JP2014074529A - Combustion device - Google Patents

Combustion device Download PDF

Info

Publication number
JP2014074529A
JP2014074529A JP2012221739A JP2012221739A JP2014074529A JP 2014074529 A JP2014074529 A JP 2014074529A JP 2012221739 A JP2012221739 A JP 2012221739A JP 2012221739 A JP2012221739 A JP 2012221739A JP 2014074529 A JP2014074529 A JP 2014074529A
Authority
JP
Japan
Prior art keywords
combustion
correction value
supply
correction coefficient
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012221739A
Other languages
Japanese (ja)
Other versions
JP5707370B2 (en
Inventor
Kazuyuki Akagi
万之 赤木
Takeshi Takeuchi
健 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2012221739A priority Critical patent/JP5707370B2/en
Publication of JP2014074529A publication Critical patent/JP2014074529A/en
Application granted granted Critical
Publication of JP5707370B2 publication Critical patent/JP5707370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion device capable of achieving a proper combustion state immediately after the start of a combustion operation.SOLUTION: When a combustion operation starts, a combustion state is detected and a supply amount of a fuel gas or combustion air is corrected. Also, correction values (supply correction values) are stored for a plurality of times of combustion operations. During a period from the start of the combustion operation to the detection of a combustion state, the supply amount of the fuel gas or the combustion air is corrected based on an estimated correction value determined from a plurality of times of supply correction values. As the estimated correction value is determined from the plurality of times of supply correction values determined based on a detection result of the combustion state, by using the estimated correction value, proper correction is possible even immediately after the start of the combustion operation. Furthermore, as the estimated correction value is determined from the plurality of times of supply correction values, even when the supply correction values vary greatly due to a sudden factor, the influence can be eliminated and a proper combustion state can always be achieved.

Description

本発明は、燃料ガスと燃焼用空気とを混合させて生成した混合ガスを燃焼させる燃焼装置に関する。   The present invention relates to a combustion apparatus for burning a mixed gas generated by mixing fuel gas and combustion air.

給湯装置や暖房装置には、燃料ガスと燃焼用空気とを混合させて生成した混合ガスを燃焼させる燃焼装置が搭載されている。燃焼装置で混合ガスを適切に燃焼させるためには、燃料ガスと燃焼用空気とを適切な比率で混合させる必要がある。そこで、燃焼装置には温度センサーの一種である熱電対が設けられている。混合ガスが燃焼したときの火炎の温度(燃焼状態)は、燃料ガスと燃焼用空気とが混合した比率(空燃比)と対応しているので、燃焼火炎の温度が適切な温度となるように燃焼用空気(あるいは燃料ガスの一方または両方)の供給量を調整すれば、混合ガスを適切に燃焼させることができる。   A hot water supply device and a heating device are equipped with a combustion device that burns a mixed gas generated by mixing fuel gas and combustion air. In order to properly burn the mixed gas in the combustion apparatus, it is necessary to mix the fuel gas and the combustion air at an appropriate ratio. Therefore, the combustion apparatus is provided with a thermocouple which is a kind of temperature sensor. The temperature of the flame when the mixed gas burns (combustion state) corresponds to the ratio (air-fuel ratio) of the fuel gas and combustion air mixed so that the temperature of the combustion flame becomes an appropriate temperature. By adjusting the supply amount of combustion air (or one or both of the fuel gases), the mixed gas can be combusted appropriately.

もっとも、混合ガスに点火して燃焼運転を開始した直後は、熱電対が温まっていないので火炎の温度を正確に検出することができない。そこで、熱電対の暖機が完了したら少しでも早く火炎の温度を検出するために、熱電対が室温まで完全に冷えている状態から点火する「初点火時」と、燃焼終了後で熱電対が未だ完全には冷えていない状態から点火する「再点火時」とを区別して、再点火時には、点火後の早い時期から火炎の温度を検出するようにした技術が提案されている(特許文献1)。   However, immediately after starting the combustion operation by igniting the mixed gas, the temperature of the flame cannot be accurately detected because the thermocouple is not warmed. Therefore, in order to detect the temperature of the flame as soon as possible after the thermocouple has been warmed up, the thermocouple is ignited from the state where it is completely cooled to room temperature. A technique has been proposed in which flame temperature is detected from the early stage after ignition at the time of reignition, distinguishing from “at the time of reignition” in which ignition is performed from a state that has not yet cooled completely (Patent Document 1). ).

特開平8−14552号公報JP-A-8-14552

しかし、提案の技術であっても、燃焼運転の開始直後は依然として火炎の温度を検出できないので、燃料ガスあるいは燃焼用空気の供給量を制御することはできない。その結果、燃焼運転を開始してから暫くの間は燃焼不良が発生する虞があるという問題があった。   However, even with the proposed technique, the flame temperature cannot be detected immediately after the start of the combustion operation, and therefore the supply amount of fuel gas or combustion air cannot be controlled. As a result, there has been a problem that there is a possibility that a combustion failure may occur for a while after starting the combustion operation.

この発明は従来の技術における上述した課題に対応してなされたものであり、燃焼運転の開始直後から適切な燃焼状態を実現することが可能な燃焼装置の提供を目的とする。   The present invention has been made in response to the above-described problems in the prior art, and an object thereof is to provide a combustion apparatus capable of realizing an appropriate combustion state immediately after the start of the combustion operation.

上述した課題を解決するために本発明の燃焼装置は次の構成を採用した。すなわち、
燃料ガスと燃焼用空気とを混合させた混合ガスに点火することによって燃焼運転を開始する燃焼運転開始手段と、前記混合ガスの燃焼状態を検出する燃焼状態検出手段と、前記燃焼状態の検出結果に基づいて前記燃料ガスまたは前記燃焼用空気の少なくとも一方の供給量を補正する供給量補正手段とを備える燃焼装置において、
前記供給量補正手段による前記供給量の補正値である供給補正値を記憶する供給補正値記憶手段と、
前記燃焼運転を開始してから前記燃焼状態が検出されるまでの間は、前記供給補正値に基づいて決定された見込み補正値に従って、前記燃料ガスまたは前記燃焼用空気の少なくとも一方の供給量を補正する見込み補正手段と、
前記燃焼運転を開始するより前に、前記供給補正値に基づいて前記見込み補正値を決定する見込み補正値決定手段と
を備え、
前記供給補正値記憶手段は、複数回の前記燃焼運転を遡って該複数回分の前記供給補正値を記憶しており、
前記見込み補正値決定手段は、前記複数回分の供給補正値に基づいて前記見込み補正値を決定することを特徴とする。
In order to solve the above-described problems, the combustion apparatus of the present invention employs the following configuration. That is,
Combustion operation start means for starting combustion operation by igniting a mixed gas obtained by mixing fuel gas and combustion air, combustion state detection means for detecting the combustion state of the mixed gas, and detection result of the combustion state And a supply amount correcting means for correcting a supply amount of at least one of the fuel gas or the combustion air based on
Supply correction value storage means for storing a supply correction value that is a correction value of the supply amount by the supply amount correction means;
During the period from the start of the combustion operation until the combustion state is detected, the supply amount of at least one of the fuel gas or the combustion air is set according to the expected correction value determined based on the supply correction value. Prospect correction means to correct,
Before starting the combustion operation, the expected correction value determining means for determining the expected correction value based on the supply correction value,
The supply correction value storage means stores the supply correction values for a plurality of times retrospectively for a plurality of times of the combustion operation,
The expectation correction value determining means determines the expectation correction value based on the plurality of supply correction values.

かかる本発明の燃焼装置においては、燃焼運転を開始すると、燃焼状態の検出結果に基づいて燃料ガスまたは燃焼用空気の少なくとも一方の供給量を補正する。また、このときの供給量の補正値(供給補正値)は、複数回分の燃焼運転を遡って記憶しておく。そして、燃焼運転を開始してから燃焼状態が検出されるまでの間は、複数回分の供給補正値から決定された見込み補正値に基づいて、燃料ガスまたは燃焼用空気の少なくとも一方の供給量を補正する。   In the combustion apparatus of the present invention, when the combustion operation is started, the supply amount of at least one of the fuel gas and the combustion air is corrected based on the detection result of the combustion state. Also, the supply amount correction value (supply correction value) at this time is stored retrospectively for a plurality of combustion operations. Then, from the start of the combustion operation until the combustion state is detected, the supply amount of at least one of the fuel gas or the combustion air is set based on the expected correction value determined from the supply correction values for a plurality of times. to correct.

燃焼運転を開始してから燃焼状態が検出されるまでの間に用いられる見込み補正値は、複数回分の燃焼運転時の供給補正値に基づいて決定されており、しかも、それぞれの供給補正値は、燃焼状態の検出結果に基づいて決定されている。このため、見込み補正値に基づいて補正すれば、燃焼状態が検出されるまでの間も、燃料ガスまたは燃焼用空気の少なくとも一方の供給量を適切に補正することができる。加えて、見込み補正値は、複数回分の燃焼運転時の供給補正値に基づいて決定されるので、たとえ突発的な要因で燃焼運転時の供給補正値が大きく変動することがあっても、その影響を排除することができる。その結果、燃焼運転の開始直後から適切な燃焼状態を実現することが可能となる。   The expected correction value used between the start of the combustion operation and the detection of the combustion state is determined based on the supply correction value at the time of multiple combustion operations, and each supply correction value is It is determined based on the detection result of the combustion state. For this reason, if it correct | amends based on a prospective correction value, the supply amount of at least one of fuel gas or combustion air can be correct | amended appropriately until a combustion state is detected. In addition, the prospective correction value is determined based on the supply correction value at the time of a plurality of combustion operations, so even if the supply correction value at the time of combustion operation greatly fluctuates due to a sudden factor, The influence can be eliminated. As a result, an appropriate combustion state can be realized immediately after the start of the combustion operation.

また、上述した本発明の燃焼装置においては、燃焼運転の開始時に用いた見込み補正値よりも、その燃焼運転で燃焼状態を検出した結果に基づいて得られた供給補正値の方が小さかった場合には、その供給補正値を、次回の燃焼運転開始時に用いる見込み補正値として決定してもよい。   Further, in the above-described combustion apparatus of the present invention, when the supply correction value obtained based on the result of detecting the combustion state in the combustion operation is smaller than the expected correction value used at the start of the combustion operation. Alternatively, the supply correction value may be determined as a prospective correction value used at the start of the next combustion operation.

燃焼装置のメンテナンスが行われると、燃焼装置が正常な状態に復帰するので、燃焼状態を正常な状態にするための補正値(供給補正値)は小さくなる傾向にある。従って、メンテナンスが行われた直後の燃焼運転では、その燃焼運転での供給補正値が小さくなる一方で、メンテナンス前の供給補正値に基づいて決定される見込み補正値は大きな値のままとなっている。このことから、ある燃焼運転での供給補正値が、その燃焼運転開始時に用いた見込み補正値よりも小さくなった場合に、その供給補正値を次回の燃焼運転開始時に用いる見込み補正値としてやれば、メンテナンスが行われたことを直ちに見込み補正値に反映させて適切に混合ガスを燃焼させることが可能となる。   When maintenance of the combustion apparatus is performed, the combustion apparatus returns to a normal state, so that a correction value (supply correction value) for making the combustion state normal is likely to be small. Therefore, in the combustion operation immediately after the maintenance is performed, the supply correction value in the combustion operation becomes small, while the expected correction value determined based on the supply correction value before the maintenance remains a large value. Yes. From this, when the supply correction value in a certain combustion operation becomes smaller than the expected correction value used at the start of the combustion operation, the supply correction value is used as the expected correction value used at the start of the next combustion operation. The mixed gas can be appropriately burned by immediately reflecting the fact that the maintenance has been performed in the expected correction value.

また、上述した本発明の燃焼装置においては、次のようにして、複数回分の供給補正値から見込み補正値を決定してもよい。先ず、複数回分の供給補正値の最大値と最小値との差が所定の閾値よりも小さいか否かを判断する。そして、差の値の方が閾値よりも小さかった場合には、その供給補正値の最小値を、見込み補正値として決定してもよい。   In the combustion apparatus of the present invention described above, the expected correction value may be determined from the supply correction values for a plurality of times as follows. First, it is determined whether or not the difference between the maximum value and the minimum value of the supply correction values for a plurality of times is smaller than a predetermined threshold value. If the difference value is smaller than the threshold value, the minimum value of the supply correction value may be determined as the prospective correction value.

こうすれば、複数回分の供給補正値から簡単に見込み補正値を決定することができる。また、見込み補正値を常に控えめに見積もることになるので、燃焼運転を開始してから燃焼状態が検出されるまでの補正が過大となって燃焼状態が不安定になることがない。   In this way, it is possible to easily determine a prospective correction value from a plurality of supply correction values. In addition, since the expected correction value is always estimated conservatively, the correction from the start of the combustion operation to the detection of the combustion state is not excessive, and the combustion state does not become unstable.

また、上述した本発明の燃焼装置においては、次のようにして見込み補正値を決定しても良い。先ず、複数回分の供給補正値の最大値と最小値との差が所定の閾値よりも大きいか否かを判断する。そして、差の値の方が閾値よりも大きかった場合には、前回の燃焼運転の開始時に用いた見込み補正値を、新たな見込み補正値として決定してもよい。   Further, in the combustion apparatus of the present invention described above, the prospective correction value may be determined as follows. First, it is determined whether or not the difference between the maximum value and the minimum value of the supply correction values for a plurality of times is greater than a predetermined threshold value. If the difference value is larger than the threshold value, the prediction correction value used at the start of the previous combustion operation may be determined as a new prediction correction value.

燃焼運転を何回も繰り返している間には、何らかの突発的な理由で、ある燃焼運転での供給補正値が大きく変化することが起こり得る。このような場合でも本発明の燃焼装置では、複数回分の供給補正値の最大値と最小値との差が所定の閾値よりも大きくなるので、前回の燃焼運転開始時に用いた見込み補正値が、次回の燃焼運転開始時の見込み補正値として使用される。このため、何らかの突発的な理由で供給補正値が大きく変化した燃焼運転が発生した場合でも、その影響を受けることなく、常に燃焼運転の開始直後から、適切に混合ガスを燃焼させることができる。   While the combustion operation is repeated many times, the supply correction value in a certain combustion operation may change greatly for some unexpected reason. Even in such a case, in the combustion apparatus of the present invention, the difference between the maximum value and the minimum value of the supply correction values for a plurality of times becomes larger than a predetermined threshold value, so the expected correction value used at the start of the previous combustion operation is This is used as a prospective correction value at the start of the next combustion operation. For this reason, even when a combustion operation in which the supply correction value is greatly changed for some unexpected reason occurs, the mixed gas can always be appropriately burned immediately after the start of the combustion operation without being affected by it.

また、上述した本発明の燃焼装置においては、燃料ガスの供給量が所定値よりも小さい低負荷運転時と、低負荷運転時よりも燃料ガスの供給量が大きい高負荷運転時とを区別した状態で供給量を補正しても良い。そして、燃焼運転を開始してから燃焼状態を検出するまでの間も、低負荷運転時および高負荷運転時のそれぞれの供給補正値に基づいて見込み補正値を決定して供給量を補正しても良い。   Further, in the combustion apparatus of the present invention described above, a distinction is made between a low load operation in which the fuel gas supply amount is smaller than a predetermined value and a high load operation in which the fuel gas supply amount is larger than that in the low load operation. The supply amount may be corrected in the state. Then, from the start of the combustion operation to the detection of the combustion state, the expected correction value is determined based on the respective supply correction values during the low load operation and the high load operation, and the supply amount is corrected. Also good.

こうすれば、低負荷運転時と高負荷運転時とを区別して供給量を補正することができるので、より適切に供給量を補正して適切に混合ガスを燃焼させることが可能となる。   In this way, the supply amount can be corrected by distinguishing between the low load operation and the high load operation, so that it is possible to more appropriately correct the supply amount and appropriately burn the mixed gas.

本実施例の燃焼装置100を備えた給湯装置1の構成を示す説明図である。It is explanatory drawing which shows the structure of the hot water supply apparatus 1 provided with the combustion apparatus 100 of a present Example. 本実施例の運転制御処理のフローチャートである。It is a flowchart of the operation control process of a present Example. 燃料ガス供給量に対してファン回転速度が設定されたマップを示す説明図である。It is explanatory drawing which shows the map in which the fan rotational speed was set with respect to the fuel gas supply amount. 運転制御処理内で実行される活性前補正係数決定処理のフローチャートである。It is a flowchart of the pre-activation correction coefficient determination process executed in the operation control process. 次回の燃焼運転開始時に用いる活性前補正係数RTCIN(0)を3つの活性後補正係数RTC(1)〜(3)に基づいて決定する様子を例示した説明図である。It is explanatory drawing which illustrated a mode that the correction coefficient RTCIN (0) before activation used at the time of the next combustion operation start was determined based on three correction coefficients RTC (1)-(3) after activation. 第1変形例の活性前補正係数決定処理のフローチャートである。It is a flowchart of the pre-activity correction coefficient determination process of a 1st modification. 第1変形例の活性前補正係数決定処理が3つの活性後補正係数RTC(1)〜(3)から活性前補正係数RTCIN(0)を決定する様子を例示した説明図である。It is explanatory drawing which illustrated a mode that the pre-activation correction coefficient determination process of a 1st modification determines the pre-activation correction coefficient RTCIN (0) from three post-activation correction coefficients RTC (1)-(3). 第2変形例の燃焼装置100で行われる活性前補正係数読出処理のフローチャートである。It is a flowchart of the pre-activation correction coefficient reading process performed in the combustion apparatus 100 of the 2nd modification. 第2変形例の燃焼装置100で行われる活性後補正係数記憶処理のフローチャートである。It is a flowchart of the correction coefficient memory | storage process after activation performed with the combustion apparatus 100 of a 2nd modification.

図1は、本実施例の燃焼装置100を搭載した給湯装置1の構成を示す説明図である。給湯装置1は、ハウジング10と、ハウジング10内に収容された燃焼装置100と、ハウジング10内で燃焼装置100の上方に設けられた熱交換器200などを備えている。   FIG. 1 is an explanatory diagram showing a configuration of a hot water supply apparatus 1 equipped with a combustion apparatus 100 of the present embodiment. The hot water supply device 1 includes a housing 10, a combustion device 100 accommodated in the housing 10, a heat exchanger 200 provided above the combustion device 100 in the housing 10, and the like.

燃焼装置100は、燃料ガスと燃焼用空気との混合ガスを燃焼させるバーナー110と、燃焼装置100に燃料ガスを供給するガス通路112と、バーナー110に燃焼用空気を供給する燃焼ファン120と、混合ガスに点火してバーナー110での燃焼を開始する点火プラグ130と、バーナー110での燃焼火炎の温度(燃焼状態)を検出する熱電対140などを備えている。ガス通路112には、ガス通路112を開閉する電磁弁114と、ガス通路112を通過する燃料ガスの流量を制御する比例弁116とが設けられており、電磁弁114や比例弁116はコントローラー150に接続されている。また、コントローラー150には、燃焼ファン120や、点火プラグ130、熱電対140なども接続されている。更にコントローラー150にはメモリ152が内蔵されている。また、バーナー110と点火プラグ130と熱電対140とは、熱交換器200と共に、ハウジング10内に設けられた燃焼缶20の中に収容されている。尚、本実施例では、点火プラグ130が本発明における「燃焼運転開始手段」に対応し、熱電対140が本発明における「燃焼状態検出手段」に対応する。   The combustion apparatus 100 includes a burner 110 that burns a mixed gas of fuel gas and combustion air, a gas passage 112 that supplies fuel gas to the combustion apparatus 100, a combustion fan 120 that supplies combustion air to the burner 110, An ignition plug 130 that ignites the mixed gas and starts combustion in the burner 110, a thermocouple 140 that detects the temperature (combustion state) of the combustion flame in the burner 110, and the like are provided. The gas passage 112 is provided with an electromagnetic valve 114 for opening and closing the gas passage 112 and a proportional valve 116 for controlling the flow rate of the fuel gas passing through the gas passage 112. The electromagnetic valve 114 and the proportional valve 116 are the controller 150. It is connected to the. The controller 150 is also connected with a combustion fan 120, a spark plug 130, a thermocouple 140, and the like. Further, the controller 150 has a built-in memory 152. Further, the burner 110, the spark plug 130, and the thermocouple 140 are accommodated in the combustion can 20 provided in the housing 10 together with the heat exchanger 200. In this embodiment, the spark plug 130 corresponds to “combustion operation start means” in the present invention, and the thermocouple 140 corresponds to “combustion state detection means” in the present invention.

熱交換器200は、バーナー110からの燃焼排気が通過する複数枚の熱交換フィン202と、複数枚の熱交換フィン202を何度も貫通するように蛇行する通水管204とを備えている。また、熱交換器200を通過した燃焼排気は、燃焼缶20の上部に設けられた排気筒300からハウジング10の外部に排出される。   The heat exchanger 200 includes a plurality of heat exchange fins 202 through which the combustion exhaust from the burner 110 passes, and a water pipe 204 meandering so as to penetrate the plurality of heat exchange fins 202 many times. In addition, the combustion exhaust gas that has passed through the heat exchanger 200 is discharged to the outside of the housing 10 from an exhaust pipe 300 provided on the upper portion of the combustion can 20.

このような構成を有する給湯装置1は、通水管204に水を流すと、バーナー110での混合ガスの燃焼が開始され、通水管204を流れる水が熱交換器200で燃焼排気によって加熱されて、湯となって外部に流出する。このときバーナー110で混合ガスを適切に燃焼させるためには、燃焼用空気と燃料ガスとを適切な比率で混合する必要がある。そこでコントローラー150は、熱電対140で検出した燃焼火炎の温度(燃焼状態)に基づいて燃焼ファン120の回転速度(以下では、「ファン回転速度」と呼ぶ)を制御することによって、燃焼用空気の供給量を制御している。このようにバーナー110での燃焼運転を開始するための制御や、燃焼運転の開始後にバーナー110の燃焼状態を適切に保つための制御は、コントローラー150が以下のような運転制御を行うことによって実現されている。   In the hot water supply apparatus 1 having such a configuration, when water flows through the water pipe 204, combustion of the mixed gas in the burner 110 is started, and the water flowing through the water pipe 204 is heated by the combustion exhaust gas in the heat exchanger 200. , Flows out to the outside as hot water. At this time, in order for the burner 110 to properly burn the mixed gas, it is necessary to mix the combustion air and the fuel gas at an appropriate ratio. Therefore, the controller 150 controls the rotational speed of the combustion fan 120 (hereinafter referred to as “fan rotational speed”) based on the temperature (combustion state) of the combustion flame detected by the thermocouple 140, thereby The supply amount is controlled. As described above, the control for starting the combustion operation in the burner 110 and the control for appropriately maintaining the combustion state of the burner 110 after the start of the combustion operation are realized by the controller 150 performing the following operation control. Has been.

図2は、コントローラー150が行う運転制御処理を示すフローチャートである。この処理は、給湯装置1の使用者が図示しない給湯カランを開くと、通水管204に水が供給され、通水管204に設けられた図示しない水流センサーで水の流れが検出されることによって開始される。   FIG. 2 is a flowchart showing an operation control process performed by the controller 150. When the user of the hot water supply device 1 opens a hot water supply curan (not shown), water is supplied to the water pipe 204, and the flow of water is detected by a water flow sensor (not shown) provided in the water pipe 204. Is done.

運転制御処理を開始すると、先ず始めに、ファン回転速度を決定する(STEP100)。ファン回転速度は、水流センサーで検出された水の流量や、給湯装置1の使用者によって設定された給湯温度の設定値などに基づいて、以下のようにして決定する。先ず、水の流量および給湯温度から、単位時間あたりに燃焼させるべき燃料ガス量(従って、バーナー110への燃料ガスの供給量)を決定する。そして、燃料ガスの供給量が決まれば必要な燃焼用空気の供給量が決まるから、その燃焼用空気の供給量が得られるファン回転速度を決定することができる。本実施例のコントローラー150のメモリ152には、図3に示すような燃料ガス供給量に対するファン回転速度が、マップの形態で記憶されている。そこでコントローラー150は、水の流量および給湯温度の設定値に基づいて必要な燃料ガス供給量を求めた後、メモリ152に記憶されているマップを参照することによって、その燃料ガス供給量に対応するファン回転速度を決定する。   When the operation control process is started, first, the fan rotation speed is determined (STEP 100). The fan rotation speed is determined as follows based on the flow rate of water detected by the water flow sensor, the set value of the hot water supply temperature set by the user of the hot water supply apparatus 1, and the like. First, the amount of fuel gas to be burned per unit time (accordingly, the amount of fuel gas supplied to the burner 110) is determined from the flow rate of water and the hot water supply temperature. When the fuel gas supply amount is determined, the necessary combustion air supply amount is determined, so that the fan rotation speed at which the combustion air supply amount is obtained can be determined. In the memory 152 of the controller 150 of the present embodiment, the fan rotation speed with respect to the fuel gas supply amount as shown in FIG. 3 is stored in the form of a map. Therefore, the controller 150 obtains a necessary fuel gas supply amount based on the flow rate of water and the set value of the hot water supply temperature, and then corresponds to the fuel gas supply amount by referring to a map stored in the memory 152. Determine the fan speed.

続いて、ファン回転速度を補正するための活性前補正係数RTCIN(1)を、メモリ152から読み出す(STEP102)。ここで、「活性前補正係数」とは次のような補正係数である。図1を用いて前述したように本実施例の給湯装置1は熱電対140を備えており、熱電対140で検出した火炎の温度に基づいてファン回転速度を補正している。もっとも、熱電対140は暖機が完了しなければ正しい温度を出力しないので、熱電対140を用いてファン回転速度を補正できるのは、暖機が完了して熱電対140が活性化した後となる。従って、熱電対140が活性化するまでの間は、別の方法でファン回転速度を補正する必要が生じる。活性前補正係数とは、熱電対140が活性化するまでの間、熱電対140の出力を用いずにファン回転速度を補正するための補正係数である。これに対して、熱電対140の活性後に熱電対140の出力に基づいてファン回転速度を補正するための補正係数は、活性前補正係数と区別するために「活性後補正係数」と呼ぶことにする。また、活性前補正係数は、本実施例の給湯装置1では後述する方法によって予め決定されて、コントローラー150のメモリ152内に記憶されている。   Subsequently, the pre-activation correction coefficient RTCIN (1) for correcting the fan rotation speed is read from the memory 152 (STEP 102). Here, the “pre-activation correction coefficient” is the following correction coefficient. As described above with reference to FIG. 1, the hot water supply apparatus 1 of this embodiment includes the thermocouple 140 and corrects the fan rotation speed based on the flame temperature detected by the thermocouple 140. However, since the thermocouple 140 does not output the correct temperature unless the warm-up is completed, the fan rotation speed can be corrected using the thermocouple 140 after the warm-up is completed and the thermocouple 140 is activated. Become. Therefore, it is necessary to correct the fan rotation speed by another method until the thermocouple 140 is activated. The pre-activation correction coefficient is a correction coefficient for correcting the fan rotation speed without using the output of the thermocouple 140 until the thermocouple 140 is activated. On the other hand, the correction coefficient for correcting the fan rotation speed based on the output of the thermocouple 140 after the activation of the thermocouple 140 is referred to as a “post-activation correction coefficient” to distinguish it from the pre-activation correction coefficient. To do. In addition, the pre-activation correction coefficient is determined in advance by a method described later in the hot water supply apparatus 1 of the present embodiment, and is stored in the memory 152 of the controller 150.

続いて、活性前補正係数RTCIN(1)を用いて補正したファン回転速度で、燃焼ファン120を回転させる(STEP104)。するとバーナー110には、ファン回転速度に応じた流量で燃焼用空気が供給される。そして、電磁弁114および比例弁116を開いてバーナー110に燃料ガスを供給すると共に、点火プラグ130で混合ガスに点火することによって燃焼装置100での燃焼運転を開始した後、タイマーを起動する(STEP106)。尚、この時の比例弁116の開度は、STEP100でファン回転速度を決定する際に求めた燃料ガス供給量に応じた開度に設定される。   Subsequently, the combustion fan 120 is rotated at the fan rotation speed corrected using the pre-activation correction coefficient RTCIN (1) (STEP 104). Then, combustion air is supplied to the burner 110 at a flow rate corresponding to the fan rotation speed. Then, the solenoid valve 114 and the proportional valve 116 are opened to supply the fuel gas to the burner 110, and the mixed gas is ignited by the spark plug 130 to start the combustion operation in the combustion device 100, and then the timer is started ( (STEP 106). Note that the opening degree of the proportional valve 116 at this time is set to an opening degree corresponding to the fuel gas supply amount obtained when the fan rotational speed is determined in STEP 100.

その後、タイマーの計時時間が熱電対140の活性時間(暖機完了までに要する時間)に達したか否かを判断し(STEP108)、活性時間に達していない場合は(STEP108:no)、同じ判断を繰り返しながらそのまま待機状態となる。そして、活性時間が経過したら(STEP108:yes)、熱電対140の暖機が完了して正しい出力が得られるようになったと考えられるので、熱電対140で検出した火炎の温度(燃焼状態)に基づいてファン回転速度を補正する(STEP110)。例えば、熱電対140で検出した火炎の温度が所定の目標範囲より高い場合は、燃料ガスに対する燃焼用空気の比率が目標値よりも小さいと考えられるのでファン回転速度を増加させる。逆に、熱電対140で検出した火炎の温度が所定の目標範囲よりも低い場合は、燃料ガスに対する燃焼用空気の比率が目標値よりも大きいと考えられるのでファン回転速度を減少させる。   Thereafter, it is determined whether or not the time measured by the timer has reached the activation time of the thermocouple 140 (time required for completion of warm-up) (STEP 108). If the activation time has not been reached (STEP 108: no), the same As it repeats the determination, it enters a standby state. Then, when the activation time has elapsed (STEP 108: yes), it is considered that the thermocouple 140 has been warmed up and a correct output can be obtained, so that the flame temperature (combustion state) detected by the thermocouple 140 is reached. Based on this, the fan rotation speed is corrected (STEP 110). For example, when the flame temperature detected by the thermocouple 140 is higher than a predetermined target range, the ratio of the combustion air to the fuel gas is considered to be smaller than the target value, so that the fan rotation speed is increased. Conversely, when the flame temperature detected by the thermocouple 140 is lower than the predetermined target range, the ratio of the combustion air to the fuel gas is considered to be larger than the target value, so that the fan rotation speed is decreased.

尚、ファン回転速度を補正するに際しては、熱電対140で検出した火炎の温度が目標範囲に対してどの程度隔たっているかに依らずに、ファン回転速度を一定量ずつ補正しても良いし、目標範囲に対する隔たりに応じた大きさだけ補正しても良い。また、本実施例では、燃料ガスに対する燃焼用空気の比率を目標値とするために、ファン回転速度を変更して燃焼用空気の供給量を変更しているが、比例弁116の開度を変更して燃料ガスの供給量を変更してもよい。尚、本実施例ではコントローラー150がファン回転速度を補正することから、コントローラー150が本発明における「供給量補正手段」に対応する。   In correcting the fan rotation speed, the fan rotation speed may be corrected by a certain amount regardless of how far the flame temperature detected by the thermocouple 140 is separated from the target range. You may correct | amend only the magnitude | size according to the gap with respect to a target range. Further, in this embodiment, in order to set the ratio of the combustion air to the fuel gas as the target value, the supply amount of the combustion air is changed by changing the fan rotation speed. The supply amount of the fuel gas may be changed by changing. In this embodiment, since the controller 150 corrects the fan rotation speed, the controller 150 corresponds to the “supply amount correcting means” in the present invention.

続いて、燃焼装置100の燃焼運転を終了するか否かを判断して(STEP112)、燃焼運転を終了しないと判断した場合(STEP112:no)、再びSTEP110に戻って、熱電対140の出力に基づくファン回転速度の補正を継続する。燃焼装置100が燃焼運転している間はこうした処理を繰り返す。そして、燃焼装置100での燃焼運転を終了すると判断したら(STEP112:yes)、運転終了時のファン回転速度に対応する補正係数を、活性後補正係数RTC(1)としてメモリ152に記憶する(STEP114)。尚、このときの補正係数は、次のようにして算出される。先ず、運転終了時の燃料ガス供給量を検出して、図3のマップを参照することによってファン回転数を取得する。そして、運転終了時のファン回転速度を、図3のマップから求めたファン回転速度で除算することによって補正係数を算出する。   Subsequently, it is determined whether or not the combustion operation of the combustion apparatus 100 is to be terminated (STEP 112). When it is determined that the combustion operation is not to be terminated (STEP 112: no), the process returns to STEP 110 again and the thermocouple 140 is output. Continue to correct the fan speed based on. Such processing is repeated while the combustion apparatus 100 is in a combustion operation. If it is determined that the combustion operation in the combustion apparatus 100 is to be ended (STEP 112: yes), a correction coefficient corresponding to the fan rotation speed at the end of the operation is stored in the memory 152 as a post-activation correction coefficient RTC (1) (STEP 114). ). The correction coefficient at this time is calculated as follows. First, the fuel gas supply amount at the end of the operation is detected, and the fan speed is acquired by referring to the map of FIG. Then, the correction coefficient is calculated by dividing the fan rotation speed at the end of the operation by the fan rotation speed obtained from the map of FIG.

こうして算出した補正係数を活性後補正係数RTC(1)として記憶したら(STEP114)、次回の燃焼運転の開始に備えて、後述する方法で活性前補正係数を決定した後(STEP200)、図2の運転制御処理を終了する。尚、本実施例では、活性後補正係数が本発明における「供給補正値」に対応し、活性後補正係数を記憶するメモリ152が本発明における「供給補正値記憶手段」に対応する。また、活性前補正係数が本発明における「見込み補正値」に対応し、活性前補正係数に基づいてファン回転速度を補正するコントローラー150が、本発明における「見込み補正手段」に対応する。更に、以下に説明するように、コントローラー150は活性前補正係数を決定することから、本発明における「見込み補正値決定手段」にも対応する。   When the correction coefficient calculated in this way is stored as the post-activation correction coefficient RTC (1) (STEP 114), in preparation for the start of the next combustion operation, the pre-activation correction coefficient is determined by a method described later (STEP 200), and then, FIG. The operation control process is terminated. In this embodiment, the post-activation correction coefficient corresponds to the “supply correction value” in the present invention, and the memory 152 that stores the post-activation correction coefficient corresponds to the “supply correction value storage unit” in the present invention. The pre-activation correction coefficient corresponds to the “expected correction value” in the present invention, and the controller 150 that corrects the fan rotation speed based on the pre-activation correction coefficient corresponds to the “expected correction means” in the present invention. Further, as will be described below, the controller 150 determines the pre-activity correction coefficient, and thus corresponds to the “probability correction value determining means” in the present invention.

図4には、活性前補正係数を決定するための活性前補正係数決定処理のフローチャートが示されている。活性前補正係数決定処理では、先ず始めに、コントローラー150のメモリ152から活性後補正係数RTC(1)〜(3)を読み出す(STEP202)。ここで、活性後補正係数RTC(1)は、この度の燃焼運転の終了時にメモリ152に記憶した補正係数である(図3のSTEP114参照)。また、活性後補正係数RTC(2)は、前回の燃焼運転の終了時にメモリ152に記憶した補正係数である。更に、活性後補正係数RTC(3)は、前々回の燃焼運転の終了時にメモリ152に記憶した補正係数である。尚、ここでは読み出す活性後補正係数は3つであるものとして説明するが、少なくとも2つ以上の活性後補正係数RTCを読み出せばよい。   FIG. 4 shows a flowchart of the pre-activity correction coefficient determination process for determining the pre-activity correction coefficient. In the pre-activation correction coefficient determination process, first, post-activation correction coefficients RTC (1) to (3) are read from the memory 152 of the controller 150 (STEP 202). Here, the post-activation correction coefficient RTC (1) is a correction coefficient stored in the memory 152 at the end of this combustion operation (see STEP 114 in FIG. 3). The post-activation correction coefficient RTC (2) is a correction coefficient stored in the memory 152 at the end of the previous combustion operation. Further, the post-activation correction coefficient RTC (3) is a correction coefficient stored in the memory 152 at the end of the previous combustion operation. Note that, here, it is assumed that there are three post-activation correction coefficients, but at least two post-activation correction coefficients RTC may be read.

次に、読み出した活性後補正係数RTC(1)が、今回の燃焼運転開始時に用いた活性前補正係数RTCIN(1)(図2のSTEP102参照)よりも小さいか否かを判断する(STEP204)。その結果、活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも小さくなかった場合は(STEP204:no)、読み出した活性後補正係数RTC(1)〜(3)の中の最大値と最小値との差の値を算出して(STEP206)、差の値が所定の閾値よりも小さいか否かを判断する(STEP208)。その結果、差の値が所定の閾値以下であった場合は(STEP208:yes)、活性後補正係数RTC(1)〜(3)の中の最小値を、次回の燃焼運転時に用いる活性前補正係数RTCIN(0)としてメモリ152に記憶する(STEP210)。尚、ここでは、活性後補正係数RTC(1)〜(3)の最小値を活性前補正係数RTCIN(0)として記憶したが、活性後補正係数RTC(1)〜(3)の平均値を活性前補正係数RTCIN(0)としてもよい。あるいは、ここでは活性後補正係数RTC(1)〜(3)の最大値と最小値との差の値が小さい場合を想定しているから、活性後補正係数RTC(1)〜(3)の最大値を活性前補正係数RTCIN(0)とすることもできる。   Next, it is determined whether or not the read post-activation correction coefficient RTC (1) is smaller than the pre-activation correction coefficient RTCIN (1) (see STEP 102 in FIG. 2) used at the start of the current combustion operation (STEP 204). . As a result, when the post-activation correction coefficient RTC (1) is not smaller than the pre-activation correction coefficient RTCIN (1) (STEP 204: no), the read after-activation correction coefficient RTC (1) to (3) A difference value between the maximum value and the minimum value is calculated (STEP 206), and it is determined whether or not the difference value is smaller than a predetermined threshold value (STEP 208). As a result, when the difference value is equal to or smaller than the predetermined threshold (STEP 208: yes), the minimum value among the post-activation correction coefficients RTC (1) to (3) is used for the pre-activation correction used in the next combustion operation. The coefficient RTCIN (0) is stored in the memory 152 (STEP 210). Here, the minimum value of the post-activation correction coefficient RTC (1) to (3) is stored as the pre-activation correction coefficient RTCIN (0), but the average value of the post-activation correction coefficient RTC (1) to (3) is The pre-activation correction coefficient RTCIN (0) may be used. Alternatively, since it is assumed here that the difference between the maximum value and the minimum value of the post-activation correction coefficients RTC (1) to (3) is small, the post-activation correction coefficients RTC (1) to (3) The maximum value may be the pre-activation correction coefficient RTCIN (0).

これに対して、活性後補正係数RTC(1)〜(3)の最大値と最小値との差の値が、所定の閾値よりも大きかった場合は(STEP208:no)、活性後補正係数RTC(1)〜(3)の平均値RTC(Ave)を算出して、次回の燃焼運転開始時に用いる活性前補正係数RTCIN(0)としてメモリ152に記憶する(STEP212)。活性後補正係数RTC(1)〜(3)の最大値と最小値との差の値が所定の閾値よりも大きかった場合に(STEP208:no)、このようにして活性前補正係数RTCIN(0)を決定している理由については後述する。   On the other hand, when the difference between the maximum value and the minimum value of the post-activation correction coefficients RTC (1) to (3) is larger than a predetermined threshold (STEP 208: no), the post-activation correction coefficient RTC An average value RTC (Ave) of (1) to (3) is calculated and stored in the memory 152 as a pre-activation correction coefficient RTCIN (0) used at the start of the next combustion operation (STEP 212). When the difference between the maximum value and the minimum value of the post-activation correction coefficients RTC (1) to (3) is larger than a predetermined threshold (STEP 208: no), the pre-activation correction coefficient RTCIN (0 ) Will be described later.

以上では、活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも小さくなかった場合に(STEP204:no)、活性前補正係数RTCIN(0)を決定する処理について説明した。これに対して、活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも小さかった場合は(STEP204:yes)、活性後補正係数RTC(1)を活性前補正係数RTCIN(0)としてメモリ152に記憶する(STEP214)。この理由(活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも小さい場合に、活性後補正係数RTC(1)を活性前補正係数RTCIN(0)として用いる理由)についても後述する。   The processing for determining the pre-activation correction coefficient RTCIN (0) when the post-activation correction coefficient RTC (1) is not smaller than the pre-activation correction coefficient RTCIN (1) has been described above. On the other hand, when the post-activation correction coefficient RTC (1) is smaller than the pre-activation correction coefficient RTCIN (1) (STEP 204: yes), the post-activation correction coefficient RTC (1) is changed to the pre-activation correction coefficient RTCIN (0). ) Is stored in the memory 152 (STEP 214). This reason (the reason why the post-activation correction coefficient RTC (1) is used as the pre-activation correction coefficient RTCIN (0) when the post-activation correction coefficient RTC (1) is smaller than the pre-activation correction coefficient RTCIN (1)) will also be described later. To do.

続いて、次回の燃焼運転開始時用の活性前補正係数RTCIN(0)が1.0よりも小さいか否かを判断し(STPE216)、1.0よりも小さかった場合は(STEP216:yes)、活性前補正係数RTCIN(0)を1.0に変更した後(STEP218)、図4の活性前補正係数決定処理を終了して、図2の運転制御処理に復帰する。これに対して、活性前補正係数RTCIN(0)が1.0よりも大きかった場合は(STEP216:no)、活性前補正係数RTCIN(0)を変更することなく、そのまま活性前補正係数決定処理を終了して、図2の運転制御処理に復帰する。   Subsequently, it is determined whether or not the pre-activation correction coefficient RTCIN (0) for starting the next combustion operation is smaller than 1.0 (STPE 216), and if smaller than 1.0 (STEP 216: yes). Then, after changing the pre-activation correction coefficient RTCIN (0) to 1.0 (STEP 218), the pre-activation correction coefficient determination process of FIG. 4 is terminated, and the operation control process of FIG. 2 is resumed. On the other hand, when the pre-activation correction coefficient RTCIN (0) is larger than 1.0 (STEP 216: no), the pre-activation correction coefficient determination process is performed without changing the pre-activation correction coefficient RTCIN (0). To return to the operation control process of FIG.

図5には、3つの活性後補正係数RTC(1)〜(3)に基づいて活性前補正係数RTCIN(0)を決定する様子が例示されている。尚、図中に示した丸印は、活性後補正係数RTCを表しており、図中の星印は、活性前補正係数RTCINを表している。   FIG. 5 illustrates a state in which the pre-activation correction coefficient RTCIN (0) is determined based on the three post-activation correction coefficients RTC (1) to (3). The circles shown in the figure represent the post-activation correction coefficient RTC, and the asterisk in the figure represents the pre-activation correction coefficient RTCIN.

たとえば図5(a)に例示したように、今回から前々回までの3つの燃焼運転時の活性後補正係数RTC(1)〜(3)がほぼ同じような値であったとする。このように、過去の複数回(本実施例では3回)の燃焼運転で、熱電対140の出力に基づいて決定された活性後補正係数RTCがほぼ同じ値を取るのであれば、次回の燃焼運転時に熱電対140の出力に基づいて決定した活性後補正係数RTCもほぼ同じ値になると予想される。そしてそうであれば、熱電対140が活性化する前の段階でも、その補正係数を用いてファン回転速度を補正しておけば、混合ガスを適切に燃焼させることができるものと考えられる。そこで、本実施例の活性前補正係数決定処理では、3つの活性後補正係数RTC(1)〜(3)の最大値と最小値との差の値を算出し、差の値が所定の閾値よりも小さい場合には、3つの活性後補正係数RTC(1)〜(3)の最小値を次回の燃焼運転開始時用の活性前補正係数RTCIN(0)とする(図4のSTEP206〜210参照)。   For example, as illustrated in FIG. 5A, it is assumed that the post-activation correction coefficients RTC (1) to (3) at the time of the three combustion operations from this time to the previous time are substantially the same value. As described above, if the post-activation correction coefficient RTC determined based on the output of the thermocouple 140 takes approximately the same value in the past multiple combustion operations (three times in this embodiment), the next combustion is performed. The post-activation correction coefficient RTC determined based on the output of the thermocouple 140 during operation is expected to be substantially the same value. If so, it is considered that the mixed gas can be combusted appropriately by correcting the fan rotation speed using the correction coefficient even before the thermocouple 140 is activated. Therefore, in the pre-activation correction coefficient determination process of the present embodiment, the difference value between the maximum value and the minimum value of the three post-activation correction coefficients RTC (1) to (3) is calculated, and the difference value is a predetermined threshold value. Is smaller than the minimum value of the three post-activation correction coefficients RTC (1) to (3), the pre-activation correction coefficient RTCIN (0) for starting the next combustion operation (STEPs 206 to 210 in FIG. 4). reference).

こうすれば、次回の燃焼運転時に熱電対140が活性化するまでの間は、活性前補正係数RTCIN(0)に基づいてファン回転速度が補正されるので、燃焼運転の開始直後から混合ガスを適切に燃焼させることができる。また、3つの活性後補正係数RTC(1)〜(3)の最小値を次回の活性前補正係数RTCIN(0)としており、しかも活性前補正係数RTCIN(0)が「1.0」より小さくなることはない(STEP218参照)。このため、ファン回転速度は最も控えめに補正されることになり、その結果、熱電対140が活性化するまでの間は、常に安全側で燃焼運転することができる。   In this way, the fan rotation speed is corrected based on the pre-activation correction coefficient RTCIN (0) until the thermocouple 140 is activated during the next combustion operation, so that the mixed gas is supplied immediately after the start of the combustion operation. Can be burned properly. The minimum value of the three post-activation correction coefficients RTC (1) to (3) is set as the next pre-activation correction coefficient RTCIN (0), and the pre-activation correction coefficient RTCIN (0) is smaller than “1.0”. (See STEP 218). For this reason, the fan rotational speed is corrected most conservatively. As a result, the combustion operation can always be performed on the safe side until the thermocouple 140 is activated.

また、燃焼運転中に、排気筒300の出口が何かの障害物で塞がれるなどの突発的な要因が発生すると、図5(b)に例示したように、その燃焼運転時の活性後補正係数RTC(1)が大きく増加する。このような場合には、本実施例の活性前補正係数決定処理では、3つの活性後補正係数RTC(1)〜(3)の最大値と最小値との差の値が所定の閾値よりも大きいと判断される(図4のSTEP208:no)。そして、この場合は、今回の燃焼運転時も含めた直近の3回分の活性後補正係数RTC(1)〜(3)の平均値RTC(Ave)が、次回の燃焼運転時の活性前補正係数RTCIN(0)となる(STEP212)。このため、燃焼運転中に突発的な要因が発生した場合にも、その突発的な要因の影響を大きく受けることなく、燃焼運転の開始直後から混合ガスを適切に燃焼させることが可能となる。もちろん、何らかの理由で排気筒300が塞がれるなどした状態が継続する場合には、図5(a)を用いて前述した状態となるので、排気筒300が塞がれるなどしたままでも、燃焼運転の開始直後から混合ガスを適切に燃焼させることが可能となる。尚、平均値RTC(Ave)の代わりに、直近の3回分の活性後補正係数RTC(1)〜(3)の最小値RTC(Min)を、次回の燃焼運転時の活性前補正係数RTCIN(0)としてもよい。   Further, during the combustion operation, when a sudden factor such as the outlet of the exhaust pipe 300 being blocked by some obstacle occurs, as illustrated in FIG. 5B, after the activation during the combustion operation. The correction coefficient RTC (1) increases greatly. In such a case, in the pre-activation correction coefficient determination process of the present embodiment, the difference value between the maximum value and the minimum value of the three post-activation correction coefficients RTC (1) to (3) is less than a predetermined threshold value. It is determined that it is large (STEP 208: no in FIG. 4). In this case, the average value RTC (Ave) of the last three post-activation correction coefficients RTC (1) to (3) including the current combustion operation is the pre-activation correction coefficient for the next combustion operation. RTCIN (0) is obtained (STEP 212). For this reason, even if a sudden factor occurs during the combustion operation, the mixed gas can be appropriately burned immediately after the start of the combustion operation without being greatly affected by the sudden factor. Of course, when the state in which the exhaust tube 300 is blocked for some reason continues, the state described above with reference to FIG. It becomes possible to burn the mixed gas appropriately immediately after the start of operation. Instead of the average value RTC (Ave), the minimum value RTC (Min) of the last three post-activation correction coefficients RTC (1) to (3) is used as the pre-activation correction coefficient RTCIN ( 0).

また、熱交換器200の熱交換フィン202が掃除されるなどして燃焼排気の通路抵抗が急に下がり、図5(c)のように活性後補正係数RTC(1)が急に減少した場合には、活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも小さいと判断されて(STEP204:yes)、その急減した活性後補正係数RTC(1)が次回の燃焼運転開始時の活性前補正係数RTCIN(0)となる(STEP214)。このため、熱交換器200の熱交換フィン202が掃除されるなどした場合には、その影響が次回の燃焼運転開始時の活性前補正係数RTCIN(0)に直ちに反映されて、燃焼運転の開始直後から混合ガスを適切に燃焼させることが可能となる。   Further, when the heat exchange fin 202 of the heat exchanger 200 is cleaned, the passage resistance of the combustion exhaust gas suddenly decreases, and the post-activation correction coefficient RTC (1) suddenly decreases as shown in FIG. 5C. Is determined that the post-activation correction coefficient RTC (1) is smaller than the pre-activation correction coefficient RTCIN (1) (STEP 204: yes), and the rapidly decreased post-activation correction coefficient RTC (1) starts the next combustion operation. The pre-activity correction coefficient RTCIN (0) at the time is obtained (STEP 214). For this reason, when the heat exchange fins 202 of the heat exchanger 200 are cleaned, the influence is immediately reflected in the pre-activation correction coefficient RTCIN (0) at the start of the next combustion operation, and the combustion operation starts. It becomes possible to burn the mixed gas appropriately immediately after.

尚、上述した実施例では、活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも小さくなった場合には(STEP204:yes)、その活性後補正係数RTC(1)を常に活性前補正係数RTCIN(1)とする(STEP214)ものとして説明した。しかし、活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも僅かに小さくなった程度では、必ずしも活性後補正係数RTC(1)を活性前補正係数RTCIN(1)とする必要はない。更に、上述した実施例では、過去3回分の活性後補正係数RTC(1)〜(3)の最大値と最小値との差が閾値よりも大きかった場合には(STEP208:no)、これらRTC(1)〜(3)の平均値RTC(Ave)を次回の活性前補正係数RTCIN(0)として用いるものとして説明した。しかし、RTC(1)〜RTC(3)の最大値と最小値との差が閾値よりも大きかった場合に、必ずしも平均値RTC(Ave)をRTCIN(0)として用いる必要もない。以下では、このような第1変形例について簡単に説明する。   In the above-described embodiment, when the post-activation correction coefficient RTC (1) is smaller than the pre-activation correction coefficient RTCIN (1) (STEP 204: yes), the post-activation correction coefficient RTC (1) is always set. The pre-activation correction coefficient RTCIN (1) is described as (STEP 214). However, to the extent that the post-activation correction coefficient RTC (1) is slightly smaller than the pre-activation correction coefficient RTCIN (1), the post-activation correction coefficient RTC (1) need not necessarily be the pre-activation correction coefficient RTCIN (1). There is no. Further, in the above-described embodiment, when the difference between the maximum value and the minimum value of the correction coefficients RTC (1) to (3) for the past three times is larger than the threshold value (STEP 208: no), these RTCs The average value RTC (Ave) of (1) to (3) has been described as being used as the next pre-activity correction coefficient RTCIN (0). However, when the difference between the maximum value and the minimum value of RTC (1) to RTC (3) is larger than the threshold value, the average value RTC (Ave) is not necessarily used as RTCIN (0). Below, such a 1st modification is demonstrated easily.

図6には、第1変形例の活性前補正係数決定処理のフローチャートが示されている。この処理は、図4を用いて前述した活性前補正係数決定処理(STEP200)の代わりに実行される処理である。第1変形例の活性前補正係数決定処理(STEP250)においても、先ず始めに、コントローラー150のメモリ152から活性後補正係数RTC(1)〜(3)を読み出す(STEP252)。   FIG. 6 shows a flowchart of the pre-activation correction coefficient determination process of the first modification. This process is a process executed instead of the pre-activity correction coefficient determination process (STEP 200) described above with reference to FIG. Also in the pre-activation correction coefficient determination process (STEP 250) of the first modification, first, post-activation correction coefficients RTC (1) to (3) are read from the memory 152 of the controller 150 (STEP 252).

次に、これら活性後補正係数RTC(1)〜(3)の中の最大値と最小値との差の値を算出して(STEP254)、差の値が所定の閾値以下であった場合は(STEP256:yes)、活性後補正係数RTC(1)〜(3)の中の最小値を、次回の燃焼運転時に用いる活性前補正係数RTCIN(0)としてメモリ152に記憶する(STEP258)。これに対して、差の値が所定の閾値よりも大きかった場合は(STEP256:no)、今回の燃焼運転時の活性後補正係数RTC(1)が、今回の燃焼運転開始時に用いた活性前補正係数RTCIN(1)よりも小さいか否かを判断する(STEP260)。その結果、活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも小さくなかった場合は(STEP260:no)、活性前補正係数RTCIN(1)を次回の燃焼運転開始時に用いる活性前補正係数RTCIN(0)としてメモリ152に記憶する(STEP262)。一方、活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも小さかった場合は(STEP260:yes)、活性後補正係数RTC(1)を次回の燃焼運転開始時に用いる活性前補正係数RTCIN(0)としてメモリ152に記憶する(STEP264)。   Next, a difference value between the maximum value and the minimum value among the post-activation correction coefficients RTC (1) to (3) is calculated (STEP 254), and the difference value is equal to or less than a predetermined threshold value. (STEP256: yes), the minimum value among the post-activation correction coefficients RTC (1) to (3) is stored in the memory 152 as the pre-activation correction coefficient RTCIN (0) used during the next combustion operation (STEP258). On the other hand, when the difference value is larger than the predetermined threshold (STEP 256: no), the post-activation correction coefficient RTC (1) at the time of the current combustion operation is the pre-activation value used at the start of the current combustion operation. It is determined whether or not it is smaller than the correction coefficient RTCIN (1) (STEP 260). As a result, when the post-activation correction coefficient RTC (1) is not smaller than the pre-activation correction coefficient RTCIN (1) (STEP 260: no), the pre-activation correction coefficient RTCIN (1) is used at the start of the next combustion operation. The pre-correction coefficient RTCIN (0) is stored in the memory 152 (STEP 262). On the other hand, when the post-activation correction coefficient RTC (1) is smaller than the pre-activation correction coefficient RTCIN (1) (STEP 260: yes), the post-activation correction coefficient RTC (1) is used at the start of the next combustion operation. The coefficient RTCIN (0) is stored in the memory 152 (STEP 264).

その後の処理は、前述した活性前補正係数決定処理(STEP200)と同様である。すなわち、活性前補正係数RTCIN(0)が1.0よりも小さいか否かを判断し(STPE266)、1.0よりも小さかった場合は(STEP266:yes)、活性前補正係数RTCIN(0)を1.0に変更する(STEP268)。これに対して、活性前補正係数RTCIN(0)が1.0よりも大きかった場合は(STEP266:no)、活性前補正係数RTCIN(0)を変更することなく、そのまま活性前補正係数決定処理を終了する。   The subsequent processing is the same as the pre-activity correction coefficient determination processing (STEP 200) described above. That is, it is determined whether or not the pre-activation correction coefficient RTCIN (0) is smaller than 1.0 (STPE 266). If it is smaller than 1.0 (STEP 266: yes), the pre-activation correction coefficient RTCIN (0) is determined. Is changed to 1.0 (STEP 268). On the other hand, when the pre-activation correction coefficient RTCIN (0) is larger than 1.0 (STEP 266: no), the pre-activation correction coefficient determination process is performed without changing the pre-activation correction coefficient RTCIN (0). Exit.

図7には、第1変形例の活性前補正係数決定処理が3つの活性後補正係数RTC(1)〜(3)から活性前補正係数RTCIN(0)を決定する様子が例示されている。たとえば図7(a)に例示したように、活性後補正係数RTC(1)〜(3)の最大値と最小値との差の値が所定の閾値よりも小さい場合には、前述した活性前補正係数決定処理(STEP200)と同様に、活性後補正係数RTC(1)〜(3)の最小値を次回用の活性前補正係数RTCIN(0)とする(図6のSTEP254〜258参照)。   FIG. 7 illustrates a state in which the pre-activation correction coefficient determination process of the first modification determines the pre-activation correction coefficient RTCIN (0) from the three post-activation correction coefficients RTC (1) to (3). For example, as illustrated in FIG. 7A, when the difference between the maximum value and the minimum value of the post-activation correction coefficients RTC (1) to (3) is smaller than a predetermined threshold value, As in the correction coefficient determination process (STEP 200), the minimum value of the post-activation correction coefficients RTC (1) to (3) is set as the next pre-activation correction coefficient RTCIN (0) (see STEPs 254 to 258 in FIG. 6).

また、図7(b)に例示したように、何らかの突発的な要因で活性後補正係数RTC(1)が大きく増加したり、あるいは逆に、活性後補正係数RTC(1)が大きく減少したりした場合には、3つの活性後補正係数RTC(1)〜(3)の最大値と最小値との差の値が所定の閾値よりも大きいと判断される(図6のSTEP256:no)。そして、図7(b)のように活性後補正係数RTC(1)が急に増加した場合であれば、活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも大きいと判断されて(STEP260:no)、今回の燃焼運転時の活性前補正係数RTCIN(1)が、次回の燃焼運転時の活性前補正係数RTCIN(0)となる(STEP262)。このため、燃焼運転中に突発的な要因が発生した場合にも、その突発的な要因の影響を受けることなく、燃焼運転の開始直後から混合ガスを適切に燃焼させることが可能となる。   Further, as illustrated in FIG. 7B, the post-activation correction coefficient RTC (1) is greatly increased due to some sudden factor, or conversely, the post-activation correction coefficient RTC (1) is largely decreased. In such a case, it is determined that the difference between the maximum value and the minimum value of the three post-activation correction coefficients RTC (1) to (3) is larger than a predetermined threshold (STEP 256: no in FIG. 6). If the post-activation correction coefficient RTC (1) suddenly increases as shown in FIG. 7B, it is determined that the post-activation correction coefficient RTC (1) is larger than the pre-activation correction coefficient RTCIN (1). As a result (STEP 260: no), the pre-activation correction coefficient RTCIN (1) during the current combustion operation becomes the pre-activation correction coefficient RTCIN (0) during the next combustion operation (STEP 262). For this reason, even if a sudden factor occurs during the combustion operation, the mixed gas can be appropriately burned immediately after the start of the combustion operation without being affected by the sudden factor.

また、図7(c)のように活性後補正係数RTC(1)が急に減少した場合には、活性後補正係数RTC(1)が活性前補正係数RTCIN(1)よりも小さいと判断されて(STEP260:yes)、その急減した活性後補正係数RTC(1)が次回の燃焼運転開始時の活性前補正係数RTCIN(0)となる(STEP264)。このため、熱交換器200の熱交換フィン202が掃除されるなどした場合には、その影響が次回の燃焼運転開始時の活性前補正係数RTCIN(0)に直ちに反映されて、燃焼運転の開始直後から混合ガスを適切に燃焼させることが可能となる。   Further, when the post-activation correction coefficient RTC (1) suddenly decreases as shown in FIG. 7C, it is determined that the post-activation correction coefficient RTC (1) is smaller than the pre-activation correction coefficient RTCIN (1). (STEP260: yes), the sharply reduced post-activation correction coefficient RTC (1) becomes the pre-activation correction coefficient RTCIN (0) at the start of the next combustion operation (STEP 264). For this reason, when the heat exchange fins 202 of the heat exchanger 200 are cleaned, the influence is immediately reflected in the pre-activation correction coefficient RTCIN (0) at the start of the next combustion operation, and the combustion operation starts. It becomes possible to burn the mixed gas appropriately immediately after.

また、上述した実施例あるいは第1変形例では、ファン回転速度は燃料ガスの供給量に応じて決定されるが(図3参照)、ファン回転速度の補正係数(すなわち、活性前補正係数RTCINおよび活性後補正係数RTC)は、燃料ガスの供給量に依らない単なる係数であるものとして説明した。しかし、補正の対象となるファン回転速度が燃料ガス供給量に応じて決定されることに合わせて、ファン回転速度の補正係数(すなわち、活性前補正係数RTCINおよび活性後補正係数RTC)も、燃料ガス供給量に応じて決定されるようにしてもよい。   In the above-described embodiment or the first modification, the fan rotation speed is determined according to the amount of fuel gas supplied (see FIG. 3), but the fan rotation speed correction coefficient (that is, the pre-activation correction coefficient RTCIN and The post-activation correction coefficient RTC) has been described as a simple coefficient that does not depend on the amount of fuel gas supplied. However, the fan rotation speed correction coefficient (that is, the pre-activation correction coefficient RTCIN and the post-activation correction coefficient RTC) is also determined in accordance with the fact that the fan rotation speed to be corrected is determined according to the fuel gas supply amount. It may be determined according to the gas supply amount.

図8は、このような第2変形例の燃焼装置100で行われる活性前補正係数読出処理のフローチャートである。この処理は、図2を用いて前述した運転制御処理の中でファン回転速度を決定(STEP100)した後に、STEP102の代わりに実行される処理である。活性前補正係数読出処理(STEP300)を開始すると、先ず始めに、燃焼装置100の運転状態が高負荷運転状態か否かを判断する(STEP302)。この判断は、ファン回転速度を決定するために求めた燃料ガス供給量に基づいて行う。すなわち、燃料ガス供給量が所定量よりも多ければ高負荷運転状態と判断し、所定量よりも少なければ低負荷運転状態と判断する。   FIG. 8 is a flowchart of the pre-activation correction coefficient reading process performed by the combustion apparatus 100 of the second modification. This process is a process executed instead of STEP 102 after the fan rotation speed is determined (STEP 100) in the operation control process described above with reference to FIG. When the pre-activation correction coefficient reading process (STEP 300) is started, first, it is determined whether or not the operation state of the combustion apparatus 100 is a high load operation state (STEP 302). This determination is made based on the fuel gas supply amount obtained to determine the fan rotation speed. That is, when the fuel gas supply amount is larger than the predetermined amount, it is determined as a high load operation state, and when it is less than the predetermined amount, it is determined as a low load operation state.

その結果、高負荷運転であると判断した場合は(STEP302:yes)、コントローラー150のメモリ152から高負荷時用の活性前補正係数を読み出す(STEP304)。これに対して、高負荷運転ではないと判断した場合は(STEP302:no)、低負荷時用の活性前補正係数を読み出す(STEP306)。尚、高負荷時用および低負荷時用の活性前補正係数は、後述する方法で決定されてメモリ152に予め記憶されている。そして、高負荷時用あるいは低負荷時用の活性前補正係数を読み出したら(STEP304、STEP306)、図8の活性前補正係数読出処理を終了して、図2の運転制御処理に復帰する。   As a result, when it is determined that the operation is a high load operation (STEP 302: yes), the pre-activation correction coefficient for high load is read from the memory 152 of the controller 150 (STEP 304). On the other hand, when it is determined that the operation is not a high load (STEP 302: no), a pre-activation correction coefficient for low load is read (STEP 306). The pre-activation correction coefficient for high load and low load is determined by a method described later and stored in the memory 152 in advance. When the pre-activation correction coefficient for high load or low load is read (STEP 304 and STEP 306), the pre-activation correction coefficient reading process of FIG. 8 is terminated and the operation control process of FIG. 2 is resumed.

図9は、第2変形例の燃焼装置100で行われる活性後補正係数記憶処理のフローチャートである。この処理は、図2の運転制御処理の中で燃焼運転を終了すると判断した場合に(STEP112:yes)、STEP114の代わりに実行される処理である。活性後補正係数記憶処理(STEP400)を開始すると、燃焼装置100の運転状態が高負荷運転状態か否かを判断する(STEP402)。この判断は、燃焼運転を終了する前の燃料ガス供給量と、所定量とを比較することによって行う。   FIG. 9 is a flowchart of post-activation correction coefficient storage processing performed in the combustion apparatus 100 of the second modification. This process is a process executed instead of STEP 114 when it is determined that the combustion operation is ended in the operation control process of FIG. 2 (STEP 112: yes). When the post-activation correction coefficient storage process (STEP 400) is started, it is determined whether or not the operation state of the combustion apparatus 100 is a high load operation state (STEP 402). This determination is made by comparing the fuel gas supply amount before the end of the combustion operation with a predetermined amount.

その結果、燃料ガス供給量が所定量よりも大きい場合には高負荷運転であると判断して(STEP402:yes)、燃焼運転終了時のファン回転速度の補正係数を、高負荷時用の活性後補正係数としてコントローラー150のメモリ152に記憶する(STEP404)。これに対して、燃料ガス供給量が所定量よりも小さい場合には低負荷運転であると判断して(STEP402:no)、燃焼運転終了時のファン回転速度の補正係数を、低負荷時用の活性後補正係数としてコントローラー150のメモリ152に記憶する(STEP406)。こうして、高負荷時用あるいは低負荷時用の活性後補正係数を記憶したら(STEP404、STEP406)、図9の活性後補正係数記憶処理を終了して、図2の運転制御処理に復帰する。   As a result, when the fuel gas supply amount is larger than the predetermined amount, it is determined that the operation is a high load operation (STEP 402: yes), and the fan rotation speed correction coefficient at the end of the combustion operation is determined as the activity for the high load operation. The post correction coefficient is stored in the memory 152 of the controller 150 (STEP 404). On the other hand, when the fuel gas supply amount is smaller than the predetermined amount, it is determined that the operation is a low load operation (STEP 402: no), and the correction coefficient of the fan rotation speed at the end of the combustion operation is used for the low load operation. Is stored in the memory 152 of the controller 150 (STEP 406). When the post-activation correction coefficient for high load or low load is stored in this way (STEP 404, STEP 406), the post-activation correction coefficient storage process of FIG. 9 is terminated and the operation control process of FIG. 2 is resumed.

そして、第2変形例の燃焼装置100では活性後補正係数記憶処理から復帰すると、活性前補正係数決定処理を開始する(図2のSTEP200参照)。この活性前補正係数決定処理の内容は、図4および図5を用いて前述した本実施例の活性前補正係数決定処理と同様であるが、第2変形例の燃焼装置100では、活性後補正係数として高負荷時用と低負荷時用の2種類の補正係数が記憶されている。このことと対応して、活性前補正係数も、高負荷時用と低負荷時用の2種類の活性前補正係数が決定される。図8の活性前補正係数読出処理で読み出す高負荷時用あるいは低負荷時用の活性前補正係数は、このようにして決定されている。   Then, when the combustion apparatus 100 of the second modification returns from the post-activation correction coefficient storage process, the pre-activation correction coefficient determination process is started (see STEP 200 in FIG. 2). The contents of the pre-activation correction coefficient determination process are the same as the pre-activation correction coefficient determination process of the present embodiment described above with reference to FIGS. 4 and 5, but the post-activation correction is performed in the combustion apparatus 100 of the second modification. Two types of correction coefficients for high load and low load are stored as coefficients. Correspondingly, two types of pre-activation correction coefficients for high load and low load are determined as the pre-activation correction coefficient. The pre-activity correction coefficient for high load or low load read in the pre-activity correction coefficient reading process of FIG. 8 is determined in this way.

以上に説明した変形例の燃焼装置100では、高負荷運転される場合と低負荷運転される場合とを区別して、負荷に応じてファン回転速度を補正することができるので、燃料ガスと燃焼用空気との比率をより細かく調整することが可能となり、混合ガスをより適切に燃焼させることができる。このため、燃焼運転を開始してから熱電対140が活性化するまでの間でも、混合ガスをより適切に燃焼させることが可能となる。   In the combustion apparatus 100 according to the modified example described above, the fan rotation speed can be corrected according to the load by distinguishing between the case of high load operation and the case of low load operation. The ratio with air can be adjusted more finely, and the mixed gas can be burned more appropriately. For this reason, it becomes possible to burn the mixed gas more appropriately even after the start of the combustion operation until the thermocouple 140 is activated.

以上、本実施例および変形例の燃焼装置100について説明したが、本発明は上記の実施例および変形例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。   Although the combustion apparatus 100 of the present embodiment and the modified example has been described above, the present invention is not limited to the above-described embodiment and modified example, and can be implemented in various modes without departing from the gist thereof. It is.

1…給湯装置、 10…ハウジング、 20…燃焼缶、
100…燃焼装置、 110…バーナー、 112…ガス通路、
114…電磁弁、 116…比例弁、 120…燃焼ファン、
130…点火プラグ、 140…熱電対、 150…コントローラー、
152…メモリ、 200…熱交換器、 202…熱交換フィン、
204…通水管、 300…排気筒
DESCRIPTION OF SYMBOLS 1 ... Hot-water supply apparatus, 10 ... Housing, 20 ... Combustion can,
100 ... Combustion device, 110 ... Burner, 112 ... Gas passage,
114 ... Solenoid valve, 116 ... Proportional valve, 120 ... Combustion fan,
130 ... Spark plug, 140 ... Thermocouple, 150 ... Controller,
152 ... Memory, 200 ... Heat exchanger, 202 ... Heat exchange fin,
204 ... Water pipe, 300 ... Exhaust pipe

Claims (5)

燃料ガスと燃焼用空気とを混合させた混合ガスに点火することによって燃焼運転を開始する燃焼運転開始手段と、前記混合ガスの燃焼状態を検出する燃焼状態検出手段と、前記燃焼状態の検出結果に基づいて前記燃料ガスまたは前記燃焼用空気の少なくとも一方の供給量を補正する供給量補正手段とを備える燃焼装置において、
前記供給量補正手段による前記供給量の補正値である供給補正値を記憶する供給補正値記憶手段と、
前記燃焼運転を開始してから前記燃焼状態が検出されるまでの間は、前記供給補正値に基づいて決定された見込み補正値に従って、前記燃料ガスまたは前記燃焼用空気の少なくとも一方の供給量を補正する見込み補正手段と、
前記燃焼運転を開始するより前に、前記供給補正値に基づいて前記見込み補正値を決定する見込み補正値決定手段と
を備え、
前記供給補正値記憶手段は、複数回の前記燃焼運転を遡って該複数回分の前記供給補正値を記憶しており、
前記見込み補正値決定手段は、前記複数回分の供給補正値に基づいて前記見込み補正値を決定することを特徴とする燃焼装置。
Combustion operation start means for starting combustion operation by igniting a mixed gas obtained by mixing fuel gas and combustion air, combustion state detection means for detecting the combustion state of the mixed gas, and detection result of the combustion state And a supply amount correcting means for correcting a supply amount of at least one of the fuel gas or the combustion air based on
Supply correction value storage means for storing a supply correction value that is a correction value of the supply amount by the supply amount correction means;
During the period from the start of the combustion operation until the combustion state is detected, the supply amount of at least one of the fuel gas or the combustion air is set according to the expected correction value determined based on the supply correction value. Prospect correction means to correct,
Before starting the combustion operation, the expected correction value determining means for determining the expected correction value based on the supply correction value,
The supply correction value storage means stores the supply correction values for a plurality of times retrospectively for a plurality of times of the combustion operation,
The expectation correction value determining means determines the expectation correction value based on the plurality of supply correction values.
請求項1に記載の燃焼装置において、
前記見込み補正値決定手段は、前記燃焼運転の開始時に用いた前記見込み補正値よりも、当該燃焼運転での前記燃焼状態の検出結果に基づく前記供給補正値の方が小さい場合には、該供給補正値を、前記見込み補正値として決定することを特徴とする燃焼装置。
The combustion apparatus according to claim 1, wherein
When the supply correction value based on the detection result of the combustion state in the combustion operation is smaller than the prediction correction value used at the start of the combustion operation, the expectation correction value determination means A combustion apparatus, wherein a correction value is determined as the prospective correction value.
請求項1または請求項2に記載の燃焼装置において、
前記見込み補正値決定手段は、前記複数回分の供給補正値の最大値と最小値との差が所定の閾値よりも小さい場合には、該供給補正値の最小値を、前記見込み補正値として決定することを特徴とする燃焼装置。
The combustion apparatus according to claim 1 or 2,
When the difference between the maximum value and the minimum value of the supply correction values for the plurality of times is smaller than a predetermined threshold value, the expectation correction value determination unit determines the minimum value of the supply correction value as the expectation correction value. A combustion apparatus characterized by:
請求項1ないし請求項3の何れか一項に記載の燃焼装置において、
前記見込み補正値決定手段は、前記複数回分の供給補正値の最大値と最小値との差が所定の閾値よりも大きい場合には、前回の前記燃焼運転の開始時に用いた前記見込み補正値を、新たな前記見込み補正値として決定することを特徴とする燃焼装置。
The combustion apparatus according to any one of claims 1 to 3,
When the difference between the maximum value and the minimum value of the plurality of supply correction values for a plurality of times is greater than a predetermined threshold value, the expectation correction value determination unit determines the expectation correction value used at the start of the previous combustion operation. The combustion apparatus is determined as a new prospective correction value.
請求項1ないし請求項4の何れか一項に記載の燃焼装置において、
前記供給量補正手段、前記供給補正値記憶手段、前記見込み補正手段、および前記見込み補正値決定手段は、前記燃料ガスの供給量が所定値よりも小さい低負荷運転時と、該低負荷運転時よりも前記燃料ガスの供給量が大きい高負荷運転時とを区別して、それぞれの動作を行うことを特徴とする燃焼装置。
The combustion apparatus according to any one of claims 1 to 4,
The supply amount correction means, the supply correction value storage means, the expectation correction means, and the expectation correction value determination means are configured so that the supply amount of the fuel gas is smaller than a predetermined value during low load operation and during the low load operation. A combustion apparatus that performs each operation while distinguishing from a high-load operation in which the supply amount of the fuel gas is larger than that.
JP2012221739A 2012-10-03 2012-10-03 Combustion device Active JP5707370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012221739A JP5707370B2 (en) 2012-10-03 2012-10-03 Combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012221739A JP5707370B2 (en) 2012-10-03 2012-10-03 Combustion device

Publications (2)

Publication Number Publication Date
JP2014074529A true JP2014074529A (en) 2014-04-24
JP5707370B2 JP5707370B2 (en) 2015-04-30

Family

ID=50748790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012221739A Active JP5707370B2 (en) 2012-10-03 2012-10-03 Combustion device

Country Status (1)

Country Link
JP (1) JP5707370B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719454A (en) * 1993-07-06 1995-01-20 Matsushita Electric Ind Co Ltd Combustion device
JPH08270934A (en) * 1995-03-29 1996-10-18 Harman Co Ltd Combustion apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719454A (en) * 1993-07-06 1995-01-20 Matsushita Electric Ind Co Ltd Combustion device
JPH08270934A (en) * 1995-03-29 1996-10-18 Harman Co Ltd Combustion apparatus

Also Published As

Publication number Publication date
JP5707370B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
KR101643867B1 (en) The initial ignition of the heater control method for stable water supply
KR19980030377A (en) Ignition Method of Gas Boiler to Prevent Explosion Ignition
JP5707370B2 (en) Combustion device
JP3878476B2 (en) Flow water heater
JP5902126B2 (en) Combustion equipment
KR101906218B1 (en) Rapid heating operation control method for a boiler
JP6671242B2 (en) Heat source machine
JP2014214925A (en) Burner
JP2016173212A (en) Water heater
JP2008292039A (en) Combustion apparatus
KR100422867B1 (en) Optimization Method For Tapping Temperature Of Initial Hot-Water In Condensing Boiler
JP4176686B2 (en) Combustion device with pilot burner
JP6445349B2 (en) Gas stove
JP4081030B2 (en) Combined combustion device
JP5632784B2 (en) Operation control method for hot air heater
KR102294678B1 (en) Apparatus for Combustion and the Method for Controlling Combustion
JPH10281455A (en) Method for stably burning gas boiler
JP2004197992A (en) Hot water supply heating device
JPH10332141A (en) Method of controlling combustion of gas boiler
JP3934044B2 (en) Combustion equipment startup method and combustion equipment
CN115751726A (en) Water heating apparatus, start control method thereof and readable storage medium
JP5819795B2 (en) Combustion device
JP3838085B2 (en) Hot water heater
JP2004044953A (en) Boiler selectively performing pilot combustion
JP2004205128A (en) Thermal apparatus and combustion control method for the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5707370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250