JP2014079481A - Hydroxyapatite composition, and bone or tooth filler made thereof - Google Patents

Hydroxyapatite composition, and bone or tooth filler made thereof Download PDF

Info

Publication number
JP2014079481A
JP2014079481A JP2012230511A JP2012230511A JP2014079481A JP 2014079481 A JP2014079481 A JP 2014079481A JP 2012230511 A JP2012230511 A JP 2012230511A JP 2012230511 A JP2012230511 A JP 2012230511A JP 2014079481 A JP2014079481 A JP 2014079481A
Authority
JP
Japan
Prior art keywords
composition
hydroxyapatite
spherical
hap
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012230511A
Other languages
Japanese (ja)
Inventor
Mamoru Aizawa
守 相澤
Toshimasa Konishi
敏功 小西
Minori Mizumoto
みのり 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2012230511A priority Critical patent/JP2014079481A/en
Publication of JP2014079481A publication Critical patent/JP2014079481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composition for filling bone or tooth defects, having a sufficiently larger cured strength than that of a known hydroxyapatite composition.SOLUTION: A new composition for filling bone or tooth defects includes: hydroxyapatite treated with inositol phosphate (1); and spherical hydroxyapatite particles (2). Although the composition has a relative density comparable to that of a known hydroxyapatite composition, the cured strength is larger than that of a known hydroxyapatite composition.

Description

本発明は、ハイドロキシアパタイト状組成物及びそれから成る骨又は歯充填材に関する。   The present invention relates to a hydroxyapatite-like composition and a bone or tooth filler comprising the same.

近年、我が国の高齢者人口は顕著な増加傾向を示している。これに伴い、近い将来において高齢者に発症が多く見られる骨粗鬆症の罹患率上昇が予想される。骨粗鬆症が発症すると骨の形成と吸収のバランスが崩れ、骨密度が低下する。そのため骨組織が荷重に対し脆弱になり、圧迫骨折が発症しやすくなる。例えば、上半身の姿勢を支える脊椎においては椎体圧迫骨折が発症した場合、脊椎の前彎化や背痛を引き起こし、QOL (Quality of Life)低下を引き起こす。   In recent years, the elderly population in Japan has shown a marked increase. Along with this, an increase in the prevalence of osteoporosis, which often occurs in elderly people in the near future, is expected. When osteoporosis develops, the balance between bone formation and resorption is lost, and bone density decreases. As a result, the bone tissue becomes vulnerable to the load, and compression fracture is likely to occur. For example, in the spine that supports the posture of the upper body, when a vertebral body compression fracture occurs, it causes anterior vertebralization and back pain, resulting in a reduction in quality of life (QOL).

椎体圧迫骨折の治療法として骨セメントによる経皮的椎体形成術(Vertebroplasty, Kyphoplasty)が選択され、良好な術後成績が得られている。これまでは骨セメントとしてPoly(methyl methacrylate)(PMMA)が用いられてきたが、硬化反応時に発生する重合熱による周囲組織の壊死、新生骨との直接結合しないこと、隣接椎体骨折などが問題視され、それに代わる新たな骨セメントとしてリン酸カルシウムセメントの研究開発が進められている。   Percutaneous vertebroplasty (Vertebroplasty, Kyphoplasty) with bone cement has been selected as a treatment method for vertebral body compression fractures, and good postoperative results have been obtained. Until now, poly (methyl methacrylate) (PMMA) has been used as a bone cement, but there are problems such as necrosis of surrounding tissues due to polymerization heat generated during the curing reaction, lack of direct connection with new bone, and adjacent vertebral fractures. Research and development of calcium phosphate cement is underway as a new bone cement to replace it.

現在までに数々のリン酸カルシウムセメントが開発されてきた。そのほとんどはリン酸四カルシウムやリン酸水素カルシウムなどを主材とし、酸-塩基反応により硬化する。しかし、酸-塩基反応による炎症反応の恐れや硬化時間が長いことが問題点として挙げられている。   To date, a number of calcium phosphate cements have been developed. Most of them use tetracalcium phosphate or calcium hydrogen phosphate as the main material and harden by acid-base reaction. However, there are problems of fear of inflammatory reaction due to acid-base reaction and long curing time.

本願発明者らは、先にイノシトールリン酸のキレート能を応用したキレート硬化型アパタイトセメントの開発に成功している (特許文献1)。このセメントはイノシトールリン酸のキレート能により硬化するため、上記の問題の恐れがない。また、混練液へのデキストラン硫酸ナトリウムやアルギン酸ナトリウムのような多糖類添加による高強度化にも成功し、臨床応用に向け大きく前進している(特許文献2)。さらに、イノシトールリン酸で処理したリン酸三カルシウムを用いた骨セメントも開発している(特許文献3)。さらにカルシウム塩粉末の粒度分布を最適化することにより圧縮強度を高めることにも成功している(特許文献4)。また、特許文献4には、適用する疾患に応じて、でんぷん、グリコサミノグリカン、アルギン酸、キチン、キトサン、ヘパリン等の多糖類も添加可能であることが記載されている。さらに、イノシトールリン酸で処理したハイドロキシアパタイトと、キトサンと水とを含む、注入可能なハイドロキシアパタイト組成物も特許出願している(特許文献5)。さらに、ハイドロキシアパタイトナノ粒子の組成及び用途について特許出願されている(特許文献6)。   The inventors of the present application have succeeded in the development of a chelate-hardening type apatite cement using the inositol phosphate chelating ability (Patent Document 1). Since this cement is hardened by the chelating ability of inositol phosphate, there is no fear of the above problems. In addition, it has succeeded in increasing the strength by adding polysaccharides such as sodium dextran sulfate and sodium alginate to the kneaded liquid, and has made great progress toward clinical application (Patent Document 2). Furthermore, a bone cement using tricalcium phosphate treated with inositol phosphate has also been developed (Patent Document 3). Furthermore, it has succeeded in raising compressive strength by optimizing the particle size distribution of calcium salt powder (patent document 4). Patent Document 4 describes that polysaccharides such as starch, glycosaminoglycan, alginic acid, chitin, chitosan, and heparin can be added depending on the disease to be applied. Furthermore, an injectable hydroxyapatite composition containing hydroxyapatite treated with inositol phosphate, chitosan and water has also been filed (Patent Document 5). Furthermore, a patent application has been filed for the composition and use of hydroxyapatite nanoparticles (Patent Document 6).

特開2005-95346号公報JP 2005-95346 A 特開2009-178225号公報JP 2009-178225 A 特開2009-183498号公報JP 2009-183498 特開2008-200476号公報JP 2008-200476 A 特開2012-130672号公報JP 2012-130672 A 特許第4076203号公報Japanese Patent No. 4076203

本発明の目的は、公知のハイドロキシアパタイト組成物よりも硬化後の強度が十分大きい、骨や歯等の充填に利用可能な組成物を提供することである。   An object of the present invention is to provide a composition that can be used for filling bones, teeth, and the like, having a sufficiently high strength after curing as compared with known hydroxyapatite compositions.

本願発明者らは、鋭意研究の結果、イノシトールリン酸処理したハイドロキシアパタイトに、球状ハイドロキシアパタイト粒子を添加することにより、相対密度にはほとんど差がないにも関わらず、硬化後の強度を大きくすることができることを見出し、本発明を完成した。   As a result of diligent research, the inventors of the present application increase the strength after curing by adding spherical hydroxyapatite particles to hydroxyapatite treated with inositol phosphate, although there is almost no difference in relative density. The present invention has been completed.

すなわち、本発明は、(1)イノシトールリン酸処理したハイドロキシアパタイトと、(2)球状ハイドロキシアパタイト粒子とを含む組成物を提供する。本発明は、また、上記本発明の組成物から成る骨又は歯充填材を提供する。   That is, the present invention provides a composition comprising (1) hydroxyapatite treated with inositol phosphate and (2) spherical hydroxyapatite particles. The present invention also provides a bone or tooth filler comprising the composition of the present invention.

本発明により、相対密度が公知のハイドロキシアパタイト組成物と同程度であり、それでいて、硬化後の強度が公知のハイドロキシアパタイト組成物よりも大きい、骨や歯の充填材として用いられる新規な組成物が提供された。本発明の組成物は、公知の組成物よりも硬化後の強度が大きいので、椎体形成術のような骨や歯等の治療に大いに貢献するものと考えられる。   According to the present invention, there is provided a novel composition used as a filler for bones and teeth, which has a relative density similar to that of a known hydroxyapatite composition and yet has a higher strength after curing than the known hydroxyapatite composition. offered. Since the composition of the present invention has a higher strength after curing than known compositions, it is considered that the composition of the present invention greatly contributes to the treatment of bones and teeth such as vertebroplasty.

下記実施例で作製した各種組成物中の各成分の混合割合を示す図である。It is a figure which shows the mixing ratio of each component in the various compositions produced in the following Example. 下記実施例で用いた、ハイドロキシアパタイトと球状ハイドロキシアパタイト粒子の粒度分布を示す図である。It is a figure which shows the particle size distribution of the hydroxyapatite and spherical hydroxyapatite particle | grains used in the following Example. 下記実施例で作製した各種ハイドロキシアパタイト組成物の、球状ハイドロキシアパタイト粒子の添加量と硬化後の圧縮強度との関係を示す図(左)及び同添加量と硬化後の相対密度との関係を示す図(右)である。The figure (left) showing the relationship between the amount of spherical hydroxyapatite particles added and the compression strength after curing of various hydroxyapatite compositions prepared in the following examples, and the relationship between the amount added and the relative density after curing It is a figure (right).

上記の通り、本発明の組成物は、イノシトールリン酸処理したハイドロキシアパタイトと、球状ハイドロキシアパタイト粒子とを含む。   As described above, the composition of the present invention contains hydroxyapatite treated with inositol phosphate and spherical hydroxyapatite particles.

ハイドロキシアパタイトをイノシトールリン酸で処理することは、特許文献2、特許文献3及び特許文献5に記載されており、本発明においてもこれらの文献に記載された公知の方法によりイノシトールリン酸処理を行うことができる。簡単に述べると、イノシトールリン酸としては、イノシトール6リン酸(すなわちフィチン酸)が好ましい。また、ここで、「イノシトールリン酸処理」は、イノシトールリン酸の塩による処理をも包含し、塩としては、ナトリウム塩やカリウム塩のようなアルカリ金属塩が好ましい。イノシトールリン酸(塩の形であってもよい。本明細書及び特許請求の範囲において同様)処理は、イノシトールリン酸の水溶液とハイドロキシアパタイト及び/又はリン酸カルシウム粉末を混合することにより行うことができる。この場合、イノシトールリン酸水溶液の濃度は特に限定されないが、通常、1000ppm〜10000ppm程度、好ましくは1000〜5000ppm程度、さらに好ましくは1000〜3000ppm程度である。また、イノシトールリン酸水溶液のpHは、中性域(6〜8程度)が好ましく、また、処理は常温で行うことができる。混合後の水溶液を凍結乾燥処理することにより、表面にイノシトールリン酸が吸着したハイドロキシアパタイト及び/又はリン酸三カルシウム粉末が得られる。   Treatment of hydroxyapatite with inositol phosphate is described in Patent Document 2, Patent Document 3 and Patent Document 5, and in the present invention, inositol phosphate treatment is performed by a known method described in these documents. be able to. Briefly, inositol phosphate is preferably inositol 6-phosphate (that is, phytic acid). Here, “inositol phosphate treatment” includes treatment with a salt of inositol phosphate, and the salt is preferably an alkali metal salt such as sodium salt or potassium salt. Inositol phosphate (which may be in the form of a salt. The same applies in the present specification and claims) can be performed by mixing an aqueous solution of inositol phosphate with hydroxyapatite and / or calcium phosphate powder. In this case, the concentration of the inositol phosphate aqueous solution is not particularly limited, but is usually about 1000 ppm to 10000 ppm, preferably about 1000 to 5000 ppm, and more preferably about 1000 to 3000 ppm. In addition, the pH of the inositol phosphate aqueous solution is preferably in the neutral range (about 6 to 8), and the treatment can be performed at room temperature. The aqueous solution after mixing is freeze-dried to obtain hydroxyapatite and / or tricalcium phosphate powder having inositol phosphate adsorbed on its surface.

ハイドロキシアパタイト(ヒドロキシアパタイトや水酸アパタイトとも呼ばれる)は、骨セメントやクロマトグラフィー用担体等の種々の用途において用いられている周知の材料であり、その製造方法も周知である。ハイドロキシアパタイトは、水酸化カルシウム懸濁液にリン酸水溶液を滴下することによる湿式合成法により製造することができる(詳細は下記実施例に記載)。また、市販のハイドロキシアパタイト粉末をさらにボールミル等で粉砕した粉末も用いることができる。低粘度の組成物で強度の大きな硬化物を得る観点から、湿式合成法により製造したハイドロキシアパタイトが好ましい。   Hydroxyapatite (also called hydroxyapatite or hydroxyapatite) is a well-known material used in various applications such as bone cement and chromatographic carrier, and its production method is also well known. Hydroxyapatite can be produced by a wet synthesis method by dropping a phosphoric acid aqueous solution into a calcium hydroxide suspension (details are described in the following examples). Moreover, the powder which grind | pulverized commercially available hydroxyapatite powder with the ball mill etc. can also be used. From the viewpoint of obtaining a cured product having a high strength with a low viscosity composition, hydroxyapatite produced by a wet synthesis method is preferred.

本発明の組成物は、さらに球状ハイドロキシアパタイト粒子を含む。球状ハイドロキシアパタイト粒子の粒度分布における粒径のメジアンは、0.4μm〜35μmが好ましく、1μm〜5μmがさらに好ましい。球状ハイドロキシアパタイト粒子の全組成物中の含量は、0.3〜12質量%が好ましく、さらに0.9〜2質量%が好ましい。また、「球状」とは、好ましくは球形であるが、球形から多少ずれていても問題はなく、長径に対する短径の割合が60%以上程度の、球形に近い楕円球、さらにはそれらがややいびつに変形した粒子でも使用可能である。本明細書及び特許請求の範囲では、このような楕円球や変形したものも含めて「球状」と呼んでいる。また、球状ハイドロキシアパタイト粒子は、必ずしもイノシトールリン酸で処理する必要はないが、上記ハイドロキシアパタイトと同様にイノシトールリン酸で処理することが好ましい。   The composition of the present invention further comprises spherical hydroxyapatite particles. The median of the particle size in the particle size distribution of the spherical hydroxyapatite particles is preferably 0.4 μm to 35 μm, and more preferably 1 μm to 5 μm. The content of the spherical hydroxyapatite particles in the entire composition is preferably 0.3 to 12% by mass, more preferably 0.9 to 2% by mass. The “spherical shape” is preferably a spherical shape, but there is no problem even if it is slightly deviated from the spherical shape. An elliptical sphere close to a spherical shape whose ratio of the minor axis to the major axis is about 60% or more, and more Even deformed particles can be used. In the present specification and claims, the term “spherical” includes such elliptical spheres and deformed ones. The spherical hydroxyapatite particles do not necessarily have to be treated with inositol phosphate, but are preferably treated with inositol phosphate in the same manner as the hydroxyapatite.

このような球状ハイドロキシアパタイト粒子の製造方法自体は公知であり、例えば、ハイドロキシアパタイト微粒子の製造方法としては、界面活性剤-水-無極性有機液体系、または界面活性剤-水-アルカノール無極性有機液体系W/Oマイクロエマルジョン相に、Ca(NO3)2/アンモニア水溶液および(NH4)2HPO4/アンモニア水溶液をそれぞれ可溶化させ、これら可溶化液を混合することにより製造することができる(文献名:特開平5-17111号公報)。また、このような球状ハイドロキシアパタイト粒子は市販されているので、市販品を用いることも可能である(下記実施例参照)。 A method for producing such spherical hydroxyapatite particles per se is known. For example, as a method for producing hydroxyapatite fine particles, a surfactant-water-nonpolar organic liquid system or a surfactant-water-alkanol nonpolar organic It can be produced by solubilizing Ca (NO 3 ) 2 / ammonia aqueous solution and (NH 4 ) 2 HPO 4 / ammonia aqueous solution in a liquid W / O microemulsion phase and mixing these solubilized solutions. (Document name: JP-A-5-17111). Moreover, since such spherical hydroxyapatite particles are commercially available, it is also possible to use commercially available products (see Examples below).

好ましい態様では、本発明の組成物は、さらにキトサンを含む。キトサンとしてはその塩も使用することができ、その塩としては、ナトリウム塩やカリウム塩のようなアルカリ金属塩が好ましい。キトサンの分子量は、特に限定されないが、通常数十万〜数百万程度である。また、キトサンは、完全に脱アセチル化されている必要はなく、通常の市販品にみられるように、脱アセチル化度は、約70%以上、好ましく約80〜85%以上あればよい。組成物中のキトサンの含有量は、通常、2.5〜10質量%程度、好ましくは、5〜10質量%程度である。上記の通り、本発明の組成物は、必須成分として水も含むが、キトサンの水溶液が市販されている(例えば、大日精化工業社製のダイキトサンW-10やダイキトサンコートGL等)ので、市販のキトサン水溶液と、前記イノシトールリン酸処理したハイドロキシアパタイトと、球状ハイドロキシアパタイト粒子とを混合し、混練することにより本発明の組成物を簡便に得ることができ、好ましい。   In a preferred embodiment, the composition of the present invention further comprises chitosan. As the chitosan, a salt thereof can also be used, and the salt is preferably an alkali metal salt such as sodium salt or potassium salt. The molecular weight of chitosan is not particularly limited, but is usually about several hundred thousand to several million. Chitosan does not have to be completely deacetylated, and the degree of deacetylation is about 70% or more, preferably about 80 to 85% or more as seen in ordinary commercial products. The content of chitosan in the composition is usually about 2.5 to 10% by mass, preferably about 5 to 10% by mass. As described above, the composition of the present invention also contains water as an essential component, but an aqueous solution of chitosan is commercially available (for example, Daikito San W-10 or Daichito Sun Coat GL manufactured by Dainichi Seika Kogyo Co., Ltd.). The composition of the present invention can be easily obtained by mixing and kneading a commercially available chitosan aqueous solution, hydroxyapatite treated with inositol phosphate, and spherical hydroxyapatite particles, which is preferable.

好ましい態様では、本発明の組成物は、さらに有機酸を含む。好ましい有機酸の例として、常温で固体の有機酸が好ましく、さらには、クエン酸、リンゴ酸、乳酸、酒石酸等を挙げることができ、好ましくはクエン酸である。有機酸の組成物中の含有量は、通常、5〜40質量%程度、好ましくは、8〜20質量%程度である。単一種類のものを用いることもできるし、複数種類のものを組み合わせて用いることもできる。組成物中に有機酸を含めることにより、骨又は歯充填材を製造する際に、組成物と水を混合するときに、成形性が向上する。   In a preferred embodiment, the composition of the present invention further comprises an organic acid. Preferred examples of the organic acid include organic acids that are solid at room temperature. Further, citric acid, malic acid, lactic acid, tartaric acid, and the like can be given, and citric acid is preferred. The content of the organic acid in the composition is usually about 5 to 40% by mass, preferably about 8 to 20% by mass. A single type can be used, or a plurality of types can be used in combination. By including an organic acid in the composition, moldability is improved when the composition and water are mixed when producing a bone or tooth filler.

本発明の組成物の媒体(上記した各成分を懸濁又は溶解する液体)としては、水が好ましい。本発明の組成物における固液比(ハイドロキシアパタイト(g)と水(他の成分を含まない水(cm3)との比)は、通常、1/0.3〜1/1.2程度、好ましくは1/0.4〜1/0.8程度、さらに好ましくは1/0.5〜1/0.7程度である。 The medium of the composition of the present invention (liquid that suspends or dissolves the above-described components) is preferably water. The solid-liquid ratio (hydroxyapatite (g) and water (ratio of water not containing other components (cm 3 )) in the composition of the present invention is usually about 1 / 0.3 to 1 / 1.2, preferably 1 / It is about 0.4 to 1 / 0.8, more preferably about 1 / 0.5 to 1 / 0.7.

本発明の組成物は、骨や歯の充填材として用いることができる。本発明の組成物は、本発明の有利な特徴を利用して、注射器により患部に経皮的に注入することができる。注入された組成物は、公知の骨充填材と同様、患部において硬化する。本発明の組成物によれば、注射器による経皮的な注入が可能であるので、低侵襲的な治療が可能であり、患者の負担が少なく、また、注射針を利用できるので、従来よりも精密な治療が可能になる。   The composition of the present invention can be used as a filler for bones and teeth. The composition of the present invention can be percutaneously injected into an affected area by a syringe using the advantageous features of the present invention. The injected composition hardens in the affected area, similar to known bone fillers. According to the composition of the present invention, since transcutaneous injection by a syringe is possible, minimally invasive treatment is possible, the burden on the patient is small, and an injection needle can be used. Precise treatment is possible.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

実施例1
1. 湿式合成ハイドロキシアパタイト(HAp)粉末の調製
0.5mol/dm3水酸化カルシウム懸濁液500cm3を調製し、それに0.3mol/dm3リン酸水溶液500 cm3を滴下した (滴下速度17ml/min)。水酸化カルシウムとリン酸の濃度はCa/P=1.67 (モル比)となるように調整した。また、反応槽中のpHが10 < pH < 11となるようにpH調整剤 (25 % NH4OH)で調整した。リン酸水溶液滴下が終了した後、さらに1時間撹拌してから37℃に設定したインキュベータ内に24時間静置し、熟成させた。熟成後、吸引濾過にてHApスラリーを回収し、-80℃のフリーザーで一晩凍結させた。凍結させたHApスラリーは凍結乾燥機(LABCONCO製Free Zone)を用いて48時間乾燥し、湿式合成HApとした。
Example 1
1. Preparation of wet synthetic hydroxyapatite (HAp) powder
A 0.5 mol / dm 3 calcium hydroxide suspension (500 cm 3) was prepared, and a 0.3 mol / dm 3 phosphoric acid aqueous solution (500 cm 3) was dropped into the suspension (dropping rate: 17 ml / min). The concentrations of calcium hydroxide and phosphoric acid were adjusted to be Ca / P = 1.67 (molar ratio). In addition, the pH in the reaction vessel was adjusted with a pH adjuster (25% NH 4 OH) so that 10 <pH <11. After completion of the dropwise addition of the phosphoric acid aqueous solution, the mixture was further stirred for 1 hour, and then left to stand in an incubator set at 37 ° C. for 24 hours for aging. After aging, the HAp slurry was collected by suction filtration and frozen overnight in a -80 ° C freezer. The frozen HAp slurry was dried for 48 hours using a freeze dryer (Free Zone manufactured by LABCONCO) to obtain wet synthetic HAp.

得られたHApを遊星型ボールミル(FRITSCH製 P-6型)を用いて下記の条件で粉砕した。ジルコニア製ポットに、HAp10.0gとφ10mmジルコニアボール50個、精製水40mLを入れ、回転数300rpmで5分間湿式粉砕した。粉砕後、精製水を用いて容器から洗い流すように試料を回収し、吸引濾過にて粉砕HApを回収、乾燥して粉末を得た。   The obtained HAp was pulverized under the following conditions using a planetary ball mill (FR-6 P-6 type). A zirconia pot was charged with 10.0 g of HAp, 50 φ10 mm zirconia balls, and 40 mL of purified water, and wet pulverized for 5 minutes at 300 rpm. After pulverization, a sample was collected so as to be washed out of the container with purified water, and pulverized HAp was collected by suction filtration and dried to obtain a powder.

2. フィチン酸(IP6)処理HAp粉末の調製
50質量%IP6水溶液(和光純薬工業(株)製)を1.00g精秤し、精製水で300cm3程度に希釈した後、水酸化ナトリウム水溶液を用いてpHを7.3に調整し、メスフラスコを用いて500cm3にメスアップすることで濃度1000ppmのIP6水溶液を調製した。
2. Preparation of phytic acid (IP6) treated HAp powder
1.00 g of 50 mass% IP6 aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) is accurately weighed, diluted to about 300 cm 3 with purified water, adjusted to pH 7.3 with aqueous sodium hydroxide solution, An IP6 aqueous solution with a concentration of 1000 ppm was prepared by measuring up to 500 cm 3 .

濃度1000ppmのIP6水溶液200cm3に、湿式合成HAp粉末10gを懸濁し、37℃、撹拌速度400rpmで5時間撹拌した。これを吸引濾過し、得られた濾過物を精製水で洗浄した後、-80℃で一晩凍結させた。凍結させたIP6-HApは凍結乾燥機(LABCONCO製Free Zone)を用いて24時間乾燥し、「湿式合成IP6-HAp粉末」を得た。 10 g of wet synthetic HAp powder was suspended in 200 cm 3 of an IP6 aqueous solution having a concentration of 1000 ppm and stirred at 37 ° C. and a stirring speed of 400 rpm for 5 hours. This was subjected to suction filtration, and the obtained filtrate was washed with purified water and then frozen at −80 ° C. overnight. The frozen IP6-HAp was dried for 24 hours using a freeze dryer (Free Zone manufactured by LABCONCO) to obtain “wet synthetic IP6-HAp powder”.

3. 球状ハイドロキシアパタイト粒子
球状ハイドロキシアパタイト粒子は、株式会社ソフセラから市販されているnano-SHAp (40nm)(商品名)(品名: MHS-00405)を購入した。
3. Spherical hydroxyapatite particles Nano-SHAp (40 nm) (trade name) (product name: MHS-00405) commercially available from Sofcera Corporation was purchased as spherical hydroxyapatite particles.

4. ペースト状組成物の作製
球状HAp粒子を500 ppmに調製したイノシトールリン酸(IP6; pH7.3)に0-40質量%分散させ、セメント混練液とした。1.0mol/dm3のクエン酸ナトリウムを用いてダイキトサンコートGL(大日精化製)を10倍に希釈した混練液(GL/1.0Mクエン酸)を調製した。IP6-HAp粉体に球状HAp粒子を含む混練液およびGL/1.0Mクエン酸をP/L=1/0.3[g/g]になるようにそれぞれ加えた。さらに液量を揃えるために図1に示す割合で適量の500ppm IP6を加え、混練後、スパチュラを用いて成形器(φ:6mm, h:12mm)に充填し作製した。各セメント試料片を室温で24h養生し、圧縮強度を測定した。また、セメント試料片の寸法から相対密度を算出した。セメントペースト1.6gあたりのIP6-HApおよび球状HAp粒子、液体の割合を図1に示す。
4. Preparation of Pasty Composition Spherical HAp particles were dispersed in inositol phosphate (IP6; pH 7.3) prepared at 500 ppm in an amount of 0 to 40% by mass to obtain a cement kneading liquid. A kneaded liquid (GL / 1.0 M citric acid) was prepared by diluting Daikito Suncoat GL (manufactured by Dainichi Seika) 10 times with 1.0 mol / dm 3 sodium citrate. A kneaded liquid containing spherical HAp particles and GL / 1.0M citric acid were added to IP6-HAp powder so that P / L = 1 / 0.3 [g / g]. Further, in order to make the liquid amount uniform, an appropriate amount of 500 ppm IP6 was added at the ratio shown in FIG. 1, and after kneading, it was filled into a molding machine (φ: 6 mm, h: 12 mm) using a spatula. Each cement specimen was cured at room temperature for 24 hours, and the compressive strength was measured. Further, the relative density was calculated from the dimensions of the cement specimen. The ratio of IP6-HAp, spherical HAp particles, and liquid per 1.6 g of cement paste is shown in FIG.

5. ハイドロキシアパタイト及び球状ハイドロキシアパタイトの特徴付け
透過顕微鏡及び走査顕微鏡で観察した結果、球状ハイドロキシアパタイト粒子は、一次粒子が長軸が90-150nm程度の球状に近い粒子であった。SEM像から、球状HAp粒子は凝集していることがわかった。粒子径分布測定の結果を図2に示す。球状HAp粒子はピークがいくつか重なった分布であった。また、球状HAp粒子およびIP6-HApのメジアン径は、それぞれ3.2および10.9μmであった。IP6-HApは10-100μmにピークを持つため、3μm付近にピークを持つ球状HAp粒子が粒子間の隙間を充填するのに効果的であると考えられる。
5. Characterization of Hydroxyapatite and Spherical Hydroxyapatite As a result of observation with a transmission microscope and a scanning microscope, the spherical hydroxyapatite particles were nearly spherical particles whose major axis was about 90-150 nm. SEM images showed that spherical HAp particles were agglomerated. The result of the particle size distribution measurement is shown in FIG. Spherical HAp particles had a distribution with several overlapping peaks. The median diameters of spherical HAp particles and IP6-HAp were 3.2 and 10.9 μm, respectively. Since IP6-HAp has a peak at 10-100 μm, it is considered that spherical HAp particles having a peak near 3 μm are effective in filling the gaps between the particles.

6. セメント強度に及ぼす球状HAp添加の影響
図3にセメントの圧縮強度(A)および相対密度(B)を示す。相対密度は球状HAp濃度によらず一定であるが、0.3-1.5質量%の球状HAp添加で圧縮強度が最大で2倍向上した。一方、3-12質量%添加では、圧縮強度はほぼ一定であった。0.3-1.5質量%の球状HApの添加がIP6-HApセメントの強度向上に有効であることが示された。
6. Effect of spherical HAp addition on cement strength Figure 3 shows the compressive strength (A) and relative density (B) of cement. The relative density was constant regardless of the spherical HAp concentration, but the compressive strength was improved up to 2 times by adding 0.3-1.5 mass% spherical HAp. On the other hand, when 3-12% by mass was added, the compressive strength was almost constant. It was shown that the addition of 0.3-1.5% by mass of spherical HAp is effective in improving the strength of IP6-HAp cement.

Claims (10)

(1)イノシトールリン酸処理したハイドロキシアパタイトと、(2)球状ハイドロキシアパタイト粒子とを含む組成物。   A composition comprising (1) hydroxyapatite treated with inositol phosphate and (2) spherical hydroxyapatite particles. 前記球状ハイドロキシアパタイト粒子の粒径のメジアンが0.4μm〜35μmである請求項1記載の組成物。   The composition according to claim 1, wherein the median particle diameter of the spherical hydroxyapatite particles is 0.4 μm to 35 μm. 前記球状ハイドロキシアパタイト粒子の全組成物中の含量が0.3〜12質量%である請求項1又は2記載の組成物。   The composition according to claim 1 or 2, wherein the content of the spherical hydroxyapatite particles in the total composition is 0.3 to 12% by mass. 前記球状ハイドロキシアパタイト粒子の全組成物中の含量が0.9〜2質量%である請求項3記載の組成物。   The composition according to claim 3, wherein the content of the spherical hydroxyapatite particles in the whole composition is 0.9 to 2% by mass. 前記球状ハイドロキシアパタイト粒子も前記イノシトールリン酸で処理されている請求項1〜4のいずれか1項に記載の組成物。   The composition according to any one of claims 1 to 4, wherein the spherical hydroxyapatite particles are also treated with the inositol phosphate. 前記イノシトールリン酸がフィチン酸である請求項1〜5のいずれか1項に記載の組成物。   The composition according to any one of claims 1 to 5, wherein the inositol phosphate is phytic acid. キトサンをさらに含む請求項1〜6のいずれか1項に記載の組成物。   The composition according to any one of claims 1 to 6, further comprising chitosan. 有機酸をさらに含む請求項1〜7のいずれか1項に記載の組成物。   The composition according to any one of claims 1 to 7, further comprising an organic acid. 前記有機酸がクエン酸である請求項8記載の組成物。   The composition of claim 8, wherein the organic acid is citric acid. 請求項1〜9のいずれか1項に記載の組成物から成る骨又は歯充填材。   A bone or tooth filler comprising the composition according to any one of claims 1 to 9.
JP2012230511A 2012-10-18 2012-10-18 Hydroxyapatite composition, and bone or tooth filler made thereof Pending JP2014079481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230511A JP2014079481A (en) 2012-10-18 2012-10-18 Hydroxyapatite composition, and bone or tooth filler made thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230511A JP2014079481A (en) 2012-10-18 2012-10-18 Hydroxyapatite composition, and bone or tooth filler made thereof

Publications (1)

Publication Number Publication Date
JP2014079481A true JP2014079481A (en) 2014-05-08

Family

ID=50784266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230511A Pending JP2014079481A (en) 2012-10-18 2012-10-18 Hydroxyapatite composition, and bone or tooth filler made thereof

Country Status (1)

Country Link
JP (1) JP2014079481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107441554A (en) * 2017-09-25 2017-12-08 四川大学 Bone renovating material with phytic acid metal ion hydroxyapatite coating layer and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107441554A (en) * 2017-09-25 2017-12-08 四川大学 Bone renovating material with phytic acid metal ion hydroxyapatite coating layer and preparation method thereof
CN107441554B (en) * 2017-09-25 2020-06-30 四川大学 Bone repair material with phytic acid-metal ion-hydroxyapatite coating and preparation method thereof

Similar Documents

Publication Publication Date Title
Engstrand et al. The effect of composition on mechanical properties of brushite cements
Gbureck et al. Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement
CN102438667B (en) Gallium Calcium phosphate biomaterials
EP2821086B1 (en) Bone cement composition
US9101665B2 (en) Rapid setting high strength calcium phosphate cements comprising cyclodextrins
Sa et al. Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid
JP6288723B2 (en) Bone regeneration material kit, paste-like bone regeneration material, bone regeneration material and bone cement
WO2013081648A1 (en) Calcium-based bone cement formula with enhanced non-dispersive ability
Pina et al. Injectability of brushite-forming Mg-substituted and Sr-substituted α-TCP bone cements
Engstrand et al. Polyhedral oligomeric silsesquioxane (POSS)–poly (ethylene glycol)(PEG) hybrids as injectable biomaterials
US8496900B2 (en) Tricalcium phosphate coarse particle compositions and methods for making the same
JP5234536B2 (en) Cement material and cement
Jeong et al. Preparation, characterization, and in-vitro performance of novel injectable silanized-hydroxypropyl methylcellulose/phase-transformed calcium phosphate composite bone cements
JP5354562B2 (en) Cement material, method for producing cement material, method for producing cement, and cement
CN104524627A (en) Method for preparing high-strength novel hydroxyapatite bone cement
Sha et al. Physico-chemical and biological properties of novel Eu-doped carbonization modified tricalcium silicate composite bone cement
Clarkin et al. Comparison of an experimental bone cement with a commercial control, Hydroset™
JP5936107B2 (en) Injectable paste-like composition and bone or tooth filler comprising the same
JP2014079481A (en) Hydroxyapatite composition, and bone or tooth filler made thereof
Korkusuz et al. Nanocrystalline apatite-based biomaterials and stem cells in orthopaedics
Chen et al. Premixed injectable calcium phosphate cement with excellent suspension stability
JP4986275B2 (en) Calcium phosphate powder and its use
JP5234538B2 (en) Cement composition, cement kit, cement, and method for producing cement
JP5777141B2 (en) Composition and method for producing bone or tooth filler using the same
Borhan et al. Synthesis and rheological evaluations of novel injectable sodium alginate/chitosan-nanostructured hydroxyapatite composite bone pastes