil heat exchanger is refrained from concerns of labor and cost. Can be prevented from going smoothly. Compared with the case where the prime mover is actually moved to adjust the temperature and flow rate of the transmission oil to the desired test conditions, such adjustment can be performed relatively quickly and accurately, and the test efficiency and test can be performed. The accuracy can be improved.

手段2.前記冷却水循環装置は、
前記冷却水側ポンプと、前記冷却水温度計と、前記冷却水側冷却手段と、前記冷却水側加熱手段と、冷却水側熱交換器とを、供試体である水冷式変速機オイル熱交換器の冷却水側との接続カップリングを介して、接続する配管途中にそれぞれ設けてなり、
前記冷却水側熱交換器は、前記冷却水循環装置を循環する冷却水と、建物側の冷熱源により冷却される工業用水との間で熱交換される熱交換器であり、
前記冷却水循環装置は、密閉系である配管内圧の調整のため、低温時の冷却水循環用膨張系とは異なる、高温冷却水の場合の高温用密閉式膨張タンクをさらに備え、
高温冷却水の場合、前記高温用密閉式膨張タンクに切り替えることで、100℃以上の高温水を循環可能としていることを特徴とする手段1に記載の水冷式変速機オイル熱交換器試験システム。
Mean 2. The cooling water circulation device is
The cooling water side pump, the cooling water thermometer, the cooling water side cooling means, the cooling water side heating means, and the cooling water side heat exchanger, a water-cooled transmission oil heat exchange as a specimen Through the connection coupling with the cooling water side of the vessel, respectively, in the middle of the pipe to be connected,
The cooling water side heat exchanger is a heat exchanger that exchanges heat between cooling water circulating through the cooling water circulation device and industrial water cooled by a building-side cooling heat source,
The cooling water circulation device further includes a high-temperature sealed expansion tank in the case of high-temperature cooling water, which is different from the cooling water circulation expansion system at low temperatures, in order to adjust the internal pressure of the pipe that is a closed system,
In the case of high-temperature cooling water, the water-cooled transmission oil heat exchanger test system according to means 1, wherein high-temperature water at 100 ° C. or higher can be circulated by switching to the high-temperature sealed expansion tank.

手段2によれば、実際の車載の場合、高負荷の場合の冷却確保として、原動機の燃焼室や電力デバイスなどの高温固体の冷却、及び補器のオイル系の冷却の確保として、冷却水系の沸騰による冷却不全を避けるため、高温水としての冷却水を循環する仕組みが確保されている。   According to the means 2, in the case of actual vehicle mounting, as cooling ensuring in the case of high load, cooling of high-temperature solids such as the combustion chamber of the prime mover and power device, and cooling of the oil system of the auxiliary equipment, In order to avoid cooling failure due to boiling, a mechanism for circulating cooling water as high-temperature water is secured.

しかし、試験室における冷却水の場合、通常の用途では開放式膨張タンクによる膨張系をポンプ吸込み側の基準点に接続するが、膨張タンクの高さも低く、大気圧に近い冷却水配管内では100℃近い水温となると沸騰を始めて水蒸気により気液混相流となり、ポンプがガスを噛んで搬送不能となる。通常の冷却水循環系では、このように高温水対応をすることはない。   However, in the case of cooling water in a test chamber, an expansion system using an open expansion tank is connected to a reference point on the pump suction side in a normal application. However, the height of the expansion tank is low, and 100 in a cooling water pipe close to atmospheric pressure. When the water temperature becomes close to 0 ° C., it begins to boil and becomes a gas-liquid mixed phase flow with water vapor, and the pump bites the gas and cannot be transported. The normal cooling water circulation system does not cope with high temperature water in this way.

この点、手段2の仕組みが備わっていると、車載の冷却水系で行われる実際の冷却条件を、膨張タンクへの噴出や、密閉系となる冷却水配管の破裂、冷却不全による試験装置や供試体の破損など危険な状態にならず再現できる。   In this respect, if the mechanism of the means 2 is provided, the actual cooling conditions performed in the on-vehicle cooling water system can be changed to a test apparatus or a tester due to jetting into the expansion tank, bursting of the cooling water piping that becomes a sealed system, or cooling failure. It can be reproduced without being in a dangerous state such as a broken specimen.

手段3.前記冷却水側冷却手段は、
前記冷却水側熱交換器の一次側へ供給される工業用水の流量を調節する第一工業用水流量調節装置と、
前記冷却水側熱交換器の二次側へ供給される冷却水の流量を調節する冷却水流量調節装置とを備え、
前記オイル側冷却手段は、
前記オイル循環装置を循環する変速機オイルと、工業用水との間で熱交換するオイル側熱交換器と、
前記オイル側熱交換器の一次側へ供給される工業用水の流量を調節する第二工業用水流量調節装置と、
前記オイル側熱交換器の二次側へ供給される変速機オイルの流量を調節するオイル流量調節装置とを備えていることを特徴とする手段2に記載の水冷式変速機オイル熱交換器試験システム。
Means 3. The cooling water side cooling means is
A first industrial water flow rate adjusting device for adjusting the flow rate of industrial water supplied to the primary side of the cooling water side heat exchanger;
A cooling water flow rate adjusting device for adjusting the flow rate of cooling water supplied to the secondary side of the cooling water side heat exchanger;
The oil-side cooling means is
An oil-side heat exchanger for exchanging heat between transmission oil circulating through the oil circulation device and industrial water;
A second industrial water flow rate adjusting device for adjusting the flow rate of industrial water supplied to the primary side of the oil side heat exchanger;
The water-cooled transmission oil heat exchanger test according to claim 2, further comprising an oil flow rate adjusting device for adjusting a flow rate of transmission oil supplied to a secondary side of the oil side heat exchanger. system.

手段3によれば、冷却水側熱交換器(オイル側熱交換器)の一次側である工業用水側、及び、二次側である冷却水側(変速機オイル側)のどちらでも、冷却水(変速機オイル)を工業用水によってどの程度冷却するのかの調節、ひいては、冷却水(変速機オイル)の温度調節を行うことができるように構成されている。このため、冷却水や変速機オイルの温度が、高温水(常圧では配管内で沸騰するおそれがある水温)に相当する90℃以上などの比較的高い場合には、冷却水流量調節装置やオイル流量調節装置で温度調節を行う(冷却水側熱交換器やオイル側熱交換器へ流入する冷却水や変速機オイルの流量を調節する)こととし、冷却水側熱交換器やオイル側熱交換器に対して工業用水を最大限定量で流入させることができる。この場合、冷却水側熱交換器やオイル側熱交換器の一次側における工業用水が流量調節により滞留することなく、冷熱を常に供給しながら入れ替わることとなり、二次側となる冷却水側やオイル側の高温水(常圧では配管内で沸騰するおそれがある水温)に相当する高温に限りなく近く工業用水が加熱され、特に高温水の膨張圧対策を施していない工業用水系での、冷却水や変速機オイルとの熱交換によって沸騰してしまうといった事態を回避することができる。   According to the means 3, the cooling water is supplied to either the industrial water side which is the primary side of the cooling water side heat exchanger (oil side heat exchanger) or the cooling water side (transmission oil side) which is the secondary side. It is configured to be able to adjust how much (transmission oil) is cooled by industrial water, and in turn, adjust the temperature of the cooling water (transmission oil). For this reason, when the temperature of the cooling water or transmission oil is relatively high, such as 90 ° C. or higher, corresponding to high-temperature water (water temperature at which atmospheric pressure may cause boiling in the pipe), Adjust the temperature with the oil flow control device (adjust the flow rate of cooling water and transmission oil flowing into the cooling water side heat exchanger and oil side heat exchanger), and then use the cooling water side heat exchanger and oil side heat. Industrial water can flow into the exchanger with a maximum amount. In this case, the industrial water on the primary side of the cooling water side heat exchanger or oil side heat exchanger will not be retained by adjusting the flow rate, but will be replaced while always supplying cold heat. Cooling in industrial water systems where industrial water is heated as close as possible to the high temperature water that is likely to boil in the pipe at normal pressure, especially for industrial water systems that do not take measures against the expansion pressure of high temperature water It is possible to avoid a situation where boiling occurs due to heat exchange with water or transmission oil.

その一方で、冷却水や変速機オイルの温度が例えば80℃以下程度の比較的低い場合には、冷却水側熱交換器やオイル側熱交換器へ流入する工業用水の流量を調節することで、冷却水や変速機オイルの温度調整を行うこととする。この場合、大気との熱交換を行う冷却塔や、温度によっては冷凍機を用いる工業用水の冷却装置と、本装置の冷却水側冷却手段やオイル側冷却手段との工業用水の循環搬送手段である工業用水ポンプの流量、つまりポンプ動力を削減することができ、さらに流量を減じて入口出口の工業用水の温度差を大きくできるので、熱交換機や冷却塔による冷却ではアプローチ温度を大きく、冷凍機による冷却の場合は、凝縮器の温度を高くでき、冷却に要するエネルギーを小さくできる。従って、省エネルギー化等を図ることができる。   On the other hand, when the temperature of the cooling water or transmission oil is relatively low, for example, about 80 ° C. or less, the flow rate of industrial water flowing into the cooling water side heat exchanger or the oil side heat exchanger can be adjusted. The temperature of cooling water and transmission oil is adjusted. In this case, a cooling tower for exchanging heat with the atmosphere, a cooling device for industrial water that uses a refrigerator depending on the temperature, and a circulating transfer means for industrial water with the cooling water side cooling means and the oil side cooling means of this device. The flow rate of an industrial water pump, that is, the pump power can be reduced, and the flow rate can be further reduced to increase the temperature difference of industrial water at the inlet and outlet. Therefore, cooling with a heat exchanger or cooling tower increases the approach temperature, and the refrigerator In the case of cooling by means of this, the temperature of the condenser can be increased and the energy required for cooling can be reduced. Therefore, energy saving can be achieved.

手段4.前記冷却水循環装置は、
冷却水側流量コントローラを備え、
前記冷却水側流量コントローラでは、
前記第一工業用水流量調節装置に対する操作量を演算し出力し、且つ前記冷却水流量調節装置に対する操作量を演算し出力するとともに、
前記冷却水温度計の計測値を入力され、前記冷却側流量コントローラに設定される運転選択設定温度と前記冷却水温度計の計測値とを比較して前記運転選択設定温度を閾値とした判断信号を出し、
該判断信号に基づいて、前記第一工業用水流量制御装置または前記冷却水流量制御装置の一方には、計測値入力信号と試験用に設定される冷却水温度設定温度との偏差に基づいて演算した出力信号により、流量調整装置を比例制御動作させ、他方には、流量調整装置の弁開度を定量調整することで、全量を冷却水側熱交換器へ流すように構成され、
前記オイル循環装置は、
オイル側流量コントローラを備え、
前記オイル側流量コントローラでは、
前記第二工業用水流量調節装置に対する操作量を演算し出力し、且つ前記オイル流量調節装置に対する操作量を演算し出力するとともに、
前記オイル温度計の計測値を入力され、前記オイル側流量コントローラに設定される運転選択設定温度と前記オイル温度計の計測値とを比較して前記運転選択設定温度を閾値とした判断信号を出し、
該判断信号に基づいて、前記第二工業用水流量制御装置または前記オイル流量制御装置の一方には、計測値入力信号と試験用に設定されるオイル温度設定温度との偏差に基づいて演算した出力信号により、流量調整装置を比例制御動作させ、他方には、流量調整装置の弁開度を定量調整することで、全量をオイル側熱交換器へ流すように構成され、
前記冷却水側流量コントローラ及び前記オイル側流量コントローラには、前記工業用水配管内での冷却水沸騰によるキャビテーションを防止するための運転選択設定温度がそれぞれ設定されていて、
前記冷却水温度計で計測された冷却水の温度が前記運転選択設定温度未満の場合には、前記冷却水側流量コントローラは、前記水冷式変速機オイル熱交換器から排出された冷却水が最大限定量で前記冷却水側熱交換器に流入するように前記冷却水流量調整装置を定位置に調整するとともに、前記第一工業用水流量調節装置による工業用水の流量を比例制御調整することによって、冷却水の温度調整が行われ、
前記冷却水温度計で計測された冷却水の温度が前記運転選択設定温度以上の場合には、前記冷却水側流量コントローラは、工業用水が最大限定量で前記冷却水側熱交換器に流入するように前記第一工業用水流量調整装置を定位置に調整するとともに、前記冷却水流量調節装置による前記冷却水側熱交換器への冷却水の流量を比例制御調整することによって、冷却水の温度調整が行われ、
前記オイル温度計で計測された変速機オイルの温度が前記運転選択設定温度未満の場合には、前記オイル側流量コントローラは、前記変速機オイルが最大限定量で前記オイル側熱交換器に流入するように前記オイル流量調整装置を定位置に調整するとともに、前記第二工業用水流量調節装置による工業用水の流量を比例制御調整することによって、変速機オイルの温度調整が行われ、
前記オイル温度計で計測された変速機オイルの温度が前記運転選択設定温度以上の場合には、前記オイル側流量コントローラは、工業用水が最大限定量で前記オイル側熱交換器に流入するように前記第二工業用水流量調整装置を定位置に調整するとともに、前記オイル流量調節装置による前記オイル側熱交換器への変速機オイルの流量を比例制御調整することによって、変速機オイルの温度調整が行われることを特徴とする手段3に記載の水冷式変速機オイル熱交換器試験システム。
Means 4. The cooling water circulation device is
Equipped with a cooling water flow controller
In the cooling water side flow controller,
Calculate and output the operation amount for the first industrial water flow control device, and calculate and output the operation amount for the cooling water flow control device,
A determination signal that receives the measured value of the cooling water thermometer, compares the operation selection set temperature set in the cooling side flow rate controller with the measured value of the cooling water thermometer, and uses the operation selection set temperature as a threshold value And
Based on the determination signal, one of the first industrial water flow rate control device or the cooling water flow rate control device is operated based on the deviation between the measured value input signal and the cooling water temperature setting temperature set for testing. The flow rate adjusting device is proportionally controlled by the output signal, and on the other hand, the valve opening degree of the flow rate adjusting device is quantitatively adjusted to flow the entire amount to the cooling water side heat exchanger,
The oil circulation device is
With oil side flow controller,
In the oil side flow rate controller,
Calculate and output the operation amount for the second industrial water flow control device, and calculate and output the operation amount for the oil flow control device,
The measurement value of the oil thermometer is input, and the operation selection set temperature set in the oil side flow controller is compared with the measurement value of the oil thermometer, and a judgment signal is output with the operation selection set temperature as a threshold value. ,
Based on the determination signal, one of the second industrial water flow control device or the oil flow control device has an output calculated based on the deviation between the measured value input signal and the oil temperature setting temperature set for testing. Based on the signal, the flow rate adjusting device is proportionally controlled, and on the other side, the valve opening degree of the flow rate adjusting device is quantitatively adjusted to flow the entire amount to the oil side heat exchanger,
The cooling water side flow controller and the oil side flow controller are each set with an operation selection set temperature for preventing cavitation due to boiling of the cooling water in the industrial water pipe,
When the temperature of the cooling water measured by the cooling water thermometer is lower than the operation selection set temperature, the cooling water-side flow rate controller has a maximum amount of cooling water discharged from the water-cooled transmission oil heat exchanger. By adjusting the cooling water flow rate adjusting device to a fixed position so as to flow into the cooling water side heat exchanger in a limited amount, and by proportionally adjusting the industrial water flow rate by the first industrial water flow rate adjusting device, The cooling water temperature is adjusted,
When the temperature of the cooling water measured by the cooling water thermometer is equal to or higher than the operation selection set temperature, the cooling water side flow rate controller flows the industrial water into the cooling water side heat exchanger with a maximum amount. The temperature of the cooling water is adjusted by adjusting the flow rate of the cooling water to the cooling water side heat exchanger by the cooling water flow rate adjusting device proportionally and adjusting the first industrial water flow rate adjusting device to a fixed position. Adjustments are made,
When the temperature of the transmission oil measured by the oil thermometer is lower than the operation selection set temperature, the oil-side flow rate controller causes the transmission oil to flow into the oil-side heat exchanger with a maximum amount. As described above, adjusting the oil flow rate adjusting device to a fixed position, and adjusting the flow rate of industrial water by the second industrial water flow rate adjusting device in proportion control, the temperature adjustment of the transmission oil is performed,
When the temperature of the transmission oil measured by the oil thermometer is equal to or higher than the operation selection set temperature, the oil-side flow rate controller controls the industrial water to flow into the oil-side heat exchanger with a maximum amount. The temperature of the transmission oil can be adjusted by adjusting the second industrial water flow adjustment device to a fixed position and proportionally adjusting the flow rate of the transmission oil to the oil-side heat exchanger by the oil flow adjustment device. The water-cooled transmission oil heat exchanger test system according to claim 3, wherein the test system is performed.

手段4によれば、冷却水(変速機オイル)の温度調節を、第一工業用水流量調節装置(第二工業用水流量調節装置)、又は、冷却水流量調節装置(オイル流量調節装置)のどちらで行うのか等を少なくとも判断信号として示し、切り換えた後、自動制御で制御が行える。従って、オペレータによる作業の簡素化が図られるとともに、冷却水や変速機オイルの、運転選択設定温度(冷却水や工業用水の一部が高温水になる可能性のある温度)を跨ぐ、冷却水や変速機オイルの温度変化に対応する措置が行われず冷却不全による装置の破損などの事態を回避することができる上、冷却水や変速機オイルの温度変化に応じて的確な対応を信号に基づいて行うことができる。   According to the means 4, the temperature adjustment of the cooling water (transmission oil) is performed by either the first industrial water flow adjustment device (second industrial water flow adjustment device) or the cooling water flow adjustment device (oil flow adjustment device). It is possible to perform control by automatic control after switching at least as a determination signal. Therefore, the operation by the operator can be simplified, and the cooling water and transmission oil can be cooled over the operation selection set temperature (temperature at which part of the cooling water or industrial water can become high temperature water). And measures to respond to changes in the temperature of transmission oil can be avoided, and damage to the equipment due to inadequate cooling can be avoided. Can be done.

手段5.前記冷却水側加熱手段及び前記オイル側加熱手段はそれぞれ電気ヒータによって構成され、
前記冷却水側加熱手段の最大加熱能力は、前記オイル側加熱手段の最大加熱能力の30%〜60%であることを特徴とする手段1乃至4のいずれかに記載の水冷式変速機オイル熱交換器試験システム。
Means 5. The cooling water side heating means and the oil side heating means are each constituted by an electric heater,
5. The water-cooled transmission oil heat according to any one of means 1 to 4, wherein the maximum heating capacity of the cooling water side heating means is 30% to 60% of the maximum heating capacity of the oil side heating means. Exchanger test system.

手段5によれば、冷却水側加熱手段の小型化及び低コスト化等を図りつつ、エンジン始動時等の様々な試験条件にも確実かつスムースに対応することができる。   According to the means 5, it is possible to reliably and smoothly cope with various test conditions such as when starting the engine while reducing the size and cost of the cooling water side heating means.

水冷式変速機オイル熱交換器試験システムの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of a water-cooled transmission oil heat exchanger test system. 各種条件下における制御弁の状態を示す説明図である。It is explanatory drawing which shows the state of the control valve under various conditions.

以下、一実施形態について、図面を参照しつつ説明する。図1に示すように、水冷式変速機オイル熱交換器試験システム1は、変速機としてのオートマチックトランスミッション(以下、「AT」と称する)に使用される変速機オイルとしてのオートマチックトランスミッションフルード(以下、「ATF」と称する)を、ラジエータの冷却水であるロングライフクーラント(以下、「LLC」と称する)を利用して冷却する水冷式変速機オイル熱交換器2の性能試験を行うためのシステムである。すなわち、水冷式変速機オイル熱交換器試験システム1は、試験室側に水冷式変速機オイル熱交換器2の一次側へLLCを循環供給可能な冷却水循環装置3と、水冷式変速機オイル熱交換器2の二次側へATFを循環供給可能なオイル循環装置4とをそれぞれ室に固定された配管群で形成し、タッピング及び可撓管等で仮設的に水冷式変速機オイル熱交換器2の一次側及び二次側にそれぞれ接続され、冷却水循環装置3でLLCの試験条件(温度条件)を作り、オイル循環装置4でATFの試験条件(温度条件)を作ることができるように構成されている。   Hereinafter, an embodiment will be described with reference to the drawings. As shown in FIG. 1, a water-cooled transmission oil heat exchanger test system 1 includes an automatic transmission fluid (hereinafter referred to as “transmission fluid”) as transmission oil used in an automatic transmission (hereinafter referred to as “AT”) as a transmission. A system for performing a performance test of a water-cooled transmission oil heat exchanger 2 that uses a long-life coolant (hereinafter referred to as “LLC”) that is a cooling water of a radiator. is there. That is, the water-cooled transmission oil heat exchanger test system 1 includes a cooling water circulation device 3 that can circulate and supply LLC to the primary side of the water-cooled transmission oil heat exchanger 2 and a water-cooled transmission oil heat heat. An oil circulation device 4 that can circulate and supply ATF to the secondary side of the exchanger 2 is formed by a group of pipes fixed to the chambers, and is a water-cooled transmission oil heat exchanger temporarily with tapping and flexible tubes. 2 is connected to the primary side and the secondary side respectively, and the cooling water circulation device 3 can create LLC test conditions (temperature conditions), and the oil circulation device 4 can create ATF test conditions (temperature conditions). Has been.

冷却水循環装置3は、LLCを循環させるための冷却水側ポンプ11と、LLCの温度を計測可能な冷却水温度計12と、LLCを冷却可能な冷却水側冷却手段としての冷却水側冷却機構13と、LLCを加熱可能な冷却水側加熱手段としての冷却水側電気ヒータ14と、水冷式変速機オイル熱交換器2の一次側と接続するための二つのタッピング(カップリング)とが循環可能となるように配管で接続されている。また、冷却水側ポンプ11の吸込み口上流の配管から分岐した膨張管の上端には、冷却水側開放式膨張タンク15と、前記膨張管の途中から分岐して分岐膨張管に接続される高温用密閉式膨張タンク16と、分岐膨張管の膨張管分岐下流側に冷却水膨張切替えボール弁24aとが設けられている。   The cooling water circulation device 3 includes a cooling water side pump 11 for circulating the LLC, a cooling water thermometer 12 capable of measuring the temperature of the LLC, and a cooling water side cooling mechanism as a cooling water side cooling means capable of cooling the LLC. 13, a cooling water side electric heater 14 as a cooling water side heating means capable of heating the LLC, and two tappings (couplings) for connecting to the primary side of the water cooling type transmission oil heat exchanger 2 are circulated. It is connected by piping so that it is possible. Further, at the upper end of the expansion pipe branched from the pipe upstream of the suction port of the cooling water side pump 11, there is a cooling water side open expansion tank 15 and a high temperature branched from the middle of the expansion pipe and connected to the branch expansion pipe. A closed expansion tank 16 for cooling and a cooling water expansion switching ball valve 24a are provided on the downstream side of the expansion pipe branch of the branch expansion pipe.

冷却水側冷却機構13は、冷却水循環装置3を循環するLLCと、工業用水との間で熱交換する冷却水側熱交換器17と、冷却水側熱交換器17の一次側へ供給される工業用水の流量を調節する第一工業用水流量調節装置としての第一工業用水制御弁18と、冷却水側熱交換器17の二次側へ供給されるLLCの流量を調節する冷却水流量調節装置としての第一冷却水制御弁19及び第二冷却水制御弁20とを備えている。すなわち、冷却水側冷却機構13は、冷却水側熱交換器17を備えることで、ラジエータの冷却能力と同等以上の冷却機能を有している。さらに、第一工業用水制御弁18や、第一冷却水制御弁19及び第二冷却水制御弁20を備えることで、冷却水側熱交換器17によってLLCをどの程度冷却するかの設定(ひいては、LLCの温度調節)を行うことができ、ラジエータの冷却具合(速度)を模倣したり、試験初期状態等のLLCの温度を適宜設定したりすることができる。   The cooling water side cooling mechanism 13 is supplied to the primary side of the cooling water side heat exchanger 17 and the cooling water side heat exchanger 17 that exchanges heat between the LLC circulating through the cooling water circulation device 3 and the industrial water. Cooling water flow rate adjustment for adjusting the flow rate of LLC supplied to the secondary side of the first industrial water control valve 18 and the cooling water side heat exchanger 17 as a first industrial water flow rate adjusting device for adjusting the flow rate of industrial water A first cooling water control valve 19 and a second cooling water control valve 20 as an apparatus are provided. That is, the cooling water side cooling mechanism 13 includes the cooling water side heat exchanger 17 and thereby has a cooling function equal to or higher than the cooling capacity of the radiator. Furthermore, by setting the first industrial water control valve 18, the first cooling water control valve 19, and the second cooling water control valve 20, setting of how much the LLC is cooled by the cooling water side heat exchanger 17 (as a result) , LLC temperature adjustment) can be performed, the cooling condition (speed) of the radiator can be imitated, and the LLC temperature such as the initial test state can be appropriately set.

また、冷却水循環装置3が冷却水側電気ヒータ14を備えることで、水冷式変速機オイル熱交換器2を実際に車両へ搭載した場合にエンジンオイルとの熱交換でLLCが温められることを想定し、想定されるLLCの温度条件を冷却水循環装置3において実現することができるようになっている。このため、例えば、エンジンの始動時においてLLCがATFよりも先に温まる状況における水冷式変速機オイル熱交換器2の性能試験等を行うことも可能となる。加えて、冷却水側ポンプ11が駆動することでもLLC温度が上昇する。従って、冷却水側電気ヒータ14及び冷却水側ポンプ11(試験内容やLLCの温度状況によっては冷却水側電気ヒータ14を稼働させない場合もある)で加熱されるLLCを、冷却水側冷却機構13で調節しながら冷やすことで、実車を想定したLLCの温度条件を実現することができる。尚、第一工業用水制御弁18、第一冷却水制御弁19、及び第二冷却水制御弁20は、それぞれ二方弁によって構成され、特に第一冷却水制御弁19、及び第二冷却水制御弁20はお互い逆動作することで流路を切り替えながら流量制御もできるよう構成されている。   Further, it is assumed that the cooling water circulation device 3 includes the cooling water side electric heater 14 so that the LLC can be heated by heat exchange with the engine oil when the water cooling type transmission oil heat exchanger 2 is actually mounted on the vehicle. In addition, the assumed LLC temperature condition can be realized in the cooling water circulation device 3. Therefore, for example, it is possible to perform a performance test or the like of the water-cooled transmission oil heat exchanger 2 in a situation where the LLC is warmed before the ATF when the engine is started. In addition, the LLC temperature also rises when the cooling water side pump 11 is driven. Therefore, the LLC heated by the cooling water side electric heater 14 and the cooling water side pump 11 (the cooling water side electric heater 14 may not be operated depending on the test contents and the temperature condition of the LLC) is used as the cooling water side cooling mechanism 13. The temperature condition of LLC which assumed the real vehicle is realizable by cooling it, adjusting by. The first industrial water control valve 18, the first cooling water control valve 19, and the second cooling water control valve 20 are each constituted by a two-way valve, and in particular, the first cooling water control valve 19 and the second cooling water. The control valve 20 is configured to be able to control the flow rate while switching the flow path by operating in reverse.

さらに、冷却水循環装置3は、冷却水側熱交換器17で冷却されたLLCを水冷式変速機オイル熱交換器2に供給する冷却水側往流パイプ21と、水冷式変速機オイル熱交換器2から排出されたLLCを冷却水側熱交換器17側に戻す冷却水側還流パイプ22とを備えている。前記冷却水側ポンプ11は、冷却水側往流パイプ21に設けられている。前記冷却水温度計12は、冷却水側往流パイプ21のうち、冷却水側ポンプ11と水冷式変速機オイル熱交換器2との間の部位に設けられている。前記冷却水側電気ヒータ14は、冷却水側還流パイプ22に設けられている。   Further, the cooling water circulation device 3 includes a cooling water side forward pipe 21 that supplies the LLC cooled by the cooling water side heat exchanger 17 to the water cooling type transmission oil heat exchanger 2, and a water cooling type transmission oil heat exchanger. And a cooling water side reflux pipe 22 for returning the LLC discharged from 2 to the cooling water side heat exchanger 17 side. The cooling water side pump 11 is provided in the cooling water side forward pipe 21. The cooling water thermometer 12 is provided in a portion of the cooling water side forward pipe 21 between the cooling water side pump 11 and the water cooling type transmission oil heat exchanger 2. The cooling water side electric heater 14 is provided in the cooling water side reflux pipe 22.

また、冷却水側往流パイプ21のうち、冷却水側ポンプ11と冷却水側熱交換器17との間の部位と、冷却水側還流パイプ22のうち、冷却水側電気ヒータ14と冷却水側熱交換器17との間の部位とを連結する冷却水側第一バイパス通路23が設けられている。前記第一冷却水制御弁19は、冷却水側第一バイパス通路23に設けられ、前記第二冷却水制御弁20は、冷却水側往流パイプ21のうち、冷却水側第一バイパス通路23と冷却水側熱交換器17との間の部位に設けられている。   Of the cooling water side forward pipe 21, a portion between the cooling water side pump 11 and the cooling water side heat exchanger 17, and of the cooling water side return pipe 22, the cooling water side electric heater 14 and the cooling water are used. A cooling water side first bypass passage 23 is provided for connecting a portion between the side heat exchanger 17 and the side heat exchanger 17. The first cooling water control valve 19 is provided in the cooling water side first bypass passage 23, and the second cooling water control valve 20 is the cooling water side first bypass passage 23 in the cooling water side forward pipe 21. And the cooling water side heat exchanger 17.

さらに、冷却水側往流パイプ21のうち、冷却水側ポンプ11と冷却水側第一バイパス通路23との間のポンプ吸込み側で配管内での絶対圧の低い部位に接続し、前記冷却水側開放式膨張タンク15とを繋ぐ冷却水側膨張パイプ24が設けられるとともに、前記高温用密閉式膨張タンク16は、該冷却水側膨張パイプ24の途中からさらに分岐する分岐膨張パイプに繋げられている。前記冷却水側膨張パイプの前記分岐膨張パイプ分岐の後流側で前記冷却水側開放式膨張タンク15との間には、冷却水膨張切り替えボール弁24aが設けられている。該冷却水膨張切り替えボール弁24aは、運転切替設定温度(例えば90℃)未満の冷却水温の場合、開放状態とされることで、冷却水側膨張パイプは大気圧及び位置ヘッドによるポンプ吸込み側で配管内での絶対圧の低い部位基準点の圧を規定して、大気圧基準で配管内の冷却水の温度による膨張収縮に対応することとなる。これにより、冷却水側開放式膨張タンク15でLLCの膨張を吸収したり、試験前や試験後の水張りにおいて冷却水側開放式膨張タンク15を介してLLCを冷却水側往流パイプ21等の循環経路に充填させたりする。   Further, the cooling water side forward pipe 21 is connected to a portion having a low absolute pressure in the pipe on the pump suction side between the cooling water side pump 11 and the cooling water side first bypass passage 23, and the cooling water A cooling water side expansion pipe 24 that connects the side open expansion tank 15 is provided, and the high temperature sealed expansion tank 16 is connected to a branch expansion pipe that further branches from the middle of the cooling water side expansion pipe 24. Yes. A cooling water expansion switching ball valve 24a is provided between the cooling water side expansion pipe 15 and the cooling water side open expansion tank 15 on the downstream side of the branch expansion pipe branch of the cooling water side expansion pipe. The cooling water expansion switching ball valve 24a is opened when the cooling water temperature is lower than the operation switching set temperature (for example, 90 ° C.), whereby the cooling water side expansion pipe is on the pump suction side by the atmospheric pressure and the position head. The pressure at the site reference point having a low absolute pressure in the pipe is defined to cope with expansion and contraction due to the temperature of the cooling water in the pipe on the basis of the atmospheric pressure. As a result, the expansion of the LLC is absorbed by the cooling water side open expansion tank 15, or the water is filled with the cooling water side open expansion tank 15 before the test or after the test. Fill the circulation path.

また、LLC温度が、運転切替設定温度(例えば90℃)以上となる場合、大気圧+位置ヘッドでは抑えきれない配管内の一部沸騰によるキャビテーション発生による不具合を防止するため、冷却水側開放式膨張タンク15よりも所定の圧力をさらに加圧するべくダイヤフラムでの押圧を設定した、高温用密閉式膨張タンク16の圧を与えるため、冷却水側膨張パイプ24の途中の冷却水膨張切り替えボール弁24aを閉止した後、分岐膨張管に設置した図示しない開閉弁を閉から開へ回動することで、高温用密閉式膨張タンク16の圧を冷却水循環配管に与えることができ、100℃でも沸騰しない高温水を配管内に形成できる。これにより、冷却水側膨張パイプ24が冷却水膨張切り替えボール弁24aにて閉鎖されて、LLC配管内の冷却水圧が高められるとともに、冷却水側往流パイプ21等の循環経路におけるLLCの膨張が高温用密閉式膨張タンク16で吸収されることとなる。   In addition, when the LLC temperature is equal to or higher than the operation switching set temperature (for example, 90 ° C.), the cooling water side open type is used to prevent problems caused by cavitation due to partial boiling in the piping that cannot be suppressed by the atmospheric pressure + position head The cooling water expansion switching ball valve 24a in the middle of the cooling water side expansion pipe 24 is used to apply the pressure of the high-temperature sealed expansion tank 16 in which the pressure on the diaphragm is set to pressurize the predetermined pressure further than the expansion tank 15. After closing the valve, the on-off valve (not shown) installed on the branch expansion pipe is turned from closed to open, so that the pressure of the high-temperature sealed expansion tank 16 can be applied to the cooling water circulation pipe and does not boil even at 100 ° C. High temperature water can be formed in the pipe. Thereby, the cooling water side expansion pipe 24 is closed by the cooling water expansion switching ball valve 24a, the cooling water pressure in the LLC pipe is increased, and the expansion of the LLC in the circulation path such as the cooling water side forward pipe 21 is performed. It will be absorbed by the high temperature sealed expansion tank 16.

加えて、冷却水循環装置3には、冷却水側往流パイプ21のうち、冷却水側ポンプ11(冷却水温度計12)と水冷式変速機オイル熱交換器2との間の部位と、冷却水側還流パイプ22のうち、冷却水側電気ヒータ14と水冷式変速機オイル熱交換器2との間の部位とを連結する冷却水側第二バイパス通路25が設けられている。当該冷却水側第二バイパス通路25と、当該冷却水側第二バイパス通路25近傍の冷却水側還流パイプ22とには、それぞれ手動の冷却水側流量調整弁26が設けられている。尚、冷却水側還流パイプ22のうち、冷却水側第二バイパス通路25と水冷式変速機オイル熱交換器2との間には、LLCの流量を測定する冷却水流量計27が設けられるとともに、エア抜きのための冷却水側エア抜きパイプ28が設けられている。加えて、冷却水循環装置3には複数箇所に圧力計が設けられている。本実施形態では、LLCの流量調整や圧力調整は、冷却水側ポンプ11及び冷却水側流量調整弁26を調節することによって行われる。   In addition, the cooling water circulation device 3 includes a portion of the cooling water side forward pipe 21 between the cooling water side pump 11 (cooling water thermometer 12) and the water cooling type transmission oil heat exchanger 2, and cooling. A cooling water side second bypass passage 25 that connects a portion of the water side reflux pipe 22 between the cooling water side electric heater 14 and the water cooling type transmission oil heat exchanger 2 is provided. The cooling water side second bypass passage 25 and the cooling water side return pipe 22 in the vicinity of the cooling water side second bypass passage 25 are each provided with a manual cooling water side flow rate adjustment valve 26. A cooling water flow meter 27 for measuring the flow rate of LLC is provided between the cooling water side second bypass passage 25 and the water cooling type transmission oil heat exchanger 2 in the cooling water side reflux pipe 22. A cooling water side air vent pipe 28 for air venting is provided. In addition, the cooling water circulation device 3 is provided with pressure gauges at a plurality of locations. In the present embodiment, the flow rate adjustment and pressure adjustment of the LLC are performed by adjusting the cooling water side pump 11 and the cooling water side flow rate adjustment valve 26.

また、冷却水側熱交換器17の一次側には、工業用水道から工業用水を冷却水側熱交換器17に供給する第一往流側工水パイプ31と、冷却水側熱交換器17から排出された工業用水を工業用水道に戻す第一還流側工水パイプ32とが接続されており、前記第一工業用水制御弁18は、第一還流側工水パイプ32に設けられている。   Further, on the primary side of the cooling water side heat exchanger 17, there are a first outgoing side industrial water pipe 31 for supplying industrial water from the industrial water supply to the cooling water side heat exchanger 17, and the cooling water side heat exchanger 17. A first reflux side industrial water pipe 32 for returning the industrial water discharged from the factory to the industrial water supply is connected, and the first industrial water control valve 18 is provided in the first reflux side industrial water pipe 32. .

本実施形態では、図2に示すように、状況に応じて、第一工業用水制御弁18、第一冷却水制御弁19、第二冷却水制御弁20、及び、冷却水側電気ヒータ14の動作制御が行われる。より具体的には、冷却水温度計12で計測されたLLCの温度が冷却水側流量コントローラ34に設定値として入力されている運転切替設定温度(本例では、90℃)未満の場合(図2の第1温度制御の場合)には、水冷式変速機オイル熱交換器2の一次側から排出されたLLCが最大限定量で冷却水側熱交換器17に流入するよう、第一冷却水制御弁19を全閉、第二冷却水制御弁20が全開となるように、冷却水温度計12の計測信号を演算処理して定常値を出力するとともに、主として、第一工業用水制御弁18の開度については、冷却水温度計12の計測信号に基づき、冷却水側流量コントローラ34に試験の都度入力される試験用冷却水設定温度値との偏差を演算して出力される出力信号によって比例制御され、LLCの温度調整が行われるようになっている。   In this embodiment, as shown in FIG. 2, according to the situation, the first industrial water control valve 18, the first cooling water control valve 19, the second cooling water control valve 20, and the cooling water side electric heater 14 Operation control is performed. More specifically, when the temperature of LLC measured by the cooling water thermometer 12 is lower than the operation switching set temperature (90 ° C. in this example) inputted as a set value to the cooling water side flow rate controller 34 (FIG. In the case of the first temperature control 2), the first cooling water is used so that the LLC discharged from the primary side of the water-cooled transmission oil heat exchanger 2 flows into the cooling water-side heat exchanger 17 with a maximum amount. The measurement signal of the cooling water thermometer 12 is processed to output a steady value so that the control valve 19 is fully closed and the second cooling water control valve 20 is fully opened, and the first industrial water control valve 18 is mainly used. Is calculated based on the measurement signal of the cooling water thermometer 12, and the output signal output by calculating the deviation from the cooling water set temperature value input to the cooling water side flow rate controller 34 for each test. Proportionally controlled, LLC temperature adjustment So that the crack.

その一方で、冷却水温度計12で計測されたLLCの温度が90℃以上の場合(図2の第2温度制御の場合)には、まず冷却水流量コントローラ34により、運転切替設定温度と計測冷却水温度とが比較演算され、第二温度制御であることを表示し、冷却水膨張切り替えボール弁24aが自動弁の場合は、これを閉鎖する信号を出力し、図示しない分岐膨張管の開閉弁をその後開放する。冷却水膨張切り替えボール弁24aが手動弁の場合、第二温度制御であることの表示に従って作業員が、手動にて冷却水膨張切り替えボール弁24aを閉鎖し、図示しない分岐膨張管の開閉弁をその後手動で開放する。その後、水冷式変速機オイル熱交換器2の一次側から排出されたLLCが、主として、第一冷却水制御弁19と、第二冷却水制御弁20とで流量制御されながら冷却水側熱交換器17に流入するよう、第一冷却水制御弁19と、第二冷却水制御弁20とを逆動作になるように、それぞれの開度については、冷却水温度計12の計測信号に基づき、冷却水側流量コントローラ34に試験の都度入力される試験用冷却水設定温度値との偏差を演算して出力される出力信号によって比例制御される。そして、第一工業用水制御弁18の開度が全開となるように、冷却水温度計12の計測信号を演算処理して定常値を出力して、LLCの温度調整が行われるようになっている。   On the other hand, when the LLC temperature measured by the cooling water thermometer 12 is 90 ° C. or higher (in the case of the second temperature control in FIG. 2), the cooling water flow controller 34 first measures the operation switching set temperature and the measured temperature. The cooling water temperature is compared and calculated to indicate that it is the second temperature control, and when the cooling water expansion switching ball valve 24a is an automatic valve, a signal for closing this is output, and the opening and closing of the branch expansion pipe (not shown) is output. The valve is then opened. When the cooling water expansion switching ball valve 24a is a manual valve, an operator manually closes the cooling water expansion switching ball valve 24a in accordance with an indication that the second temperature control is being performed, and opens a branch expansion pipe opening / closing valve (not shown). Then open manually. Thereafter, the LLC discharged from the primary side of the water-cooled transmission oil heat exchanger 2 is mainly subjected to cooling water side heat exchange while the flow rate is controlled by the first cooling water control valve 19 and the second cooling water control valve 20. The first cooling water control valve 19 and the second cooling water control valve 20 are operated in reverse so as to flow into the vessel 17, and the respective openings are based on the measurement signal of the cooling water thermometer 12. Proportional control is performed by an output signal that is output by calculating a deviation from the test coolant water set temperature value that is input to the coolant flow rate controller 34 for each test. Then, the measurement signal of the cooling water thermometer 12 is processed to output a steady value so that the opening degree of the first industrial water control valve 18 is fully opened, and the temperature of the LLC is adjusted. Yes.

尚、本実施形態では、LLCの温度調節を手動で行う場合、第一工業用水制御弁18、又は、第一冷却水制御弁19及び第二冷却水制御弁20のどちらで行うのかの切替え用の入力装置(図示略)が設けられており、該入力装置をオペレータが操作することでかかる切替えが行われるようになっている。また、図示は省略するが、水冷式変速機オイル熱交換器試験システム1には、オペレータが操作可能なタッチパネルが設けられ、LLCの温度が画面に表示される上、タッチパネルでの操作により、冷却水側ポンプ11の出力等の調節を行えるようになっている。   In this embodiment, when the temperature of the LLC is manually adjusted, the first industrial water control valve 18 or the first cooling water control valve 19 or the second cooling water control valve 20 is used for switching. The input device (not shown) is provided, and the switching is performed by the operator operating the input device. Although not shown, the water-cooled transmission oil heat exchanger test system 1 is provided with a touch panel that can be operated by an operator, and the temperature of the LLC is displayed on the screen. The output of the water side pump 11 can be adjusted.

また、本実施形態の冷却水循環装置3は、冷却水側電気ヒータ14の加熱制御を、冷却水温度計12の計測値と設定冷却水温との偏差に基づいて行う冷却水側ヒートコントローラ33も備えている。冷却水ヒートコントローラ33は、冷却水温度計12によって計測されたLLC温度信号に基づき、例えば冷却水側流量コントローラ34の設定冷却水温と同じでも、加熱側として少しずらした設定冷却水温としてもよく、その設定冷却水温とLLC計測温度との偏差に基づいて、その設定冷却水温となるように、出力信号により、電気ヒータのサイリスタや、特に制御性や接点寿命の点からソリッドステートリレー(SSR) の電力出力を制御する。   The cooling water circulation device 3 of the present embodiment also includes a cooling water side heat controller 33 that performs heating control of the cooling water side electric heater 14 based on a deviation between a measured value of the cooling water thermometer 12 and a set cooling water temperature. ing. The cooling water heat controller 33 may be the same as the set cooling water temperature of the cooling water side flow rate controller 34 based on the LLC temperature signal measured by the cooling water thermometer 12, or may be a set cooling water temperature slightly shifted as the heating side, Based on the deviation between the set cooling water temperature and the LLC measured temperature, the output signal causes the thyristor of the electric heater, and especially the solid state relay (SSR) from the viewpoint of controllability and contact life, to be the set cooling water temperature. Control power output.

尚、冷却水循環装置3において温度調整の必要がないリーク試験を行う場合には、第一冷却水制御弁19及び第二冷却水制御弁20を50%の開度で固定するとともに、第一工業用水制御弁18を全開にして行うようになっている。さらに、試験後すぐに冷却水側ポンプ11を止めてしまうと、冷却水側電気ヒータ14の予熱でLLCの温度が上がり過ぎてしまうため、試験後に冷却水側ポンプ11を所定時間(例えば5分程)残留運転させるようになっている。   When performing a leak test that does not require temperature adjustment in the cooling water circulation device 3, the first cooling water control valve 19 and the second cooling water control valve 20 are fixed at an opening of 50%, and the first industry The irrigation control valve 18 is fully opened. Furthermore, if the cooling water side pump 11 is stopped immediately after the test, the temperature of the LLC will rise too much due to the preheating of the cooling water side electric heater 14, so that the cooling water side pump 11 is kept for a predetermined time (for example, 5 minutes) after the test. About) Residual operation.

オイル循環装置4は、ATFを循環させるためのオイル側ポンプ41と、ATFの温度を計測可能なオイル温度計42と、ATFを冷却可能なオイル側冷却手段としてのオイル側冷却機構43と、ATFを加熱可能なオイル側加熱手段としてのオイル側電気ヒータ44と、オイル側開放式膨張タンク45とを備えている。   The oil circulation device 4 includes an oil-side pump 41 for circulating the ATF, an oil thermometer 42 that can measure the temperature of the ATF, an oil-side cooling mechanism 43 as an oil-side cooling means that can cool the ATF, An oil side electric heater 44 as oil side heating means capable of heating the oil and an oil side open type expansion tank 45 are provided.

オイル側冷却機構43は、オイル循環装置4を循環するATFと、工業用水との間で熱交換するオイル側熱交換器47と、オイル側熱交換器47の一次側へ供給される工業用水の流量を調節する第二工業用水流量調節装置としての第二工業用水制御弁48と、オイル側熱交換器47の二次側へ供給されるATFの流量を調節するオイル流量調節装置としての第一オイル制御弁49及び第二オイル制御弁50とを備えている。   The oil-side cooling mechanism 43 includes an oil-side heat exchanger 47 that exchanges heat between the ATF that circulates in the oil circulation device 4 and industrial water, and industrial water that is supplied to the primary side of the oil-side heat exchanger 47. A second industrial water control valve 48 as a second industrial water flow control device for adjusting the flow rate, and a first oil flow control device for adjusting the flow rate of ATF supplied to the secondary side of the oil side heat exchanger 47. An oil control valve 49 and a second oil control valve 50 are provided.

このように、オイル循環装置4がオイル側電気ヒータ44を備えることで、水冷式変速機オイル熱交換器2を実際に車両へ搭載した場合にATFがATを循環することで温度上昇することを想定し、想定されるATFの温度上昇をオイル循環装置4において実現することができるようになっている。尚、試験に際して車両の走行時等の状況を再現するために、オイル側電気ヒータ44は、ATFをLLCよりも高温度にまで昇温させ得る加熱能力を必要とする。このため、前記冷却水側電気ヒータ14とオイル側電気ヒータ44とを比較すると、冷却水側電気ヒータ14はオイル側電気ヒータ44よりも加熱能力が低いものを採用することができる。本実施形態では、冷却水側電気ヒータ14は、その最大加熱能力が、オイル側電気ヒータ44の最大加熱能力の約50%程度のものが使用されている。   As described above, the oil circulation device 4 includes the oil-side electric heater 44, so that when the water-cooled transmission oil heat exchanger 2 is actually mounted on the vehicle, the ATF circulates the AT to increase the temperature. It is assumed that the assumed ATF temperature rise can be realized in the oil circulation device 4. In order to reproduce the situation such as when the vehicle is running during the test, the oil-side electric heater 44 needs a heating capability that can raise the temperature of the ATF to a temperature higher than the LLC. For this reason, when the cooling water side electric heater 14 and the oil side electric heater 44 are compared, a cooling water side electric heater 14 having a heating capability lower than that of the oil side electric heater 44 can be adopted. In the present embodiment, the cooling water side electric heater 14 is used whose maximum heating capacity is about 50% of the maximum heating capacity of the oil side electric heater 44.

また、オイル循環装置4がオイル側冷却機構43を備えることで、オイル側電気ヒータ44と協働してオイル循環装置4におけるATFの温度調節を行うことができ、ATFの昇温具合(速度)を模倣したり、試験初期状態等のATFの温度を適宜設定したり、試験後にATF温度を比較的早く降温させたりすることができる。さらに、オイル側ポンプ41が駆動することでもATF温度が上昇する。従って、オイル側電気ヒータ44及びオイル側ポンプ41(試験内容やATFの温度状況によってはオイル側電気ヒータ44を稼働させない場合もある)で加熱されるATFを、オイル側冷却機構43で調節しながら冷やすことで、実車を想定したATFの温度条件を実現することができる。尚、第二工業用水制御弁48、第一オイル制御弁49、及び第二オイル制御弁50は、それぞれ二方弁によって構成され、特に第一オイル制御弁49、及び第二オイル制御弁50はお互い逆動作することで流路を切り替えながら流量制御もできるよう構成されている。   Further, since the oil circulation device 4 includes the oil-side cooling mechanism 43, the temperature of the ATF in the oil circulation device 4 can be adjusted in cooperation with the oil-side electric heater 44, and the temperature increase (speed) of the ATF. Can be imitated, the temperature of the ATF such as the initial state of the test can be set as appropriate, or the ATF temperature can be lowered relatively quickly after the test. Further, the ATF temperature rises when the oil-side pump 41 is driven. Accordingly, the oil-side cooling mechanism 43 adjusts the ATF heated by the oil-side electric heater 44 and the oil-side pump 41 (the oil-side electric heater 44 may not be operated depending on the test content and the temperature condition of the ATF). By cooling, it is possible to realize the ATF temperature condition assuming an actual vehicle. The second industrial water control valve 48, the first oil control valve 49, and the second oil control valve 50 are each constituted by a two-way valve. In particular, the first oil control valve 49 and the second oil control valve 50 are It is configured so that the flow rate can be controlled while switching the flow paths by operating in reverse.

さらに、オイル循環装置4は、オイル側熱交換器47で冷却されたATFを水冷式変速機オイル熱交換器2に供給するオイル側往流パイプ51と、水冷式変速機オイル熱交換器2から排出されたATFをオイル側熱交換器47側に戻すオイル側還流パイプ52とを備えている。前記オイル側ポンプ41は、オイル側往流パイプ51に設けられている。前記オイル温度計42は、オイル側往流パイプ51のうち、オイル側ポンプ41と水冷式変速機オイル熱交換器2との間の部位に設けられている。前記オイル側電気ヒータ44は、オイル側還流パイプ52に設けられている。   Further, the oil circulation device 4 includes an oil-side forward pipe 51 that supplies the ATF cooled by the oil-side heat exchanger 47 to the water-cooled transmission oil heat exchanger 2, and the water-cooled transmission oil heat exchanger 2. And an oil-side return pipe 52 that returns the discharged ATF to the oil-side heat exchanger 47 side. The oil side pump 41 is provided in an oil side forward pipe 51. The oil thermometer 42 is provided in a portion of the oil-side forward pipe 51 between the oil-side pump 41 and the water-cooled transmission oil heat exchanger 2. The oil side electric heater 44 is provided in the oil side return pipe 52.

また、オイル側往流パイプ51のうち、オイル側ポンプ41とオイル側熱交換器47との間の部位と、オイル側還流パイプ52のうち、オイル側電気ヒータ44とオイル側熱交換器47との間の部位とを連結するオイル側第一バイパス通路53が設けられている。前記第一オイル制御弁49は、オイル側第一バイパス通路53に設けられ、前記第二オイル制御弁50は、オイル側往流パイプ51のうち、オイル側第一バイパス通路53とオイル側熱交換器47との間の部位に設けられている。   Further, in the oil-side forward pipe 51, a portion between the oil-side pump 41 and the oil-side heat exchanger 47, and in the oil-side return pipe 52, the oil-side electric heater 44 and the oil-side heat exchanger 47 are An oil-side first bypass passage 53 is provided to connect the portion between the two. The first oil control valve 49 is provided in the oil-side first bypass passage 53, and the second oil control valve 50 is connected to the oil-side first bypass passage 53 and the oil-side heat exchange in the oil-side forward pipe 51. It is provided at a position between the container 47.

さらに、オイル側往流パイプ51のうち、オイル側ポンプ41とオイル側第一バイパス通路53との間の部位と、前記オイル側開放式膨張タンク45とを繋ぐオイル側膨張パイプ54が設けられている。オイル側膨張パイプ54に設けられたボール弁54aが開状態とされることでオイル側膨張パイプ54が開放され、オイル側開放式膨張タンク45でATFの膨張を吸収したり、試験前や試験後においてオイル側開放式膨張タンク45を介してATFをオイル側往流パイプ51等の循環経路に充填させたりする。   Furthermore, an oil side expansion pipe 54 that connects a portion between the oil side pump 41 and the oil side first bypass passage 53 of the oil side forward pipe 51 and the oil side open expansion tank 45 is provided. Yes. When the ball valve 54a provided in the oil side expansion pipe 54 is opened, the oil side expansion pipe 54 is opened, and the expansion of the ATF is absorbed by the oil side open type expansion tank 45, or before or after the test. Then, ATF is filled in a circulation path such as the oil-side forward pipe 51 through the oil-side open expansion tank 45.

加えて、オイル循環装置4には、オイル側往流パイプ51のうち、オイル側ポンプ41(オイル温度計42)と水冷式変速機オイル熱交換器2との間の部位と、オイル側還流パイプ52のうち、オイル側電気ヒータ44と水冷式変速機オイル熱交換器2との間の部位とを連結するオイル側第二バイパス通路55が設けられている。当該オイル側第二バイパス通路55と、当該オイル側第二バイパス通路55近傍のオイル側還流パイプ52とには、それぞれ手動のオイル側流量調整弁56が設けられている。   In addition, the oil circulation device 4 includes a portion of the oil-side forward pipe 51 between the oil-side pump 41 (oil thermometer 42) and the water-cooled transmission oil heat exchanger 2, and an oil-side return pipe. 52, an oil-side second bypass passage 55 that connects a portion between the oil-side electric heater 44 and the water-cooled transmission oil heat exchanger 2 is provided. A manual oil-side flow rate adjustment valve 56 is provided in each of the oil-side second bypass passage 55 and the oil-side return pipe 52 in the vicinity of the oil-side second bypass passage 55.

尚、オイル側往流パイプ51のうち、オイル側ポンプ41よりも水冷式変速機オイル熱交換器2側の部位は、より高い油圧にも耐えることのできる高圧仕様となっている。さらに、オイル側還流パイプ52のうち、オイル側第二バイパス通路55と水冷式変速機オイル熱交換器2との間には、ATFの流量を測定するオイル流量計57が設けられるとともに、エア抜きのためのオイル側エア抜きパイプ58が設けられている。加えて、オイル循環装置4には複数箇所に圧力計が設けられている。本実施形態では、ATFの流量調整や圧力調整は、オイル側ポンプ41及びオイル側流量調整弁56を調節することによって行われる。   In the oil-side forward pipe 51, the portion on the water-cooled transmission oil heat exchanger 2 side of the oil-side pump 41 has a high-pressure specification that can withstand higher oil pressure. Further, an oil flow meter 57 for measuring the flow rate of ATF is provided between the oil-side return pipe 52 and the oil-side second bypass passage 55 and the water-cooled transmission oil heat exchanger 2. An oil-side air vent pipe 58 is provided. In addition, the oil circulation device 4 is provided with pressure gauges at a plurality of locations. In the present embodiment, the ATF flow rate adjustment and pressure adjustment are performed by adjusting the oil-side pump 41 and the oil-side flow rate adjustment valve 56.

また、オイル側熱交換器47の一次側には、工業用水道から工業用水をオイル側熱交換器47に供給する第二往流側工水パイプ61と、オイル側熱交換器47から排出された工業用水を工業用水道に戻す第二還流側工水パイプ62とが接続されており、前記第二工業用水制御弁48は、第二還流側工水パイプ62に設けられている。   The primary side of the oil-side heat exchanger 47 is discharged from the second upstream-side working water pipe 61 that supplies industrial water from the industrial water supply to the oil-side heat exchanger 47 and the oil-side heat exchanger 47. Further, a second reflux side work water pipe 62 for returning the industrial water to the industrial water supply is connected, and the second industrial water control valve 48 is provided in the second return side work water pipe 62.

本実施形態では、図2に示すように、状況に応じて、第二工業用水制御弁48、第一オイル制御弁49、第二オイル制御弁50、及び、オイル側電気ヒータ44の動作制御が行われる。より具体的には、オイル温度計42で計測されたATFの計測温度が、オイル側流量コントローラ64に設定値として入力されている運転切替設定温度(本例では、90℃)未満の場合(図2の第1温度制御の場合)には、水冷式変速機オイル熱交換器2の二次側から排出されたATFが最大限定量でオイル側熱交換器47に流入するよう、第一オイル制御弁49を全閉、第二オイル制御弁50が全開となるように、オイル温度計42の計測信号を演算処理して定常値を出力するとともに、主として、第二工業用水制御弁48の開度については、オイル温度計42の計測信号に基づき、オイル側流量コントローラ64に試験の都度入力される試験用オイル設定温度値との偏差を演算して出力される出力信号によって比例制御され、ATFの温度調整が行われるようになっている。   In this embodiment, as shown in FIG. 2, the operation control of the second industrial water control valve 48, the first oil control valve 49, the second oil control valve 50, and the oil-side electric heater 44 is performed depending on the situation. Done. More specifically, when the measured temperature of the ATF measured by the oil thermometer 42 is lower than the operation switching set temperature (90 ° C. in this example) input as a set value to the oil side flow rate controller 64 (FIG. In the case of the first temperature control 2), the first oil control is performed so that the ATF discharged from the secondary side of the water-cooled transmission oil heat exchanger 2 flows into the oil-side heat exchanger 47 with a maximum amount. The measurement signal of the oil thermometer 42 is processed to output a steady value so that the valve 49 is fully closed and the second oil control valve 50 is fully opened, and the opening degree of the second industrial water control valve 48 is mainly used. Is proportionally controlled by an output signal that is output by calculating a deviation from the test oil set temperature value that is input to the oil-side flow rate controller 64 based on the measurement signal of the oil thermometer 42, Warm Adjustment is to be carried out.

その一方で、オイル温度計42で計測されたATFの温度が90℃以上の場合(図2の第2温度制御の場合)には、まずオイル側流量コントローラ64により、運転切替設定温度と計測オイル温度とが比較演算され、第二温度制御であることを表示する。その後、水冷式変速機オイル熱交換器2の二次側から排出されたATFが、主として、第一オイル制御弁49と、第二オイル制御弁50とを逆動作になるように、それぞれの開度については、オイル温度計42の計測信号に基づき、オイル側流量コントローラ64に試験の都度入力される試験用オイル設定温度値との偏差を演算して出力される出力信号によって比例制御される。そして、第二工業用水制御弁48の開度が全開となるように、オイル温度計42の計測信号を演算処理して定常値を出力して、ATFの温度調整が行われるようになっている。   On the other hand, when the ATF temperature measured by the oil thermometer 42 is 90 ° C. or higher (in the case of the second temperature control in FIG. 2), first, the oil-side flow rate controller 64 controls the operation switching set temperature and the measured oil. The temperature is compared and calculated, and the second temperature control is displayed. Thereafter, the ATF discharged from the secondary side of the water-cooled transmission oil heat exchanger 2 mainly opens the first oil control valve 49 and the second oil control valve 50 so as to operate in reverse. The degree is proportionally controlled by an output signal that is output by calculating a deviation from a test oil set temperature value that is input to the oil-side flow rate controller 64 based on a measurement signal of the oil thermometer 42 every time a test is performed. And the measurement signal of the oil thermometer 42 is arithmetically processed and a steady value is output so that the opening degree of the second industrial water control valve 48 is fully opened, and the temperature adjustment of the ATF is performed. .

尚、本実施形態では、ATFの温度調節を、第二工業用水制御弁48、又は、第一オイル制御弁49及び第二オイル制御弁50のどちらで行うのかの切替え用の入力装置(図示略)が設けられており、該入力装置をオペレータが操作することでかかる切替えが行われるようになっている。また、水冷式変速機オイル熱交換器試験システム1に設けられた図示しないタッチパネルの画面にATFの温度が表示される上、タッチパネルでの操作により、オイル側ポンプ41の出力等の調節を行えるようになっている。   In the present embodiment, the input device for switching whether the ATF temperature is adjusted by the second industrial water control valve 48 or the first oil control valve 49 and the second oil control valve 50 (not shown). ), And the switching is performed by the operator operating the input device. In addition, the temperature of the ATF is displayed on the screen of a touch panel (not shown) provided in the water-cooled transmission oil heat exchanger test system 1, and the output of the oil side pump 41 can be adjusted by the operation on the touch panel. It has become.

また、本実施形態のオイル循環装置4は、オイル側電気ヒータ44の加熱制御を、オイル温度計42の計測値と設定オイル温との偏差に基づいて行うオイル側ヒートコントローラ63も備えている。オイル側ヒートコントローラ63は、オイル温度計42によって計測されATF温度信号に基づき、例えばオイル側流量コントローラ64の設定オイル温と同じでも、加熱側として少しずらした設定オイル温としてもよく、その設定オイル温とATF計測温度との偏差に基づいて、その設定オイル温となるように、出カ信号により、電気ヒータのサイリスタや、特に制御性や接点寿命の点からソリッドステートリレー(SSR))の電力出力を制御する。   The oil circulation device 4 of the present embodiment also includes an oil-side heat controller 63 that performs heating control of the oil-side electric heater 44 based on the deviation between the measured value of the oil thermometer 42 and the set oil temperature. The oil-side heat controller 63 may be the same as the set oil temperature of the oil-side flow rate controller 64 based on the ATF temperature signal measured by the oil thermometer 42, or may be set to a set oil temperature that is slightly shifted on the heating side. Based on the deviation between the temperature and the measured ATF temperature, the output signal causes the thyristor of the electric heater, and especially the power of the solid state relay (SSR) in terms of controllability and contact life, to reach the set oil temperature. Control the output.

尚、オイル循環装置4において温度調整の必要がないリーク試験を行う場合には、第一オイル制御弁49及び第二オイル制御弁50を50%の開度で固定するとともに、第二工業用水制御弁48を全開にして行うようになっている。さらに、試験後すぐにオイル側ポンプ41を止めてしまうと、オイル側電気ヒータ44の予熱でATFの温度が上がり過ぎてしまうため、試験後にオイル側ポンプ41を所定時間(例えば5分程)残留運転させるようになっている。   When performing a leak test that does not require temperature adjustment in the oil circulation device 4, the first oil control valve 49 and the second oil control valve 50 are fixed at an opening of 50%, and the second industrial water control is performed. The valve 48 is opened fully. Furthermore, if the oil-side pump 41 is stopped immediately after the test, the ATF temperature will rise excessively due to the preheating of the oil-side electric heater 44, so that the oil-side pump 41 remains for a predetermined time (for example, about 5 minutes) after the test. It is supposed to drive.

以上詳述したように、本実施形態では、冷却水循環装置3でLLCの試験条件を作り、オイル循環装置4でATFの試験条件を作ることのできる水冷式変速機オイル熱交換器試験システム1によって、水冷式変速機オイル熱交換器2の単体の試験を行うことが可能となる。このため、エンジン、AT、エンジンやATを設置するための設備(エンジンベンチ等)、排気ガスを排出するための設備、エンジンを駆動させるためのガソリン等を用意する必要がなくなり、比較的スムースかつ簡素に水冷式変速機オイル熱交換器2の性能試験を行うことができる。従って、水冷式変速機オイル熱交換器2の性能試験に要する手間とコストを抑制することができる上、手間やコストの懸念から水冷式変速機オイル熱交換器2の性能試験の機会が控えられ、開発がスムースに進まなくなってしまうといった事態を抑制することができる。また、実際にエンジン等を動かしてATFの温度や流量を所望とする試験条件となるように調節する場合に比べ、かかる調節を比較的素早くかつ正確に行うことができ、試験効率及び試験精度の向上を図ることができる。   As described above in detail, in the present embodiment, the water cooling type oil heat exchanger test system 1 that can create the LLC test conditions in the cooling water circulation device 3 and the ATF test conditions in the oil circulation device 4 is used. The single test of the water-cooled transmission oil heat exchanger 2 can be performed. For this reason, there is no need to prepare an engine, an AT, an installation for installing the engine or AT (engine bench, etc.), an exhaust gas exhausting facility, gasoline for driving the engine, etc. The performance test of the water-cooled transmission oil heat exchanger 2 can be performed simply. Therefore, the labor and cost required for the performance test of the water-cooled transmission oil heat exchanger 2 can be suppressed, and the opportunity for the performance test of the water-cooled transmission oil heat exchanger 2 is refrained from concerns about labor and cost. , It is possible to suppress the situation where development does not proceed smoothly. Compared to the actual adjustment of the ATF temperature and flow rate to the desired test conditions by moving the engine, etc., such adjustment can be performed relatively quickly and accurately, and the test efficiency and test accuracy can be improved. Improvements can be made.

また、本実施形態では、冷却水側熱交換器17(オイル側熱交換器47)の一次側である工業用水側、及び、二次側であるLLC側(ATF側)のどちらでも、LLC(ATF)を工業用水によってどの程度冷却するのかの調節、ひいては、LLC(ATF)の温度調節を行うことができるように構成されている。このため、LLCやATFの温度が90℃以上の場合には、第一冷却水制御弁19及び第二冷却水制御弁20や、第一オイル制御弁49及び第二オイル制御弁50で温度調節を行う(冷却水側熱交換器17やオイル側熱交換器47へ流入するLLCやATFの流量を調節する)こととし、第一工業用水制御弁18や第二工業用水制御弁48を全開にして、冷却水側熱交換器17やオイル側熱交換器47に対して工業用水を最大限流入させる。これにより、冷却水側熱交換器17やオイル側熱交換器47における工業用水の流量が増える(流速が上がる)こととなり、冷却水側熱交換器17やオイル側熱交換器47において、工業用水が、LLCやATFとの熱交換によって沸騰してしまうといった事態を回避することができる。   In the present embodiment, both the industrial water side, which is the primary side of the cooling water side heat exchanger 17 (oil side heat exchanger 47), and the LLC side (ATF side), which is the secondary side, have LLC ( It is configured to be able to adjust how much ATF) is cooled by industrial water, and in other words, adjust the temperature of LLC (ATF). For this reason, when the temperature of LLC or ATF is 90 ° C. or higher, the temperature is adjusted by the first cooling water control valve 19 and the second cooling water control valve 20, the first oil control valve 49 and the second oil control valve 50. (The flow rate of LLC and ATF flowing into the cooling water side heat exchanger 17 and the oil side heat exchanger 47 is adjusted), and the first industrial water control valve 18 and the second industrial water control valve 48 are fully opened. Thus, industrial water is allowed to flow into the cooling water side heat exchanger 17 and the oil side heat exchanger 47 to the maximum extent. As a result, the flow rate of industrial water in the cooling water side heat exchanger 17 and the oil side heat exchanger 47 is increased (the flow velocity is increased). In the cooling water side heat exchanger 17 and the oil side heat exchanger 47, the industrial water flow is increased. However, it is possible to avoid a situation in which boiling occurs due to heat exchange with LLC or ATF.

その一方で、LLCやATFの温度が90℃未満の場合には、冷却水側熱交換器17やオイル側熱交換器47へ流入する工業用水の流量を調節することで、LLCやATFの温度調整を行うこととする。この場合、大気との熱交換を行う冷却塔や、温度によっては冷凍機を用いる工業用水の冷却装置と、本装置の冷却水側冷却手段やオイル側冷却手段との工業用水の循環搬送手段である工業用水ポンプの流量、つまりポンプ動力を削減することができ、さらに流量を減じて入口出口の工業用水の温度差を大きくできるので、熱交換器や冷却塔による冷却ではアプローチ温度を大きく、冷凍機による冷却の場合は、凝縮器の温度を高くでき、冷却に要するエネルギーを小さくできる。従って、省エネルギー化等を図ることができる。   On the other hand, when the temperature of LLC or ATF is less than 90 ° C., the temperature of LLC or ATF is adjusted by adjusting the flow rate of industrial water flowing into the cooling water side heat exchanger 17 or the oil side heat exchanger 47. We will make adjustments. In this case, a cooling tower for exchanging heat with the atmosphere, a cooling device for industrial water that uses a refrigerator depending on the temperature, and a circulating transfer means for industrial water with the cooling water side cooling means and the oil side cooling means of this device. The flow rate of an industrial water pump, that is, the pump power can be reduced, and the flow rate can be reduced to increase the temperature difference of industrial water at the inlet and outlet. In the case of cooling by a machine, the temperature of the condenser can be increased and the energy required for cooling can be reduced. Therefore, energy saving can be achieved.

加えて、冷却水側電気ヒータ14は、その最大加熱能力が、オイル側電気ヒータ44の最大加熱能力の半分程度のものが使用されている。このため、冷却水側電気ヒータ14の小型化及び低コスト化等を図りつつ、エンジン始動時等の様々な試験条件にも確実かつスムースに対応することができる。   In addition, the cooling water side electric heater 14 is used whose maximum heating capacity is about half of the maximum heating capacity of the oil side electric heater 44. For this reason, it is possible to reliably and smoothly cope with various test conditions such as when starting the engine while reducing the size and cost of the cooling water side electric heater 14.

尚、上記実施形態の記載内容に限定されず、例えば次のように実施してもよい。勿論、以下において例示しない他の応用例、変更例も当然可能である。   In addition, it is not limited to the description content of the said embodiment, For example, you may implement as follows. Of course, other application examples and modification examples not illustrated below are also possible.

(a)上記実施形態では、LLC(ATF)の温度調節を、第一工業用水制御弁18(第二工業用水制御弁48)、又は、第一冷却水制御弁19及び第二冷却水制御弁20(第一オイル制御弁49及び第二オイル制御弁50)のどちらで行うのかの切替えをオペレータが手動で行うように構成されているが、当該切替えが冷却水温度計12(オイル温度計42)の計測値に基づいて自動で行われるように構成してもよい。この場合、オペレータによる作業の簡素化が図られるとともに、LLCやATFの90℃を跨ぐ温度変化に対応する処置が行われないといった事態を回避することができる上、LLCやATFの温度変化に応じて的確な対処を迅速に行うことができる。   (A) In the above embodiment, the first industrial water control valve 18 (second industrial water control valve 48), or the first cooling water control valve 19 and the second cooling water control valve are used for temperature adjustment of LLC (ATF). 20 (the first oil control valve 49 and the second oil control valve 50) is configured to be manually switched by the operator. The switching is performed by the cooling water thermometer 12 (oil thermometer 42). ) May be automatically performed based on the measured value. In this case, the operation by the operator can be simplified, and a situation in which a measure corresponding to a temperature change over 90 ° C. of LLC or ATF is not performed, and a response to a temperature change of LLC or ATF can be avoided. Can be dealt with quickly and accurately.

(b)上記実施形態では、冷却水側熱交換器17及びオイル側熱交換器47において、工業用水を利用してLLCやATFを冷却しているが、特にこのような構成に限定されるものではなく、例えば、冷却塔や冷凍機を設けるとともに、これらに冷却された冷媒によってLLCやATFを冷却するように構成してもよい。   (B) In the above embodiment, the cooling water side heat exchanger 17 and the oil side heat exchanger 47 cool the LLC and ATF using industrial water, but are particularly limited to such a configuration. Instead, for example, a cooling tower or a refrigerator may be provided, and the LLC or ATF may be cooled by the refrigerant cooled to these.

また、上記実施形態では特に言及していないが、冷却水側電気ヒータ14及びオイル側電気ヒータ44はオン・オフの切替えだけでなく、適宜設定される所定の発熱量を維持できる機能を有するものであってもよい。さらに、上記実施形態では、冷却水側電気ヒータ14は、その最大加熱能力が、オイル側電気ヒータ44の最大加熱能力の約50%程度のものが使用されているが、特にかかる構成に限定されるものではなく、例えば、冷却水側電気ヒータ14及びオイル側電気ヒータ44が同じものであってもよい。但し、冷却水側電気ヒータ14の最大加熱能力としては、オイル側電気ヒータ44の最大加熱能力の30%〜60%もあれば十分に対応できるため、コストの抑制等を図る上では、冷却水側電気ヒータ14としてオイル側電気ヒータ44よりも最大加熱能力の低いもの、特に、必要最低限の最大加熱能力を持つものを採用することが好ましい。   Although not specifically mentioned in the above embodiment, the cooling water side electric heater 14 and the oil side electric heater 44 have a function of not only switching on and off, but also maintaining a predetermined heat generation amount that is appropriately set. It may be. Furthermore, in the above embodiment, the cooling water side electric heater 14 has a maximum heating capacity of about 50% of the maximum heating capacity of the oil side electric heater 44, but is particularly limited to such a configuration. For example, the cooling water side electric heater 14 and the oil side electric heater 44 may be the same. However, since the maximum heating capacity of the cooling water side electric heater 14 is sufficient if it is 30% to 60% of the maximum heating capacity of the oil side electric heater 44, the cooling water can be used for cost reduction. As the side electric heater 14, it is preferable to employ one having a lower maximum heating capacity than the oil side electric heater 44, particularly one having a minimum required maximum heating capacity.

(c)上記実施形態では、冷却水側熱交換器17(オイル側熱交換器47)に流れるLLC(ATF)の流量を調節(ひいては、温度調節)するために、冷却水流量調節装置(オイル流量調節装置)として、第一冷却水制御弁19及び第二冷却水制御弁20(第一オイル制御弁49及び第二オイル制御弁50)という2つの二方弁を使用しているが、これに代えて、冷却水側第一バイパス通路23(オイル側第一バイパス通路53)の分岐点に、1つの三方弁を設けることによってLLC(ATF)の流量調節を行うこととしてもよい。   (C) In the above embodiment, in order to adjust the flow rate of the LLC (ATF) flowing through the cooling water side heat exchanger 17 (oil side heat exchanger 47) (and hence temperature adjustment), a cooling water flow rate adjustment device (oil As the flow rate adjusting device), two two-way valves, the first cooling water control valve 19 and the second cooling water control valve 20 (first oil control valve 49 and second oil control valve 50) are used. Instead of this, the flow rate of the LLC (ATF) may be adjusted by providing one three-way valve at the branch point of the cooling water side first bypass passage 23 (oil side first bypass passage 53).

(d)上記実施形態では、第一冷却水制御弁19及び第二冷却水制御弁20(第一オイル制御弁49及び第二オイル制御弁50)と、第一工業用水制御弁18(第二工業用水制御弁48)とのどちらでも、冷却水側熱交換器17(オイル側熱交換器47)における冷却の程度を調節することが可能に構成されているが、どちらか一方を備えていればよい。但し、工業用水の沸騰を回避するべく、少なくとも第一冷却水制御弁19及び第二冷却水制御弁20(第一オイル制御弁49及び第二オイル制御弁50)を具備することが望ましい。   (D) In the above embodiment, the first cooling water control valve 19 and the second cooling water control valve 20 (first oil control valve 49 and second oil control valve 50) and the first industrial water control valve 18 (second Either the industrial water control valve 48) is configured to be able to adjust the degree of cooling in the cooling water side heat exchanger 17 (oil side heat exchanger 47), but either one is provided. That's fine. However, it is desirable to provide at least the first cooling water control valve 19 and the second cooling water control valve 20 (first oil control valve 49 and second oil control valve 50) in order to avoid boiling of industrial water.

(e)上記実施形態では、ATのATFを冷却するための水冷式変速機オイル熱交換器2を試験する水冷式変速機オイル熱交換器試験システム1について具体化されているが、例えば、無段変速機(CVT)のCVTフルードを冷却するための水冷式変速機オイル熱交換器を試験する水冷式変速機オイル熱交換器試験システムに適用することも可能である。つまり、上記実施形態の水冷式変速機オイル熱交換器2に代えて、CVTフルードを冷却するための水冷式変速機オイル熱交換器を設置して初期の接続を行うことで、かかる水冷式変速機オイル熱交換器の試験を行うことも可能である。   (E) In the above embodiment, the water-cooled transmission oil heat exchanger test system 1 for testing the water-cooled transmission oil heat exchanger 2 for cooling the AT ATF is embodied. It can also be applied to a water-cooled transmission oil heat exchanger test system for testing a water-cooled transmission oil heat exchanger for cooling the CVT fluid of a step transmission (CVT). That is, instead of the water-cooled transmission oil heat exchanger 2 of the above embodiment, a water-cooled transmission oil heat exchanger for cooling the CVT fluid is installed and the initial connection is made, so that the water-cooled transmission It is also possible to test the machine oil heat exchanger.

1…水冷式変速機オイル熱交換器試験システム1、2…水冷式変速機オイル熱交換器、3…冷却水循環装置、4…オイル循環装置、11…冷却水側ポンプ、12…冷却水温度計、13…冷却水側冷却機構、14…冷却水側電気ヒータ、17…冷却水側熱交換器、18…第一工業用水制御弁、19…第一冷却水制御弁、20…第二冷却水制御弁、33…冷却水側ヒートコントローラ、34…冷却水側流量コントローラ、41…オイル側ポンプ、42…オイル温度計、43…オイル側冷却機構、44…オイル側電気ヒータ、47…オイル側熱交換器、48…第二工業用水制御弁、49…第一オイル制御弁、50…第二オイル制御弁。   DESCRIPTION OF SYMBOLS 1 ... Water-cooled transmission oil heat exchanger test system 1, 2 ... Water-cooled transmission oil heat exchanger, 3 ... Cooling water circulation device, 4 ... Oil circulation device, 11 ... Cooling water side pump, 12 ... Cooling water thermometer , 13 ... Cooling water side cooling mechanism, 14 ... Cooling water side electric heater, 17 ... Cooling water side heat exchanger, 18 ... First industrial water control valve, 19 ... First cooling water control valve, 20 ... Second cooling water Control valve 33 ... Cooling water side heat controller 34 ... Cooling water side flow controller 41 ... Oil side pump 42 ... Oil thermometer 43 ... Oil side cooling mechanism 44 ... Oil side electric heater 47 ... Oil side heat Exchanger, 48 ... second industrial water control valve, 49 ... first oil control valve, 50 ... second oil control valve.

Claims (5)

原動機の軸回転力を地面への車両駆動力へ伝達する駆動系の一部をなす変速機に使用される変速機オイルを冷却可能な水冷式変速機オイル熱交換器と、
前記水冷式変速機オイル熱交換器の一次側へ冷却水を循環供給可能な試験室付帯の冷却水循環装置と、
前記水冷式変速機オイル熱交換器の二次側へ変速機オイルを循環供給可能な試験室付帯のオイル循環装置とを備え、
前記水冷式変速機オイル熱交換器の性能試験を行う水冷式変速機オイル熱交換器試験システムにおいて、
前記冷却水循環装置は、
冷却水を循環させるための冷却水側ポンプと、
冷却水の温度を計測可能な冷却水温度計と、
冷却水を冷却可能な冷却水側冷却手段と、
冷却水を加熱可能な冷却水側加熱手段とを備え、
前記オイル循環装置は、
変速機オイルを循環させるためのオイル側ポンプと、
変速機オイルの温度を計測可能なオイル温度計と、
変速機オイルを冷却可能なオイル側冷却手段と、
変速機オイルを加熱可能なオイル側加熱手段とを備えていることを特徴とする水冷式変速機オイル熱交換器試験システム。
A water-cooled transmission oil heat exchanger capable of cooling transmission oil used in a transmission that forms part of a drive system that transmits the shaft rotational force of the prime mover to the vehicle driving force to the ground;
A cooling water circulation device attached to a test chamber capable of circulating and supplying cooling water to a primary side of the water-cooled transmission oil heat exchanger;
An oil circulation device attached to a test chamber capable of circulating and supplying transmission oil to the secondary side of the water-cooled transmission oil heat exchanger,
In the water-cooled transmission oil heat exchanger test system for performing the performance test of the water-cooled transmission oil heat exchanger,
The cooling water circulation device is
A cooling water side pump for circulating the cooling water;
A cooling water thermometer capable of measuring the temperature of the cooling water;
A cooling water side cooling means capable of cooling the cooling water;
A cooling water side heating means capable of heating the cooling water,
The oil circulation device is
An oil-side pump for circulating transmission oil;
An oil thermometer capable of measuring the temperature of transmission oil,
Oil-side cooling means capable of cooling transmission oil;
A water-cooled transmission oil heat exchanger test system comprising an oil side heating means capable of heating transmission oil.
前記冷却水循環装置は、
前記冷却水側ポンプと、前記冷却水温度計と、前記冷却水側冷却手段と、前記冷却水側加熱手段と、冷却水側熱交換器とを、供試体である水冷式変速機オイル熱交換器の冷却水側との接続カップリングを介して、接続する配管途中にそれぞれ設けてなり、
前記冷却水側熱交換器は、前記冷却水循環装置を循環する冷却水と、建物側の冷熱源により冷却される工業用水との間で熱交換される熱交換器であり、
前記冷却水循環装置は、密閉系である配管内圧の調整のため、低温時の冷却水循環用膨張系とは異なる、高温冷却水の場合の高温用密閉式膨張タンクをさらに備え、
高温冷却水の場合、前記高温用密閉式膨張タンクに切り替えることで、100℃以上の高温水を循環可能としていることを特徴とする請求項1に記載の水冷式変速機オイル熱交換器試験システム。
The cooling water circulation device is
The cooling water side pump, the cooling water thermometer, the cooling water side cooling means, the cooling water side heating means, and the cooling water side heat exchanger, a water-cooled transmission oil heat exchange as a specimen Through the connection coupling with the cooling water side of the vessel, respectively, in the middle of the pipe to be connected,
The cooling water side heat exchanger is a heat exchanger that exchanges heat between cooling water circulating through the cooling water circulation device and industrial water cooled by a building-side cooling heat source,
The cooling water circulation device further includes a high-temperature sealed expansion tank in the case of high-temperature cooling water, which is different from the cooling water circulation expansion system at low temperatures, in order to adjust the internal pressure of the pipe that is a closed system,
2. The water-cooled transmission oil heat exchanger test system according to claim 1, wherein in the case of high-temperature cooling water, high-temperature water at 100 ° C. or higher can be circulated by switching to the high-temperature closed expansion tank. .
前記冷却水側冷却手段は、
前記冷却水側熱交換器の一次側へ供給される工業用水の流量を調節する第一工業用水流量調節装置と、
前記冷却水側熱交換器の二次側へ供給される冷却水の流量を調節する冷却水流量調節装置とを備え、
前記オイル側冷却手段は、
前記オイル循環装置を循環する変速機オイルと、工業用水との間で熱交換するオイル側熱交換器と、
前記オイル側熱交換器の一次側へ供給される工業用水の流量を調節する第二工業用水流量調節装置と、
前記オイル側熱交換器の二次側へ供給される変速機オイルの流量を調節するオイル流量調節装置とを備えていることを特徴とする請求項2に記載の水冷式変速機オイル熱交換器試験システム。
The cooling water side cooling means is
A first industrial water flow rate adjusting device for adjusting the flow rate of industrial water supplied to the primary side of the cooling water side heat exchanger;
A cooling water flow rate adjusting device for adjusting the flow rate of cooling water supplied to the secondary side of the cooling water side heat exchanger;
The oil-side cooling means is
An oil-side heat exchanger for exchanging heat between transmission oil circulating through the oil circulation device and industrial water;
A second industrial water flow rate adjusting device for adjusting the flow rate of industrial water supplied to the primary side of the oil side heat exchanger;
The water-cooled transmission oil heat exchanger according to claim 2, further comprising an oil flow rate adjusting device for adjusting a flow rate of transmission oil supplied to a secondary side of the oil side heat exchanger. Test system.
前記冷却水循環装置は、
冷却水側流量コントローラを備え、
前記冷却水側流量コントローラでは、
前記第一工業用水流量調節装置に対する操作量を演算し出力し、且つ前記冷却水流量調節装置に対する操作量を演算し出力するとともに、
前記冷却水温度計の計測値を入力され、前記冷却側流量コントローラに設定される運転選択設定温度と前記冷却水温度計の計測値とを比較して前記運転選択設定温度を閾値とした判断信号を出し、
該判断信号に基づいて、前記第一工業用水流量制御装置または前記冷却水流量制御装置の一方には、計測値入力信号と試験用に設定される冷却水温度設定温度との偏差に基づいて演算した出力信号により、流量調整装置を比例制御動作させ、他方には、流量調整装置の弁開度を定量調整することで、全量を冷却水側熱交換器へ流すように構成され、
前記オイル循環装置は、
オイル側流量コントローラを備え、
前記オイル側流量コントローラでは、
前記第二工業用水流量調節装置に対する操作量を演算し出力し、且つ前記オイル流量調節装置に対する操作量を演算し出力するとともに、
前記オイル温度計の計測値を入力され、前記オイル側流量コントローラに設定される運転選択設定温度と前記オイル温度計の計測値とを比較して前記運転選択設定温度を閾値とした判断信号を出し、
該判断信号に基づいて、前記第二工業用水流量制御装置または前記オイル流量制御装置の一方には、計測値入力信号と試験用に設定されるオイル温度設定温度との偏差に基づいて演算した出力信号により、流量調整装置を比例制御動作させ、他方には、流量調整装置の弁開度を定量調整することで、全量をオイル側熱交換器へ流すように構成され、
前記冷却水側流量コントローラ及び前記オイル側流量コントローラには、前記工業用水配管内での冷却水沸騰によるキャビテーションを防止するための運転選択設定温度がそれぞれ設定されていて、
前記冷却水温度計で計測された冷却水の温度が前記運転選択設定温度未満の場合には、前記冷却水側流量コントローラは、前記水冷式変速機オイル熱交換器から排出された冷却水が最大限定量で前記冷却水側熱交換器に流入するように前記冷却水流量調整装置を定位置に調整するとともに、前記第一工業用水流量調節装置による工業用水の流量を比例制御調整することによって、冷却水の温度調整が行われ、
前記冷却水温度計で計測された冷却水の温度が前記運転選択設定温度以上の場合には、前記冷却水側流量コントローラは、工業用水が最大限定量で前記冷却水側熱交換器に流入するように前記第一工業用水流量調整装置を定位置に調整するとともに、前記冷却水流量調節装置による前記冷却水側熱交換器への冷却水の流量を比例制御調整することによって、冷却水の温度調整が行われ、
前記オイル温度計で計測された変速機オイルの温度が前記運転選択設定温度未満の場合には、前記オイル側流量コントローラは、前記変速機オイルが最大限定量で前記オイル側熱交換器に流入するように前記オイル流量調整装置を定位置に調整するとともに、前記第二工業用水流量調節装置による工業用水の流量を比例制御調整することによって、変速機オイルの温度調整が行われ、
前記オイル温度計で計測された変速機オイルの温度が前記運転選択設定温度以上の場合には、前記オイル側流量コントローラは、工業用水が最大限定量で前記オイル側熱交換器に流入するように前記第二工業用水流量調整装置を定位置に調整するとともに、前記オイル流量調節装置による前記オイル側熱交換器への変速機オイルの流量を比例制御調整することによって、変速機オイルの温度調整が行われることを特徴とする請求項3に記載の水冷式変速機オイル熱交換器試験システム。
The cooling water circulation device is
Equipped with a cooling water flow controller
In the cooling water side flow controller,
Calculate and output the operation amount for the first industrial water flow control device, and calculate and output the operation amount for the cooling water flow control device,
A determination signal that receives the measured value of the cooling water thermometer, compares the operation selection set temperature set in the cooling side flow rate controller with the measured value of the cooling water thermometer, and uses the operation selection set temperature as a threshold value And
Based on the determination signal, one of the first industrial water flow rate control device or the cooling water flow rate control device is operated based on the deviation between the measured value input signal and the cooling water temperature setting temperature set for testing. The flow rate adjusting device is proportionally controlled by the output signal, and on the other hand, the valve opening degree of the flow rate adjusting device is quantitatively adjusted to flow the entire amount to the cooling water side heat exchanger,
The oil circulation device is
With oil side flow controller,
In the oil side flow rate controller,
Calculate and output the operation amount for the second industrial water flow control device, and calculate and output the operation amount for the oil flow control device,
The measurement value of the oil thermometer is input, and the operation selection set temperature set in the oil side flow controller is compared with the measurement value of the oil thermometer, and a judgment signal is output with the operation selection set temperature as a threshold value. ,
Based on the determination signal, one of the second industrial water flow control device or the oil flow control device has an output calculated based on the deviation between the measured value input signal and the oil temperature setting temperature set for testing. Based on the signal, the flow rate adjusting device is proportionally controlled, and on the other side, the valve opening degree of the flow rate adjusting device is quantitatively adjusted to flow the entire amount to the oil side heat exchanger,
The cooling water side flow controller and the oil side flow controller are each set with an operation selection set temperature for preventing cavitation due to boiling of the cooling water in the industrial water pipe,
When the temperature of the cooling water measured by the cooling water thermometer is lower than the operation selection set temperature, the cooling water-side flow rate controller has a maximum amount of cooling water discharged from the water-cooled transmission oil heat exchanger. By adjusting the cooling water flow rate adjusting device to a fixed position so as to flow into the cooling water side heat exchanger in a limited amount, and by proportionally adjusting the industrial water flow rate by the first industrial water flow rate adjusting device, The cooling water temperature is adjusted,
When the temperature of the cooling water measured by the cooling water thermometer is equal to or higher than the operation selection set temperature, the cooling water side flow rate controller flows the industrial water into the cooling water side heat exchanger with a maximum amount. The temperature of the cooling water is adjusted by adjusting the flow rate of the cooling water to the cooling water side heat exchanger by the cooling water flow rate adjusting device proportionally and adjusting the first industrial water flow rate adjusting device to a fixed position. Adjustments are made,
When the temperature of the transmission oil measured by the oil thermometer is lower than the operation selection set temperature, the oil-side flow rate controller causes the transmission oil to flow into the oil-side heat exchanger with a maximum amount. As described above, adjusting the oil flow rate adjusting device to a fixed position, and adjusting the flow rate of industrial water by the second industrial water flow rate adjusting device in proportion control, the temperature adjustment of the transmission oil is performed,
When the temperature of the transmission oil measured by the oil thermometer is equal to or higher than the operation selection set temperature, the oil-side flow rate controller controls the industrial water to flow into the oil-side heat exchanger with a maximum amount. The temperature of the transmission oil can be adjusted by adjusting the second industrial water flow adjustment device to a fixed position and proportionally adjusting the flow rate of the transmission oil to the oil-side heat exchanger by the oil flow adjustment device. The water-cooled transmission oil heat exchanger test system according to claim 3, wherein the test system is performed.
前記冷却水側加熱手段及び前記オイル側加熱手段はそれぞれ電気ヒータによって構成され、
前記冷却水側加熱手段の最大加熱能力は、前記オイル側加熱手段の最大加熱能力の30%〜60%であることを特徴とする請求項1乃至4のいずれかに記載の水冷式変速機オイル熱交換器試験システム。
The cooling water side heating means and the oil side heating means are each constituted by an electric heater,
5. The water-cooled transmission oil according to claim 1, wherein a maximum heating capacity of the cooling water side heating unit is 30% to 60% of a maximum heating capacity of the oil side heating unit. Heat exchanger test system.
JP2012228530A 2012-10-16 2012-10-16 Water-cooled transmission oil heat exchanger test system Active JP5951440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228530A JP5951440B2 (en) 2012-10-16 2012-10-16 Water-cooled transmission oil heat exchanger test system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228530A JP5951440B2 (en) 2012-10-16 2012-10-16 Water-cooled transmission oil heat exchanger test system

Publications (2)

Publication Number Publication Date
JP2014081251A true JP2014081251A (en) 2014-05-08
JP5951440B2 JP5951440B2 (en) 2016-07-13

Family

ID=50785569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228530A Active JP5951440B2 (en) 2012-10-16 2012-10-16 Water-cooled transmission oil heat exchanger test system

Country Status (1)

Country Link
JP (1) JP5951440B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568464A (en) * 2014-12-29 2015-04-29 广电计量检测(天津)有限公司 Thermal radiation test bench for engine armor and controlling method thereof
CN108980324A (en) * 2018-08-31 2018-12-11 吉测(苏州)测试系统有限公司 Manual/auto speed changer one temperature control system
CN110243607A (en) * 2019-07-12 2019-09-17 吉孚动力技术(中国)有限公司 A kind of engine performance test stand frame oil temperature control system
CN112412573A (en) * 2020-11-28 2021-02-26 武汉东测科技有限责任公司 Multipurpose machine oil temperature control device and control method thereof
KR20210054626A (en) * 2019-11-05 2021-05-14 현대트랜시스 주식회사 Oil cooler apparatus for transmission test
CN113532899A (en) * 2021-07-22 2021-10-22 中国北方车辆研究所 Inlet oil and water temperature stabilizing device for small-power heat dissipation performance test
CN113899569A (en) * 2021-08-17 2022-01-07 合肥通用机械研究院有限公司 Heat exchanger performance and service life testing device and testing method using same
CN113933084A (en) * 2021-10-20 2022-01-14 南京工程学院 Heat exchanger heat exchange experiment test platform and test method
CN114166480A (en) * 2021-11-04 2022-03-11 珠海格力智能装备有限公司 Testing device and testing method for service life of cooling machine
CN114166480B (en) * 2021-11-04 2024-04-26 珠海格力智能装备有限公司 Device and method for testing service life of cooler

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872197A (en) * 2017-01-11 2017-06-20 广州大华德盛热管理科技股份有限公司 A kind of performance testing device of heat exchanger and method of testing
CN107036833B (en) * 2017-03-31 2020-02-07 上海蔚来汽车有限公司 Calibration method and calibration system for performance parameters of radiator
CN110174268B (en) * 2019-06-27 2020-10-16 贵州永红航空机械有限责任公司 Main lubricating oil cooling device testing device that subtracts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205536A (en) * 1987-02-20 1988-08-25 Sanki Eng Co Ltd Movable oil and water controller for automobile engine experiment
JPH0447647U (en) * 1990-08-29 1992-04-22
JPH0968370A (en) * 1995-08-30 1997-03-11 Sanyo Electric Co Ltd Capacity testing device for heat exchanger
JPH09257653A (en) * 1996-03-19 1997-10-03 Toyo Eng Works Ltd Cooler for low-temperature test of prime mover
JP2007016651A (en) * 2005-07-06 2007-01-25 Nissan Motor Co Ltd Device for controlling oil temperature
JP2008184981A (en) * 2007-01-30 2008-08-14 Sanki Eng Co Ltd High viscosity fluid cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205536A (en) * 1987-02-20 1988-08-25 Sanki Eng Co Ltd Movable oil and water controller for automobile engine experiment
JPH0447647U (en) * 1990-08-29 1992-04-22
JPH0968370A (en) * 1995-08-30 1997-03-11 Sanyo Electric Co Ltd Capacity testing device for heat exchanger
JPH09257653A (en) * 1996-03-19 1997-10-03 Toyo Eng Works Ltd Cooler for low-temperature test of prime mover
JP2007016651A (en) * 2005-07-06 2007-01-25 Nissan Motor Co Ltd Device for controlling oil temperature
JP2008184981A (en) * 2007-01-30 2008-08-14 Sanki Eng Co Ltd High viscosity fluid cooling system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568464A (en) * 2014-12-29 2015-04-29 广电计量检测(天津)有限公司 Thermal radiation test bench for engine armor and controlling method thereof
CN108980324B (en) * 2018-08-31 2023-09-26 吉测(苏州)测试系统有限公司 Transmission temperature control system
CN108980324A (en) * 2018-08-31 2018-12-11 吉测(苏州)测试系统有限公司 Manual/auto speed changer one temperature control system
CN110243607A (en) * 2019-07-12 2019-09-17 吉孚动力技术(中国)有限公司 A kind of engine performance test stand frame oil temperature control system
KR20210054626A (en) * 2019-11-05 2021-05-14 현대트랜시스 주식회사 Oil cooler apparatus for transmission test
KR102269918B1 (en) 2019-11-05 2021-06-29 현대트랜시스 주식회사 Oil cooler apparatus for transmission test
CN112412573A (en) * 2020-11-28 2021-02-26 武汉东测科技有限责任公司 Multipurpose machine oil temperature control device and control method thereof
CN113532899A (en) * 2021-07-22 2021-10-22 中国北方车辆研究所 Inlet oil and water temperature stabilizing device for small-power heat dissipation performance test
CN113532899B (en) * 2021-07-22 2023-06-30 中国北方车辆研究所 Inlet oil and water temperature stabilizing device for low-power heat radiation performance test
CN113899569A (en) * 2021-08-17 2022-01-07 合肥通用机械研究院有限公司 Heat exchanger performance and service life testing device and testing method using same
CN113899569B (en) * 2021-08-17 2023-10-03 合肥通用机械研究院有限公司 Heat exchanger performance and service life testing device and testing method using same
CN113933084A (en) * 2021-10-20 2022-01-14 南京工程学院 Heat exchanger heat exchange experiment test platform and test method
CN114166480A (en) * 2021-11-04 2022-03-11 珠海格力智能装备有限公司 Testing device and testing method for service life of cooling machine
CN114166480B (en) * 2021-11-04 2024-04-26 珠海格力智能装备有限公司 Device and method for testing service life of cooler

Also Published As

Publication number Publication date
JP5951440B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
JP5951440B2 (en) Water-cooled transmission oil heat exchanger test system
KR101765578B1 (en) Integrated pump, coolant flow control and heat exchange device
CN101968401B (en) Cooling fluid temperature control system for testing engine performance
CN201233315Y (en) Engine depth cold-hot impact test system
US20170248065A1 (en) Thermal management system and method ofmaking and using the same
US20170241324A1 (en) Thermal management system with heat recovery and method of making and using the same
JP4387413B2 (en) Vehicle cooling system
JP5484289B2 (en) Engine cooling water circulation system for testing
RU2010111634A (en) DEVICE FOR HEATING A CAB CAB
CN110332039B (en) Engine cooling system and control method
EP3225450A1 (en) Cooling system for an internal combustion engine coupled to an automatic transmission with hydraulic retarder
CN102953790A (en) Combustion engine exhaust system with device for heat recovery, and method for operating such an exhaust system
GB2463969A (en) Heating a hybrid electric vehicle
JP2008128809A (en) Temperature adjustment device for testing
JP4982547B2 (en) Working fluid test bench adjustment system and apparatus for driving this type of test bench adjustment system
CN205808715U (en) A kind of universal cold shock testing device
JP4628995B2 (en) Oil temperature control device for engine test
CN111396227A (en) Cold start auxiliary system, heating auxiliary control method and engineering machinery
US20100319902A1 (en) Auxiliary apparatus for vehicle water tank
CN106837652A (en) A kind of vehicle fuel auxiliary heating system and its control method
CN105134329B (en) Machine oil cooler of engine and cooling control method
CN106468338A (en) Torque-converters automatic temperature control system
KR20150117067A (en) Gasoline Turbo Charger Vehicle having Engine Cooling System connected Turbo Charger and Control Method thereof
CN105402114B (en) Air compressor machine high-temperature behavior environmental simulation test device
CN211144661U (en) Fuel oil temperature control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160608

R150 Certificate of patent or registration of utility model

Ref document number: 5951440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250