JP2014075910A - Charger with generator - Google Patents

Charger with generator Download PDF

Info

Publication number
JP2014075910A
JP2014075910A JP2012222213A JP2012222213A JP2014075910A JP 2014075910 A JP2014075910 A JP 2014075910A JP 2012222213 A JP2012222213 A JP 2012222213A JP 2012222213 A JP2012222213 A JP 2012222213A JP 2014075910 A JP2014075910 A JP 2014075910A
Authority
JP
Japan
Prior art keywords
generator
engine
battery pack
charger
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012222213A
Other languages
Japanese (ja)
Inventor
Yasuhiko Kanzaki
康彦 神崎
Makihiro Kobayashi
牧広 小林
健也 ▲柳▼原
Kenya Yanagihara
Hideo Kawatou
秀夫 川嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makita Corp
Original Assignee
Makita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corp filed Critical Makita Corp
Priority to JP2012222213A priority Critical patent/JP2014075910A/en
Priority to PCT/JP2013/074096 priority patent/WO2014054380A1/en
Publication of JP2014075910A publication Critical patent/JP2014075910A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a charger capable of eliminating use of an external power supply.SOLUTION: The charger charges a battery pack for electrical apparatuses. The charger comprises: an engine; a generator; and a battery mount section. The generator is driven by an engine. The battery mount section is structured so that the battery pack is detachable and outputs electric power from the generator to the battery pack. The engine can adopt a relatively small type, for example, an engine with a displacement volume of not more than 25 milli liters.

Description

ここで開示する技術は、電気機器のバッテリパックを充電する充電器に関する。   The technology disclosed herein relates to a charger that charges a battery pack of an electric device.

バッテリパックを電源とする電気機器が広く利用されている。このような電気機器は、バッテリパックを予め充電しておくことで、外部の電源に接続することなく使用することができる。バッテリパックの充電は、充電器によって行われる。特許文献1に、従来の充電器が記載されている。   Electric devices using a battery pack as a power source are widely used. Such an electric device can be used without being connected to an external power source by precharging the battery pack. The battery pack is charged by a charger. Patent Document 1 describes a conventional charger.

特開2005−295750号公報JP 2005-295750 A

従来の充電器は、商用電源に接続されて使用される。そのため、例えば停電時など、商用電源が利用できないときは、バッテリパックの充電をすることができない。このような場合は、商用電源に代えて、可搬型の発電装置を利用することが考えられる。可搬型の発電装置は、エンジンによって発電機を動かし、商用電源と同じ交流電力(例えばAC100ボルト)を出力する。従って、充電器の電源として使用することができる。しかしながら、汎用の発電装置は、充電器の電源としては過剰な能力を有しており、そのような発電装置を使用すると、エネルギー効率が悪いという問題がある。   A conventional charger is used by being connected to a commercial power source. Therefore, the battery pack cannot be charged when the commercial power source is not available, for example, during a power failure. In such a case, it is conceivable to use a portable power generator instead of the commercial power source. A portable power generation device moves a generator by an engine and outputs the same AC power (for example, AC 100 volts) as a commercial power source. Therefore, it can be used as a power source for the charger. However, the general-purpose power generator has an excessive capacity as a power source for the charger, and there is a problem in that energy efficiency is poor when such a power generator is used.

上述の問題を鑑み、本明細書で開示する技術は、外部の電源を必要としない充電器を提供することを目的とする。   In view of the above-described problems, an object of the technology disclosed in the present specification is to provide a charger that does not require an external power source.

本明細書は、電気機器のバッテリパックを充電する充電器を提供する。この充電器は、エンジン、発電機、及びバッテリ取付部を備える。発電機は、エンジンによって駆動される。バッテリ取付部は、バッテリパックが着脱可能であるとともに、発電機からの電力をバッテリパックへ出力する。   This specification provides the charger which charges the battery pack of an electric equipment. The charger includes an engine, a generator, and a battery mounting portion. The generator is driven by the engine. The battery mounting part is detachable from the battery pack, and outputs power from the generator to the battery pack.

この充電器は、エンジンと発電機を有しているので、外部の電源を必要とすることなく、電子機器のバッテリパックを充電することができる。エンジンと発電機は、バッテリパックの充電に必要とされる電力を発電すればよいので、比較的に小型のものを採用することができる。発電機による発電電力を、商用電源のような高電圧に変換することなく、直接的にバッテリパックへ供給できるので、エネルギー効率が高いという利点も持つ。   Since the charger has an engine and a generator, the battery pack of the electronic device can be charged without requiring an external power source. Since the engine and the generator need only generate electric power required for charging the battery pack, relatively small ones can be employed. Since the electric power generated by the generator can be directly supplied to the battery pack without converting it to a high voltage like a commercial power supply, it also has an advantage of high energy efficiency.

実施例1の充電器を模式的に示す。The charger of Example 1 is shown typically. 実施例1の発電ユニットの構成を模式的に示す。The structure of the electric power generation unit of Example 1 is shown typically. 第1充電ユニットを用いた充電ユニットの電気的な構成を示す。The electrical structure of the charging unit using the 1st charging unit is shown. 第2充電ユニットの電気的な構成を示すブロック図。The block diagram which shows the electric constitution of a 2nd charging unit. 並列接続回路を示す。A parallel connection circuit is shown. 直列接続回路を示す。A series connection circuit is shown. 実施例2の充電器の電気的な構成を示す(一部省略)。The electrical structure of the charger of Example 2 is shown (a part is omitted). 実施例3の充電器の電気的な構成を示す。The electrical structure of the charger of Example 3 is shown. 並列接続時の接続切替回路を示す。The connection switching circuit at the time of parallel connection is shown. 直列接続時の接続切替回路を示す。The connection switching circuit at the time of series connection is shown.

本技術の一実施形態では、エンジンが、25ミリリットル以下の排気量を有するとよく、より好ましくは、5ミリリットル以上20ミリリットル以下の排気量を有することが好ましい。このような小型のエンジンであっても、バッテリパックの充電に必要な電力を、十分に発電することができる。   In one embodiment of the present technology, the engine may have a displacement of 25 milliliters or less, and more preferably a displacement of 5 milliliters or more and 20 milliliters or less. Even such a small engine can sufficiently generate electric power necessary for charging the battery pack.

本技術の一実施形態では、発電機が、交流発電機であることが好ましい。この場合、充電器は、発電機とのバッテリ取付部との間に設けられた整流回路をさらに備えることが好ましい。なお、交流発電機に代えて、あるいは交流発電機とともに、直流発電機を採用することもできる。   In one embodiment of the present technology, the generator is preferably an AC generator. In this case, it is preferable that the charger further includes a rectifier circuit provided between the generator and the battery mounting portion. Note that a DC generator may be employed instead of the AC generator or together with the AC generator.

本技術の一実施形態では、充電器が、遮断スイッチをさらに備えることが好ましい。この遮断スイッチは、発電機とバッテリ取付部との間に設けられ、エンジンからバッテリ取付部への電力供給を遮断する。遮断スイッチを設けることにより、必要に応じて、バッテリパックの充電を直ちに中止することができる。   In one embodiment of the present technology, the charger preferably further includes a cutoff switch. This cutoff switch is provided between the generator and the battery mounting portion, and cuts off power supply from the engine to the battery mounting portion. By providing the cutoff switch, the charging of the battery pack can be stopped immediately if necessary.

本技術の一実施形態では、発電機の最大発電電圧が42ボルト以下であることが好ましい。最大発電電圧を小さく設定することで、比較的に小型のエンジンや発電機を採用することができる。   In one embodiment of the present technology, the maximum generated voltage of the generator is preferably 42 volts or less. By setting the maximum generated voltage small, a relatively small engine or generator can be employed.

本技術の一実施形態では、充電器が、18ボルトの公称電圧と3アンペアアワーの容量を有するバッテリを、残容量がゼロの状態から15分以上30以内で満充電することが好ましい。このような構成によると、バッテリパックにかかる負担を抑制しつつ、バッテリパックを比較的に短時間で充電することができる。   In one embodiment of the present technology, it is preferable that the charger fully charges a battery having a nominal voltage of 18 volts and a capacity of 3 ampere hours within 15 minutes to 30 minutes after the remaining capacity is zero. According to such a configuration, it is possible to charge the battery pack in a relatively short time while suppressing the burden on the battery pack.

本技術の一実施形態では、エンジンが、電動工具によって始動することができることが好ましい。そのための構成は特に限定されないが、例えば、エンジンのクランクシャフトに電動工具を接続可能とし、クランクシャフトを電動工具によって回転させることで、エンジンが始動する構成とすることができる。あるいは、電動工具によって駆動される第2の発電機を設け、第2の発電機によって発電された電力によって、スターターモータがエンジンを始動する構成としてもよい。   In one embodiment of the present technology, the engine is preferably capable of being started by a power tool. Although the structure for that is not specifically limited, For example, an electric tool can be connected to the crankshaft of the engine, and the engine can be started by rotating the crankshaft with the electric tool. Or it is good also as a structure which provides the 2nd generator driven with an electric tool, and a starter motor starts an engine with the electric power generated by the 2nd generator.

本技術の一実施形態では、充電器が、検出部及び制御部をさらに備えることが好ましい。検出部は、バッテリ取付部に取り付けられたバッテリパックの状態を示す状態指標を検出する。制御部は、検出部による検出値に基づいてエンジンの出力を調節する。このような構成によると、バッテリパックの充電に必要とされる充電電力に対して、過不足のない発電を行うことができ、無用なエネルギーの消費を抑制することができる。   In one embodiment of the present technology, the charger preferably further includes a detection unit and a control unit. A detection part detects the state parameter | index which shows the state of the battery pack attached to the battery attachment part. The control unit adjusts the output of the engine based on the detection value by the detection unit. According to such a configuration, it is possible to perform power generation without excess or deficiency with respect to the charging power required for charging the battery pack, and it is possible to suppress unnecessary energy consumption.

本技術の一実施形態では、制御部が、エンジンへの燃料供給量を調節することによって、エンジンの出力を調節することが好ましい。このような構成によると、エンジンの出力を精度よく調節することができる。   In one embodiment of the present technology, it is preferable that the control unit adjusts the output of the engine by adjusting a fuel supply amount to the engine. According to such a configuration, the output of the engine can be adjusted with high accuracy.

本技術の一実施形態では、充電器が、エンジンに供給される空気に燃料を混合するキャブレタをさらに備えることが好ましい。この場合、制御部は、キャブレタのスロットルの開度を調節することによって、エンジンの出力を調節することが好ましい。   In one embodiment of the present technology, it is preferable that the charger further includes a carburetor that mixes fuel with air supplied to the engine. In this case, the control unit preferably adjusts the engine output by adjusting the throttle opening of the carburetor.

上記した実施形態では、充電器が、キャブレタのスロットルに接続され、当該スロットルの開度を調整するアクチュエータをさらに備えることが好ましい。この場合、制御部は、そのアクチュエータを制御することによって、エンジンの出力を制御することができる。   In the above-described embodiment, it is preferable that the charger further includes an actuator that is connected to the throttle of the carburetor and adjusts the opening of the throttle. In this case, the control unit can control the output of the engine by controlling the actuator.

本技術の一実施形態では、制御部が、状態指標に関する目標値を記憶しており、検出部による検出値と当該目標値との大小関係に応じて、エンジンの出力を調節することが好ましい。このような構成によると、例えば、検出値が目標値よりも大きいときは、エンジンの出力を低下させ、検出値が目標値よりも小さいときは、エンジンの出力を上昇させることができる。それにより、バッテリパックを適切な状態に維持しながら、バッテリパックの充電を行うことができる。   In one embodiment of the present technology, it is preferable that the control unit stores a target value related to the state index, and adjusts the output of the engine according to the magnitude relationship between the detection value detected by the detection unit and the target value. According to such a configuration, for example, when the detected value is larger than the target value, the engine output can be reduced, and when the detected value is smaller than the target value, the engine output can be increased. Thereby, the battery pack can be charged while maintaining the battery pack in an appropriate state.

本技術の一実施形態では、状態指標が、バッテリパックの充電電流、バッテリパックの充電電圧、バッテリパックの温度の少なくとも一つを含むことが好ましい。これらの指標を監視することで、充電中のバッテリパックに過大な負担がかかることを防止することができる。   In one embodiment of the present technology, the state index preferably includes at least one of a charging current of the battery pack, a charging voltage of the battery pack, and a temperature of the battery pack. By monitoring these indexes, it is possible to prevent an excessive burden on the battery pack being charged.

本技術の一実施形態では、発電機が、少なくとも一つの第1発電コイルと、少なくとも一つの第2発電コイルを含み、第1発電コイルと第2発電コイルとが並列に接続されたときは第1の発電電圧で発電し、第1発電コイルと第2発電コイルとが直列に接続されたときは第1の発電電圧よりも高い第2の発電電圧で発電することが好ましい。このような構成によると、充電すべきバッテリパックの特性(特に公称電圧)に応じて、発電電圧を切り替えることができる。   In one embodiment of the present technology, the power generator includes at least one first power generation coil and at least one second power generation coil, and the first power generation coil and the second power generation coil are connected in parallel. It is preferable that power is generated with a power generation voltage of 1, and when the first power generation coil and the second power generation coil are connected in series, power is generated with a second power generation voltage higher than the first power generation voltage. According to such a configuration, the generated voltage can be switched according to the characteristics (particularly the nominal voltage) of the battery pack to be charged.

本技術の一実施形態では、発電機に対して選択的に取付可能な第1ユニット及び第2ユニットをさらに備えることが好ましい。この場合、第1ユニットは、第1発電コイルと第2発電コイルを並列に接続する並列接続回路を有することが好ましい。第2ユニットは、第1発電コイルと第2発電コイルを直列に接続する直列接続回路を有することが好ましい。このような構成によると、公称電圧が低いバッテリパックを充電するときは、第1ユニットを使用することによって、第1発電コイルと第2発電コイルとを並列に接続することができる。公称電圧が高いバッテリパックを充電するときは、第2ユニットを使用することによって、第1発電コイルと第2発電コイルとを直列に接続することができる。   In one embodiment of the present technology, it is preferable to further include a first unit and a second unit that can be selectively attached to the generator. In this case, it is preferable that the first unit has a parallel connection circuit that connects the first power generation coil and the second power generation coil in parallel. The second unit preferably has a series connection circuit that connects the first power generation coil and the second power generation coil in series. According to such a configuration, when charging a battery pack having a low nominal voltage, the first generator coil and the second generator coil can be connected in parallel by using the first unit. When charging a battery pack having a high nominal voltage, the first generator coil and the second generator coil can be connected in series by using the second unit.

本技術の一実施形態では、バッテリ取付部が、第1バッテリ取付部と第2バッテリ取付部を有することが好ましい。この場合、第1バッテリ取付部は、第1ユニットに設けられており、第1の公称電圧を有する第1バッテリパックを受け入れるように構成されていることが好ましい。第2バッテリ取付部は、第2ユニットに設けられており、第1の公称電圧よりも高い第2の公称電圧を有する第2バッテリパックを受け入れるように構成されていることが好ましい。このような構成によると、第1バッテリパックを充電するときに、誤って第2ユニットが使用されることを避けることができる。同様に、第2バッテリパックを充電するときに、誤って第1ユニットが使用されることを避けることができる。   In one embodiment of the present technology, it is preferable that the battery attachment portion includes a first battery attachment portion and a second battery attachment portion. In this case, it is preferable that the 1st battery attachment part is provided in the 1st unit, and is comprised so that the 1st battery pack which has a 1st nominal voltage may be received. The second battery mounting portion is preferably provided in the second unit and configured to receive a second battery pack having a second nominal voltage higher than the first nominal voltage. According to such a structure, when charging a 1st battery pack, it can avoid using a 2nd unit accidentally. Similarly, when the second battery pack is charged, it can be avoided that the first unit is used by mistake.

上記した実施形態では、第1ユニットが、第1バッテリパックの充電電流を調節する第1制御部を有し、第2ユニットが、第2バッテリパックの充電電流を調節する第2制御部を有することが好ましい。各々のユニットが制御部を有することにより、第1バッテリパックと第2バッテリパックのそれぞれに対して、適切な充電を行うことができる。   In the above-described embodiment, the first unit has the first control unit that adjusts the charging current of the first battery pack, and the second unit has the second control unit that adjusts the charging current of the second battery pack. It is preferable. Since each unit has a control unit, it is possible to appropriately charge each of the first battery pack and the second battery pack.

あるいは、他の一実施形態では、充電器が、発電機とバッテリ取付部との間に設けられた接続切替回路を備えることが好ましい。この場合、接続切替回路は、第1発電コイルと第2発電コイルとを並列に接続する並列接続回路と、第1発電コイルと第2発電コイルとを直列に接続する直列接続回路とを、選択的に形成することが好ましい。接続切替回路による並列と直列との切替えは、充電器によって自動的に行われてもよいし、ユーザによる手動で行われてもよい。   Alternatively, in another embodiment, the charger preferably includes a connection switching circuit provided between the generator and the battery mounting portion. In this case, the connection switching circuit selects a parallel connection circuit that connects the first power generation coil and the second power generation coil in parallel, and a series connection circuit that connects the first power generation coil and the second power generation coil in series. Preferably, it is formed. Switching between parallel and series by the connection switching circuit may be performed automatically by a charger or manually by a user.

本技術の一実施形態では、充電器が、バッテリ取付部に取り付けられたバッテリパックが出力する信号に基づいて、前記エンジンを停止する信号を出力する停止制御部をさらに備えることが好ましい。このような構成によると、バッテリパックになんらかの異常が生じている場合に、エンジンを停止して充電を中止することができる。バッテリパックが出力する信号を利用することで、様々なバッテリパックに対応する充電器を簡素に構成することができる。   In one embodiment of the present technology, it is preferable that the charger further includes a stop control unit that outputs a signal for stopping the engine based on a signal output from a battery pack attached to the battery attachment unit. According to such a configuration, when any abnormality occurs in the battery pack, the engine can be stopped to stop charging. By using a signal output from the battery pack, chargers corresponding to various battery packs can be simply configured.

上記した実施形態において、充電停止信号は、バッテリパックの充電電圧と充電電流と温度の少なくとも一つが所定の許容範囲を外れたときに、バッテリパックから出力される信号であることが好ましい。このような構成によると、バッテリパックがダメージを受けるやすい状態で、充電が継続されることを防止することができる。   In the above-described embodiment, the charge stop signal is preferably a signal output from the battery pack when at least one of the charging voltage, charging current, and temperature of the battery pack is outside a predetermined allowable range. According to such a configuration, it is possible to prevent the charging from being continued while the battery pack is easily damaged.

前記した停止制御部は、互いに独立して動作する第1停止制御部と第2停止制御部を有することが好ましい。この場合、第1停止制御部と第2停止制御部の各々が、バッテリ取付部に取り付けられたバッテリパックが出力する信号に基づいて、前記エンジン停止信号を出力することが好ましい。二つの停止制御部を有することにより、一方の停止制御部に異常が生じたときでも、バッテリパックを保護することができる。   The above-described stop control unit preferably includes a first stop control unit and a second stop control unit that operate independently of each other. In this case, it is preferable that each of the first stop control unit and the second stop control unit outputs the engine stop signal based on a signal output from a battery pack attached to the battery attachment unit. By having two stop control units, the battery pack can be protected even when an abnormality occurs in one of the stop control units.

前記した停止制御部は、バッテリパックの充電電圧を検出可能であるとともに、検出した充電電圧が所定の許容範囲を外れたときにも、前記エンジン停止信号を出力することが好ましい。このような構成によると、バッテリパックがエンジン停止信号を出力できない場合でも、バッテリパックを適切に充電することができる。   It is preferable that the stop control unit described above can detect the charge voltage of the battery pack and also outputs the engine stop signal even when the detected charge voltage is out of a predetermined allowable range. According to such a configuration, even when the battery pack cannot output the engine stop signal, the battery pack can be appropriately charged.

本技術の一実施形態では、充電器が、エンジンの点火を制御するイグニッションユニットをさらに備えることが好ましい。この場合、イグニッションユニットは、前記エンジン停信号を受信したときに、エンジンの点火を停止することが好ましい。エンジンの点火が停止されることで、エンジンを確実に停止することができる。   In one embodiment of the present technology, it is preferable that the charger further includes an ignition unit that controls ignition of the engine. In this case, it is preferable that the ignition unit stops the ignition of the engine when the engine stop signal is received. By stopping the ignition of the engine, the engine can be stopped reliably.

本明細書で開示する技術は、電動工具、デジタルカメラ、携帯電話、スマートフォン、タブレット、電動アシスト自転車、電動バイク、及び玩具を含む、各種の電気機器のバッテリパックの充電器に適用することができる。   The technology disclosed in this specification can be applied to battery pack chargers of various electric devices including electric tools, digital cameras, mobile phones, smartphones, tablets, electric assist bicycles, electric motorcycles, and toys. .

本技術の一実施形態では、発電機の原動機として、2ストロークエンジン、4ストロークエンジン、ロータリーエンジン、及びスターリングエンジンを含む、各種のエンジンを採用することができる。   In one embodiment of the present technology, various engines including a two-stroke engine, a four-stroke engine, a rotary engine, and a Stirling engine can be adopted as a prime mover of the generator.

図1は、実施例の充電器10を模式的に示す。この充電器10は、二種類のバッテリパック18a、18bを充電することができる。バッテリパック18a、18bは、電気機器の一種である電動工具用のバッテリパックであり、電動工具に対して着脱可能に構成されている第1バッテリパック18aと第2バッテリパック18bは、互いに異なる公称電圧を有している。本実施例では、第1バッテリパック18aの公称電圧は18ボルトであり、第2バッテリパック18bの公称電圧は36ボルトである。但し、第1バッテリパック18a及び第2バッテリパック18bの公称電圧は、これらの値に限定されない。   FIG. 1 schematically shows a charger 10 of the embodiment. The charger 10 can charge two types of battery packs 18a and 18b. The battery packs 18a and 18b are battery packs for an electric tool that is a kind of electric equipment. The first battery pack 18a and the second battery pack 18b that are configured to be detachable from the electric tool have different nominal values. Has voltage. In this embodiment, the nominal voltage of the first battery pack 18a is 18 volts, and the nominal voltage of the second battery pack 18b is 36 volts. However, the nominal voltages of the first battery pack 18a and the second battery pack 18b are not limited to these values.

図1に示すように、充電器10は、発電ユニット12と、第1充電ユニット14aと、第2充電ユニット14bを備えている。第1充電ユニット14aと第2充電ユニット14bは、発電ユニット12に対して選択的に取付可能となっている。第1バッテリパック18aを充電するときは、第1充電ユニット14aが発電ユニット12に取り付けられ、第2バッテリパック18bを充電するときは、第1充電ユニット14aに代えて、第2充電ユニット14bが発電ユニット12に取り付けられる。第1充電ユニット14aには、第1バッテリ取付部16aが設けられている。第1バッテリ取付部16aは、第1バッテリパック18aが着脱可能に構成されている。一方、第2充電ユニット14bには、第2バッテリ取付部16bが設けられている。第2バッテリ取付部16bは、第2バッテリパック18bが着脱可能に構成されている。   As shown in FIG. 1, the charger 10 includes a power generation unit 12, a first charging unit 14a, and a second charging unit 14b. The first charging unit 14 a and the second charging unit 14 b can be selectively attached to the power generation unit 12. When charging the first battery pack 18a, the first charging unit 14a is attached to the power generation unit 12, and when charging the second battery pack 18b, the second charging unit 14b is replaced with the first charging unit 14a. It is attached to the power generation unit 12. The first charging unit 14a is provided with a first battery mounting portion 16a. The 1st battery attachment part 16a is comprised so that the 1st battery pack 18a can be attached or detached. On the other hand, the 2nd battery attachment part 16b is provided in the 2nd charging unit 14b. The second battery mounting portion 16b is configured such that the second battery pack 18b is detachable.

図2を参照して、発電ユニット12の構成について説明する。図2に示すように、発電ユニット12は、エンジン38と、燃料タンク56と、キャブレタ42と、サーボモータ52と、イグニッションユニット48を備えている。エンジン38には、燃料に点火するための点火プラグ40が設けられている。エンジン38は、燃料を燃焼することによって、出力シャフト36を回転させる。エンジン38の形式は特に限定されない。例えば、エンジン38は、2ストロークエンジン、4ストロークエンジン、ロータリーエンジン、及びスターリングエンジンを含む、各種のエンジンであってもよい。一例であるが、本実施例のエンジン38は、2ストロークエンジンである。エンジン38の排気量についても特に限定されない。エンジン38の排気量は、バッテリパック18a、18bの充電に必要とされる能力に応じて、適宜選択することができる。例えば、公称電圧が50ボルト以下の電動工具用のバッテリパック18a、18bの場合、排気量が25ミリリットル以下の小型エンジンを採用することができる。特に、公称電圧が10ボルト以上36ボルト以下の場合、エンジン38の排気量は5ミリリットル以上20ミリリットル以下とすることができる。加えて、エンジン38の排気量を決定する際は、バッテリパック18a、18bの容量についても考慮することが好ましい。   The configuration of the power generation unit 12 will be described with reference to FIG. As shown in FIG. 2, the power generation unit 12 includes an engine 38, a fuel tank 56, a carburetor 42, a servo motor 52, and an ignition unit 48. The engine 38 is provided with a spark plug 40 for igniting the fuel. The engine 38 rotates the output shaft 36 by burning fuel. The form of the engine 38 is not particularly limited. For example, the engine 38 may be various engines including a 2-stroke engine, a 4-stroke engine, a rotary engine, and a Stirling engine. As an example, the engine 38 of the present embodiment is a two-stroke engine. The displacement of the engine 38 is not particularly limited. The displacement of the engine 38 can be appropriately selected according to the capacity required for charging the battery packs 18a and 18b. For example, in the case of battery packs 18a and 18b for electric tools with a nominal voltage of 50 volts or less, a small engine with a displacement of 25 milliliters or less can be employed. In particular, when the nominal voltage is 10 volts or more and 36 volts or less, the displacement of the engine 38 can be 5 ml or more and 20 ml or less. In addition, when determining the displacement of the engine 38, it is preferable to consider the capacity of the battery packs 18a and 18b.

エンジン38の燃料は、燃料タンク56に蓄えられる。燃料タンク56内の燃料は、キャブレタによってエンジン38へ供給される。キャブレタ42は、燃料タンク56から吸い上げた燃料を、エンジン38へ供給される空気に混合する。キャブレタ42には、エンジン38へ供給される空気量を調節するスロットル44が設けられている。スロットル44は、リンク54を介して、サーボモータ52に接続されている。サーボモータ52は、スロットル44の開度を調節するアクチュエータである。イグニッションユニット48は、プラグコード50を介して点火プラグ40に接続されている。イグニッションユニット48は、エンジン38の回転に同期して、点火プラグ40に高電圧を断続的に供給する。それにより、エンジン38の点火タイミングが制御される。イグニッションユニット48が点火プラグ40への電圧供給を停止すれば、エンジン38も停止する。   The fuel of the engine 38 is stored in the fuel tank 56. The fuel in the fuel tank 56 is supplied to the engine 38 by a carburetor. The carburetor 42 mixes the fuel sucked from the fuel tank 56 with the air supplied to the engine 38. The carburetor 42 is provided with a throttle 44 that adjusts the amount of air supplied to the engine 38. The throttle 44 is connected to the servo motor 52 via a link 54. The servo motor 52 is an actuator that adjusts the opening degree of the throttle 44. The ignition unit 48 is connected to the spark plug 40 via the plug cord 50. The ignition unit 48 intermittently supplies a high voltage to the spark plug 40 in synchronization with the rotation of the engine 38. Thereby, the ignition timing of the engine 38 is controlled. When the ignition unit 48 stops supplying the voltage to the spark plug 40, the engine 38 also stops.

発電ユニット12は、発電機34を備えている。発電機34は、エンジン38の出力シャフト36に接続されており、エンジン38によって駆動される。発電機34は、三相交流発電機であり、エンジン38によって駆動されると、三相交流電力を発生する。発電機34による発電電力は、第1又は第2充電ユニット14a、14bに送られ、バッテリパック18a、18bの充電に利用される。出力シャフト36には、冷却ファン32が設けられている。冷却ファン32は、回転することによって、発電機34及びエンジン38に冷却風を送る。出力シャフト36の先端にはスピンナ30が固定されている。なお、発電機34は、単相交流発電機であってもよいし、直流発電機であってもよい、発電機34の形式は特に限定されない。   The power generation unit 12 includes a generator 34. The generator 34 is connected to the output shaft 36 of the engine 38 and is driven by the engine 38. The generator 34 is a three-phase AC generator and generates three-phase AC power when driven by the engine 38. The electric power generated by the generator 34 is sent to the first or second charging unit 14a, 14b and used for charging the battery packs 18a, 18b. A cooling fan 32 is provided on the output shaft 36. The cooling fan 32 rotates and sends cooling air to the generator 34 and the engine 38. A spinner 30 is fixed to the tip of the output shaft 36. The generator 34 may be a single-phase AC generator or a DC generator, and the type of the generator 34 is not particularly limited.

スピンナ30には、工具係合部30aが設けられている。工具係合部30aは、六角柱の形状を有している。工具係合部30aは、六角ナットの形状を模して形成されており、汎用の電動工具を係合させることができる。出力シャフト36(即ち、エンジン38のクランクシャフト)は電動工具によって回転させることができ、それによってエンジン38を始動することができる。   The spinner 30 is provided with a tool engaging portion 30a. The tool engaging portion 30a has a hexagonal column shape. The tool engaging portion 30a is formed to imitate the shape of a hexagon nut, and can engage a general-purpose electric tool. The output shaft 36 (ie, the crankshaft of the engine 38) can be rotated by a power tool, thereby starting the engine 38.

図3、図4を参照して、第1充電ユニット14a及び第2充電ユニット14bの構成について説明する。図3に示すように、第1充電ユニット14aは、並列接続回路62a、整流回路64、遮断スイッチ68、電流検出回路70、正極出力端子72、負極出力端子74、通信端子76、コントローラ78、及び過充電監視回路80を備えている。並列接続回路62aは、整流回路64へ電気的に接続されており、整流回路64は、遮断スイッチ68及び電流検出回路70を介して、正極出力端子72及び負極出力端子74に接続されている。   The configuration of the first charging unit 14a and the second charging unit 14b will be described with reference to FIGS. As shown in FIG. 3, the first charging unit 14a includes a parallel connection circuit 62a, a rectifier circuit 64, a cutoff switch 68, a current detection circuit 70, a positive output terminal 72, a negative output terminal 74, a communication terminal 76, a controller 78, and An overcharge monitoring circuit 80 is provided. The parallel connection circuit 62 a is electrically connected to the rectifier circuit 64, and the rectifier circuit 64 is connected to the positive output terminal 72 and the negative output terminal 74 via the cutoff switch 68 and the current detection circuit 70.

正極出力端子72、負極出力端子74及び通信端子76は、第1バッテリ取付部16aに設けられている。第1バッテリパック18aが第1バッテリ取付部16aに取り付けられると、正極出力端子72及び負極出力端子74は、第1バッテリパック18a内の複数の電池セル20へ電気的に接続される。また、通信端子76は、第1バッテリパック18a内のバッテリコントローラ22と通信可能に接続される。   The positive electrode output terminal 72, the negative electrode output terminal 74, and the communication terminal 76 are provided in the 1st battery attachment part 16a. When the first battery pack 18a is attached to the first battery attachment portion 16a, the positive output terminal 72 and the negative output terminal 74 are electrically connected to the plurality of battery cells 20 in the first battery pack 18a. The communication terminal 76 is communicably connected to the battery controller 22 in the first battery pack 18a.

一方、図4に示すように、第2充電ユニット14bは、直列接続回路62b、整流回路64、遮断スイッチ68、電流検出回路70、正極出力端子72、負極出力端子74、通信端子76、コントローラ78、及び過充電監視回路80を備えている。直列接続回路62bは、整流回路64へ電気的に接続されており、整流回路64は、遮断スイッチ68及び電流検出回路70を介して、正極出力端子72及び負極出力端子74に接続されている。   On the other hand, as shown in FIG. 4, the second charging unit 14b includes a series connection circuit 62b, a rectifier circuit 64, a cutoff switch 68, a current detection circuit 70, a positive output terminal 72, a negative output terminal 74, a communication terminal 76, and a controller 78. , And an overcharge monitoring circuit 80. The series connection circuit 62 b is electrically connected to the rectifier circuit 64, and the rectifier circuit 64 is connected to the positive output terminal 72 and the negative output terminal 74 via the cutoff switch 68 and the current detection circuit 70.

正極出力端子72、負極出力端子74及び通信端子76は、第2バッテリ取付部16bに設けられている。第2バッテリパック18bが第2バッテリ取付部16bに取り付けられると、正極出力端子72及び負極出力端子74は、第2バッテリパック18b内の複数の電池セル20へ電気的に接続される。また、通信端子76は、第2バッテリパック18b内のバッテリコントローラ22と通信可能に接続される。   The positive electrode output terminal 72, the negative electrode output terminal 74, and the communication terminal 76 are provided in the second battery mounting portion 16b. When the second battery pack 18b is attached to the second battery attachment portion 16b, the positive output terminal 72 and the negative output terminal 74 are electrically connected to the plurality of battery cells 20 in the second battery pack 18b. The communication terminal 76 is communicably connected to the battery controller 22 in the second battery pack 18b.

図3と図4を比較して明らかなように、第1充電ユニット14aと第2充電ユニット14bは、基本的に共通する構成を有している。但し、第1充電ユニット14aは、直列接続回路62bに代えて、並列接続回路62aを有する点で、第2充電ユニット14bと相違する。図5、図6を参照して、直列接続回路62b及び並列接続回路62aについて説明する。図5、図6に示すように、本実施例の発電機34は、第1コイル群92と第2コイル群94を有している。第1コイル群92は、U相コイル、V相コイル及びW相コイルを含む複数のコイルを含み、第2コイル群94も、U相コイル、V相コイル及びW相コイルを含む複数のコイルを含む。図5に示すように、並列接続回路62aは、二つのコイル群92、94を並列に接続する。この場合、発電機34による最大の発電電圧は、21ボルト程度となる。一方、図6に示すように、直列接続回路62bは、二つのコイル群92、94を直列に接続する。この場合、発電機34による最大の発電電圧は、42ボルト程度となる。   As is clear by comparing FIG. 3 and FIG. 4, the first charging unit 14 a and the second charging unit 14 b basically have a common configuration. However, the first charging unit 14a is different from the second charging unit 14b in that it includes a parallel connection circuit 62a instead of the series connection circuit 62b. The series connection circuit 62b and the parallel connection circuit 62a will be described with reference to FIGS. As shown in FIGS. 5 and 6, the generator 34 of the present embodiment has a first coil group 92 and a second coil group 94. The first coil group 92 includes a plurality of coils including a U-phase coil, a V-phase coil, and a W-phase coil, and the second coil group 94 includes a plurality of coils including a U-phase coil, a V-phase coil, and a W-phase coil. Including. As shown in FIG. 5, the parallel connection circuit 62a connects two coil groups 92 and 94 in parallel. In this case, the maximum generated voltage by the generator 34 is about 21 volts. On the other hand, as shown in FIG. 6, the series connection circuit 62b connects two coil groups 92 and 94 in series. In this case, the maximum generated voltage by the generator 34 is about 42 volts.

前述したように、第1充電ユニット14aは、公称電圧の低い第1バッテリパック18aの充電に用いられる。そのため、第1充電ユニット14aでは、発電機34の二つのコイル群92、94を並列に接続することによって、発電機34による発電電圧を低くする。この場合、二つのコイル群92、94が並列に接続されることにより、発電機34の出力電流が増加することから、充電時間を短縮することができる。一方、第2充電ユニット14bは、公称電圧の高い第2バッテリパック18bの充電に用いられる。そのため、第2充電ユニット14bでは、発電機34の二つのコイル群92、94を直列に接続することによって、発電機34による発電電圧を高くする。このように、本実施例の充電器10では、使用する充電ユニット14a、14bに応じて、発電機34による発電電圧が変更される。それにより、スイッチング電源などの回路を必要とすることなく、単一の発電機34によって、公称電圧の異なるバッテリパック18a、18bを充電することができる。   As described above, the first charging unit 14a is used to charge the first battery pack 18a having a low nominal voltage. Therefore, in the 1st charging unit 14a, the power generation voltage by the generator 34 is made low by connecting the two coil groups 92 and 94 of the generator 34 in parallel. In this case, since the output current of the generator 34 increases by connecting the two coil groups 92 and 94 in parallel, the charging time can be shortened. On the other hand, the second charging unit 14b is used for charging the second battery pack 18b having a high nominal voltage. Therefore, in the 2nd charging unit 14b, the power generation voltage by the generator 34 is made high by connecting two coil groups 92 and 94 of the generator 34 in series. Thus, in the charger 10 according to the present embodiment, the power generation voltage by the generator 34 is changed according to the charging units 14a and 14b to be used. Thereby, the battery packs 18a and 18b having different nominal voltages can be charged by the single generator 34 without requiring a circuit such as a switching power supply.

本実施例の発電機34は三相交流発電機であるが、発電機34は単相交流発電機であってもよい。この場合でも、発電機34が少なくとも二つのコイルを有し、それらの接続態様を直列と並列との間で切り替えることによって、発電機34による発電電力を変更することができる。   Although the generator 34 of the present embodiment is a three-phase AC generator, the generator 34 may be a single-phase AC generator. Even in this case, the generator 34 has at least two coils, and the power generated by the generator 34 can be changed by switching the connection mode between series and parallel.

以下では、充電ユニット14aと第2充電ユニット14bとで共通する構成について説明する。図3、図4に示すように、第1充電ユニット14a及び第2充電ユニット14bは、発電ユニット12に取り付けられることによって、発電ユニット12へ電気的に接続される。このとき、整流回路64は、並列接続回路62aを介して発電機34に接続され、コントローラ78は、サーボモータ52及びイグニッションユニット48に接続される。また、過充電監視回路80も、イグニッションユニット48に接続される。   Hereinafter, a configuration common to the charging unit 14a and the second charging unit 14b will be described. As shown in FIGS. 3 and 4, the first charging unit 14 a and the second charging unit 14 b are electrically connected to the power generation unit 12 by being attached to the power generation unit 12. At this time, the rectifier circuit 64 is connected to the generator 34 via the parallel connection circuit 62a, and the controller 78 is connected to the servo motor 52 and the ignition unit 48. The overcharge monitoring circuit 80 is also connected to the ignition unit 48.

発電機34で発電された三相交流電力は、並列接続回路62a又は直列接続回路62bを介して、整流回路64へ入力される。整流回路64は、発電機34で発電された三相交流電力を直流電力に変換する。整流回路64は、正極出力端子72及び負極出力端子74へ電気的に接続されている。整流回路64からの直流電力は、充電電力として、正極出力端子72及び負極出力端子74から第1バッテリパック18a又は第2バッテリパック18bへ供給される。   The three-phase AC power generated by the generator 34 is input to the rectifier circuit 64 via the parallel connection circuit 62a or the series connection circuit 62b. The rectifier circuit 64 converts the three-phase AC power generated by the generator 34 into DC power. The rectifier circuit 64 is electrically connected to the positive output terminal 72 and the negative output terminal 74. The DC power from the rectifier circuit 64 is supplied as charging power from the positive output terminal 72 and the negative output terminal 74 to the first battery pack 18a or the second battery pack 18b.

遮断スイッチ68は、整流回路64と正極出力端子72とを接続する回路上に設けられている。遮断スイッチ68がオンされると、整流回路64と正極出力端子72は電気的に導通し、遮断スイッチ68がオフされると、整流回路64と正極出力端子72は電気的に遮断される。一例ではあるが、本実施例の遮断スイッチ68は半導体スイッチであり、詳しくは電界効果トランジスタ(FET)である。あるいは、遮断スイッチ68は、例えばリレーのような、物理的に接触する接点を有するスイッチであってもよい。遮断スイッチ68は、コントローラ78によって制御される。   The cutoff switch 68 is provided on a circuit that connects the rectifier circuit 64 and the positive output terminal 72. When the cutoff switch 68 is turned on, the rectifier circuit 64 and the positive electrode output terminal 72 are electrically connected. When the cutoff switch 68 is turned off, the rectifier circuit 64 and the positive electrode output terminal 72 are electrically cut off. As an example, the cutoff switch 68 of the present embodiment is a semiconductor switch, and more specifically, a field effect transistor (FET). Alternatively, the cutoff switch 68 may be a switch having a contact point that makes physical contact, such as a relay. The cutoff switch 68 is controlled by the controller 78.

電流検出回路70は、整流回路64と負極出力端子74とを接続する回路上に設けられており、バッテリパック18a、18bの充電電流を検出する。一例ではあるが、本実施例の電流検出回路70は、シャント抵抗であり、充電電流の大きさに応じた電圧信号を出力する。電流検出回路70による検出値は、コントローラ78に入力される。   The current detection circuit 70 is provided on a circuit connecting the rectifier circuit 64 and the negative output terminal 74, and detects the charging current of the battery packs 18a and 18b. Although an example, the current detection circuit 70 of this embodiment is a shunt resistor and outputs a voltage signal corresponding to the magnitude of the charging current. A value detected by the current detection circuit 70 is input to the controller 78.

コントローラ78は、主に、マイクロプロセッサを用いて構成されている。コントローラ78は、発電ユニット12も含め、充電器10の全体の動作を制御する。コントローラ78は、電流検出回路70による充電電流の検出値に基づいて、サーボモータ52を制御し、それによってエンジン38の出力を調節する。一例ではあるが、コントローラ78は、充電電流の目標値を記憶しており、充電電流の検出値が目標値よりも小さいときは、エンジン38の出力を上昇させ、検出値が目標値よりも大きいときは、エンジン38の出力を低下させる。それにより、充電電流が目標値に維持されるように、エンジン38の出力が調節される。エンジン38の出力を直接的に調節することで、スイッチング電源などの回路が不要になるとともに、無用な燃料の消費が抑制される。なお、コントローラ78は、充電電流に代えて、充電電圧や温度といった、バッテリパック18a、18bの状態を示すその他の指標に基づいて、エンジン38の出力を調節することも好ましい。   The controller 78 is mainly configured using a microprocessor. The controller 78 controls the overall operation of the charger 10 including the power generation unit 12. The controller 78 controls the servo motor 52 based on the detected value of the charging current by the current detection circuit 70, thereby adjusting the output of the engine 38. As an example, the controller 78 stores a target value of the charging current. When the detected value of the charging current is smaller than the target value, the output of the engine 38 is increased and the detected value is larger than the target value. In some cases, the output of the engine 38 is reduced. Thereby, the output of the engine 38 is adjusted so that the charging current is maintained at the target value. By directly adjusting the output of the engine 38, a circuit such as a switching power supply becomes unnecessary, and unnecessary fuel consumption is suppressed. Note that the controller 78 preferably adjusts the output of the engine 38 based on other indicators indicating the state of the battery packs 18a and 18b such as the charging voltage and temperature instead of the charging current.

コントローラ78は、正極出力端子72の電圧を監視することによって、バッテリパック18a、18bの充電電圧を検出することができる。コントローラ78は、充電電圧の上限値を記憶しており、検出された充電電圧が上限値を超えたときに、バッテリパック18a、18bが満充電又は過充電であると判断する。この場合、コントローラ78は、イグニッションユニット48へ所定の信号(エンジン停止信号)を出力して、エンジン38を停止させる。それにより、バッテリパック18a、18bの過充電を防止する。加えて、コントローラ78は、遮断スイッチ68をオフし、バッテリパック18a、18bを発電機34から電気的に切り離す。   The controller 78 can detect the charging voltage of the battery packs 18a and 18b by monitoring the voltage of the positive output terminal 72. The controller 78 stores the upper limit value of the charging voltage, and determines that the battery packs 18a and 18b are fully charged or overcharged when the detected charging voltage exceeds the upper limit value. In this case, the controller 78 outputs a predetermined signal (engine stop signal) to the ignition unit 48 to stop the engine 38. Thereby, overcharging of the battery packs 18a and 18b is prevented. In addition, the controller 78 turns off the cutoff switch 68 and electrically disconnects the battery packs 18 a and 18 b from the generator 34.

加えて、コントローラ78は、充電電流の上限値を記憶しており、電流検出回路70による充電電流の検出値がその上限値を超えたときは、サーボモータ52又はその他の構成要素に異常が生じていると判断して、イグニッションユニット48へ前記したエンジン停止信号を出力する。その結果、エンジン38は停止し、バッテリパック18a、18bの充電が中止される。加えて、コントローラ78は、遮断スイッチ68をオフし、バッテリパック18a、18bを発電機34から電気的に切り離す。それにより、バッテリパック18a、18bに過大な電流が流れ、バッテリパック18a、18bがダメージを受けることを防止される。   In addition, the controller 78 stores an upper limit value of the charging current, and when the detected value of the charging current by the current detection circuit 70 exceeds the upper limit value, an abnormality occurs in the servo motor 52 or other components. The engine stop signal is output to the ignition unit 48. As a result, the engine 38 is stopped and charging of the battery packs 18a and 18b is stopped. In addition, the controller 78 turns off the cutoff switch 68 and electrically disconnects the battery packs 18 a and 18 b from the generator 34. Thereby, an excessive current flows through the battery packs 18a and 18b, and the battery packs 18a and 18b are prevented from being damaged.

コントローラ78は、通信端子76に接続されており、バッテリパック18a、18bのバッテリコントローラ22と通信可能に接続される。バッテリコントローラ22は、バッテリパック18a、18b内で充電電圧(即ち、電池セル20の電圧)を監視している、そして、バッテリコントローラ22は、検出された充電電圧が所定値を超えるときに、バッテリパック18a、18bが満充電又は過充電である判断して、充電停止信号を出力する。充電器10のコントローラ78は、バッテリパック18a、18bからの充電停止信号を受信すると、イグニッションユニット48へ前述のエンジン停止信号を出力して、エンジン38を停止させる。それにより、バッテリパック18a、18bの過充電を防止する。加えて、コントローラ78は、遮断スイッチ68をオフし、バッテリパック18a、18bを発電機34から電気的に切り離す。   The controller 78 is connected to the communication terminal 76, and is connected to be communicable with the battery controller 22 of the battery packs 18a and 18b. The battery controller 22 monitors the charging voltage (that is, the voltage of the battery cell 20) in the battery packs 18a, 18b, and the battery controller 22 detects the battery voltage when the detected charging voltage exceeds a predetermined value. It is determined that the packs 18a and 18b are fully charged or overcharged, and a charge stop signal is output. When the controller 78 of the charger 10 receives the charge stop signal from the battery packs 18 a and 18 b, the controller 78 outputs the engine stop signal to the ignition unit 48 to stop the engine 38. Thereby, overcharging of the battery packs 18a and 18b is prevented. In addition, the controller 78 turns off the cutoff switch 68 and electrically disconnects the battery packs 18 a and 18 b from the generator 34.

本実施例の充電器10は、充電器10内で検出された充電電圧だけでなく、バッテリパック18a、18b内で検出された複数の電池セル20の各々又は全体の充電電圧が上限値を超えたときに、エンジン38を停止することによって、充電を終了することができる。それにより、充電器10において充電電圧を正しく検出できない場合でも、バッテリパック18a、18bの過充電を防止することができる。   In the charger 10 according to the present embodiment, not only the charging voltage detected in the charger 10 but also the charging voltage of each or the plurality of battery cells 20 detected in the battery packs 18a and 18b exceeds the upper limit value. When the engine 38 is stopped, the charging can be terminated. Thereby, even when the charger 10 cannot correctly detect the charging voltage, overcharging of the battery packs 18a and 18b can be prevented.

なお、コントローラ78は、バッテリパック18a、18bが出力するその他の信号に基づいて、サーボモータ52及び/又はイグニッションユニット48を制御することもできる。例えば、コントローラ78は、バッテリパック18a、18bが所定の異常信号を受信したときに、イグニッションユニット48へ前記エンジン停止信号を出力することができる。この異常信号は、例えば、バッテリパック18a、18b(即ち、電池セル20)の充電電流や温度が所定の許容範囲を外れたときに、バッテリパック18a、18bが出力信号とすることができる。あるいは、コントローラ78は、バッテリパック18a、18bから所定の信号を受信できないときに、バッテリパック18a、18bに異常が生じていると判断して、前記エンジン停止信号を出力してもよい。   The controller 78 can also control the servo motor 52 and / or the ignition unit 48 based on other signals output from the battery packs 18a and 18b. For example, the controller 78 can output the engine stop signal to the ignition unit 48 when the battery packs 18a and 18b receive a predetermined abnormality signal. For example, when the charging current or temperature of the battery packs 18a and 18b (that is, the battery cell 20) is out of a predetermined allowable range, the battery packs 18a and 18b can serve as output signals. Alternatively, when the controller 78 cannot receive a predetermined signal from the battery packs 18a and 18b, the controller 78 may determine that an abnormality has occurred in the battery packs 18a and 18b and output the engine stop signal.

本実施例の充電器10では、バッテリパック18a、18bの過充電を防止するために、過充電監視回路80がさらに設けられている。過充電監視回路80は、通信端子76に接続されており、バッテリパック18a、18bが出力する充電停止信号を受信することができる。過充電監視回路80は、バッテリパック18a、18bからの充電停止信号を受信すると、イグニッションユニット48へ前述のエンジン停止信号を出力して、エンジン38を停止させる。それにより、バッテリパック18a、18bの過充電を防止する。過充電監視回路80は、前述したコントローラ78とは異なるマイクロプロセッサ、あるいは充電停止信号を検出し得るその他の集積回路を有することから、コントローラ78とは独立して動作することができる。そのことから、コントローラ78にエラーが生じた場合でも、過充電監視回路80によってバッテリパック18a、18bの過充電が防止される。なお、過充電監視回路80は、コントローラ78と同様に、バッテリパック18a、18bが出力するその他の信号に基づいて、イグニッションユニット48を制御(例えば停止)するものであってもよい。   In the charger 10 of this embodiment, an overcharge monitoring circuit 80 is further provided to prevent overcharging of the battery packs 18a and 18b. The overcharge monitoring circuit 80 is connected to the communication terminal 76 and can receive a charge stop signal output from the battery packs 18a and 18b. When receiving the charge stop signal from the battery packs 18a, 18b, the overcharge monitoring circuit 80 outputs the engine stop signal to the ignition unit 48 to stop the engine 38. Thereby, overcharging of the battery packs 18a and 18b is prevented. The overcharge monitoring circuit 80 can operate independently of the controller 78 because it includes a microprocessor different from the controller 78 described above or other integrated circuit that can detect a charge stop signal. Therefore, even if an error occurs in the controller 78, the overcharge monitoring circuit 80 prevents overcharge of the battery packs 18a and 18b. Similar to the controller 78, the overcharge monitoring circuit 80 may control (for example, stop) the ignition unit 48 based on other signals output from the battery packs 18a and 18b.

本実施例の充電器10は、第1充電ユニット14aを使用することによって、公称電圧が18ボルトの第1バッテリパック18aを充電することができる。また、第2充電ユニット14bを使用することによって、公称電圧が36ボルトの第2バッテリパック18bを充電することができる。ここで、第1充電ユニット14aを使用した場合は、発電機34は最大で約21ボルトの発電を行うことができるので、12ボルト、14.4ボルト、18ボルトといった、公称電圧が20ボルト以下のバッテリパックを充電することもできる。一方、第2充電ユニット14bを使用した場合、発電機34は最大で約42ボルトの発電を行うことができるので、21.6ボルト、25.2ボルト、28.8ボルト、32.4ボルトといった、公称電圧が40ボルト以下のバッテリパックを充電することもできる。   The charger 10 of the present embodiment can charge the first battery pack 18a having a nominal voltage of 18 volts by using the first charging unit 14a. Moreover, the 2nd battery pack 18b whose nominal voltage is 36 volts can be charged by using the 2nd charging unit 14b. Here, when the first charging unit 14a is used, the generator 34 can generate power of about 21 volts at the maximum, so that the nominal voltage such as 12 volts, 14.4 volts, 18 volts is 20 volts or less. The battery pack can also be charged. On the other hand, when the second charging unit 14b is used, the generator 34 can generate power of about 42 volts at the maximum, so 21.6 volts, 25.2 volts, 28.8 volts, 32.4 volts, etc. A battery pack having a nominal voltage of 40 volts or less can be charged.

本実施例の充電器10は、18ボルトの公称電圧と3アンペアアワーの容量を有する第1バッテリパック18aを、残容量がゼロの状態から15分以上30以内で満充電することができる。一方、36ボルトの公称電圧と3アンペアアワーの容量を有する第2バッテリパック18bについては、残容量がゼロの状態から30分以上60以内で満充電することができる。   The charger 10 of the present embodiment can fully charge the first battery pack 18a having a nominal voltage of 18 volts and a capacity of 3 ampere hours within 15 minutes to 30 minutes from the state where the remaining capacity is zero. On the other hand, the second battery pack 18b having a nominal voltage of 36 volts and a capacity of 3 amp hours can be fully charged within 30 minutes or more and 60 from the state where the remaining capacity is zero.

図7を参照して、実施例2の充電器110について説明する。実施例2の充電器110では、実施例1の充電器10と比較して、並列接続回路62aと直列接続回路62bのみが交換可能に設けられている。その他の構成については、実施例1の構成と共通している。実施例1と共通する構成については、同一の符号を付すことによって、ここでは重複する説明を省略する。   With reference to FIG. 7, the charger 110 of Example 2 is demonstrated. In the charger 110 according to the second embodiment, only the parallel connection circuit 62a and the series connection circuit 62b are provided so as to be interchangeable as compared with the charger 10 according to the first embodiment. Other configurations are the same as those in the first embodiment. About the structure which is common in Example 1, the description which overlaps here is abbreviate | omitted by attaching | subjecting the same code | symbol.

充電器110は、並列接続回路62aを有する第1充電ユニット114aと、直列接続回路62bを有する第2充電ユニット114bを有している。第1充電ユニット114aと第2充電ユニット114bは、交流発電機34と整流回路64との間へ、択一的に取り付けることができる。実施例1で説明した第1バッテリパック18aを充電するときは、並列接続回路62aを有する第1充電ユニット114aが充電器110に取り付けられる。このとき、充電器110は、実施例1で説明した発電ユニット12と第1充電ユニット14aとの組み合わせと、実質的に同一の構成を有する。一方、実施例1で説明した第2バッテリパック18bを充電するときは、第1充電ユニット114aに代えて、直列接続回路62bを有する第2充電ユニット114bが充電器110に取り付けられる。このとき、充電器110は、実施例1で説明した発電ユニット12と第2充電ユニット14bとの組み合わせと、実質的に同一の構成を有する。充電器110のバッテリ取付部116は、第1バッテリパック18aと第2バッテリパック18bの両者を択一的に着脱することができる。   The charger 110 includes a first charging unit 114a having a parallel connection circuit 62a and a second charging unit 114b having a series connection circuit 62b. The first charging unit 114 a and the second charging unit 114 b can be alternatively attached between the AC generator 34 and the rectifier circuit 64. When charging the first battery pack 18 a described in the first embodiment, the first charging unit 114 a having the parallel connection circuit 62 a is attached to the charger 110. At this time, the charger 110 has substantially the same configuration as the combination of the power generation unit 12 and the first charging unit 14a described in the first embodiment. On the other hand, when charging the second battery pack 18b described in the first embodiment, a second charging unit 114b having a series connection circuit 62b is attached to the charger 110 instead of the first charging unit 114a. At this time, the charger 110 has substantially the same configuration as the combination of the power generation unit 12 and the second charging unit 14b described in the first embodiment. The battery mounting portion 116 of the charger 110 can selectively attach / detach both the first battery pack 18a and the second battery pack 18b.

本実施例の充電器110においても、使用する充電ユニット114a、114bに応じて、発電機34による発電電圧が変更される。それにより、スイッチング電源などの回路を必要とすることなく、単一の発電機34によって、公称電圧の異なるバッテリパック18a、18bを充電することができる。   Also in the charger 110 of the present embodiment, the generated voltage by the generator 34 is changed according to the charging units 114a and 114b used. Thereby, the battery packs 18a and 18b having different nominal voltages can be charged by the single generator 34 without requiring a circuit such as a switching power supply.

図8、図9、図10を参照して、実施例3の充電器210について説明する。実施例3の充電器210では、実施例1、2の充電器10、110と異なり、並列接続回路62aと直列接続回路62bの二つの回路が、一つの接続切替回路262によって構成されている。その他の構成については、実施例1の構成と共通している。実施例1と共通する構成については、同一の符号を付すことによって、ここでは重複する説明を省略する。   A charger 210 according to the third embodiment will be described with reference to FIGS. In the charger 210 according to the third embodiment, unlike the chargers 10 and 110 according to the first and second embodiments, two circuits of a parallel connection circuit 62a and a series connection circuit 62b are configured by one connection switching circuit 262. Other configurations are the same as those in the first embodiment. About the structure which is common in Example 1, the description which overlaps here is abbreviate | omitted by attaching | subjecting the same code | symbol.

接続切替回路262は、発電機34と整流回路64との間に設けられている。図9、図10に示すように、接続切替回路262は、複数のスイッチング素子271、272、273を有している。実施例1で説明した第1バッテリパック18aを充電するとき、接続切替回路262は、第1スイッチング素子271及び第3スイッチング素子273をオンするとともに、第2スイッチング素子272をオフする。それにより、発電機34の第1コイル群92と第2コイル群94は、互いに並列に接続される。このとき、充電器210は、実施例1で説明した発電ユニット12と第1充電ユニット14aとの組み合わせと、実質的に同一の構成を有する。一方、実施例1で説明した第2バッテリパック18bを充電するときは、図10に示すように、接続切替回路262が、第1スイッチング素子271及び第3スイッチング素子273をオフするとともに、第2スイッチング素子272をオンする。それにより、発電機34の第1コイル群92と第2コイル群94は、互いに直列に接続される。このとき、充電器210は、実施例1で説明した発電ユニット12と第2充電ユニット14bとの組み合わせと、実質的に同一の構成を有する。充電器210のバッテリ取付部216は、第1バッテリパック18aと第2バッテリパック18bの両者を択一的に着脱することができる。   The connection switching circuit 262 is provided between the generator 34 and the rectifier circuit 64. As illustrated in FIGS. 9 and 10, the connection switching circuit 262 includes a plurality of switching elements 271, 272, and 273. When charging the first battery pack 18a described in the first embodiment, the connection switching circuit 262 turns on the first switching element 271 and the third switching element 273 and turns off the second switching element 272. Thereby, the first coil group 92 and the second coil group 94 of the generator 34 are connected in parallel to each other. At this time, the charger 210 has substantially the same configuration as the combination of the power generation unit 12 and the first charging unit 14a described in the first embodiment. On the other hand, when charging the second battery pack 18b described in the first embodiment, the connection switching circuit 262 turns off the first switching element 271 and the third switching element 273 as shown in FIG. The switching element 272 is turned on. Thereby, the first coil group 92 and the second coil group 94 of the generator 34 are connected in series with each other. At this time, the charger 210 has substantially the same configuration as the combination of the power generation unit 12 and the second charging unit 14b described in the first embodiment. The battery mounting portion 216 of the charger 210 can selectively attach / detach both the first battery pack 18a and the second battery pack 18b.

本実施例の充電器210では、接続切替回路262によって、発電機34による発電電圧を変更することができる。それにより、スイッチング電源などの回路を必要とすることなく、単一の発電機34によって、公称電圧の異なるバッテリパック18a、18bを充電することができる。   In the charger 210 of this embodiment, the power generation voltage generated by the generator 34 can be changed by the connection switching circuit 262. Thereby, the battery packs 18a and 18b having different nominal voltages can be charged by the single generator 34 without requiring a circuit such as a switching power supply.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的な有用性を持つものである。   The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and achieving one of the objects itself has technical utility.

10、110、210:充電器
12:発電ユニット
14a、114a:第1充電ユニット
14b、114b:第2充電ユニット
16a:第1バッテリ取付部
16b:第2バッテリ取付部
18a:第1バッテリパック
18b:第2バッテリパック
34:発電機
38:エンジン
42:キャブレタ
44:スロットル
48:イグニッションユニット
52:サーボモータ
54:リンク
62a:並列接続回路
62b:直列接続回路
64:整流回路
68:遮断スイッチ
70:電流検出回路
78:コントローラ
80:過充電監視回路
92:第1コイル群
94:第2コイル群
262:接続切替回路
10, 110, 210: charger 12: power generation unit 14a, 114a: first charging unit 14b, 114b: second charging unit 16a: first battery mounting portion 16b: second battery mounting portion 18a: first battery pack 18b: Second battery pack 34: generator 38: engine 42: carburetor 44: throttle 48: ignition unit 52: servo motor 54: link 62a: parallel connection circuit 62b: series connection circuit 64: rectifier circuit 68: cutoff switch 70: current detection Circuit 78: Controller 80: Overcharge monitoring circuit 92: First coil group 94: Second coil group 262: Connection switching circuit

Claims (8)

電気機器のバッテリパックを充電する充電器であって、
エンジンと、
前記エンジンによって駆動される発電機と、
前記バッテリパックが着脱可能であるとともに、前記発電機からの電力をバッテリパックへ出力するバッテリ取付部と、
を備える充電器。
A charger for charging a battery pack of an electric device,
Engine,
A generator driven by the engine;
The battery pack is detachable, and a battery mounting portion that outputs power from the generator to the battery pack;
With a charger.
前記エンジンは25ミリリットル以下の排気量を有する、ことを特徴とする請求項1に記載の充電器。   The charger according to claim 1, wherein the engine has a displacement of 25 milliliters or less. 前記エンジンは5ミリリットル以上20ミリリットル以下の排気量を有する、請求項1又は2に記載の充電器。   The charger according to claim 1 or 2, wherein the engine has a displacement of 5 ml or more and 20 ml or less. 前記発電機は、交流発電機であり、
前記発電機との前記バッテリ取付部との間に設けられた整流回路をさらに備える、請求項1から3のいずれか一項に記載の充電器。
The generator is an AC generator;
The charger according to any one of claims 1 to 3, further comprising a rectifier circuit provided between the generator and the battery mounting portion.
前記発電機と前記バッテリ取付部との間に設けられ、前記発電機から前記バッテリ取付部への電力供給を遮断する遮断スイッチをさらに備える、請求項1から4のいずれか一項に記載の充電器。   5. The charging according to claim 1, further comprising: a cutoff switch that is provided between the generator and the battery mounting portion and cuts off power supply from the generator to the battery mounting portion. vessel. 前記発電機の最大発電電圧は42ボルト以下である、請求項1から5のいずれか一項に記載の充電器。   The charger according to any one of claims 1 to 5, wherein a maximum generated voltage of the generator is 42 volts or less. 18ボルトの公称電圧と3アンペアアワーの容量を有するバッテリパックを、残容量がゼロの状態から15分以上30以内で満充電するように構成された、請求項1から6のいずれか一項に記載の充電器。   The battery pack having a nominal voltage of 18 volts and a capacity of 3 ampere hours is configured to be fully charged within 30 minutes to 30 minutes after the remaining capacity is zero. The charger described. 前記エンジンは電動工具を用いて始動することができる、請求項1から7のいずれか一項に記載の充電器。   The charger according to any one of claims 1 to 7, wherein the engine can be started using a power tool.
JP2012222213A 2012-10-04 2012-10-04 Charger with generator Pending JP2014075910A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012222213A JP2014075910A (en) 2012-10-04 2012-10-04 Charger with generator
PCT/JP2013/074096 WO2014054380A1 (en) 2012-10-04 2013-09-06 Charger having power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222213A JP2014075910A (en) 2012-10-04 2012-10-04 Charger with generator

Publications (1)

Publication Number Publication Date
JP2014075910A true JP2014075910A (en) 2014-04-24

Family

ID=50749690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222213A Pending JP2014075910A (en) 2012-10-04 2012-10-04 Charger with generator

Country Status (1)

Country Link
JP (1) JP2014075910A (en)

Similar Documents

Publication Publication Date Title
JP5547342B2 (en) Advanced storage battery system
JP6238427B2 (en) Battery pack and battery pack control method
TWI502850B (en) Battery charging coaction and output system with current limit supply
KR101397023B1 (en) Battery pack and method for controlling the same
US20160181587A1 (en) Portable jump starter apparatus with simplified safety protection
EP2645527A1 (en) Battery pack
US20130320764A1 (en) Mobile Starting Device
CN105244549A (en) Lithium starter battery and solid state switch therefor
RU2010127247A (en) ELECTRIC DIAGRAM OF THE VEHICLE
EP3787145A1 (en) Multi-battery power system
US11909251B2 (en) Portable propane-fueled battery charger
KR101105894B1 (en) Voltage regulator for magnetogenerators with configurable connection of the phase windings
US20160118922A1 (en) Drive battery for in-phase operation of an electric motor, drive system and a method for operating the drive system
WO2015199178A1 (en) Balance correction control device, balance correction system, and power storage system
JP2016203793A (en) Power supply unit
CN211790810U (en) Charging system, charger, battery pack and movable platform
JP2008041620A (en) Battery pack system
WO2014054380A1 (en) Charger having power generator
JP2014075910A (en) Charger with generator
JP2014075913A (en) Charger with generator
JP2014075912A (en) Charger with generator
JP2014075911A (en) Charger with generator
JP2012210113A (en) Charging apparatus
JP2005065433A (en) Power supply device for electric vehicle
KR101501465B1 (en) Integrated battery for an automobile and method for using thereof