JP2014074587A - Multi-component force measurement method - Google Patents

Multi-component force measurement method Download PDF

Info

Publication number
JP2014074587A
JP2014074587A JP2012220468A JP2012220468A JP2014074587A JP 2014074587 A JP2014074587 A JP 2014074587A JP 2012220468 A JP2012220468 A JP 2012220468A JP 2012220468 A JP2012220468 A JP 2012220468A JP 2014074587 A JP2014074587 A JP 2014074587A
Authority
JP
Japan
Prior art keywords
detector
output
load
interference correction
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012220468A
Other languages
Japanese (ja)
Other versions
JP5995635B2 (en
Inventor
Tetsuji Tojima
哲二 東島
Chinkaku Higashijima
鎮▲かく▼ 東島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSHO ELECTRONICS
Nissho Electric Works Co Ltd
Original Assignee
NISSHO ELECTRONICS
Nissho Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSHO ELECTRONICS, Nissho Electric Works Co Ltd filed Critical NISSHO ELECTRONICS
Priority to JP2012220468A priority Critical patent/JP5995635B2/en
Publication of JP2014074587A publication Critical patent/JP2014074587A/en
Application granted granted Critical
Publication of JP5995635B2 publication Critical patent/JP5995635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly precise multi-component force measurement method capable of correcting a measurement error based on a weight or a moment of a calibration tool by precisely calculating the weight and a center of gravity position of the calibration tool.SOLUTION: Six component force data (referred to as physical value of test tool) of a weight and moment of a calibration tool and a multi-component force detector used for a calibration test prior to an actual measurement is calculated using a linear calculation. A secondary interference correction coefficient on an output of a detector with respect to a load is calculated by adding a physical value of the test tool to the six component forces based on the weight load for the calibration test. A secondary interference correction coefficient is calculated for calculating the load from a detector output by subtracting an offset value of a secondary interference correction coefficient which is calculated by using a physical value of the test tool from an output of the detector with respect to the load. The secondary interference correction coefficient is applied to the multi-component force measurement with respect to any load which is applied to the object to be measured.

Description

本発明は、高次の相互干渉がある多分力検出器を用いて高精度で分力を計測する多分力計測方法に関する。   The present invention relates to a multi-component force measurement method for measuring a component force with high accuracy using a multi-component force detector having high-order mutual interference.

さまざまな外力が作用している物体の任意の一点について考えると、この外力はX,Y,Z直交座標系の各軸方向の力FX,FY,FZと各軸回りのモーメントMX,MY,MZで構成される6個の独立した分力成分に分解できる。航空機模型の風洞試験用に使用されているスチング型多分力計測もその一例である。 Considering an arbitrary point of an object where various external forces are acting, this external force is represented by the forces F X , F Y , F Z in each axis direction of the X, Y, Z Cartesian coordinate system and the moment M X around each axis. , M Y , M Z can be decomposed into six independent component components. An example is the Sting-type multi-component force measurement that is used for wind tunnel testing of aircraft models.

このような力を、物体に取り付けた多分力検出器で各分力成分に分解して計測すると、その検出器出力には誤差が含まれる。この誤差には種々の要因が含まれるが、何れにしても補正可能な誤差と補正困難な誤差とに大別される。もっとも、近年の計測技術の進歩に従い、従来は補正困難であった誤差も補正可能になったものもあり、外見上誤差とならないような部分も生じているが、なお、補正できない誤差も少なくなかった。補正が可能な誤差の場合は、補正を適切に施すことにより、計測性能を飛躍的に向上させることができる。   If such a force is decomposed into individual component components and measured by a multi-component force detector attached to the object, an error is included in the detector output. Although this error includes various factors, it can be broadly classified into errors that can be corrected and errors that are difficult to correct. However, with recent advances in measurement technology, some errors that were previously difficult to correct can now be corrected, and there are parts that do not appear as errors, but there are many errors that cannot be corrected. It was. In the case of an error that can be corrected, the measurement performance can be drastically improved by appropriately performing the correction.

高精度の計測にあっては、干渉補正は必然になっているが、その補正方法も、線型補正(一次補正)から二次補正や更に高次の補正にまで高度化して来ており、この種の技術に関して、本件と同一出願人により、以下のような提案がなされ特許出願されている(特許文献1〜3参照)。   Interference correction is inevitable for high-accuracy measurement, but the correction method has also been advanced from linear correction (primary correction) to secondary correction and higher-order correction. The following proposals have been made and patent applications have been filed by the same applicant as this type of technology (see Patent Documents 1 to 3).

特許文献1には、飛翔体の流体力学的特性試験用にスチング型多分力計測器を用い、機体モデルの姿勢を変化させる際に生じる多分力計測器中心における高さの違いを検出し、かつ該高さの違いを補正するための調整治具を有する多分力負荷装置が開示されている。そして、その第2図にはスチング型多分力計測器と機体モデルとの関係が開示され、また、第4A図や第5A図などには、多分力負荷試験装置や、較正試験に用いる較正治具(負荷試験用ボディー32)を備える多分力負荷装置が開示されている。この較正治具は、後述する本発明においても適用されるものである。   Patent Document 1 uses a Sting-type multi-component force measuring instrument for hydrodynamic property testing of a flying object, detects a difference in height at the center of the multi-component force measuring device that occurs when the attitude of an airframe model is changed, and A multiple force load device having an adjustment jig for correcting the difference in height is disclosed. FIG. 2 discloses the relationship between the sting-type multi-component force measuring instrument and the airframe model. FIGS. 4A and 5A show the multi-component force test apparatus and the calibration treatment used for the calibration test. A multi-component load device comprising a tool (load test body 32) is disclosed. This calibration jig is also applied to the present invention described later.

特許文献2は、「被計測物体に加わる分力を測定する場合、多分力検出器自体やそれに付属する補助器具に生じる変形に起因する干渉誤差、並びに多分力検出器が保有する固有の干渉誤差に対して最適な補正を施して、分力の計測精度を飛躍的に向上させることができる多分力検出法を提供すること」を課題とし、この課題の解決手段として、特許文献2の請求項1および2に記載された以下のような方法を開示する。   Patent Document 2 states that “when measuring a component force applied to an object to be measured, an interference error caused by deformation in the multi-component force detector itself or an auxiliary device attached thereto, and an inherent interference error possessed by the multi-component force detector. "Providing a multi-component force detection method capable of dramatically improving the measurement accuracy of the component force by applying an optimal correction to the above". The following methods described in 1 and 2 are disclosed.

即ち、「多分力検出器自体、およびこの多分力検出器と被計測物体の間や、多分力検出器と固定端の間を締結する各付属部材の変形により生ずる検出器出力の干渉、並びに多分力検出器が保有する固有の干渉等を排除した状態で多分力検出器により被計測物体に加わる多分力を検出する方法において、多分力検出器の各出力(EFi;i=1〜6)と出力の二次値(EFi・EFj;i,j=1〜6)を列ベクトルとし、この列ベクトルの各要素に一定の係数(Bij;i≦j;i,j=0〜6)を乗算し、更に一定数(B00)を加えて互いに積算して擬似分力(BFi)を与える計算式を形成し、較正測定にあって、互いに異なる組の分力(Fik)の負荷時での多分力検出器の各分力出力(EFin)を全ての較正点(n=1〜N;N=正の整数)にわたって予め求め、各較正点での擬似分力(BFin)と負荷された分力(Fin)の差(DFin)を求め、この差(DFin)の二乗を全ての較正点(n)にわたって積算し、この二乗和が最小になるように前記係数(Bij)を求めて最適擬似分力(BFi)を決定し、計測中に生じる任意の負荷に対する分力検出に適用する、ことを特徴とする方法。」
および「多分力検出器自体、およびこの多分力検出器と被計測物体の間や、多分力検出器と固定端の間を締結する各付属部材の変形により生ずる検出器出力の干渉、並びに多分力検出器が保有する固有の干渉等を排除した状態で多分力検出器により被計測物体に加わる多分力を検出する方法において、多分力(Fi;i=1〜6)と分力の二次値(Fi・Fj;i,j=1〜6)を列ベクトルとし、この列ベクトルの各要素に一定の係数(Aij;i≦j;i,j=0〜6)を乗算し、更に一定数(A00)を加えて互いに積算して一次式の擬似分力出力(AEFi)を形成し、較正測定にあって、互いに異なる組の分力出力(BFik)出力時での各分力出力(Fik)を全ての較正点(n=1〜N;N=正の整数)にわたって予め求め、各較正点での擬似分力出力(AEFin)と実測された分力(Fin)の分力差(DFin)を求め、この分力出力差(DFin)の二乗を全ての較正点(n)にわたって積算し、この二乗和が最小になるように前記係数(Aij)を求めて最適擬似分力出力(AEFi)を決定し、計測中に生じる任意の負荷に対する分力出力検出に適用する、ことを特徴とする方法。」である。
That is, “the multi-force detector itself, interference between the multi-force detector and the object to be measured, or interference between detector outputs caused by deformation of each attached member that fastens the multi-force detector and the fixed end, and possibly In the method of detecting the multiple force applied to the object to be measured by the multiple force detector in a state where the inherent interference etc. possessed by the force detector is excluded, each output of the multiple force detector (EF i ; i = 1 to 6) And the secondary value of the output (EF i · EF j ; i, j = 1 to 6) as a column vector, and a constant coefficient (B ij ; i ≦ j; i, j = 0 to 0) for each element of the column vector 6), and a constant number (B 00 ) is added and added together to form a calculation formula that gives a pseudo component force (BF i ). In the calibration measurement, different sets of component forces (F ik each component force output (EF in) all calibration points maybe force detector at the time of loading) (n = 1~N; n = positive integer) obtained in advance for, for each calibration point Determining a difference similar component force (BF in) and loaded component force (F in) (DF in) , is integrated over all calibration points the squares of the difference (DF in) (n), is the sum of squares The method is characterized in that the coefficient (B ij ) is determined so as to be minimized and the optimum pseudo component force (BF i ) is determined and applied to component force detection for an arbitrary load generated during measurement.
And "multiple force detector itself, interference between detector outputs caused by deformation of each attached member that fastens between the multi-force detector and the measured object, or between the multi-component force detector and the fixed end, and multi-component force In a method for detecting a multi-component force applied to an object to be measured by a multi-component force detector in a state where inherent interference or the like possessed by the detector is eliminated, a multi-component force (F i ; i = 1 to 6) and a secondary force component The value (F i · F j ; i, j = 1 to 6) is a column vector, and each element of this column vector is multiplied by a certain coefficient (A ij ; i ≦ j; i, j = 0 to 6). In addition, a certain number (A 00 ) is added and integrated with each other to form a first-order pseudo component force output (AEF i ). In calibration measurement, when different sets of component force outputs (BF ik ) are output. previously obtained, is measured as a pseudo component force output at each calibration point (AEF in) across; (n = positive integer n = 1 to n) each component force output (F ik) all calibration points Calculated component force difference component of force (F in) the (DF in) was the square of this component force output difference (DF in) is integrated over all of the calibration points (n), as the sum of squares is minimized A method characterized in that the optimum pseudo component force output (AEF i ) is determined by obtaining the coefficient (A ij ) and applied to component force output detection for an arbitrary load generated during measurement.

特許文献3は、オフセット(零点調整)に関して上記の方法を改善した方法を開示する。即ち、特許文献3に係る発明は、「高次の相互干渉特性を持った検出器を外力が常に作用する時や未知のオフセットが存在する状態で較正試験を行い、その結果からオフセットのない状態での干渉係数を求める必要がある。」ことに鑑みてなされたもので、その解決手段として、以下のような方法を開示する。
即ち、「較正治具20を結合した多分力検出器10のユニットを較正装置14の取付台12に取り付け、所望の分力を加えるように較正治具20の姿勢を調整する。互いに独立した分力Fin(i= 1〜6 ; n = 1〜 N) を多分力検出器10に加えた時の分力出力信号EFinのデータを求め、このデータを用いて最小二乗法により定数、Ai0,一次係数、Aij,二次係数Aijkを求め、次いで、EFin−Ai0≡EFin (β)の置換を施した置換データを用い、Fi =Σj=1,6 ijEFj+Σj=1,6 Σk=j,6 ijk EFjEFk (γ)と表し、前記置換データを用いて最小二乗法により、一次係数Bij,二次係数Bijk を求め、実測された分力出力信号EFi (i= 1〜6)から式 (β) と (γ) を用いて、その時の分力Fi (i= 1〜6)を求める。」
Patent Document 3 discloses a method in which the above method is improved with respect to offset (zero point adjustment). That is, the invention according to Patent Document 3 states that “a detector having a high-order mutual interference characteristic is subjected to a calibration test when an external force always acts or in the presence of an unknown offset. The following method is disclosed as a solution to the problem.
That is, “the unit of the multiple force detector 10 combined with the calibration jig 20 is attached to the mounting base 12 of the calibration device 14 and the posture of the calibration jig 20 is adjusted so as to apply a desired component force. Data of the component force output signal EF in when the force F in (i = 1 to 6; n = 1 to N) is applied to the multi-component force detector 10 is obtained, and a constant, A i0 , primary coefficient, A ij , and secondary coefficient A ijk are obtained, and then the substitution data with substitution of EF in −A i0 ≡EF in (β) is used, and F i = Σ j = 1,6 B ij EF j + Σ j = 1,6 Σ k = j, 6 B ijk EF j EF k (γ), and the primary coefficient B ij and the secondary coefficient B ijk are obtained by the least square method using the replacement data. From the measured component force output signal EF i (i = 1 to 6), the component force F i (i = 1 to 6) at that time is obtained using the equations (β) and (γ). ”

ところで、前記特許文献2や3に開示された方法においては、較正試験に用いる較正治具等の重量は、被計測物体の計測容量、即ち計測すべき負荷に比べて小さく、干渉補正においては実質的に無視できるとして直線近似で処理されていた。しかしながら、最近では、較正治具等の重量やモーメントに基づく測定誤差が無視できない場合が出てきている。   By the way, in the methods disclosed in Patent Documents 2 and 3, the weight of the calibration jig or the like used for the calibration test is smaller than the measurement capacity of the object to be measured, that is, the load to be measured. It was processed by the linear approximation as it can be ignored. However, recently, there are cases where measurement errors based on the weight and moment of a calibration jig or the like cannot be ignored.

特開昭64−16949号公報JP-A 64-16949 特公平6−103236号公報Japanese Examined Patent Publication No. 6-103236 特許第2886832号公報Japanese Patent No. 2886832

この発明は、上記従来の問題点に鑑みてなされたもので、本発明の課題は、較正治具等の重量や重心位置を正確に求めることにより較正治具等の重量やモーメントに基づく測定誤差を補正可能とした、従来より高精度な多分力計測方法を提供することにある。   The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to obtain a measurement error based on the weight and moment of the calibration jig and the like by accurately obtaining the weight and the center of gravity position of the calibration jig and the like. Is to provide a multi-force measuring method with higher accuracy than before.

上述の課題を解決するため、本発明によれば、高次の相互干渉特性を有する多分力検出器を用いて被計測物体に加わる多分力を計測する多分力計測方法において、実測前の較正試験に用いる較正治具および多分力検出器(以下、単に検出器という。)の重量およびモーメントの6分力データ(以下、試験用治具の物理値という。)を一次干渉補正係数を用いた計算(線型計算)に基づいて求め、較正試験用の分銅負荷に基づく6分力に前記試験用治具の物理値を加算して、負荷に対する検出器の出力に関する二次干渉補正係数を求め、前記負荷に対する検出器の出力から前記試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値(Ai0')を減算して検出器出力から負荷を求めるための二次干渉補正係数を求め、これを前記被計測物体に加わる任意の負荷に対する多分力計測に適用することを特徴とする。
これにより、試験用治具の物理値(重量およびモーメント)に基づく測定誤差が補正され、試験用治具の物理値が被計測物体の計測容量に比較して無視できないような場合においても、高精度の計測が可能となる。
In order to solve the above-described problem, according to the present invention, in a multi-component force measurement method for measuring a multi-component force applied to an object to be measured using a multi-component force detector having high-order mutual interference characteristics, a calibration test before actual measurement is performed. Calculation of 6 component force data (hereinafter referred to as “physical values of test jig”) of weight and moment of calibration jig and multiple force detector (hereinafter simply referred to as “detector”) used for the calculation using primary interference correction coefficient Obtained based on (linear calculation), adding the physical value of the test jig to the 6 component force based on the weight load for the calibration test, to determine the secondary interference correction coefficient related to the output of the detector for the load, A secondary for obtaining the load from the detector output by subtracting the offset value (Ai0 ′) of the secondary interference correction coefficient calculated by using the physical value of the test jig from the output of the detector with respect to the load. Find the interference correction factor and The present invention is characterized in that it is applied to multi-component force measurement with respect to an arbitrary load applied to an object to be measured.
This corrects the measurement error based on the physical values (weight and moment) of the test jig, and even when the physical value of the test jig cannot be ignored compared to the measurement capacity of the object to be measured. Accurate measurement is possible.

前記多分力計測方法において、前記試験用治具の物理値は、検出器の基準となる水平軸と、その周りに90°づつ回転させた位置における4点の出力データの平均値を用いることが好ましい。4点以上のデータを用いる方が補正精度は向上するが、4点の出力データの平均値を用いることにより、実用上問題がなく、較正方法と較正治具の構成がシンプルとなる利点がある。   In the multi-component force measuring method, the physical value of the test jig may be an average value of output data at four points at a position rotated by 90 ° around the horizontal axis as a reference of the detector. preferable. Using four or more points of data improves the correction accuracy, but using the average value of the four points of output data has no practical problem and has the advantage of simplifying the configuration of the calibration method and calibration jig. .

また、前記多分力計測方法において、前記負荷に対する検出器の出力に関する二次干渉補正係数を求める際の検出器の出力は、前記4点の出力データの平均値に基づいて算出されたオフセット値を除去したものとすることが好ましい。これにより、前記発明において、特許文献3に係る発明に係るオフセット(零点調整)に関する改善効果が得られる。   In the multi-component force measurement method, the output of the detector when obtaining a secondary interference correction coefficient related to the output of the detector with respect to the load is an offset value calculated based on an average value of the output data of the four points. It is preferable to remove it. Thereby, in the said invention, the improvement effect regarding the offset (zero point adjustment) which concerns on the invention which concerns on patent document 3 is acquired.

また、前記多分力計測方法において、さらに、前記二次干渉補正係数と前記試験用治具の物理値に基づいて、二次干渉補正後の試験用治具の物理値を求め、前記較正試験用の分銅負荷に基づく6分力に前記二次干渉補正後の試験用治具の物理値を加算して、負荷に対する検出器の出力に関する二次干渉補正係数を求め、前記負荷に対する検出器の出力から前記二次干渉補正後の試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値(Ai0'')を減算して検出器出力から負荷を求めるための二次干渉補正係数を求め、これを前記被計測物体に加わる任意の負荷に対する多分力計測に適用することが好ましい。これにより、さらに高精度の計測が可能となる。なお、補正手順をさらに高次の補正に適用することにより、計測精度を一層向上させることができる。   Further, in the multi-component force measurement method, further, a physical value of the test jig after secondary interference correction is obtained based on the secondary interference correction coefficient and the physical value of the test jig, and the calibration test is performed. The secondary interference correction coefficient related to the output of the detector with respect to the load is obtained by adding the physical value of the test jig after the secondary interference correction to the 6 component force based on the weight load of the detector, and the output of the detector with respect to the load 2 for subtracting the offset value (Ai0 ″) of the secondary interference correction coefficient calculated by using the physical value of the test jig after the secondary interference correction from the detector output to obtain the load from the detector output. It is preferable that a next interference correction coefficient is obtained and applied to multi-component force measurement for an arbitrary load applied to the object to be measured. Thereby, it is possible to measure with higher accuracy. Note that the measurement accuracy can be further improved by applying the correction procedure to higher-order correction.

さらに、二次干渉補正係数の算出方法を特定した前記多分力計測方法としては、下記の方法が好ましい。即ち、負荷に対する検出器の出力に関する二次干渉補正係数の算出は、下記の[数1]を用いて行い、検出器出力から負荷を求めるための二次干渉補正係数の算出は、前記検出器の出力から前記[数1]におけるAiO'を減算した上で、下記の[数2]を用いて行うこととする。

Figure 2014074587
ここで、EFiは検出器の出力(i=1〜6)である。
右辺のFx,Fy,FzおよびMx,My,Mzは、それぞれ、負荷のx,y,z方向の各軸方向の力および各軸回りのモーメントである。
Ai0'は、前記線型計算に基づいて求めた試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値であり、Ai10'〜Ai66'は、前記二次干渉補正係数の変換行列(変換のためのマトリックス)である。
Figure 2014074587
ここで、Fiは試験用治具の物理値を含めた負荷である。
右辺のEFx,EFy,EFzおよびEMx,EMy,EMzは、それぞれ、検出器のx,y,z方向の各軸方向の力の出力および各軸回りのモーメントの出力である。
Bi0'は、前記線型計算に基づいて求めた試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値であり、Bi10'〜Bi66'は、前記二次干渉補正係数の変換行列(変換のためのマトリックス)である。 Furthermore, as the multi-component force measurement method specifying the method for calculating the secondary interference correction coefficient, the following method is preferable. That is, the calculation of the secondary interference correction coefficient regarding the output of the detector with respect to the load is performed using the following [Equation 1], and the calculation of the secondary interference correction coefficient for obtaining the load from the detector output is performed by the detector. After subtracting AiO ′ in [Expression 1] from the output of [Expression 1], the following [Expression 2] is used.
Figure 2014074587
Here, EFi is the output of the detector (i = 1 to 6).
Fx, Fy, Fz and Mx, My, Mz on the right side are the forces in the axial directions of the load in the x, y, and z directions and the moments about the respective axes, respectively.
Ai0 ′ is an offset value of the secondary interference correction coefficient obtained by calculation using the physical value of the test jig obtained based on the linear calculation, and Ai10 ′ to Ai66 ′ are the secondary interference correction This is a coefficient conversion matrix (matrix for conversion).
Figure 2014074587
Here, Fi is a load including the physical value of the test jig.
EFx, EFy, EFz and EMx, EMy, EMz on the right side are an output of a force in each axis direction in the x, y, and z directions and an output of a moment around each axis, respectively.
Bi0 ′ is the offset value of the secondary interference correction coefficient obtained by calculation using the physical value of the test jig obtained based on the linear calculation, and Bi10 ′ to Bi66 ′ are the secondary interference correction This is a coefficient conversion matrix (matrix for conversion).

また、下記の方法がより好ましい。即ち、前記二次干渉補正後の試験用治具の物理値を加算した負荷に対する検出器の出力に関する二次干渉補正係数の算出は、下記の[数3]を用いて行い、検出器出力から負荷を求めるための二次干渉補正係数の算出は、前記検出器の出力から前記[数3]におけるAiO''を減算した上で、下記の[数4]を用いて行うこととする。
下記の[数3]および[数4]における各符号は、上記[数1]および[数2]と同様であるが、[数3]および[数4]においては、二次干渉補正後の試験用治具の物理値を加算しているので、[数1]および[数2]における上付き符号「'」を、「''」と表記している。

Figure 2014074587
Figure 2014074587
Moreover, the following method is more preferable. That is, the calculation of the secondary interference correction coefficient related to the output of the detector with respect to the load obtained by adding the physical values of the test jig after the secondary interference correction is performed using the following [Equation 3], from the detector output. The calculation of the secondary interference correction coefficient for obtaining the load is performed using [Equation 4] below after subtracting AiO '' in [Equation 3] from the output of the detector.
The codes in [Equation 3] and [Equation 4] below are the same as those in [Equation 1] and [Equation 2], but in [Equation 3] and [Equation 4] Since the physical values of the test jig are added, the superscript “′” in [Equation 1] and [Equation 2] is expressed as “″”.
Figure 2014074587
Figure 2014074587

本発明によれば、較正治具等の重量や重心位置を正確に求めることにより較正治具等の重量やモーメントに基づく測定誤差を補正可能とし、従来より高精度な多分力計測方法を提供することできる。   According to the present invention, it is possible to correct a measurement error based on the weight or moment of a calibration jig or the like by accurately obtaining the weight or center of gravity position of the calibration jig or the like, and provide a multi-force measurement method with higher accuracy than before. I can.

試験用治具(較正治具は図示せず)の座標系と重心の定義ならびに負荷の6分力および検出器の出力の記号を示す図Diagram showing the definition of the coordinate system and center of gravity of the test jig (calibration jig not shown), the 6 component force of the load, and the symbol of the detector output 検出器の線型較正試験における負荷時の出力および出力から負荷の算出式を示す図The figure which shows the calculation formula of the load from the output at the time of load and the output in the linear calibration test of the detector 検出器の試験用治具による実負荷と検出器の出力の関係を4点のデータについて示す図であって、作用する負荷と検出器の出力に関する一般的な関係を示す図FIG. 4 is a diagram showing the relationship between the actual load by the detector test jig and the output of the detector with respect to four points of data, and a diagram showing the general relationship between the acting load and the output of the detector 図3と同様の図であって、実負荷として試験用治具の物理値が作用している場合の関係を示す図FIG. 4 is a view similar to FIG. 3, showing a relationship when a physical value of a test jig is acting as an actual load. 図4に基づいて算出した図であって、オフセットの近似値の算出結果を示す図FIG. 5 is a diagram calculated based on FIG. 4, and shows a calculation result of an approximate value of offset 図4と同様の図であって、実負荷とオフセット除去後の検出器出力の関係を示す図FIG. 5 is a diagram similar to FIG. 4, showing the relationship between the actual load and the detector output after offset removal. 較正試験において、試験用治具を用いて所定の分銅負荷を加えた場合の、試験用治具の物理値を除く実負荷と検出器の出力を示す図The figure which shows the actual load excluding the physical value of the test jig and the output of the detector when a predetermined weight load is applied using the test jig in the calibration test 図7の実負荷に試験用治具の物理値を加算した場合の実負荷と検出器の出力を示す図The figure which shows the actual load and the output of a detector at the time of adding the physical value of a test jig to the actual load of FIG. 負荷に対する検出器の出力に関する二次干渉補正係数の算出に係る[数1]を示す図The figure which shows [Formula 1] concerning calculation of the secondary interference correction coefficient regarding the output of the detector with respect to load 図8の検出器の出力からオフセット値Ai0'を減算し、減算した出力の表記を変更した図The figure which changed the notation of the output which subtracted offset value Ai0 'from the output of the detector of FIG. 8, and subtracted 検出器出力から負荷を求めるための二次干渉補正係数の算出に係る[数2]を示す図The figure which shows [Formula 2] which concerns on calculation of the secondary interference correction coefficient for calculating | requiring load from a detector output 図7の実負荷に二次干渉補正後の試験用治具の物理値を加算した場合の実負荷と検出器の出力を示す図The figure which shows the actual load and the output of a detector at the time of adding the physical value of the test jig after secondary interference correction to the actual load of FIG. 二次干渉補正後の試験用治具の物理値を加算した負荷に対する検出器の出力に関する二次干渉補正係数の算出に係る[数3]を示す図The figure which shows [Formula 3] which concerns on calculation of the secondary interference correction coefficient regarding the output of the detector with respect to the load which added the physical value of the test jig after secondary interference correction 図8の検出器の出力からオフセット値AiO''を減算し、減算した出力の表記を変更した図Figure of subtracting the offset value AiO '' from the output of the detector in Fig. 8 and changing the notation of the subtracted output 検出器出力から負荷を求めるための二次干渉補正係数の算出に係る[数4]を示す図The figure which shows [Formula 4] concerning calculation of the secondary interference correction coefficient for calculating | requiring load from a detector output.

図1〜15に基づき、本発明の実施形態について、以下に述べる。この発明は、下記の実施形態に限定されるものではなく、本発明の技術思想の範囲内において適宜の異なる実施形態が採用できる。   An embodiment of the present invention will be described below based on FIGS. The present invention is not limited to the following embodiments, and appropriate different embodiments can be employed within the scope of the technical idea of the present invention.

まず、較正試験前の試験用治具の物理値を求めるまでの形態について説明する。
図1は、試験用治具の座標系と重心の定義ならびに負荷の6分力および検出器の出力の記号を示す図を示す。図1においては、較正治具は図示を省略しているが、較正試験においては、特許文献3の図1のように、検出器10に対して較正治具20が取り付けられる。そして、図1においては、負荷に関し、X,Y,Z直交座標系の各軸方向の力をFX,FY,FZで示し、各軸回りのモーメントをMX,MY,MZで示す。また、試験用治具の重心をGで示す。
First, the form until obtaining the physical value of the test jig before the calibration test will be described.
FIG. 1 is a diagram showing the definition of the coordinate system and the center of gravity of the test jig, the six component forces of the load, and the symbols of the detector output. Although the calibration jig is not shown in FIG. 1, in the calibration test, the calibration jig 20 is attached to the detector 10 as shown in FIG. In FIG. 1, regarding the load, the forces in the directions of the respective axes of the X, Y, Z orthogonal coordinate system are indicated by F X , F Y , F Z , and the moments about the respective axes are indicated by M X , M Y , M Z. It shows with. The center of gravity of the test jig is indicated by G.

図2は、検出器の線型較正試験における負荷時の出力および出力から負荷の算出式を示す図であり、図2の前段(1)は負荷時の出力であり、後段(2)は出力から負荷の算出を行う式である。ここで、EFX〜EMZは検出器の出力(EFi)、FX〜MZは検出器に加える負荷(Fi)、そしてA11〜A66は変換行列[Aij]である。また、B11〜B66は逆変換行列[Bij]である(特許文献2の第2頁参照)。 FIG. 2 is a diagram showing a calculation formula for the load from the output and output at the load in the linear calibration test of the detector. The first stage (1) in FIG. 2 is the output at the load, and the second stage (2) is from the output. This is an expression for calculating the load. Here, EF X to EM Z are detector outputs (EFi), F X to M Z are loads (Fi) applied to the detector, and A 11 to A 66 are transformation matrices [Aij]. B 11 to B 66 are inverse transformation matrices [Bij] (see page 2 of Patent Document 2).

図3は、検出器の試験用治具による実負荷と検出器の出力の関係を4点のデータについて示す図であって、作用する負荷と検出器の出力に関する一般的な関係を示す図である。
前記4点のデータとは、検出器の基準となる水平軸(検出器の長手軸)と、その周りに90°づつ回転させた位置における4点のデータ(図3のNo.1〜No.4の各データ)である。No.1〜No.4における検出器の姿勢位置は、それぞれ、No.1は+Fz が上向きであり、No.2は+Fy が上向きであり、No.3は+Fz が下向きであり、No.4は+Fy が下向きである。この検出器の姿勢位置は、後述する図4、図6に関しても同様である。
なお、上記4点のデータに比較して、45°づつ回転させた位置における8点のデータなど多くのデータに基づく程、補正精度が向上することは自明であると考えられるが、較正方法と較正治具の構成をシンプルとする観点から、実用上、4点のデータとするのが好ましい。また、全周について計測しなければならないのではなく、任意の複数個の角度について計測した結果を用いることも可能である。
FIG. 3 is a diagram showing the relationship between the actual load by the detector test jig and the output of the detector with respect to four points of data, and a diagram showing a general relationship regarding the acting load and the output of the detector. is there.
The four points of data are four points of data (No. 1 to No. 1 in FIG. 3) at a horizontal axis (longitudinal axis of the detector) serving as a reference of the detector and a position rotated by 90 ° around the horizontal axis. 4 data). The position of the detector in No.1 to No.4 is + Fz upward for No.1, + Fy is upward for No.3, + Fz is downward for No.3, In No.4, + Fy is downward. This detector position is the same as in FIGS. 4 and 6 described later.
Although it is obvious that the correction accuracy improves as the data is based on more data, such as data on 8 points at a position rotated by 45 ° than the data on 4 points, the calibration method From the viewpoint of simplifying the configuration of the calibration jig, it is preferable to use four points of data for practical use. In addition, it is not necessary to measure the entire circumference, but it is also possible to use the results measured for an arbitrary plurality of angles.

図4は、図3と同様の図であって、実負荷として試験用治具の物理値が作用している場合の関係を示す図である。そして、図4の右側の検出器の出力は、オフセット(EFj0)除去後の出力を示す。図4において、Wは試験用治具の重量, X, Y, Zは試験用治具の重心位置である(図1参照)。
また、EFxi , EFyi , EFzi , EMxi , EMyi , EMzi ( i = 1〜4 ) は、検出器に試験用治具が取付けられている時の検出器出力であり、EFx0, EFy0, EFz0, EMx0, EMy0, EMz0 は、検出器に負荷がまったく作用していない時の出力(無負荷時出力・オフセット)である。
FIG. 4 is a view similar to FIG. 3 and shows the relationship when the physical value of the test jig is acting as an actual load. The output of the right detector in FIG. 4 shows the output after the offset (EFj0) is removed. In FIG. 4, W is the weight of the test jig, and X, Y, and Z are the positions of the center of gravity of the test jig (see FIG. 1).
EFxi, EFyi, EFzi, EMxi, EMyi, EMzi (i = 1 to 4) are detector outputs when the test jig is attached to the detector, and EFx0, EFy0, EFz0, EMx0, EMy0 and EMz0 are outputs (no-load output / offset) when no load is applied to the detector.

次に、オフセットの近似値の算出について述べる。図5は、オフセットの近似値の算出結果を示す図であって図4に基づいて算出した図である。図4におけるNo.1〜No.4の各データの総和は、近似的に、図5の上段に示すものとなる。そして、各分力出力の近似オフセット値は、1/4により、図5の下段に示すものとなる。なお、前記の「近似的」とは、実際には高次成分の干渉の影響を考慮する必要があるが、ここでは、簡便な算出としたことを意味する。   Next, calculation of the approximate value of offset will be described. FIG. 5 is a diagram showing the calculation result of the approximate value of the offset, and is a diagram calculated based on FIG. The total sum of each data of No. 1 to No. 4 in FIG. 4 is approximately shown in the upper part of FIG. Then, the approximate offset value of each component force output is 1/4, and is shown in the lower part of FIG. The above “approximate” actually means that it is necessary to consider the influence of higher-order component interference, but here, it means that the calculation is simple.

そして、図4のオフセット(EFj0)除去後の出力の表記を変更した図が、図6である。
ここで、図2(2)の(出力から負荷の算出式)に、図6のNo.1〜No.4の各データを代入することにより、No.1〜No.4のW, X*W, Y*W, Z*W が求められる。そして、これらの求めた値を平均化すると、一次干渉補正係数を用いた、即ち、線型計算に基づいて求めた試験用治具の物理値が得られる。
FIG. 6 is a diagram in which the notation of the output after removing the offset (EFj0) in FIG. 4 is changed.
Here, by substituting each data of No. 1 to No. 4 of FIG. 6 into (calculation formula of load from output) of FIG. 2 (2), W, X * of No. 1 to No. 4 W, Y * W, Z * W are required. Then, when these obtained values are averaged, the physical value of the test jig obtained using the primary interference correction coefficient, that is, based on the linear calculation is obtained.

以上は試験用治具の物理値を求めるまでの形態の説明であるが、次に較正試験について以下に述べる。まず、試験用治具を用いて所定の分銅負荷を加える。この時の試験用治具の物理値を除く実負荷と検出器の出力を示す図が図7である。そして、図7の実負荷に前記の試験用治具の物理値を加算した場合の実負荷と検出器の出力を示す図が図8である。   The above is description of the form until the physical value of the test jig is obtained. Next, the calibration test will be described below. First, a predetermined weight load is applied using a test jig. FIG. 7 shows the actual load excluding the physical value of the test jig at this time and the output of the detector. FIG. 8 shows the actual load and the output of the detector when the physical value of the test jig is added to the actual load of FIG.

負荷に対する検出器の出力に関する二次干渉補正係数は、特許文献3に記載された方法に基づいて、図9のように算出できる。図9に示す算出の数式は、前記の[数1]と同一であり、EFiは検出器の出力(i=1〜6)であり、その右辺のFx,Fy,FzおよびMx,My,Mzは、それぞれ、負荷のx,y,z方向の各軸方向の力および各軸回りのモーメントであり、Ai0'は、前記線型計算に基づいて求めた試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値であり、Ai10'〜Ai66'は、前記二次干渉補正係数の変換行列(変換のためのマトリックス)である。     The secondary interference correction coefficient related to the output of the detector with respect to the load can be calculated as shown in FIG. 9 based on the method described in Patent Document 3. The calculation formula shown in FIG. 9 is the same as the above [Equation 1], EFi is the output of the detector (i = 1 to 6), and Fx, Fy, Fz and Mx, My, Mz on the right side thereof Are the axial force and the moment about each axis in the x, y, and z directions of the load, respectively, and Ai0 'is calculated using the physical values of the test jig obtained based on the linear calculation. The secondary interference correction coefficient offset values obtained in this manner, and Ai10 ′ to Ai66 ′ are transformation matrices (matrix for conversion) of the secondary interference correction coefficients.

次に、検出器の出力から、前記線型計算に基づいて求めた試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値Ai0'を減算することについて述べる。図8に示す検出器の出力からAi0'を減算することにより、図10の上段に示すものが得られ、図10の上段の右側に示す減算した出力の表記を変更したものを、図10の下段に示す。   Next, subtraction of the offset value Ai0 ′ of the secondary interference correction coefficient obtained by calculation using the physical value of the test jig obtained based on the linear calculation will be described from the output of the detector. 10 is obtained by subtracting Ai0 ′ from the output of the detector shown in FIG. 8, and the notation of the subtracted output shown on the right side of the upper stage of FIG. Shown below.

図10の下段に基づいて算出する、検出器出力から負荷を求めるための二次干渉補正係数の算出式を図11に示す。この図11に示す算出の数式は、前記の[数2]と同一であり、Fiは試験用治具の物理値を含めた負荷であり、その右辺のEFx,EFy,EFzおよびEMx,EMy,EMzは、それぞれ、検出器のx,y,z方向の各軸方向の力の出力および各軸回りのモーメントの出力であり、Bi0'は、前記線型計算に基づいて求めた試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値であり、Bi10'〜Bi66'は、前記二次干渉補正係数の変換行列(変換のためのマトリックス)である。   FIG. 11 shows a calculation formula of the secondary interference correction coefficient for calculating the load from the detector output, which is calculated based on the lower part of FIG. The calculation formula shown in FIG. 11 is the same as the above [Equation 2], Fi is a load including the physical value of the test jig, and EFx, EFy, EFz and EMx, EMy, EMz is the output of the force in each axial direction of the detector in the x, y, and z directions and the output of the moment about each axis, and Bi0 'is the test jig obtained based on the linear calculation. The offset value of the secondary interference correction coefficient calculated by using the physical value, and Bi10 ′ to Bi66 ′ are the transformation matrix (matrix for conversion) of the secondary interference correction coefficient.

上記のようにして検出器出力から負荷を求めるための二次干渉補正係数を求め、これを被計測物体に加わる任意の負荷に対する多分力計測に適用することにより、試験用治具の物理値(重量およびモーメント)に基づく測定誤差が補正され、試験用治具の物理値が被計測物体の計測容量に比較して無視できないような場合においても、高精度の計測が可能となる。   By obtaining a secondary interference correction coefficient for obtaining a load from the detector output as described above and applying this to a multi-component force measurement for an arbitrary load applied to the object to be measured, the physical value of the test jig ( Even when the measurement error based on weight and moment) is corrected and the physical value of the test jig cannot be ignored compared to the measurement capacity of the object to be measured, high-precision measurement is possible.

次に、測定精度をさらに向上させるために、前記二次干渉補正係数と前記試験用治具の物理値に基づいて、さらに、二次干渉補正後の試験用治具の物理値を求め、前記較正試験用の実負荷に基づく6分力に前記二次干渉補正後の試験用治具の物理値を加算して、前記検出器の二次干渉補正係数を求める手順について説明する。   Next, in order to further improve the measurement accuracy, based on the secondary interference correction coefficient and the physical value of the test jig, further determine the physical value of the test jig after secondary interference correction, The procedure for obtaining the secondary interference correction coefficient of the detector by adding the physical value of the test jig after the secondary interference correction to 6 component forces based on the actual load for the calibration test will be described.

まず、前記図11の算出式に前記図6のNo.1〜No.4の各データを代入することにより、No.1〜No.4のW', X'*W', Y'*W', Z'*W' が求められる。そして、これらの求めた値を平均化すると、二次干渉補正係数を用いた試験用治具の物理値が得られる。   First, by substituting each data of No. 1 to No. 4 of FIG. 6 into the calculation formula of FIG. 11, W ′, X ′ * W ′, Y ′ * W of No. 1 to No. 4 are obtained. ', Z' * W 'is required. Then, when these obtained values are averaged, the physical value of the test jig using the secondary interference correction coefficient is obtained.

次に、較正試験時の負荷図7に、前記二次干渉補正係数を用いた試験用治具の物理値を加算することにより、図12が得られる。   Next, FIG. 12 is obtained by adding the physical value of the test jig using the secondary interference correction coefficient to the load FIG. 7 at the time of the calibration test.

図12に基づいて算出する、負荷に対する検出器の出力に関する二次干渉補正係数は、図13により算出できる。図13に示す算出の数式は、前記の[数3]と同一である。数式の各符号の詳細は、前述のとおりである。   The secondary interference correction coefficient relating to the output of the detector with respect to the load, calculated based on FIG. 12, can be calculated using FIG. The calculation formula shown in FIG. 13 is the same as [Formula 3]. The details of each symbol in the mathematical formula are as described above.

前述した手順と同様に、図8に示す検出器の出力から、前記図13におけるAiO''を減算することにより、図14の上段に示すものが得られ、上段の右側に示す減算した出力の表記を変更したものとして、図14の下段に示すものが得られる。   Similar to the above-described procedure, by subtracting AiO ″ in FIG. 13 from the output of the detector shown in FIG. 8, the result shown in the upper part of FIG. 14 is obtained, and the output of the subtracted output shown on the right side of the upper part is obtained. As what changed the notation, what is shown in the lower part of FIG. 14 is obtained.

図14の下段に基づいて算出する、検出器出力から負荷を求めるための二次干渉補正係数の算出式を図15に示す。この図15に示す算出の数式は、前記の[数4]と同一である。   FIG. 15 shows the calculation formula of the secondary interference correction coefficient for calculating the load from the detector output, which is calculated based on the lower part of FIG. The calculation formula shown in FIG. 15 is the same as the above [Equation 4].

上記のようにして、二次干渉補正後の試験用治具の物理値を求め、較正試験用の分銅負荷に基づく6分力に前記二次干渉補正後の試験用治具の物理値を加算して、負荷に対する検出器の出力に関する二次干渉補正係数を求め、前記負荷に対する検出器の出力から前記二次干渉補正後の試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値(Ai0'')を減算して検出器出力から負荷を求めるための二次干渉補正係数を求め、
これを被計測物体に加わる任意の負荷に対する多分力計測に適用することにより、試験用治具の物理値(重量およびモーメント)に基づく測定誤差が、高度に補正され、試験用治具の物理値が被計測物体の計測容量に比較して無視できないような場合においても、さらに高精度の計測が可能となる。
較正試験に用いる較正治具等の重量が比較的大きく、被計測物体の計測容量に対して無視できないような場合の測定誤差の一例として、従来、誤差が0.5%であったものが、上記本発明の補正方法により、0.1%に低減することができた。
As described above, the physical value of the test jig after the secondary interference correction is obtained, and the physical value of the test jig after the secondary interference correction is added to the 6 component force based on the weight load for the calibration test. Then, a secondary interference correction coefficient related to the output of the detector with respect to the load is obtained, and the secondary obtained by calculating from the output of the detector with respect to the load using the physical value of the test jig after the secondary interference correction. Subtract the offset value (Ai0 '') of the interference correction coefficient to obtain the secondary interference correction coefficient for obtaining the load from the detector output,
By applying this to multi-component force measurement for any load applied to the object to be measured, the measurement error based on the physical values (weight and moment) of the test jig is highly corrected, and the physical values of the test jig Even when the measurement capacity is not negligible compared to the measurement capacity of the object to be measured, it is possible to measure with higher accuracy.
As an example of the measurement error when the weight of the calibration jig or the like used for the calibration test is relatively large and cannot be ignored with respect to the measurement capacity of the object to be measured, By the correction method of the present invention, it was possible to reduce to 0.1%.

Claims (6)

高次の相互干渉特性を有する多分力検出器を用いて被計測物体に加わる多分力を計測する多分力計測方法において、実測前の較正試験に用いる較正治具および多分力検出器(以下、単に検出器という。)の重量およびモーメントの6分力データ(以下、試験用治具の物理値という。)を一次干渉補正係数を用いた計算(線型計算)に基づいて求め、較正試験用の分銅負荷に基づく6分力に前記試験用治具の物理値を加算して、負荷に対する検出器の出力に関する二次干渉補正係数を求め、前記負荷に対する検出器の出力から前記試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値(Ai0')を減算して検出器出力から負荷を求めるための二次干渉補正係数を求め、これを前記被計測物体に加わる任意の負荷に対する多分力計測に適用することを特徴とする多分力計測方法。   In a multi-component force measurement method for measuring multi-component force applied to an object to be measured using a multi-component force detector having high-order mutual interference characteristics, a calibration jig and multi-component force detector (hereinafter simply referred to as a pre-measurement calibration test) are used. 6 component force data of weight and moment (hereinafter referred to as “physical value of test jig”) of the detector) is obtained based on a calculation (linear calculation) using a primary interference correction coefficient, and a weight for calibration test. The physical value of the test jig is added to the 6 component force based on the load to obtain a secondary interference correction coefficient related to the output of the detector with respect to the load, and the physical of the test jig is calculated from the output of the detector with respect to the load. Subtract the offset value (Ai0 ′) of the secondary interference correction coefficient obtained by calculation using the value to obtain a secondary interference correction coefficient for obtaining the load from the detector output, and add this to the object to be measured Maybe for any load It is applied to force measurement. 請求項1に記載の多分力計測方法において、前記試験用治具の物理値は、検出器の基準となる水平軸と、その周りに90°づつ回転させた位置における4点の出力データの平均値を用いることを特徴とする多分力計測方法。   2. The method according to claim 1, wherein the physical value of the test jig is an average of output data of four points at a position rotated by 90 ° around the horizontal axis serving as a reference of the detector. A method for measuring the force of force, characterized by using a value. 請求項2に記載の多分力計測方法において、前記負荷に対する検出器の出力に関する二次干渉補正係数を求める際の検出器の出力は、前記4点の出力データの平均値に基づいて算出されたオフセット値を除去したものとすることを特徴とする多分力計測方法。   The multi-component force measurement method according to claim 2, wherein an output of the detector when obtaining a secondary interference correction coefficient related to the output of the detector with respect to the load is calculated based on an average value of the output data of the four points. A multi-force measuring method, wherein the offset value is removed. 請求項1に記載の多分力計測方法において、さらに、前記二次干渉補正係数と前記試験用治具の物理値に基づいて、二次干渉補正後の試験用治具の物理値を求め、前記較正試験用の分銅負荷に基づく6分力に前記二次干渉補正後の試験用治具の物理値を加算して、負荷に対する検出器の出力に関する二次干渉補正係数を求め、前記負荷に対する検出器の出力から前記二次干渉補正後の試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値(Ai0'')を減算して検出器出力から負荷を求めるための二次干渉補正係数を求め、これを前記被計測物体に加わる任意の負荷に対する多分力計測に適用することを特徴とする多分力計測方法。   The multi-component force measuring method according to claim 1, further comprising obtaining a physical value of the test jig after secondary interference correction based on the secondary interference correction coefficient and the physical value of the test jig, The secondary interference correction coefficient related to the output of the detector with respect to the load is obtained by adding the physical value of the test jig after the secondary interference correction to the 6 component force based on the weight load for the calibration test, and detection for the load Subtract the offset value (Ai0 ″) of the secondary interference correction coefficient calculated by using the physical value of the test jig after secondary interference correction from the output of the detector to obtain the load from the detector output A multi-component force measuring method for obtaining a multi-component interference correction coefficient for applying to a multi-component force measurement for an arbitrary load applied to the object to be measured. 請求項3に記載の多分力計測方法において、負荷に対する検出器の出力に関する二次干渉補正係数の算出は、下記の[数1]を用いて行い、検出器出力から負荷を求めるための二次干渉補正係数の算出は、前記検出器の出力から前記[数1]におけるAiO'を減算した上で、下記の[数2]を用いて行うことを特徴とする多分力計測方法。

Figure 2014074587
ここで、EFiは検出器の出力(i=1〜6)である。
右辺のFx,Fy,FzおよびMx,My,Mzは、それぞれ、負荷のx,y,z方向の各軸方向の力および各軸回りのモーメントである。
Ai0'は、前記線型計算に基づいて求めた試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値であり、Ai10'〜Ai66'は、前記二次干渉補正係数の変換行列(変換のためのマトリックス)である。
Figure 2014074587

ここで、Fiは試験用治具の物理値を含めた負荷である。
右辺のEFx,EFy,EFzおよびEMx,EMy,EMzは、それぞれ、検出器のx,y,z方向の各軸方向の力の出力および各軸回りのモーメントの出力である。
Bi0'は、前記線型計算に基づいて求めた試験用治具の物理値を用いて計算して求めた二次干渉補正係数のオフセット値であり、Bi10'〜Bi66'は、前記二次干渉補正係数の変換行列(変換のためのマトリックス)である。
4. The method for measuring force of multiple applications according to claim 3, wherein the calculation of the secondary interference correction coefficient relating to the output of the detector with respect to the load is performed using the following [Equation 1], and a secondary for obtaining the load from the detector output. The interference correction coefficient is calculated by subtracting AiO ′ in [Expression 1] from the output of the detector and then using the following [Expression 2].

Figure 2014074587
Here, EFi is the output of the detector (i = 1 to 6).
Fx, Fy, Fz and Mx, My, Mz on the right side are the forces in the axial directions of the load in the x, y, and z directions and the moments about the respective axes, respectively.
Ai0 ′ is an offset value of the secondary interference correction coefficient obtained by calculation using the physical value of the test jig obtained based on the linear calculation, and Ai10 ′ to Ai66 ′ are the secondary interference correction This is a coefficient conversion matrix (matrix for conversion).
Figure 2014074587

Here, Fi is a load including the physical value of the test jig.
EFx, EFy, EFz and EMx, EMy, EMz on the right side are an output of a force in each axis direction in the x, y, and z directions and an output of a moment around each axis, respectively.
Bi0 ′ is the offset value of the secondary interference correction coefficient obtained by calculation using the physical value of the test jig obtained based on the linear calculation, and Bi10 ′ to Bi66 ′ are the secondary interference correction This is a coefficient conversion matrix (matrix for conversion).
請求項4に記載の多分力計測方法において、前記二次干渉補正後の試験用治具の物理値を加算した負荷に対する検出器の出力に関する二次干渉補正係数の算出は、下記の[数3]を用いて行い、検出器出力から負荷を求めるための二次干渉補正係数の算出は、前記検出器の出力から前記[数3]におけるAiO''を減算した上で、下記の[数4]を用いて行うことを特徴とする多分力計測方法。
下記の[数3]および[数4]における各符号は、上記[数1]および[数2]と同様であるが、[数3]および[数4]においては、二次干渉補正後の試験用治具の物理値を加算しているので、[数1]および[数2]における上付き符号「'」を、「''」と表記している。
Figure 2014074587

Figure 2014074587
5. The multi-component force measurement method according to claim 4, wherein the calculation of the secondary interference correction coefficient relating to the output of the detector with respect to the load obtained by adding the physical values of the test jig after the secondary interference correction is expressed by the following [Equation 3]. The secondary interference correction coefficient for obtaining the load from the detector output is calculated by subtracting AiO ″ in the [Equation 3] from the output of the detector, and the following [Equation 4]. ], Which is performed using the method.
The codes in [Equation 3] and [Equation 4] below are the same as those in [Equation 1] and [Equation 2], but in [Equation 3] and [Equation 4] Since the physical values of the test jig are added, the superscript “′” in [Equation 1] and [Equation 2] is expressed as “″”.
Figure 2014074587

Figure 2014074587
JP2012220468A 2012-10-02 2012-10-02 Multi-force measurement method Active JP5995635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012220468A JP5995635B2 (en) 2012-10-02 2012-10-02 Multi-force measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012220468A JP5995635B2 (en) 2012-10-02 2012-10-02 Multi-force measurement method

Publications (2)

Publication Number Publication Date
JP2014074587A true JP2014074587A (en) 2014-04-24
JP5995635B2 JP5995635B2 (en) 2016-09-21

Family

ID=50748835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012220468A Active JP5995635B2 (en) 2012-10-02 2012-10-02 Multi-force measurement method

Country Status (1)

Country Link
JP (1) JP5995635B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760220A (en) * 2018-05-28 2018-11-06 中国航空工业集团公司沈阳空气动力研究所 A kind of external store balance tailstock support device for measuring mechanism in six degree of freedom interference
JP2020034425A (en) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 Sensor system, robot hand, sensor system calibration method, and program
JP2020041868A (en) * 2018-09-08 2020-03-19 株式会社テック技販 Load cell
CN112857667A (en) * 2021-03-15 2021-05-28 合肥工业大学 Hybrid excitation dynamic calibration method of strain type six-dimensional force sensor
JP2022168639A (en) * 2021-04-26 2022-11-08 株式会社トライフォース・マネジメント Calibration method of force sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686820B (en) * 2019-10-25 2021-04-13 重庆凯瑞汽车试验设备开发有限公司 Method for measuring and calculating force and moment for wheel alignment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190895A (en) * 1984-10-09 1986-05-09 株式会社日立製作所 Transform-matrix detection method of force sensor
JPH06103236B2 (en) * 1988-04-19 1994-12-14 日章電機株式会社 Maybe force measurement method
JP2886832B2 (en) * 1996-12-12 1999-04-26 鎮▲かく▼ 東島 Maybe force measurement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190895A (en) * 1984-10-09 1986-05-09 株式会社日立製作所 Transform-matrix detection method of force sensor
JPH06103236B2 (en) * 1988-04-19 1994-12-14 日章電機株式会社 Maybe force measurement method
JP2886832B2 (en) * 1996-12-12 1999-04-26 鎮▲かく▼ 東島 Maybe force measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760220A (en) * 2018-05-28 2018-11-06 中国航空工业集团公司沈阳空气动力研究所 A kind of external store balance tailstock support device for measuring mechanism in six degree of freedom interference
CN108760220B (en) * 2018-05-28 2024-03-26 中国航空工业集团公司沈阳空气动力研究所 External balance tailstock supporting device for measuring six-degree-of-freedom mechanism interference
JP2020034425A (en) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 Sensor system, robot hand, sensor system calibration method, and program
JP2020041868A (en) * 2018-09-08 2020-03-19 株式会社テック技販 Load cell
CN112857667A (en) * 2021-03-15 2021-05-28 合肥工业大学 Hybrid excitation dynamic calibration method of strain type six-dimensional force sensor
JP2022168639A (en) * 2021-04-26 2022-11-08 株式会社トライフォース・マネジメント Calibration method of force sensor

Also Published As

Publication number Publication date
JP5995635B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5995635B2 (en) Multi-force measurement method
CN109733638B (en) Load application method under large deformation condition of long strut undercarriage
EP3514511B1 (en) Method and system for determining the weight and centre of gravity of a structure
CN115307866B (en) Wind tunnel balance body axis elastic angle online calibration device and method
CN109299579B (en) Method for correcting wind tunnel force test data of large-aspect-ratio aircraft
Lynn et al. Wind-tunnel force balance characterization for hypersonic research applications
Tegtmeier et al. Investigation of Transfer Standards in the Highest Range up to 50 MN within EMRP Project SIB 63
Zhou et al. A six dimensional dynamic force/moment measurement platform based on matrix sensors designed for large equipment
CN115070731B (en) Geometric error calibration method and system for parallel mechanism and electronic equipment
Zhang et al. Mechanical analysis of normal force interference on axial force measurement for internal sting balance
CN108692727B (en) Strapdown inertial navigation system with nonlinear compensation filter
CN109918842B (en) Correction method for load of undercarriage applied by crow bar
Jarak et al. Mixed Meshless Local Petrov-Galerkin Methods for Solving Linear Fourth-Order Differential Equations
CN108507502B (en) Method for measuring engineering collimation parameters of accelerator
Toro et al. Comparative Analysis of Two Cryogenic Force Balance Calibration Systems
Yanamashetti et al. Application of global regression method for Calibration of wind tunnel balances
Lynn et al. High-Reynolds number active blowing semi-span force measurement system development
Favaregh et al. Space Launch System Aerodynamic Database Uncertainty Quantification Methodologies
Lynn et al. Experimental design considerations for calibration of semispan force measurement systems
Bol’shakova et al. Examination of systematic bench errors for calibration of a strain-gauge balance
JPH01267429A (en) Measurement of multiple component forces
Ulbrich et al. A baseline load schedule for the manual calibration of a force balance
Ulbrich et al. Assessment of Temperature-Dependent Regression Model Terms of a RUAG Six-Component Block-Type Balance
CN115391744B (en) Load sensor dynamic model parameter identification method and device
Ulbrich et al. Calibration and Data Analysis Recommendations for Three-Component Moment Balances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160823

R150 Certificate of patent or registration of utility model

Ref document number: 5995635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250