JP2014075606A - Plasma cvd apparatus - Google Patents

Plasma cvd apparatus Download PDF

Info

Publication number
JP2014075606A
JP2014075606A JP2013266490A JP2013266490A JP2014075606A JP 2014075606 A JP2014075606 A JP 2014075606A JP 2013266490 A JP2013266490 A JP 2013266490A JP 2013266490 A JP2013266490 A JP 2013266490A JP 2014075606 A JP2014075606 A JP 2014075606A
Authority
JP
Japan
Prior art keywords
discharge electrode
plasma
electrode
plasma cvd
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013266490A
Other languages
Japanese (ja)
Other versions
JP5772941B2 (en
Inventor
Hiroe Ejiri
広恵 江尻
Keitaro Sakamoto
桂太郎 坂本
Fumiyasu Nomura
文保 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013266490A priority Critical patent/JP5772941B2/en
Publication of JP2014075606A publication Critical patent/JP2014075606A/en
Application granted granted Critical
Publication of JP5772941B2 publication Critical patent/JP5772941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a plasma CVD apparatus capable of performing uniform supply and exhaust of raw material gas even in a substrate with large area, and promptly removing higher-order silane generated in plasma space.SOLUTION: A plasma CVD apparatus comprises in a vacuum vessel: a grounded electrode serving as a substrate-holding member; and a first discharge electrode arranged in a position facing the grounded electrode. The plasma CVD apparatus comprises a structure, such that raw material gas is introduced into the vacuum vessel to generate plasma, and a thin film is formed on a surface of a substrate.

Description

本発明は、プラズマCVD装置およびプラズマCVD方法に関するものである。特に、シリコン薄膜太陽電池、薄膜トランジスタ等に利用されるアモルファスシリコン薄膜を形成するためのプラズマCVD装置およびプラズマCVD法に関するものである。   The present invention relates to a plasma CVD apparatus and a plasma CVD method. In particular, the present invention relates to a plasma CVD apparatus and a plasma CVD method for forming an amorphous silicon thin film used for silicon thin film solar cells, thin film transistors, and the like.

シリコン系薄膜太陽電池に用いられるアモルファスシリコン薄膜を作成する技術として、図7に示す装置を用いた平行平板型プラズマCVD法が採用されている。このような従来の平行平板型プラズマCVD装置は、放電電極と、放電電極と相対向する位置に配置された基板保持部材を兼ねた接地電極を持ち、放電電極表面に原料ガスを供給するための小穴を複数設けて基板の前面空間に均一にガスを供給し、真空容器内を排気系により一定の圧力に保持し、放電電極に高周波電力を印加してプラズマを発生させ、基板表面にアモルファスシリコン薄膜を形成する。   As a technique for producing an amorphous silicon thin film used for a silicon-based thin film solar cell, a parallel plate type plasma CVD method using the apparatus shown in FIG. 7 is adopted. Such a conventional parallel plate type plasma CVD apparatus has a discharge electrode and a ground electrode that also serves as a substrate holding member disposed at a position facing the discharge electrode, and supplies a source gas to the surface of the discharge electrode. A plurality of small holes are provided to supply gas uniformly to the front space of the substrate, the inside of the vacuum vessel is held at a constant pressure by the exhaust system, high frequency power is applied to the discharge electrode to generate plasma, and amorphous silicon is formed on the substrate surface A thin film is formed.

しかし、このような平行平板型プラズマCVD装置はガスを均一に排気する工夫がなく、大面積基板を用いた場合では、排気の不均一によりアモルファスシリコン薄膜の膜質や厚み等にムラが発生する。   However, such a parallel plate type plasma CVD apparatus does not have a device for exhausting gas uniformly, and when a large-area substrate is used, unevenness of exhaust causes unevenness in the film quality and thickness of the amorphous silicon thin film.

さらに、平行平板型プラズマCVD法で生成したアモルファスシリコン薄膜は、光照射により膜中の中性ダングリングボンド(欠陥)が増大し、光劣化を起こすことが知られている。この光劣化はStarber−Wronski効果として30年以上前に見出されているにも関わらず、現在も解消されていない。この光劣化を起こすメカニズムは明確に解明されたわけではないが、膜中のSi−H結合濃度と相関があることが知られている。 太陽電池の変換効率は、入射光による入力エネルギーを100mW/cm2で規格化した場合、開放電圧Voc(V)×短絡電流密度Jsc(A/cm2)×曲線因子FF(%)で求められる。曲線FFは、太陽電池の電圧−電流特性における最大出力点の[電圧×電流]を、[開放電圧Voc×短絡電流Isc]で割った値となる。FFは光劣化により低下するが、Si−H結合濃度が低い膜では、劣化前と劣化後のFFの差(△FF)が小さくなることが報告されている(非特許文献1)。また、非特許文献2では、Si−H結合濃度1.8%で劣化前効率9.00%、△FF10.1%、劣化後効率7.43%のアモルファスシリコン膜と、Si−H結合濃度<0.9%で劣化前効率8.79%、△FF3.9%、劣化後効率8.09%のアモルファスシリコン膜が報告されている。このように、Si−H結合濃度を抑え、△FFが小さくなったアモルファスシリコン膜を用いることにより、劣化後効率の高い薄膜太陽電池を作製することができる。Si−H結合濃度が増加する原因として、成膜中に発生する高次シラン(Si2m+1:m≧4)が膜中に取り込まれることが挙げられる。高次シランの膜中への混入を防ぎ、光劣化の少ない高品質な膜を形成するためには、高次シランを速やかにプラズマ反応領域から除去する必要がある。 Furthermore, it is known that the amorphous silicon thin film produced by the parallel plate type plasma CVD method increases the neutral dangling bonds (defects) in the film by light irradiation and causes photodegradation. Although this photodegradation has been found more than 30 years ago as the Starber-Wronski effect, it has not been resolved at present. Although the mechanism causing this photodegradation has not been clearly clarified, it is known that there is a correlation with the Si—H 2 bond concentration in the film. Conversion efficiency of the solar cell is obtained in the case where the input energy due to the incident light normalized by 100 mW / cm 2, the open circuit voltage Voc (V) × short circuit current density Jsc (A / cm 2) × fill factor FF (%) . The curve FF is a value obtained by dividing [voltage × current] at the maximum output point in the voltage-current characteristics of the solar cell by [open circuit voltage Voc × short circuit current Isc]. Although the FF decreases due to photodegradation, it has been reported that in a film having a low Si—H 2 bond concentration, the difference (ΔFF) between the FF before degradation and after degradation is small (Non-patent Document 1). Further, Non-Patent Document 2, before deterioration in Si-H 2 bond concentration 1.8% efficiency 9.00%, △ FF10.1%, and after deterioration efficiency 7.43% of an amorphous silicon film, Si-H 2 Amorphous silicon films having a pre-degradation efficiency of 8.79%, ΔFF of 3.9% and post-degradation efficiency of 8.09% at a bond concentration <0.9% have been reported. As described above, by using an amorphous silicon film in which the Si—H 2 bond concentration is suppressed and ΔFF is small, a thin film solar cell with high post-degradation efficiency can be manufactured. As a cause of increasing the Si—H 2 bond concentration, higher-order silane (Si m H 2m + 1 : m ≧ 4) generated during film formation is taken into the film. In order to prevent the high-order silane from being mixed into the film and form a high-quality film with little photodegradation, it is necessary to quickly remove the high-order silane from the plasma reaction region.

これらの課題を解決する手法として、例えば特許文献1に開示されているような装置がある。このプラズマCVD装置は、放電電極または接地電極にプラズマ空間へガスを放出するための内径0.1〜1.0mmのガス噴出口と、プラズマ空間からガスを排気するための内径がデバイ長さ以下の排気ノズルを複数備え、電極内部にガス噴出口へガスを供給するためのガス室を持ち、放電電極の側面および裏面をデバイ長さ以下の距離を保ってアースシールドで包囲し、アースシールドと放電電極裏面との間に排気ノズルと連通した排気室を設けている。電極の全面にガス噴出し口と排気ノズルを配置することにより、大面積基板においても均一な排気が可能である。しかしながら、ガス排気のための排気ノズルの内径がデバイ長さ以下であるため排気ノズル内でプラズマを形成することができない構造であり、加えて排気ノズルのサイズが限定されることによって排気能力が制限されるため、高次シランを除去するための十分な排気能力を実現できないという問題を持っている。   As a technique for solving these problems, for example, there is an apparatus disclosed in Patent Document 1. This plasma CVD apparatus has a gas outlet having an inner diameter of 0.1 to 1.0 mm for discharging gas to the plasma space to the discharge electrode or the ground electrode, and an inner diameter for exhausting gas from the plasma space is less than the Debye length. It has a plurality of exhaust nozzles, has a gas chamber for supplying gas to the gas outlet inside the electrode, surrounds the side and back of the discharge electrode with a ground shield with a distance less than the Debye length, An exhaust chamber communicating with the exhaust nozzle is provided between the discharge electrode back surface. By disposing a gas ejection port and an exhaust nozzle on the entire surface of the electrode, uniform exhaust can be performed even on a large-area substrate. However, since the inner diameter of the exhaust nozzle for gas exhaust is less than the Debye length, plasma cannot be formed in the exhaust nozzle. In addition, the exhaust capacity is limited by the size of the exhaust nozzle being limited. Therefore, there is a problem that sufficient exhaust capacity for removing higher order silane cannot be realized.

また、図6に特許文献2記載の装置を示した。この装置によれば、ガス吸入口と連通した排気室により、プラズマ中で発生した高次シランをプラズマ反応領域から除去することが可能ではある。しかしながら、排気系へガスを送る排気管が電極の側面に設けられているため、大型化した場合に排気ムラが発生するとともに、排気能力が制限されるという問題がある。   FIG. 6 shows an apparatus described in Patent Document 2. According to this apparatus, it is possible to remove higher order silane generated in the plasma from the plasma reaction region by the exhaust chamber communicating with the gas inlet. However, since an exhaust pipe for sending gas to the exhaust system is provided on the side surface of the electrode, there are problems that exhaust unevenness occurs and the exhaust capacity is limited when the size is increased.

また、特許文献3に開示されている装置がある。この装置は、多孔高周波電極と多孔接地電極と基板が対面配置されており、基板側から原料ガスを給気し、多孔高周波電極と多孔接地電極の孔内でプラズマを発生させ、さらに多孔高周波電極を加熱することによって多孔接地電極との間に熱勾配を作り、熱泳動によって高次シランのようなラージクラスタを排気ガスとともに除去することが可能な装置である。しかし、基板の周囲に配置したリング状のガス供給管より原料ガスを給気する構造であるため、基板が大面積である場合では給気ムラが発生するという問題がある。   Further, there is an apparatus disclosed in Patent Document 3. In this apparatus, a porous high-frequency electrode, a porous ground electrode, and a substrate are arranged facing each other, a raw material gas is supplied from the substrate side, plasma is generated in the holes of the porous high-frequency electrode and the porous ground electrode, and the porous high-frequency electrode Is a device capable of creating a thermal gradient with the porous ground electrode by heating and removing large clusters such as higher order silane together with exhaust gas by thermophoresis. However, since the material gas is supplied from a ring-shaped gas supply pipe arranged around the substrate, there is a problem that uneven supply of air occurs when the substrate has a large area.

特公平6−124906号公報Japanese Examined Patent Publication No. 6-124906 特開2000−12471号公報JP 2000-12471 A 国際公開WO2006/022179パンフレットInternational Publication WO2006 / 022179 Pamphlet

A.Matsuda et al., Solar Energy Materials & Solar Cells 78 (2003) 3-26A. Matsuda et al., Solar Energy Materials & Solar Cells 78 (2003) 3-26 S.Shimizu et al., Journal of Non-Crystalline Solids 338-340 (2004) 47-50S. Shimizu et al., Journal of Non-Crystalline Solids 338-340 (2004) 47-50

本発明は、大面積の基板においても原料ガスの均一な給排気が可能であり、且つプラズマ空間で発生した高次シランを速やかに除去することを目的とし、ひいては、光劣化の少ない高品質なアモルファスシリコン薄膜を得ることを可能とするプラズマCVD(Chemical Vapor Deposition)装置およびプラズマCVD方法を提供することを目的とする。   An object of the present invention is to enable uniform supply / exhaust of a source gas even on a large-area substrate, and to quickly remove higher order silanes generated in the plasma space. An object of the present invention is to provide a plasma CVD (Chemical Vapor Deposition) apparatus and a plasma CVD method capable of obtaining an amorphous silicon thin film.

上記課題を解決するため、本発明のプラズマCVD装置は以下の構成をとる。すなわち、
(1)
真空容器と該真空容器に排気配管によって接続された排気装置とを有し、該真空容器内には基板保持材を兼ねた接地電極と、該接地電極と相対向する位置に配置された第一放電電極とを有し、該真空容器内に原料ガスを導入してプラズマを形成し、基板表面に薄膜を形成するプラズマCVD装置において、
前記第一放電電極に複数配置された前記原料ガスを導入する給気孔と、
前記第一放電電極に複数配置されたプラズマ発生孔と、
前記第一放電電極と同電位に保たれた第二放電電極とを具備し、
該第二放電電極は、第一放電電極の側面を覆うように配置され、かつ、前記第一放電電極の前記接地電極と反対側の面と第二放電電極との間に空間を有し、
該空間が前記真空容器内の排気配管接続口と連通しており、
前記空間と前記プラズマ発生孔が連通しているプラズマCVD装置、
(2)
前記第一放電電極に複数配置されたプラズマ発生孔の直径が、前記第一放電電極に複数配置された前記原料ガスを導入する給気孔の直径よりも大きい(1)に記載のプラズマCVD装置、
(3)
前記接地電極と前記第一放電電極の中間よりも第一放電電極側に位置する電位制御板を備え、該電位制御板は複数の貫通孔を備え、電位を一定に保つための電源に接続されている(1)または(2)に記載のプラズマCVD装置、
(4)
前記電位制御板に設けられた複数の貫通孔と、前記第一放電電極に複数配置されたプラズマ発生孔とが、各々接地電極方向において重なって配置されている(1)〜(3)のいずれかに記載のプラズマCVD装置、
(5)
真空容器を減圧に保持し、該真空容器内の接地電極上に基板を設置し、該接地電極と相対向する第一放電電極に高周波電力を印加してプラズマを形成し、原料ガスを前記真空容器内に導入して前記基板に薄膜を形成するプラズマCVD方法において、
前記原料ガスの導入を前記第一放電電極に複数配置された給気孔より行い、
前記第一放電電極を前記基板方向に貫通し、前記真空容器を排気する排気配管接続口に連通した複数のプラズマ発生孔内でプラズマを形成し、
前記第一放電電極と同電位に保たれ、前記第一放電電極を挟んで前記接地電極と反対側の位置に、前記第一放電電極の前記接地電極と反対側の面との間に空間を持つように配置された第二放電電極に
該空間と連通するように設けられた排気配管接続口より前記真空容器内の排気ガスを除去するプラズマCVD方法、
である。
In order to solve the above problems, the plasma CVD apparatus of the present invention has the following configuration. That is,
(1)
A vacuum vessel and an exhaust device connected to the vacuum vessel by an exhaust pipe; a ground electrode serving also as a substrate holding material in the vacuum vessel; and a first electrode disposed at a position opposite to the ground electrode In a plasma CVD apparatus having a discharge electrode, introducing a source gas into the vacuum vessel to form plasma, and forming a thin film on the substrate surface,
An air supply hole for introducing the plurality of source gases arranged in the first discharge electrode;
A plurality of plasma generating holes arranged in the first discharge electrode;
A second discharge electrode maintained at the same potential as the first discharge electrode,
The second discharge electrode is disposed so as to cover the side surface of the first discharge electrode, and has a space between the surface of the first discharge electrode opposite to the ground electrode and the second discharge electrode,
The space communicates with an exhaust pipe connection port in the vacuum vessel;
A plasma CVD apparatus in which the space and the plasma generation hole communicate with each other;
(2)
The plasma CVD apparatus according to (1), wherein a plurality of plasma generating holes arranged in the first discharge electrode have a diameter larger than a diameter of a supply hole for introducing the source gas arranged in the first discharge electrode.
(3)
A potential control plate is provided on the first discharge electrode side relative to the middle between the ground electrode and the first discharge electrode. The potential control plate has a plurality of through holes and is connected to a power source for keeping the potential constant. The plasma CVD apparatus according to (1) or (2),
(4)
Any one of (1) to (3), wherein a plurality of through holes provided in the potential control plate and a plurality of plasma generation holes arranged in the first discharge electrode are arranged to overlap each other in the direction of the ground electrode. A plasma CVD apparatus according to claim 1,
(5)
The vacuum vessel is held under reduced pressure, a substrate is placed on the ground electrode in the vacuum vessel, plasma is formed by applying high-frequency power to the first discharge electrode facing the ground electrode, and the source gas is evacuated to the vacuum In the plasma CVD method of introducing a thin film on the substrate introduced into a container,
The introduction of the source gas is performed from a plurality of air supply holes arranged in the first discharge electrode,
Forming plasma in a plurality of plasma generation holes that penetrate the first discharge electrode in the direction of the substrate and communicate with an exhaust pipe connection port for exhausting the vacuum vessel,
Maintained at the same potential as the first discharge electrode, a space is formed between the first discharge electrode and the surface opposite to the ground electrode at a position opposite to the ground electrode across the first discharge electrode. A plasma CVD method for removing exhaust gas in the vacuum vessel from an exhaust pipe connection port provided so as to communicate with the space in the second discharge electrode arranged to have,
It is.

本発明によれば、以下に説明するとおり、アモルファスシリコン薄膜を形成するプラズマCVD装置において、プラズマ空間で発生した高次シランを速やかに除去することができ、光劣化の少ない高品質なアモルファスシリコン薄膜を得ることができる。また、薄膜シリコン太陽電池に適用した場合は、非常に劣化後発電効率の高い膜を提供できる。さらに装置構造に起因して装置の排気能力を制限せずに、均一なガス排気と均一な原料ガスの給排気を行うことが可能である。これによって大面積基板においても膜質および膜厚が均一な薄膜形成を可能とするプラズマCVD装置および薄膜形成方法を提供することができる。 According to the present invention, as described below, in a plasma CVD apparatus for forming an amorphous silicon thin film, high-quality amorphous silicon thin film that can quickly remove higher-order silane generated in the plasma space and has little photodegradation. Can be obtained. Moreover, when applied to a thin-film silicon solar cell, a film with very high power generation efficiency after degradation can be provided. Furthermore, uniform gas exhaust and uniform source gas supply / exhaust can be performed without limiting the exhaust capability of the apparatus due to the apparatus structure. Accordingly, it is possible to provide a plasma CVD apparatus and a thin film forming method capable of forming a thin film having a uniform film quality and film thickness even on a large area substrate.

本発明にかかる第一の実施形態によるプラズマCVD装置の構成を示す概略図である。It is the schematic which shows the structure of the plasma CVD apparatus by 1st embodiment concerning this invention. 本発明にかかる第一の実施形態によるプラズマCVD装置の第一放電電極と第二放電電極の基板側表面の構造を示す概略図である。It is the schematic which shows the structure of the substrate side surface of the 1st discharge electrode of the plasma CVD apparatus by 1st Embodiment concerning this invention, and a 2nd discharge electrode. 本発明にかかる第一の実施形態によるプラズマCVD装置の第一電極と第二電極の間に形成される空間の別形態の構造を示す概略図である。It is the schematic which shows the structure of another form of the space formed between the 1st electrode and 2nd electrode of the plasma CVD apparatus by 1st embodiment concerning this invention. 本発明にかかる第一の実施形態によるプラズマCVD装置の第一電極の内部構造を示す概略図である。It is the schematic which shows the internal structure of the 1st electrode of the plasma CVD apparatus by 1st embodiment concerning this invention. 本発明にかかる第二の実施形態によるプラズマCVD装置の構成を示す概略図である。It is the schematic which shows the structure of the plasma CVD apparatus by 2nd embodiment concerning this invention. 従来のプラズマCVD装置の構成を示す概略図である。It is the schematic which shows the structure of the conventional plasma CVD apparatus. 従来の平行平板型プラズマCVD装置の構成を示す概略図である。It is the schematic which shows the structure of the conventional parallel plate type plasma CVD apparatus.

以下、本発明をその実施形態を示す図面を参照して具体的に説明する。
[第一の実施形態]
図1は、本発明の第一の実施形態によるプラズマCVD装置の構成を示す概略図である。
また、図2は本発明の第一の実施形態における、第一放電電極2と第二放電電極7の基板側表面の構成を示す概略図である。本発明のプラズマCVD装置は、図示しない排気装置に接続された真空容器1と、真空容器1内に備えられた第一放電電極2と、被成膜基板4の保持部材を兼ねた接地電極3と、第二放電電極7とを具備する。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
[First embodiment]
FIG. 1 is a schematic diagram showing the configuration of a plasma CVD apparatus according to the first embodiment of the present invention.
FIG. 2 is a schematic view showing the configuration of the substrate-side surfaces of the first discharge electrode 2 and the second discharge electrode 7 in the first embodiment of the present invention. The plasma CVD apparatus of the present invention includes a vacuum vessel 1 connected to an exhaust device (not shown), a first discharge electrode 2 provided in the vacuum vessel 1, and a ground electrode 3 that also serves as a holding member for the film formation substrate 4. And a second discharge electrode 7.

被成膜基板4は接地電極3の上にて動かないように設置されていればよく、例えば接地電極3に座繰りを設けて被成膜基板4をその中に置いたり、治具で被成膜基板4を接地電極3に押し付けたりしても良い。   The film formation substrate 4 only needs to be installed so as not to move on the ground electrode 3. For example, the ground electrode 3 is provided with a countersink, and the film formation substrate 4 is placed in the ground electrode 3. The film formation substrate 4 may be pressed against the ground electrode 3.

第二放電電極7は、第一放電電極2の側面と排気配管8側の面を覆うように配置されており、排気空間13は第二放電電極7と第一放電電極2の排気配管8側面との間に形成される。真空容器1内の圧力制御に支障がなければ、第一放電電極2の側面と第二放電電極7との間は、隙間が存在していても、図1のように接していても構わない。また、排気空間13は、図1に示されるようなボックス型の他、図3に示すような壁面にテーパーのある形状でも構わない。排気空間13は排気配管接続口15と接続しており、排気空間13にあるガスは排気配管接続口15を通って排気配管8へと送られる。   The second discharge electrode 7 is arranged so as to cover the side surface of the first discharge electrode 2 and the surface on the exhaust pipe 8 side, and the exhaust space 13 is the side surface of the exhaust pipe 8 of the second discharge electrode 7 and the first discharge electrode 2. Formed between. As long as the pressure control in the vacuum vessel 1 is not hindered, there may be a gap between the side surface of the first discharge electrode 2 and the second discharge electrode 7 or contact as shown in FIG. . Further, the exhaust space 13 may have a shape with a tapered wall as shown in FIG. 3 in addition to the box shape as shown in FIG. The exhaust space 13 is connected to the exhaust pipe connection port 15, and the gas in the exhaust space 13 is sent to the exhaust pipe 8 through the exhaust pipe connection port 15.

第一放電電極2および第二放電電極7には、マッチングボックス11を介して高周波電源12が接続されている。第一放電電極2と第二放電電極7の高周波電源は、結果として前記2つの電極を同電位にすることが出来れば、同一でなくても構わない。第一放電電極2と第二放電電極7が同電位に保たれていることにより、形成されたプラズマが排気空間13の位置に移動して異常放電が起きることを抑制できる。高周波電源12の周波数は任意に選択が可能であるが、プラズマの安定性と成膜速度の観点から、好ましくは100KHz以上100MHz以下、さらに好ましくは10MHz以上60MHz以下が良い。   A high frequency power source 12 is connected to the first discharge electrode 2 and the second discharge electrode 7 via a matching box 11. The high-frequency power sources for the first discharge electrode 2 and the second discharge electrode 7 may not be the same as long as the two electrodes can be set to the same potential as a result. Since the first discharge electrode 2 and the second discharge electrode 7 are kept at the same potential, it is possible to suppress the generated plasma from moving to the position of the exhaust space 13 and causing abnormal discharge. The frequency of the high-frequency power source 12 can be arbitrarily selected, but is preferably 100 KHz to 100 MHz, more preferably 10 MHz to 60 MHz, from the viewpoint of plasma stability and film formation speed.

CVDを行う際、原料ガスは図示しないマスフローコントローラーによって給気管10を通り、第一放電電極2へと導入される。第一放電電極2内部には、給気室9が形成されている。給気室9は図4に示すような連結溝の構造をしており、給気管10から導入された原料ガスは、この連結溝によって給気室9全体に広がり、第一放電電極2表面に形成されている給気孔6より成膜空間へ導入される。給気室9の高さ、つまりは連結溝の高さは、低すぎると原料ガスが給気室9全体に均一に広がり難くなるため、5mm以上が好ましい。給気孔6の直径は、プラズマが給気孔6内に入りこむ異常放電抑制の観点からデバイ長さ(式1)   When performing CVD, the source gas is introduced into the first discharge electrode 2 through the air supply pipe 10 by a mass flow controller (not shown). An air supply chamber 9 is formed inside the first discharge electrode 2. The supply chamber 9 has a connection groove structure as shown in FIG. 4, and the raw material gas introduced from the supply tube 10 spreads throughout the supply chamber 9 through the connection groove, and reaches the surface of the first discharge electrode 2. The film is introduced into the film formation space through the formed air supply holes 6. If the height of the air supply chamber 9, that is, the height of the connecting groove is too low, it is difficult for the source gas to spread uniformly throughout the air supply chamber 9, so that the height is preferably 5 mm or more. The diameter of the air supply hole 6 is the Debye length from the viewpoint of suppressing abnormal discharge in which plasma enters the air supply hole 6 (Equation 1).

Figure 2014075606
Figure 2014075606

以下であることが望ましい。ここで、ε0は真空の誘電率、kはボルツマン定数、Tは温度、neは電子密度、eは電子素量である。デバイ長さはプロセス条件によって変化するが、本実施形態のプラズマCVD装置を使用する一般的な条件でのデバイ長さは0.5〜2mm程度になる。電極製作の容易性を考えると直径0.3mm以上が好ましいため、好ましい給気孔の直径は0.3〜2mmである。また、給気孔6の配置は、成膜領域に均一に給気するために、例えば図2の配置のように放電電極表面上で均等に配置されていることが好ましい。 The following is desirable. Here, ε 0 is the vacuum dielectric constant, k is the Boltzmann constant, T is the temperature, ne is the electron density, and e is the elementary electron content. Although the Debye length varies depending on the process conditions, the Debye length under the general conditions using the plasma CVD apparatus of this embodiment is about 0.5 to 2 mm. Considering the ease of electrode production, a diameter of 0.3 mm or more is preferable, and thus a preferable diameter of the air supply hole is 0.3 to 2 mm. The air supply holes 6 are preferably arranged uniformly on the surface of the discharge electrode, for example, as shown in FIG. 2 in order to supply air uniformly to the film formation region.

第一放電電極2の表面には給気孔6とともにプラズマ発生孔5が設けられている。プラズマ発生孔5は、第一放電電極2の内部に形成されている給気室9の連結溝を避けて第一放電電極2を接地電極3方向に貫通しており、排気空間13と連通している。給気孔6より基板4方向へ導入された原料ガスは、第一放電電極2と基板4との間で迂回してプラズマ発生孔5へと導入される。このとき、第一放電電極2と第二放電電極7に高周波電力を印加することで、プラズマ発生孔5内で原料ガスをプラズマ化する。排気空間へのガス流れを作った状態でプラズマを形成することで、プラズマ中に生成したパーティクルが排気されやすくなる。例えば、少なくとも珪素を含む原料ガスを使用してプラズマを形成した場合では、プラズマ中に発生する高次シランの膜混入が抑制できるため、光劣化の少ないアモルファスシリコン薄膜を成膜できる。   On the surface of the first discharge electrode 2, a plasma generation hole 5 is provided together with an air supply hole 6. The plasma generation hole 5 penetrates the first discharge electrode 2 in the direction of the ground electrode 3 while avoiding the connection groove of the air supply chamber 9 formed inside the first discharge electrode 2, and communicates with the exhaust space 13. ing. The source gas introduced from the air supply hole 6 toward the substrate 4 is detoured between the first discharge electrode 2 and the substrate 4 and introduced into the plasma generation hole 5. At this time, high-frequency power is applied to the first discharge electrode 2 and the second discharge electrode 7 so that the source gas is turned into plasma in the plasma generation hole 5. By forming the plasma in a state in which the gas flow to the exhaust space is created, particles generated in the plasma are easily exhausted. For example, when plasma is formed using a source gas containing at least silicon, it is possible to suppress high-order silane film mixing in the plasma, so that an amorphous silicon thin film with little photodegradation can be formed.

プラズマ発生孔5の直径は、その中にプラズマを形成するために、少なくともデバイ長さよりも大きい必要がある。このため、プラズマ発生孔5の直径は給気孔6の直径よりも大きくなる。プラズマ発生孔5については、孔内のガス流速が大きい方がパーティクルを除去しやすいため、プラズマ発生孔5部分で電極の排気コンダクタンスを抑制しないことが重要である。プラズマ発生孔内の平均圧力をP(Pa)、原料ガスの粘性係数をη(Pa・s)、空気の粘性係数をη0(Pa・s)、プラズマ発生孔5の直径をd(m)、孔の長さをl(m)、プラズマ発生孔の数をn(個)としたとき、第一放電電極2の排気コンダクタンスC(m3/s)は(式2) The diameter of the plasma generation hole 5 needs to be at least larger than the Debye length in order to form plasma therein. For this reason, the diameter of the plasma generation hole 5 is larger than the diameter of the air supply hole 6. With respect to the plasma generation hole 5, it is important not to suppress the exhaust conductance of the electrode at the plasma generation hole 5 portion because particles having a larger gas flow rate in the hole are easier to remove particles. The average pressure in the plasma generation hole is P (Pa), the viscosity coefficient of the raw material gas is η (Pa · s), the viscosity coefficient of air is η 0 (Pa · s), and the diameter of the plasma generation hole 5 is d (m). When the hole length is l (m) and the number of plasma generation holes is n (pieces), the exhaust conductance C (m 3 / s) of the first discharge electrode 2 is (Equation 2)

Figure 2014075606
Figure 2014075606

となる。これより、第一放電電極2の面積S(m2)を用いて、電極の単位面積当たりの排気コンダクタンスは(式3) It becomes. From this, using the area S (m 2 ) of the first discharge electrode 2, the exhaust conductance per unit area of the electrode is (Equation 3)

Figure 2014075606
Figure 2014075606

と考えられる。ここでの平均圧力P0は、排気空間13の圧力を0Paと仮定して、プロセス中の真空容器内の圧力との平均をとった値である。 it is conceivable that. The average pressure P 0 here is a value obtained by averaging the pressure in the vacuum vessel during the process, assuming that the pressure in the exhaust space 13 is 0 Pa.

アモルファスシリコン薄膜を成膜する場合のプロセス圧力は、5〜100Pa程度である。本実施形態における単位面積当たりの排気コンダクタンスは、c≧0.4であることが好ましく、c<0.4となると電極部分で排気能力が抑制され、パーティクル除去効果が薄れる傾向にあるため好ましくない。また、排気によりパーティクルを除去するという観点から言えば、排気コンダクタンスは大きいほど良い。しかし、プラズマ発生孔5の直径が50mmよりも大きくなると、プラズマがプラズマ発生孔5以外の箇所に発生しやすくなったり、プラズマ発生孔5の中央部と端部でのプラズマ密度の差が大きくなり膜ムラが起こったりする。このため、プラズマ発生孔5内でプラズマを安定して形成するためにはプラズマ発生孔5の直径は50mm以下であることが好ましく、さらに好ましくは20mm以下である。これより、プラズマ排気孔5の直径d(m)は、給気孔6よりも大きく、且つ(式4)   The process pressure for forming an amorphous silicon thin film is about 5 to 100 Pa. The exhaust conductance per unit area in the present embodiment is preferably c ≧ 0.4, and if c <0.4, the exhaust capacity is suppressed at the electrode portion, and the particle removal effect tends to be reduced, which is not preferable. . From the viewpoint of removing particles by exhaust, a larger exhaust conductance is better. However, if the diameter of the plasma generation hole 5 is larger than 50 mm, the plasma is likely to be generated at a place other than the plasma generation hole 5 or the difference in plasma density between the central part and the end part of the plasma generation hole 5 becomes large. Film unevenness may occur. For this reason, in order to stably form plasma in the plasma generation hole 5, the diameter of the plasma generation hole 5 is preferably 50 mm or less, and more preferably 20 mm or less. Accordingly, the diameter d (m) of the plasma exhaust hole 5 is larger than that of the air supply hole 6 and (formula 4)

Figure 2014075606
Figure 2014075606

の範囲に入る大きさであることが好ましい。 It is preferable that the size falls within the range.

プラズマ発生孔5の長さについては、短すぎると給気室9の高さが制限され給気の均一性が不十分になり、加えてプラズマ発生孔5内に形成したプラズマの一部が排気室13に上がって異常放電を起こす可能性がある。そのためプラズマ発生孔5の長さは目安としてその直径以上であることが好ましいが、プラズマ発生孔5の長さと直径のサイズの関係は一義的に決まるものではない。   If the length of the plasma generation hole 5 is too short, the height of the air supply chamber 9 is limited and the uniformity of the air supply becomes insufficient. In addition, a part of the plasma formed in the plasma generation hole 5 is exhausted. There is a possibility that abnormal discharge will occur due to rising to the chamber 13. Therefore, the length of the plasma generation hole 5 is preferably not less than the diameter as a guide, but the relationship between the length of the plasma generation hole 5 and the size of the diameter is not uniquely determined.

また、ガス排気およびプラズマ均一性の観点から、プラズマ発生孔5の位置は、図2に示すように第一放電電極2表面に均等に配置されていることが好ましい。   Further, from the viewpoint of gas exhaust and plasma uniformity, the positions of the plasma generation holes 5 are preferably evenly arranged on the surface of the first discharge electrode 2 as shown in FIG.

プラズマ発生孔5の上部に形成される排気空間13には、図5のように給気管10以外に何もないことが好ましいが、ガスの流れを遮蔽する形状でなければ、例えば電極固定用の部品などがあっても構わない。電極部分で排気コンダクタンスを抑制することなく、プラズマ発生孔5で大きなガス流速を実現するためには、排気空間13は全てのプラズマ発生孔5と遮るものなく連通しており、且つ、排気配管接続口15とも直接連結している構造を取る必要がある。さらに空間の形状も、前述したような排気コンダクタンスを抑制しない形であることが重要である。   In the exhaust space 13 formed in the upper part of the plasma generation hole 5, it is preferable that there is nothing other than the air supply pipe 10 as shown in FIG. There may be parts. In order to realize a large gas flow rate in the plasma generation hole 5 without suppressing the exhaust conductance at the electrode portion, the exhaust space 13 communicates with all the plasma generation holes 5 without being obstructed and is connected to the exhaust pipe. It is necessary to take a structure that is directly connected to the mouth 15. Furthermore, it is important that the shape of the space does not suppress the exhaust conductance as described above.

排気配管接続口15および排気配管8についても、そこでの排気コンダクタンスが前述したプラズマ発生孔5部分の排気コンダクタンス以下となってしまうと、プラズマ発生孔5でのガス流速が制限されてしまうため好ましくない。プラズマ発生孔5部分の排気コンダクタンスCは、電極面積S(m2)が決定されたとき、単位面積当たりの排気コンダクタンスc(m/s)を用いると、C=c×Sとなる。一方、排気配管8の排気コンダクタンスをC’とすると、排気配管16の直径D(m)、その長さL(m)、本数N(本)、さらに前述したP(Pa)、η(Pa・s)、η0(Pa・s)を用いて(式5) If the exhaust conductance of the exhaust pipe connection port 15 and the exhaust pipe 8 is less than the exhaust conductance of the plasma generation hole 5 described above, the gas flow rate in the plasma generation hole 5 is limited, which is not preferable. . When the electrode area S (m 2 ) is determined, the exhaust conductance C of the plasma generation hole 5 portion is C = c × S when the exhaust conductance c (m / s) per unit area is used. On the other hand, if the exhaust conductance of the exhaust pipe 8 is C ′, the diameter D (m), the length L (m), the number N (pieces) of the exhaust pipe 16, and the above-described P (Pa), η (Pa · s), using η 0 (Pa · s) (Formula 5)

Figure 2014075606
Figure 2014075606

と表される。 It is expressed.

プラズマ発生孔5部分の排気コンダクタンスCと排気配管8のコンダクタンスC’はC’≧Cとなることが望ましいため、本実施形態のプラズマCVD装置は、(式6)   Since it is desirable that the exhaust conductance C of the plasma generation hole 5 portion and the conductance C ′ of the exhaust pipe 8 satisfy C ′ ≧ C, the plasma CVD apparatus of the present embodiment has (Expression 6)

Figure 2014075606
Figure 2014075606

の関係を満たして構成されることが好ましい。加えて排気配管接続口15直径は、それが接続する排気配管8の直径と同じか、それ以上であることが好ましい。なお、排気コンダクタンスは、排気系中で最も排気抵抗の大きい所で抑制されるので、前述の式は排気配管8が全て同径であり、途中で曲がることなくポンプに接続されている場合の式である。接続されている複数の排気配管径が異なる場合や途中で曲がりを持つ場合は、その形状に沿って排気配管コンダクタンスを計算する必要がある。その場合も、排気配管8の合成コンダクタンスが、プラズマ発生孔5部分の排気コンダクタンスよりも大きくなることが好ましいことは同じである。 It is preferable to satisfy the above relationship. In addition, the diameter of the exhaust pipe connection port 15 is preferably equal to or larger than the diameter of the exhaust pipe 8 to which it is connected. Since the exhaust conductance is suppressed at the place where the exhaust resistance is the largest in the exhaust system, the above formula is the formula when all the exhaust pipes 8 have the same diameter and are connected to the pump without bending in the middle. It is. When the diameters of a plurality of connected exhaust pipes are different or have a bend in the middle, it is necessary to calculate the exhaust pipe conductance along the shape. In this case as well, it is the same that the combined conductance of the exhaust pipe 8 is preferably larger than the exhaust conductance of the plasma generation hole 5 portion.

[第二の実施形態]
第二の実施形態によるプラズマCVD装置は、第一の実施形態のプラズマCVD装置に電位シールド板14を追加したもので、装置の概要にその他の変更は無い。図5にその第二の実施形態によるプラズマCVD装置概略図を示す。
[Second Embodiment]
The plasma CVD apparatus according to the second embodiment is obtained by adding a potential shield plate 14 to the plasma CVD apparatus according to the first embodiment, and there is no other change in the outline of the apparatus. FIG. 5 shows a schematic diagram of a plasma CVD apparatus according to the second embodiment.

第一放電電極2表面の前面には、第一放電電極2および第二放電電極7と絶縁された状態で電位制御板14が設置されている。電位制御板14には複数の貫通孔が形成されている。この電位制御板14は、接地または直流可変電源に接続されている。電位制御板14を接地または負電位に保つことで、プラズマを第一放電電極2のプラズマ発生孔5の中に閉じ込める効果を強め、電位制御板14と被成膜基板4の間に形成されるプラズマを弱めることが可能となる。電位制御板14に接続する電源は、結果的に電位制御板14に電位をかけられるものであれば問題なく、周波数がkHzオーダー以上の交流電源であれば自己バイアスによる直流オフセット電位をかけることが出来るので、直流電源以外にも、kHz程度の交流電源やRF電源を使用してもよい。   A potential control plate 14 is installed on the front surface of the first discharge electrode 2 in a state of being insulated from the first discharge electrode 2 and the second discharge electrode 7. The potential control plate 14 has a plurality of through holes. The potential control plate 14 is connected to ground or a DC variable power source. By maintaining the potential control plate 14 at the ground or negative potential, the effect of confining the plasma in the plasma generation hole 5 of the first discharge electrode 2 is strengthened and formed between the potential control plate 14 and the deposition target substrate 4. It becomes possible to weaken the plasma. The power source connected to the potential control plate 14 is not a problem as long as the potential can be applied to the potential control plate 14 as a result, and a DC offset potential by self-bias can be applied if the AC power source has a frequency of the kHz order or higher. In addition to the DC power supply, an AC power supply of about kHz or an RF power supply may be used.

電位制御板14の位置は、第一放電電極2と接地電極3との中間よりも第一放電電極側にあれば良いが、第一放電電極2と電位制御板14の間でプラズマが発生することを抑制するためには電位制御板14と第一放電電極2の距離は2mm以下であることが好ましい。また、電位制御板14は第一放電電極2および第二放電電極7と絶縁する必要があるため、電位制御板14と第一放電電極2の距離は0.5mm以上が好ましい。また、プラズマ発生孔5の排気能力を制限しない目的で、電位制御板14の貫通孔は、その第一放電電極2への投影像が第一放電電極2のプラズマ発生孔5と重なるように形成されることが好ましい。さらに好ましい貫通孔の形としては、電位制御板14の貫通穴の中心軸が、第一放電電極2のプラズマ発生孔5の中心軸と同一になるように貫通孔を配置し、その直径をプラズマ発生孔よりも大きくすることである。   The potential control plate 14 may be positioned closer to the first discharge electrode than the middle between the first discharge electrode 2 and the ground electrode 3, but plasma is generated between the first discharge electrode 2 and the potential control plate 14. In order to suppress this, the distance between the potential control plate 14 and the first discharge electrode 2 is preferably 2 mm or less. Further, since the potential control plate 14 needs to be insulated from the first discharge electrode 2 and the second discharge electrode 7, the distance between the potential control plate 14 and the first discharge electrode 2 is preferably 0.5 mm or more. Further, for the purpose of not limiting the exhaust capability of the plasma generation hole 5, the through hole of the potential control plate 14 is formed so that the projected image on the first discharge electrode 2 overlaps the plasma generation hole 5 of the first discharge electrode 2. It is preferred that As a more preferable shape of the through hole, the through hole is arranged so that the central axis of the through hole of the potential control plate 14 is the same as the central axis of the plasma generating hole 5 of the first discharge electrode 2, and the diameter thereof is set to the plasma. It is to make it larger than the generation hole.

[実施例1]
本発明の第二の実施形態におけるプラズマCVD装置を用いて、アモルファスシリコン薄膜を生成し、そのSi−H結合濃度を評価した結果を説明する。
本実施例におけるプラズマCVD装置において、電極サイズは185mm×185mm、プラズマ発生孔5の直径は10mm、長さは30mm、プラズマ発生孔の数は85個とした。SiH4の粘性係数と空気の粘性係数よりη0/η=1.58、平均圧力は15Paとした。本実施例におけるプラズマ発生孔5部分の単位面積辺りの排気コンダクタンスはC=26.5m/sである。
[Example 1]
The result of producing an amorphous silicon thin film using the plasma CVD apparatus according to the second embodiment of the present invention and evaluating its Si—H 2 bond concentration will be described.
In the plasma CVD apparatus of this example, the electrode size was 185 mm × 185 mm, the diameter of the plasma generation hole 5 was 10 mm, the length was 30 mm, and the number of plasma generation holes was 85. From the viscosity coefficient of SiH 4 and the viscosity coefficient of air, η 0 /η=1.58, and the average pressure was 15 Pa. The exhaust conductance per unit area of the plasma generation hole 5 portion in this embodiment is C = 26.5 m / s.

本実施例における具体的なアモルファスシリコン薄膜の製造方法は以下の通りである。第二の実施形態にあるプラズマCVD装置の放電電極に、マッチングボックスを介して60MHzの高周波電源を接続した。まず、プラズマCVD装置内を1×10−4Paまで真空容器底面に設けられた排気穴より排気した。その後、プラズマ発生孔よりの排気に切り替え、放電電極に設けられた給気孔からSiHを50sccmの流量にてマスフローコントローラーにより導入し、圧力を30Paに調整した。その後、放電電極に30Wの電力を投入しプラズマを発生させることにより、接地電極上に設置した単結晶シリコン基板上にアモルファスシリコン薄膜を形成した。 A specific method for producing an amorphous silicon thin film in this example is as follows. A high frequency power source of 60 MHz was connected to the discharge electrode of the plasma CVD apparatus in the second embodiment via a matching box. First, the inside of the plasma CVD apparatus was exhausted up to 1 × 10 −4 Pa through an exhaust hole provided on the bottom surface of the vacuum vessel. Thereafter, switching to the exhaust from the plasma generation hole was performed, and SiH 4 was introduced at a flow rate of 50 sccm from the air supply hole provided in the discharge electrode, and the pressure was adjusted to 30 Pa. Thereafter, an amorphous silicon thin film was formed on a single crystal silicon substrate placed on the ground electrode by applying 30 W of power to the discharge electrode to generate plasma.

得られたアモルファスシリコン薄膜の膜中Si−H結合濃度を、FT−IR測定により求めた。FT−IR測定にはHORIBA社製FT−720を使用し、分解能は4cm−1、積算回数16回で測定を行った。Si−H結合濃度は以下の手順で評価した。2000cm−1付近のピークから、ガウス関数(式7) The Si—H 2 bond concentration in the film of the obtained amorphous silicon thin film was determined by FT-IR measurement. For FT-IR measurement, FT-720 manufactured by HORIBA was used, and the resolution was 4 cm −1 and the number of integrations was 16 times. The Si—H 2 bond concentration was evaluated by the following procedure. From the peak near 2000 cm −1 , Gaussian function (Equation 7)

Figure 2014075606
Figure 2014075606

を仮定して2090cm−1のピークを分離した。ここで、hはピーク高さ、σはピーク幅、ωpはピーク波数である。 As a result, a peak at 2090 cm −1 was separated. Here, h is the peak height, σ is the peak width, and ω p is the peak wave number.

次に、吸収係数(式8)   Next, the absorption coefficient (Equation 8)

Figure 2014075606
Figure 2014075606

を用いて、分離したピークから結合水素密度 , Bond hydrogen density from separated peak

Figure 2014075606
Figure 2014075606

を求めた。
ここで、Tsは単結晶シリコンの透過率(%)、ΔTはベースラインを引いたアモルファスシリコン薄膜の透過率(%)、dは膜厚(cm)、ωは波数(cm-1)、Aは比例定数1.4×1020cm-2を示す。Si原子数密度を5.0×1022cm-3で近似し、NH2よりSi−H結合濃度
Asked.
Here, Ts is the transmittance (%) of single crystal silicon, ΔT is the transmittance (%) of the amorphous silicon thin film minus the baseline, d is the film thickness (cm), ω is the wave number (cm −1 ), A Indicates a proportionality constant of 1.4 × 10 20 cm −2 . The Si atom number density approximated by 5.0 × 10 22 cm -3, Si -H 2 bond concentration than N H2

Figure 2014075606
Figure 2014075606

を算出した。
測定試料は、15mm×15mmの単結晶シリコン基板上に、実施例1の方法にてアモルファスシリコン薄膜を成膜したものを用いた。
Was calculated.
As the measurement sample, an amorphous silicon thin film formed by the method of Example 1 on a 15 mm × 15 mm single crystal silicon substrate was used.

[実施例2]
実施例1において,流量を100sccmとした以外は同様にしてアモルファスシリコン薄膜基板を得た。
得られたアモルファスシリコン薄膜より、実施例1と同様の方法にてSi−H結合濃度を求めた。
[Example 2]
An amorphous silicon thin film substrate was obtained in the same manner as in Example 1 except that the flow rate was set to 100 sccm.
From the obtained amorphous silicon thin film, the Si—H 2 bond concentration was determined in the same manner as in Example 1.

[比較例1]
図7に示す従来の平行平板型プラズマCVD装置の放電電極に、マッチングボックスを介して13.56MHzの高周波電源を接続した。平行平板電極の電極サイズは185mm×185mmであり、放電電極表面には直径0.5mmの給気孔が8mmピッチで256個形成されている。まず、プラズマCVD装置内を1×10−4Paまで真空容器底面に設けられた排気穴より排気した。その後、放電電極表面の給気孔よりSiHを50sccmの流量にてマスフローコントローラーにより導入し、圧力を30Paに調整した。その後、放電電極に30Wの電力を投入しプラズマを発生させ接地電極上に設置した単結晶シリコン基板上にアモルファスシリコン薄膜を形成した。電極にプラズマ発生孔は設けておらず、プラズマは放電電極と接地電極の間に形成される。また、ガスの排気は上述の真空容器底面からのみ行っており、放電電極に排気機構は具備していない。上述した以外の点については、実施例1と同一の条件にて成膜した。
得られたアモルファスシリコン薄膜より、実施例1と同様の方法にてSi−H結合濃度を求めた。
[Comparative Example 1]
A high frequency power supply of 13.56 MHz was connected to the discharge electrode of the conventional parallel plate type plasma CVD apparatus shown in FIG. 7 through a matching box. The parallel plate electrode has an electrode size of 185 mm × 185 mm, and 256 air supply holes having a diameter of 0.5 mm are formed on the surface of the discharge electrode at a pitch of 8 mm. First, the inside of the plasma CVD apparatus was exhausted up to 1 × 10 −4 Pa through an exhaust hole provided on the bottom surface of the vacuum vessel. Thereafter, SiH 4 was introduced at a flow rate of 50 sccm from the air supply holes on the surface of the discharge electrode by a mass flow controller, and the pressure was adjusted to 30 Pa. Thereafter, an electric power of 30 W was applied to the discharge electrode to generate plasma, and an amorphous silicon thin film was formed on a single crystal silicon substrate placed on the ground electrode. No plasma generation hole is provided in the electrode, and plasma is formed between the discharge electrode and the ground electrode. Further, the gas is exhausted only from the bottom surface of the vacuum container, and the discharge electrode is not provided with an exhaust mechanism. Films other than those described above were formed under the same conditions as in Example 1.
From the obtained amorphous silicon thin film, the Si—H 2 bond concentration was determined in the same manner as in Example 1.

Figure 2014075606
Figure 2014075606

実施例1、2および比較例1から求めたSi−H結合濃度を表1に示す。 Table 1 shows the Si—H 2 bond concentrations obtained from Examples 1 and 2 and Comparative Example 1.

実施例1が示すように、本実施形態のプラズマCVDで得たアモルファスシリコン膜で低いSi−H結合濃度が得られている。
また、実施例2に示すように、ガス流を上昇させるとプラズマ発生孔中の流速が高められ、さらに低いSi−H結合濃度が得られている。
As shown in Example 1, a low Si—H 2 bond concentration is obtained in the amorphous silicon film obtained by plasma CVD according to the present embodiment.
Moreover, as shown in Example 2, when the gas flow is increased, the flow velocity in the plasma generation hole is increased, and a lower Si—H 2 bond concentration is obtained.

このように第一,第二の実施形態であるプラズマCVD装置を用い,シリコン薄膜を成膜させると,従来の平行平板型プラズマCVD装置で形成した膜と比べて高次シランの混入が少なく、欠陥が低減された高品質な膜が得られる。また,この高品質なアモルファスシリコン薄膜基板を太陽電池に適用することで,光劣化が少ない薄膜太陽電池を作製することが可能となる。   In this way, when the plasma CVD apparatus according to the first and second embodiments is used and a silicon thin film is formed, there is less mixing of higher-order silane compared to the film formed by the conventional parallel plate type plasma CVD apparatus, A high quality film with reduced defects is obtained. In addition, by applying this high-quality amorphous silicon thin film substrate to a solar cell, it is possible to manufacture a thin film solar cell with little light degradation.

本発明は、プラズマCVD装置およびアモルファスシリコン薄膜の形成に限らず、微結晶シリコン薄膜等の各種薄膜形成、エッチング装置やプラズマ表面処理装置などにも応用することができるが、その応用範囲がこれらに限られるものではない。 The present invention can be applied not only to the formation of a plasma CVD apparatus and an amorphous silicon thin film, but also to various thin film formations such as a microcrystalline silicon thin film, an etching apparatus and a plasma surface treatment apparatus. It is not limited.

1 真空容器
2 第一放電電極
3 接地電極
4 基板
5 プラズマ発生孔
6 給気孔
7 第二放電電極
8 排気配管
9 給気室
10 給気管
11 マッチングボックス
12 高周波電源
13 排気空間
14 電位制御板
15 排気配管接続口
16 反応容器
17 電極部
18 基板
19 基板ホルダ(接地電極)
20 ガス排気孔
21 ガス吸気孔
DESCRIPTION OF SYMBOLS 1 Vacuum vessel 2 First discharge electrode 3 Ground electrode 4 Substrate 5 Plasma generation hole 6 Air supply hole 7 Second discharge electrode 8 Exhaust piping 9 Supply chamber 10 Supply tube 11 Matching box 12 High frequency power supply 13 Exhaust space 14 Potential control plate 15 Exhaust Piping connection port 16 Reaction vessel 17 Electrode part 18 Substrate 19 Substrate holder (ground electrode)
20 Gas exhaust hole 21 Gas intake hole

上記課題を解決するため、本発明のプラズマCVD装置は以下の構成をとる。すなわち、
(1)
真空容器と該真空容器に排気配管によって接続された排気装置とを有し、該真空容器内には基板保持材を兼ねた接地電極と、該接地電極と相対向する位置に配置された第一放電電極とを有し、該真空容器内に原料ガスを導入してプラズマを形成し、基板表面に薄膜を形成するプラズマCVD装置において、
前記第一放電電極に複数配置された前記原料ガスを導入する給気孔と、
前記第一放電電極に複数配置されたプラズマ発生孔と、
前記第一放電電極に形成された高さ5mm以上の給気室と、
前記第一放電電極と同電位に保たれた第二放電電極とを具備し、
該第二放電電極は、第一放電電極の側面を覆うように配置され、かつ、前記第一放電電極の前記接地電極と反対側の面と第二放電電極との間に空間を有し、
該空間が前記真空容器内の排気配管接続口と連通しており、
前記空間と前記プラズマ発生孔が連通しているプラズマCVD装置、
(2)
前記第一放電電極に複数配置されたプラズマ発生孔の直径が、前記第一放電電極に複数配置された前記原料ガスを導入する給気孔の直径よりも大きい(1)に記載のプラズマCVD装置、
(3)
前記接地電極と前記第一放電電極の中間よりも第一放電電極側に位置する電位制御板を備え、該電位制御板は複数の貫通孔を備え、電位を一定に保つための電源に接続されている(1)または(2)に記載のプラズマCVD装置、
(4)
前記電位制御板に設けられた複数の貫通孔と、前記第一放電電極に複数配置されたプラズマ発生孔とが、各々接地電極方向において重なって配置されている(3)に記載のプラズマCVD装置、
(5)
真空容器を減圧に保持し、該真空容器内の接地電極上に基板を設置し、該接地電極と相対向する第一放電電極に高周波電力を印加してプラズマを形成し、原料ガスを前記真空容器内に導入して前記基板に薄膜を形成するプラズマCVD方法において、
前記原料ガスの導入を前記第一放電電極に複数配置された給気孔より行い、
前記第一放電電極を前記基板方向に貫通し、前記真空容器を排気する排気配管接続口に連通した複数のプラズマ発生孔内でプラズマを形成し、
高さ5mm以上の給気室を有する前記第一放電電極と同電位に保たれ、前記第一放電電極を挟んで前記接地電極と反対側の位置に、前記第一放電電極の前記接地電極と反対側の面との間に空間を持つように配置された第二放電電極に
該空間と連通するように設けられた排気配管接続口より前記真空容器内の排気ガスを除去するプラズマCVD方法、
である。
In order to solve the above problems, the plasma CVD apparatus of the present invention has the following configuration. That is,
(1)
A vacuum vessel and an exhaust device connected to the vacuum vessel by an exhaust pipe; a ground electrode serving also as a substrate holding material in the vacuum vessel; and a first electrode disposed at a position opposite to the ground electrode In a plasma CVD apparatus having a discharge electrode, introducing a source gas into the vacuum vessel to form plasma, and forming a thin film on the substrate surface,
An air supply hole for introducing the plurality of source gases arranged in the first discharge electrode;
A plurality of plasma generating holes arranged in the first discharge electrode;
An air supply chamber having a height of 5 mm or more formed in the first discharge electrode;
A second discharge electrode maintained at the same potential as the first discharge electrode,
The second discharge electrode is disposed so as to cover the side surface of the first discharge electrode, and has a space between the surface of the first discharge electrode opposite to the ground electrode and the second discharge electrode,
The space communicates with an exhaust pipe connection port in the vacuum vessel;
A plasma CVD apparatus in which the space and the plasma generation hole communicate with each other;
(2)
The plasma CVD apparatus according to (1), wherein a plurality of plasma generating holes arranged in the first discharge electrode have a diameter larger than a diameter of a supply hole for introducing the source gas arranged in the first discharge electrode.
(3)
A potential control plate is provided on the first discharge electrode side relative to the middle between the ground electrode and the first discharge electrode. The potential control plate has a plurality of through holes and is connected to a power source for keeping the potential constant. The plasma CVD apparatus according to (1) or (2),
(4)
The plasma CVD apparatus according to (3) , wherein a plurality of through holes provided in the potential control plate and a plurality of plasma generation holes arranged in the first discharge electrode are arranged to overlap each other in the direction of the ground electrode. ,
(5)
The vacuum vessel is held under reduced pressure, a substrate is placed on the ground electrode in the vacuum vessel, plasma is formed by applying high-frequency power to the first discharge electrode facing the ground electrode, and the source gas is evacuated to the vacuum In the plasma CVD method of introducing a thin film on the substrate introduced into a container,
The introduction of the source gas is performed from a plurality of air supply holes arranged in the first discharge electrode,
Forming plasma in a plurality of plasma generation holes that penetrate the first discharge electrode in the direction of the substrate and communicate with an exhaust pipe connection port for exhausting the vacuum vessel,
The ground electrode of the first discharge electrode is maintained at the same potential as the first discharge electrode having an air supply chamber having a height of 5 mm or more, and at a position opposite to the ground electrode across the first discharge electrode. A plasma CVD method for removing exhaust gas in the vacuum vessel from an exhaust pipe connection port provided so as to communicate with the space in a second discharge electrode disposed so as to have a space between the surface on the opposite side;
It is.

Claims (5)

真空容器と該真空容器に排気配管によって接続された排気装置とを有し、該真空容器内には基板保持材を兼ねた接地電極と、該接地電極と相対向する位置に配置された第一放電電極とを有し、該真空容器内に原料ガスを導入してプラズマを形成し、基板表面に薄膜を形成するプラズマCVD装置において、
前記第一放電電極に複数配置された前記原料ガスを導入する給気孔と、
前記第一放電電極に複数配置されたプラズマ発生孔と、
前記第一放電電極と同電位に保たれた第二放電電極とを具備し、
該第二放電電極は、第一放電電極の側面を覆うように配置され、かつ、前記第一放電電極の前記接地電極と反対側の面と第二放電電極との間に空間を有し、
該空間が前記真空容器内の排気配管接続口と連通しており、
前記空間と前記プラズマ発生孔が連通しているプラズマCVD装置。
A vacuum vessel and an exhaust device connected to the vacuum vessel by an exhaust pipe; a ground electrode serving also as a substrate holding material in the vacuum vessel; and a first electrode disposed at a position opposite to the ground electrode In a plasma CVD apparatus having a discharge electrode, introducing a source gas into the vacuum vessel to form plasma, and forming a thin film on the substrate surface,
An air supply hole for introducing the plurality of source gases arranged in the first discharge electrode;
A plurality of plasma generating holes arranged in the first discharge electrode;
A second discharge electrode maintained at the same potential as the first discharge electrode,
The second discharge electrode is disposed so as to cover the side surface of the first discharge electrode, and has a space between the surface of the first discharge electrode opposite to the ground electrode and the second discharge electrode,
The space communicates with an exhaust pipe connection port in the vacuum vessel;
A plasma CVD apparatus in which the space and the plasma generation hole communicate with each other.
前記第一放電電極に複数配置されたプラズマ発生孔の直径が、前記第一放電電極に複数配置された前記原料ガスを導入する給気孔の直径よりも大きい請求項1に記載のプラズマCVD装置。 2. The plasma CVD apparatus according to claim 1, wherein a plurality of plasma generating holes arranged in the first discharge electrode have a diameter larger than a diameter of air supply holes for introducing the source gas arranged in the first discharge electrode. 前記接地電極と前記第一放電電極の中間よりも第一放電電極側に位置する電位制御板を備え、該電位制御板は複数の貫通孔を備え、電位を一定に保つための電源に接続されている請求項1または2に記載のプラズマCVD装置。 A potential control plate is provided on the first discharge electrode side relative to the middle between the ground electrode and the first discharge electrode. The potential control plate has a plurality of through holes and is connected to a power source for keeping the potential constant. The plasma CVD apparatus according to claim 1 or 2. 前記電位制御板に設けられた複数の貫通孔と、前記第一放電電極に複数配置されたプラズマ発生孔とが、各々接地電極方向において重なって配置されている請求項1〜3のいずれかに記載のプラズマCVD装置。 The plurality of through holes provided in the potential control plate and the plurality of plasma generation holes arranged in the first discharge electrode are arranged to overlap each other in the direction of the ground electrode. The plasma CVD apparatus as described. 真空容器を減圧に保持し、該真空容器内の接地電極上に基板を設置し、該接地電極と相対向する第一放電電極に高周波電力を印加してプラズマを形成し、原料ガスを前記真空容器内に導入して前記基板に薄膜を形成するプラズマCVD方法において、
前記原料ガスの導入を前記第一放電電極に複数配置された給気孔より行い、
前記第一放電電極を前記基板方向に貫通し、前記真空容器を排気する排気配管接続口に連通した複数のプラズマ発生孔内でプラズマを形成し、
前記第一放電電極と同電位に保たれ、前記第一放電電極を挟んで前記接地電極と反対側の位置に、前記第一放電電極の前記接地電極と反対側の面との間に空間を持つように配置された第二放電電極に
該空間と連通するように設けられた排気配管接続口より前記真空容器内の排気ガスを除去するプラズマCVD方法。

The vacuum vessel is held under reduced pressure, a substrate is placed on the ground electrode in the vacuum vessel, plasma is formed by applying high-frequency power to the first discharge electrode facing the ground electrode, and the source gas is evacuated to the vacuum In the plasma CVD method of introducing a thin film on the substrate introduced into a container,
The introduction of the source gas is performed from a plurality of air supply holes arranged in the first discharge electrode,
Forming plasma in a plurality of plasma generation holes that penetrate the first discharge electrode in the direction of the substrate and communicate with an exhaust pipe connection port for exhausting the vacuum vessel,
Maintained at the same potential as the first discharge electrode, a space is formed between the first discharge electrode and the surface opposite to the ground electrode at a position opposite to the ground electrode across the first discharge electrode. A plasma CVD method for removing exhaust gas in the vacuum vessel from an exhaust pipe connection port provided so as to communicate with the space in a second discharge electrode arranged to have.

JP2013266490A 2013-12-25 2013-12-25 Plasma CVD equipment Expired - Fee Related JP5772941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013266490A JP5772941B2 (en) 2013-12-25 2013-12-25 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013266490A JP5772941B2 (en) 2013-12-25 2013-12-25 Plasma CVD equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010009752A Division JP5487990B2 (en) 2010-01-20 2010-01-20 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JP2014075606A true JP2014075606A (en) 2014-04-24
JP5772941B2 JP5772941B2 (en) 2015-09-02

Family

ID=50749509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013266490A Expired - Fee Related JP5772941B2 (en) 2013-12-25 2013-12-25 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JP5772941B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101784387B1 (en) * 2015-08-31 2017-10-13 주식회사 인포비온 Plasma chamber being capable of controlling the homogenization of plasma potential distribution for a charged particle beam output apparatus
JP2018127391A (en) * 2017-02-10 2018-08-16 株式会社豊田中央研究所 APPARATUS FOR PRODUCING SINGLE CRYSTAL OF COMPOUND, METHOD FOR PRODUCING SINGLE CRYSTAL OF COMPOUND, AND GaN SINGLE CRYSTAL
US20220170153A1 (en) * 2018-05-23 2022-06-02 Shin-Etsu Chemical Co., Ltd. Chemical vapor deposition apparatus and method of forming film
US11677005B2 (en) 2018-03-14 2023-06-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297578A (en) * 1991-03-26 1992-10-21 Shimadzu Corp Plasma treating device
JPH0590939U (en) * 1991-02-25 1993-12-10 沖電気工業株式会社 Plasma CVD equipment
JPH06124906A (en) * 1992-10-14 1994-05-06 Hirano Kouon Kk Plasma electrode device
JP2000012471A (en) * 1998-06-25 2000-01-14 Agency Of Ind Science & Technol Plasma cvd system, and solar cells and plasma cvd method manufacturing the same
JP2003342737A (en) * 2002-05-17 2003-12-03 Tokyo Electron Ltd Method for introducing gas in treatment apparatus
WO2006022179A1 (en) * 2004-08-24 2006-03-02 Kyushu University Cluster-free amorphous silicon film, process for producing the same and apparatus therefor
JP2007214296A (en) * 2006-02-08 2007-08-23 National Institute For Materials Science Plasma treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590939U (en) * 1991-02-25 1993-12-10 沖電気工業株式会社 Plasma CVD equipment
JPH04297578A (en) * 1991-03-26 1992-10-21 Shimadzu Corp Plasma treating device
JPH06124906A (en) * 1992-10-14 1994-05-06 Hirano Kouon Kk Plasma electrode device
JP2000012471A (en) * 1998-06-25 2000-01-14 Agency Of Ind Science & Technol Plasma cvd system, and solar cells and plasma cvd method manufacturing the same
JP2003342737A (en) * 2002-05-17 2003-12-03 Tokyo Electron Ltd Method for introducing gas in treatment apparatus
WO2006022179A1 (en) * 2004-08-24 2006-03-02 Kyushu University Cluster-free amorphous silicon film, process for producing the same and apparatus therefor
JP2007214296A (en) * 2006-02-08 2007-08-23 National Institute For Materials Science Plasma treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101784387B1 (en) * 2015-08-31 2017-10-13 주식회사 인포비온 Plasma chamber being capable of controlling the homogenization of plasma potential distribution for a charged particle beam output apparatus
JP2018127391A (en) * 2017-02-10 2018-08-16 株式会社豊田中央研究所 APPARATUS FOR PRODUCING SINGLE CRYSTAL OF COMPOUND, METHOD FOR PRODUCING SINGLE CRYSTAL OF COMPOUND, AND GaN SINGLE CRYSTAL
US11091851B2 (en) 2017-02-10 2021-08-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Apparatus provided with a crucible including a porous baffle plate therein for manufacturing compound single crystal and method for manufacturing compound single crystal
US11677005B2 (en) 2018-03-14 2023-06-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and method for manufacturing the same
US20220170153A1 (en) * 2018-05-23 2022-06-02 Shin-Etsu Chemical Co., Ltd. Chemical vapor deposition apparatus and method of forming film
US11885022B2 (en) * 2018-05-23 2024-01-30 Shin-Etsu Chemical Co., Ltd. Method of forming a film on a substrate by chemical vapor deposition

Also Published As

Publication number Publication date
JP5772941B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5397464B2 (en) Deposition method
JP5589839B2 (en) Plasma processing apparatus and method for producing amorphous silicon thin film using the same
JP5678883B2 (en) Plasma CVD apparatus and silicon thin film manufacturing method
CN1226450C (en) Processing method and apparatus for plasma
JP5772941B2 (en) Plasma CVD equipment
JP6328882B2 (en) Plasma annealing method and apparatus
TWI414628B (en) Plasma treatment apparatus and plasma cvd method for forming film
JP5487990B2 (en) Plasma CVD equipment
JP2010212277A (en) Film forming apparatus
JP5378416B2 (en) Plasma processing equipment
JP5488051B2 (en) Plasma CVD apparatus and silicon thin film manufacturing method
JP2018046302A (en) Plasma cvd system and plasma cvd method
JP5862027B2 (en) Plasma CVD apparatus and method for manufacturing thin film substrate
JP2009141116A (en) Film forming device
JP3546200B2 (en) Plasma CVD apparatus and plasma CVD method
JP5206478B2 (en) Plasma CVD apparatus and silicon thin film manufacturing method
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JP5691740B2 (en) Plasma processing equipment
JP6113647B2 (en) Vacuum processing apparatus and film thickness distribution adjusting method
JP4966083B2 (en) Deposition equipment
JP2000045074A (en) Surface treating method
JP2010018882A (en) Deposition apparatus, and thin film deposition method using the same
JPH11140653A (en) Plasma cvd device
JP2009057636A (en) Manufacturing method for silicon film and solar battery
JP2011021256A (en) Method for depositing nanocrystal silicon thin film, nanocrystal silicon thin film and film deposition system depositing the thin film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R151 Written notification of patent or utility model registration

Ref document number: 5772941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees