JP2014072283A - Optical amplifier system, and optical amplification method - Google Patents

Optical amplifier system, and optical amplification method Download PDF

Info

Publication number
JP2014072283A
JP2014072283A JP2012215742A JP2012215742A JP2014072283A JP 2014072283 A JP2014072283 A JP 2014072283A JP 2012215742 A JP2012215742 A JP 2012215742A JP 2012215742 A JP2012215742 A JP 2012215742A JP 2014072283 A JP2014072283 A JP 2014072283A
Authority
JP
Japan
Prior art keywords
optical
value
pumping light
power
optical amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012215742A
Other languages
Japanese (ja)
Other versions
JP5759437B2 (en
Inventor
Tetsuo Komukai
哲郎 小向
Takeshi Kawai
武司 河合
Mitsunori Fukutoku
光師 福徳
Yohei Sakamaki
陽平 坂巻
Tomoyoshi Kataoka
智由 片岡
Makoto Shimizu
誠 清水
Akio Sawara
明夫 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Electronics Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Electronics Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Electronics Corp
Priority to JP2012215742A priority Critical patent/JP5759437B2/en
Publication of JP2014072283A publication Critical patent/JP2014072283A/en
Application granted granted Critical
Publication of JP5759437B2 publication Critical patent/JP5759437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress level fluctuation width of output optical signals when the number of input optical signals (the number of wavelengths) having mutually different wavelengths fluctuates.SOLUTION: An optical amplification system includes: a plurality of photoexcitation optical amplifiers; a single semiconductor laser for outputting excitation light; and a splitter for distributing the excitation light output from the semiconductor laser to a gain medium of each of the plurality of optical amplifiers. The optical amplification system performs feedforward control for: monitoring light power of an input optical signal of each of the plurality of optical amplifiers; calculating such an output level of the semiconductor laser that an intermediate value of the maximum value and the minimum value of deviation of light power of the excitation light distributed to each of the plurality of optical amplifiers and light power of the excitation light with which desired gain can be obtained, becomes smaller than a predetermined value on the basis of a monitor value after fluctuation and a value of a branch ratio of the splitter in the case that any of monitor values has fluctuated; and setting the output level of the semiconductor laser to the calculated value.

Description

本発明は、光通信システムに用いられる、光増幅システムに関する。本発明は光増幅器への入射光信号の波長数変動に対する高速な適応が可能な光増幅システムに関する。   The present invention relates to an optical amplification system used in an optical communication system. The present invention relates to an optical amplification system capable of high-speed adaptation to fluctuations in the wavelength number of an optical signal incident on an optical amplifier.

近年、CDC−less(Colorless/Directionless/Contention−less) ROADM(Reconfigurable Optical Add/Drop Multiplexer)等の高機能光ノードの研究開発が盛んに進められている。図1にCDC−less ROADMノードの構成例を示す。   In recent years, research and development of highly functional optical nodes such as CDC-less (Colorless / Directionless / Contention-less) ROADM (Reconfigurable Optical Add / Drop Multiplexer) has been actively promoted. FIG. 1 shows a configuration example of a CDC-less ROADM node.

CDC−less機能により任意の波長の光信号を任意の方路に設定できるなどの運用性が向上するが、光ノードにおける損失が増加するため、伝送距離が制限されることになる。そのため、CDC−less ROADM等においては、伝送距離制限を緩和するため小型で集積化された光増幅器が開発されている(例えば非特許文献1)。非特許文献1には、複数のEDFA(Erbium Doped Fiber Amplifier)の励起半導体レーザを共用し、VOA(Variable Optical Attenuator)等の複数の光デバイスをPLC(Planar Lightwave Circuit)に集積することが記載されている。   The CDC-less function improves the operability such that an optical signal having an arbitrary wavelength can be set in an arbitrary path, but the loss in the optical node increases, so that the transmission distance is limited. Therefore, in CDC-less ROADM and the like, a small and integrated optical amplifier has been developed in order to relax the transmission distance limitation (for example, Non-Patent Document 1). Non-patent document 1 describes that a plurality of optical devices such as a VOA (Variable Optical Attenuator) are integrated in a PLC (Planar Lightwave Circuit) by sharing a plurality of EDFA (Erbium Doped Fiber Amplifier) pumping semiconductor lasers. ing.

CDC−less ROADMに必要とされる光増幅器(EDFA)はWDM用の光増幅器と比較すると大きな励起光が必須ではないので高額な励起半導体レーザを共用化することが可能であり、装置価格の上昇を抑えることが可能になる。また、CDC−less ROADMに要求される光増幅器は送受信器毎に必要となるため、装置数が膨大となるが、非特許文献1に記載されるように複数の光デバイスを集積化し、複数の光増幅器を集積化することにより装置全体を小さくすることが可能となる。PLCを使って複数の光増幅器を集積化した場合、PLC上に作られたVOAや光カプラの分岐比を可変にすることにより励起光を調整し利得調整が可能であるが、熱光学効果を利用した石英系導波路の動作速度は、ミリ秒オーダであるため、ミリ秒以下の急峻な信号レベル変動に追随できないという課題がある。したがって集積された光増幅器のいずれかへの入射波長数が急激に変化した場合、直ちに利得の過不足を適正化することが困難である。ここで波長数とは、WDM信号の互いに異なる波長の信号数のことを指す。   The optical amplifier (EDFA) required for the CDC-less ROADM does not require large pumping light as compared with the optical amplifier for WDM, so it is possible to share an expensive pumping semiconductor laser and increase the device price. Can be suppressed. Further, since the optical amplifier required for the CDC-less ROADM is required for each transmitter / receiver, the number of apparatuses becomes enormous. However, as described in Non-Patent Document 1, a plurality of optical devices are integrated and a plurality of optical devices are integrated. By integrating the optical amplifier, the entire apparatus can be reduced. When multiple optical amplifiers are integrated using a PLC, the gain can be adjusted by adjusting the pumping light by changing the branching ratio of the VOA or optical coupler made on the PLC. Since the operation speed of the utilized silica-based waveguide is on the order of milliseconds, there is a problem that it cannot follow a steep signal level fluctuation of milliseconds or less. Therefore, when the number of wavelengths incident on any of the integrated optical amplifiers changes abruptly, it is difficult to immediately optimize the excess or deficiency of the gain. Here, the number of wavelengths refers to the number of signals of different wavelengths of the WDM signal.

M.Bolshtyansky et al., “Planar Waveguide Integrated EDFA”, PDP17 OFC/NFOEC2008.M.M. Bolshtysky et al. , “Planar Waveguide Integrated EDFA”, PDP17 OFC / NFOEC2008. M.Fukutoku et al., “Pump power reduction of optical feedback controlled EDFA using electrical feedforward control,” Optical Amplifiers and Their Applications Tech. Dig., Vail, CO, 1998, pp. 32〜35.M.M. Fukutoku et al. , “Pump power reduction of optical fedback controlled EDFA using electrical fedforward control,” Optical Amplifiers and Tiler Applications. Dig. , Vail, CO, 1998, pp. 32-35.

上記のように複数の光励起型の光増幅器を単一の半導体レーザを用いて同時に励起する光増幅システムにおいて、従来技術では急激な波長数の変動に対応して、高速に利得を最適化にすることはPLCスイッチの速度制限があり、困難であった。
本発明はかかる課題を解決したものであり、互いに異なる波長の入力光信号の数(波長数)が変動した際の出力光信号のレベル変動幅を抑えることを目的とする。
In the optical amplification system that simultaneously pumps a plurality of optically pumped optical amplifiers using a single semiconductor laser as described above, the conventional technique optimizes the gain at a high speed in response to a sudden change in the number of wavelengths. This is difficult because of the speed limit of the PLC switch.
The present invention solves such a problem, and an object of the present invention is to suppress the level fluctuation width of the output optical signal when the number of input optical signals having different wavelengths (number of wavelengths) varies.

上記目的を達成するために、本願発明の光増幅器システムは、光励起型の複数の光増幅器と、励起光を出力する単一の半導体レーザと、半導体レーザから出力された励起光を複数の光増幅器それぞれの利得媒質に分配するスプリッタとを備える光増幅システムにおいて、複数の光増幅器それぞれの入力光信号の光パワーをモニタし、該モニタ値のいずれかに変動があった際に、変動後のモニタ値とスプリッタの分岐比の値とに基づいて、複数の光増幅器それぞれに分配される励起光の光パワーと所望の利得が得られる励起光の光パワーとの偏差のうちの最大値と最小値の中間値が所定値より小さくなるような半導体レーザの出力レベルを算出し、半導体レーザの出力レベルを算出した値に設定するフィードフォワード制御を行う。   To achieve the above object, an optical amplifier system according to the present invention includes a plurality of optically pumped optical amplifiers, a single semiconductor laser that outputs pumping light, and a plurality of optical amplifiers that emit pumping light output from the semiconductor laser. In an optical amplification system comprising a splitter that distributes to each gain medium, the optical power of the input optical signal of each of a plurality of optical amplifiers is monitored, and when any of the monitored values changes, the changed monitor is monitored. The maximum value and the minimum value of the deviations between the optical power of the pumping light distributed to each of the plurality of optical amplifiers and the optical power of the pumping light that obtains a desired gain based on the value of the splitter and the branching ratio of the splitter The semiconductor laser output level is calculated so that the intermediate value becomes smaller than a predetermined value, and feedforward control is performed to set the output level of the semiconductor laser to the calculated value.

具体的には、本願発明の光増幅器システムは、複数の光信号を増幅する光増幅システムであって、各光信号を増幅する複数の光増幅器と、光増幅器を通過前の各光信号の波長数を測定する複数の波長測定部と、各光増幅器において光信号を増幅するための励起光を発生する励起光源と、励起光源からの励起光を各光増幅器へ分岐する光スプリッタと、光信号の波長数に変動があった際に、変動後の波長数と変動前の光スプリッタの分岐比の値を基に、実際に各光増幅器へ分配される励起光のパワーと所望の利得が得られる励起光のパワーとの偏差の値の集合のうちの最大値と最小値の中間値が事前に設定した値より小さくなるような励起光源の出力レベルを計算し、励起光源の出力レベルを当該計算値に設定するフィードフォワード制御を行う励起光制御部と、を備える。   Specifically, the optical amplifier system of the present invention is an optical amplification system that amplifies a plurality of optical signals, and a plurality of optical amplifiers that amplify each optical signal, and the wavelength of each optical signal before passing through the optical amplifier. A plurality of wavelength measuring units for measuring the number, an excitation light source for generating excitation light for amplifying an optical signal in each optical amplifier, an optical splitter for branching the excitation light from the excitation light source to each optical amplifier, and an optical signal When there is a change in the number of wavelengths, the pump light power and the desired gain that are actually distributed to each optical amplifier are obtained based on the number of wavelengths after the change and the branching ratio value of the optical splitter before the change. The output level of the excitation light source is calculated so that the intermediate value between the maximum value and the minimum value of the set of deviation values from the excitation light power is smaller than a preset value. Perform feedforward control to be set to the calculated value Comprising an excitation light control unit.

本願発明の光増幅器システムでは、前記光スプリッタの分岐比が可変であって、前記励起光制御部は、変動後の各光増幅器への入射信号の波長数の比から光スプリッタの分岐比の値を計算し、光スプリッタの分岐比の値を当該計算値に設定するフィードフォワード制御を行ってもよい。   In the optical amplifier system of the present invention, the branching ratio of the optical splitter is variable, and the pumping light control unit determines the branching ratio of the optical splitter from the ratio of the number of wavelengths of the incident signal to each optical amplifier after the change. And the feedforward control may be performed in which the value of the branching ratio of the optical splitter is set to the calculated value.

本願発明の光増幅器システムでは、前記励起光制御部は、各光増幅器へ供給される励起光のパワーが前記所望の利得が得られる値に到達するまで励起光源の出力レベルを光スプリッタの動作速度と同程度で変化させてもよい。   In the optical amplifier system of the present invention, the pumping light control unit adjusts the output level of the pumping light source until the power of the pumping light supplied to each optical amplifier reaches a value at which the desired gain is obtained. It may be changed to the same degree.

本願発明の光増幅器システムでは、前記光スプリッタで分岐された各励起光のパワーを調整する可変光減衰器を有し、前記励起光制御部は、各光増幅器に入射する光信号のパワーと各光増幅器から出射する光信号のパワーをモニタすることにより、各光増幅器の利得の前記所望の利得からの偏差を検出し、その偏差が小さくなるように、前記可変光減衰器の減衰量を制御してもよい。   In the optical amplifier system of the present invention, the optical amplifier system includes a variable optical attenuator that adjusts the power of each pumping light branched by the optical splitter, and the pumping light control unit includes the power of the optical signal incident on each optical amplifier and each power By monitoring the power of the optical signal emitted from the optical amplifier, the deviation of the gain of each optical amplifier from the desired gain is detected, and the attenuation of the variable optical attenuator is controlled so that the deviation becomes small May be.

具体的には、本願発明の光増幅器方法は、複数の光信号を個別の光増幅器を用いて増幅する光増幅方法であって、各光信号の波長数を測定する測定手順と、光信号の波長数に変動があった際に、変動後の波長数と各光増幅器に供給する励起光の分岐比の値を基に、実際に各光増幅器へ分配される励起光のパワーと所望の利得が得られる励起光のパワーとの偏差の値の集合のうちの最大値と最小値の中間値が事前に設定した値より小さくなるように、励起光源の出力レベルを設定する設定手順と、設定した出力レベルの励起光を励起光源で発生し、当該励起光を各光増幅器に分岐し、分岐した励起光を用いて各光信号を増幅する光増幅手順と、を有する。ここで、上記の事前に設定する値は、励起光のパワーを出来るだけ精度良く設定するために、出来るだけ小さい値が望ましい。理想的には0となる。   Specifically, the optical amplifier method of the present invention is an optical amplification method for amplifying a plurality of optical signals using individual optical amplifiers, and includes a measurement procedure for measuring the number of wavelengths of each optical signal, When the number of wavelengths varies, the power and desired gain of the pumping light actually distributed to each optical amplifier based on the number of wavelengths after the variation and the branching ratio value of the pumping light supplied to each optical amplifier Setting procedure for setting the output level of the pumping light source so that the intermediate value between the maximum and minimum values of the set of deviation values from the pumping light power obtained is smaller than the preset value, and setting And an optical amplification procedure for generating the excitation light of the output level with the excitation light source, branching the excitation light to each optical amplifier, and amplifying each optical signal using the branched excitation light. Here, the value set in advance is preferably as small as possible in order to set the power of pumping light as accurately as possible. Ideally 0.

本願発明の光増幅方法では、前記設定手順において、変動後の各光増幅器への入射信号の波長数の比から前記分岐比の値を計算し、励起光を分岐する光スプリッタの分岐比の値を当該計算値に設定し、前記光増幅手順において、設定した分岐比の光スプリッタで励起光を分岐してもよい。   In the optical amplification method of the present invention, in the setting procedure, the branching ratio value of the optical splitter that branches the pumping light is calculated from the ratio of the number of wavelengths of the incident signals to the optical amplifiers after the change. May be set to the calculated value, and in the optical amplification procedure, the excitation light may be branched by an optical splitter having a set branching ratio.

本願発明の光増幅方法では、前記設定手順において、各光増幅器へ供給される励起光のパワーが前記所望の利得が得られる値に到達するまで励起光源の出力レベルを光スプリッタの動作速度と同程度で変化させてもよい。   In the optical amplification method of the present invention, in the setting procedure, the output level of the pumping light source is made equal to the operation speed of the optical splitter until the power of the pumping light supplied to each optical amplifier reaches a value at which the desired gain is obtained. It may be changed depending on the degree.

本願発明の光増幅方法では、前記測定手順において、各光増幅器に入射する光信号のパワーと各光増幅器から出射する光信号のパワーを測定し、前記設定手順において、各光増幅器の利得の前記所望の利得からの偏差を検出し、その偏差が小さくなるように、各励起光の減衰量を設定し、前記光増幅手順において、各光増幅器に入射する励起光のパワーを、設定した減衰量だけ減衰させてもよい。   In the optical amplification method of the present invention, in the measurement procedure, the power of the optical signal incident on each optical amplifier and the power of the optical signal emitted from each optical amplifier are measured, and in the setting procedure, the gain of each optical amplifier is A deviation from the desired gain is detected, the attenuation amount of each pumping light is set so that the deviation becomes small, and the power of the pumping light incident on each optical amplifier is set in the optical amplification procedure. It may be attenuated only.

なお、上記各発明は、可能な限り組み合わせることができる。   The above inventions can be combined as much as possible.

本発明によれば、互いに異なる波長の入力光信号の数(波長数)が変動した際の出力光信号のレベル変動幅を抑えることができる。   According to the present invention, it is possible to suppress the level fluctuation range of the output optical signal when the number of input optical signals having different wavelengths (the number of wavelengths) varies.

CDC−less ROADMノード構成の一例を示す。An example of a CDC-less ROADM node configuration is shown. 本発明の第1の実施形態の一例を示す。An example of the 1st Embodiment of this invention is shown. 第1の実施形態における動作の一例を示す。An example of operation | movement in 1st Embodiment is shown. 図3における波長数と励起光パワーの関係の一例を示す。An example of the relationship between the number of wavelengths and pumping light power in FIG. 3 is shown. 図4(b)において、励起光パワーの制御量を変化させた場合の一例を示す。FIG. 4B shows an example when the control amount of the excitation light power is changed. 図5(a)の制御の場合の動作の一例を示す。An example of the operation in the case of the control in FIG. 制御フローの一例を示す。An example of a control flow is shown. 時定数で励起光パワーを制御する動作を追加した場合の制御フローの一例を示す。An example of a control flow in the case of adding an operation for controlling the pumping light power with a time constant is shown. 分岐可変スプリッタの時定数を考慮して、励起光を制御する場合の動作の一例を示す。An example of the operation when controlling the excitation light in consideration of the time constant of the branching variable splitter will be described. 本発明の第2の実施形態の一例を示す。An example of the 2nd Embodiment of this invention is shown. 本発明の第3の実施形態の一例を示す。An example of the 3rd Embodiment of this invention is shown. 本発明の第4の実施形態の一例を示す。An example of the 4th embodiment of the present invention is shown. 本発明の第5の実施形態の一例を示す。An example of the 5th Embodiment of this invention is shown.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In the present specification and drawings, the same reference numerals denote the same components.

(実施形態1)
図2に本発明の第1の実施形態を示す。本実施形態に係る光ファイバ増幅器システムは、非特許文献1と同様に複数のEDF11を分岐比可変のスプリッタ19(光分岐回路)で励起光を共有化することにより集積した構成となっている。入力光をモニタして励起光パワーをフィードフォワード制御する点が、構成上異なる。複数のEDF11の励起光を共有化するため、各エルビウム添加ファイバ:EDF11(#1〜#n)への励起光パワーは、励起半導体レーザ14と分岐比可変光スプリッタ19を併用して調整する。なお、分岐比可変光スプリッタ19は、PLC上に集積化されたものを想定しているので、動作速度は数ミリ秒程度であり、励起半導体レーザ14より遅い制御となる。
(Embodiment 1)
FIG. 2 shows a first embodiment of the present invention. The optical fiber amplifier system according to the present embodiment has a configuration in which a plurality of EDFs 11 are integrated by sharing the pumping light with a splitter 19 (optical branch circuit) having a variable branching ratio, as in Non-Patent Document 1. The configuration differs in that the input light is monitored and the pumping light power is feedforward controlled. In order to share the pumping light of the plurality of EDFs 11, the pumping light power to each erbium-doped fiber: EDF11 (# 1 to #n) is adjusted by using the pumping semiconductor laser 14 and the branching ratio variable optical splitter 19 in combination. Since the variable branching ratio optical splitter 19 is assumed to be integrated on the PLC, the operation speed is about several milliseconds, and the control is slower than that of the pumping semiconductor laser 14.

具体的には、本実施形態に係る光ファイバ増幅器システムは、光増幅器としてのEDF11と、波長測定部としてのPD13と、光スプリッタ19と、励起光源としての励起半導体レーザ14と、励起光制御部としてのFF制御部17と、を備える。本実施形態に係る光ファイバ増幅方法は、測定手順と、設定手順と、光増幅手順と、を順に有する。   Specifically, the optical fiber amplifier system according to the present embodiment includes an EDF 11 as an optical amplifier, a PD 13 as a wavelength measuring unit, an optical splitter 19, a pumping semiconductor laser 14 as a pumping light source, and a pumping light control unit. And an FF control unit 17. The optical fiber amplification method according to the present embodiment includes a measurement procedure, a setting procedure, and an optical amplification procedure in this order.

測定手順では、PD13を用いて各光信号の波長数を測定する。これにより、光信号の波長数の変動を検出する。
設定手順では、光信号の波長数に変動があった際に、FF(Feedforward)制御部17が、励起光源の出力レベルを設定する。このとき、FF制御部17は、変動後の波長数と各EDF11に供給する励起光の分岐比の値を基に、実際に各EDF11へ分配される励起光のパワーと所望の利得が得られる励起光のパワーとの偏差の値の集合のうちの最大値と最小値の中間値が事前に設定した値より小さくなるように、励起光源の出力レベルを設定する。
光増幅手順では、設定した出力レベルの励起光を励起半導体レーザ14で発生し、当該励起光を各EDF11に分岐し、分岐した励起光を用いて各光信号を増幅する。
In the measurement procedure, the number of wavelengths of each optical signal is measured using the PD 13. Thereby, the fluctuation | variation of the wavelength number of an optical signal is detected.
In the setting procedure, the FF (Feedforward) control unit 17 sets the output level of the excitation light source when the number of wavelengths of the optical signal varies. At this time, the FF control unit 17 obtains the power and desired gain of the pumping light actually distributed to each EDF 11 based on the number of wavelengths after the change and the branching ratio value of the pumping light supplied to each EDF 11. The output level of the excitation light source is set so that the intermediate value between the maximum value and the minimum value in the set of deviation values from the excitation light power is smaller than a preset value.
In the optical amplification procedure, pumping light of a set output level is generated by the pumping semiconductor laser 14, the pumping light is branched to each EDF 11, and each optical signal is amplified using the branched pumping light.

図2において、EDF#1のみ入力波長数が変化(複数波長入力⇒1波長入力)した場合の動作を説明する。
実際の励起光パワーを制御する際には、利得一定条件での入力光パワーと励起光パワーの関係から、励起光パワーを決定すればよいが、以下の説明では、利得一定の条件においては、入力光パワーと励起光パワーは比例することを仮定する。すなわち、励起光一定で、入力光パワー(=入力波長数)が変化した場合には、1波長あたりの利得が変化することになる。
In FIG. 2, the operation when the number of input wavelengths changes only for EDF # 1 (multiple wavelength input → one wavelength input) will be described.
When controlling the actual pumping light power, it is only necessary to determine the pumping light power from the relationship between the input light power and the pumping light power under the constant gain condition, but in the following description, under the constant gain condition, It is assumed that the input light power and the pump light power are proportional. That is, when the pumping light is constant and the input light power (= number of input wavelengths) changes, the gain per wavelength changes.

はじめに、励起光パワーの変化量を入力波長数のみで決める場合について示す。
EDF#1の入力波長数が1に減少した瞬間は、励起光パワーは変化がないので、EDF#1の生き残り1チャネルの利得が過剰になる。
その後入力モニタ13で入力波長数減少を検出すると、FF制御部17が全体の波長数に比例して励起光パワーを減らす制御をする。このときFF制御部17は励起半導体レーザ14の励起光パワーと同時に分岐比可変光スプリッタ19の分岐比も変更するが、分岐比可変光スプリッタ19の動作が遅いため、EDF#2〜#nへの励起光が一旦減少することになる。
その後分岐比可変光スプリッタ19の分岐比が変化し、EDF#2〜#nへ本来供給されるべき励起光パワーが分配される。そのため、EDF#2〜#nは出力レベルが一旦減少し、その後分岐比可変光スプリッタ19の時定数程度の時間で(分岐比可変光スプリッタ19の動作速度で)、もとのレベルにもどることになる。
First, a case where the amount of change in pumping light power is determined only by the number of input wavelengths will be described.
At the moment when the number of input wavelengths of EDF # 1 decreases to 1, the pumping light power does not change, and therefore, the surviving 1 channel gain of EDF # 1 becomes excessive.
Thereafter, when the input monitor 13 detects a decrease in the number of input wavelengths, the FF control unit 17 controls to reduce the pumping light power in proportion to the total number of wavelengths. At this time, the FF control unit 17 changes the branching ratio of the branching ratio variable optical splitter 19 simultaneously with the pumping light power of the pumping semiconductor laser 14, but the operation of the branching ratio variable optical splitter 19 is slow, so that the EDFs # 2 to #n. The excitation light of is once decreased.
Thereafter, the branching ratio of the branching ratio variable optical splitter 19 changes, and the pumping light power that should be originally supplied to the EDFs # 2 to #n is distributed. For this reason, the output levels of EDFs # 2 to #n once decrease, and then return to the original level in the time equivalent to the time constant of the branching ratio variable optical splitter 19 (at the operating speed of the branching ratio variable optical splitter 19). become.

ここで、分岐比可変光スプリッタ19の分岐比は、変動後の各EDFへの入力波長数の比となる。例えば、EDFの数が3であり、EDF#1〜#3への入力波長数が、5、10並びに15であれば、5:10:15=1:2:3となる。   Here, the branching ratio of the variable branching ratio optical splitter 19 is the ratio of the number of input wavelengths to each EDF after the change. For example, if the number of EDFs is 3 and the number of input wavelengths to EDFs # 1 to # 3 is 5, 10, and 15, 5: 10: 15 = 1: 2: 3.

上記動作を時間変化に関してまとめたものを図3に示す。励起光パワーのフィードフォワード制御により、EDF#1のレベル変動幅は励起光パワーを制御しない場合よりも抑えられるが、分岐比可変光スプリッタ19の動作が励起光パワーより遅いため、EDF#1〜#nのレベル変動が分岐比可変光スプリッタ19の時定数だけ継続することになる。ここで波長数変化時の各EDF11の出力レベル変動がトランスポンダ(図1のRx)の受信レベル範囲に入らない場合には、受信エラーが発生することになる。   FIG. 3 shows a summary of the above operations with respect to time. By the feedforward control of the pumping light power, the level fluctuation range of the EDF # 1 is suppressed as compared with the case where the pumping light power is not controlled. However, since the operation of the variable branching ratio optical splitter 19 is slower than the pumping light power, The level fluctuation of #n continues for the time constant of the branching ratio variable optical splitter 19. Here, when the output level fluctuation of each EDF 11 when the number of wavelengths changes does not fall within the reception level range of the transponder (Rx in FIG. 1), a reception error occurs.

また、図3に示す内容を各EDF11における波長数と励起光パワーの関係に着目してまとめたものを図4に示す。図4(b)に示すように、波長数変化を検出して、励起光を調整し、分岐比可変光スプリッタ19の分岐比の設定変更が完了する前までは、各EDF11の入力波長数と励起光パワーに誤差が生じるため、各EDF11の出力に変動が生じることになる。   FIG. 4 shows a summary of the contents shown in FIG. 3 while focusing on the relationship between the number of wavelengths in each EDF 11 and the pumping light power. As shown in FIG. 4B, the number of input wavelengths of each EDF 11 is detected until the change in the number of wavelengths is detected, the excitation light is adjusted, and the setting of the branching ratio of the variable branching ratio optical splitter 19 is completed. Since an error occurs in the pumping light power, the output of each EDF 11 varies.

次に、励起光パワーの制御量の目標値を全てのEDFの出力変動幅を考慮して決定する場合を示す。図5に図4(b)に示す波長数変化を検出して、励起光を調整し、分岐比可変光スプリッタ19の分岐比の設定変更が完了する前までタイミングにおける波長数と励起光パワーの関係を、励起光パワーの制御量を小さくした場合と大きくした場合の模式図を示す。   Next, a case where the target value of the control amount of the pump light power is determined in consideration of the output fluctuation width of all EDFs will be described. FIG. 5 shows the change in the number of wavelengths shown in FIG. 4B, adjusts the pumping light, and changes the number of wavelengths and the pumping light power at the timing until the branching ratio setting change of the branching ratio variable optical splitter 19 is completed. The schematic diagram when the relationship is increased when the control amount of the excitation light power is reduced and increased is shown.

図5(a)に示すように励起光制御パワーの制御量を小さくした場合には、EDF#1の瞬時的なレベルの誤差(Err#1)は、図4の場合よりも大きくなるが、EDF#2〜#nのレベル誤差(Err#2〜Err#n)は小さく、励起光を変化させた瞬間のEDF#2〜#nのレベル変動幅が抑えられる。ただし、励起光が過大となるため分岐比の調整が終了し定常状態にもどったときのレベルが全てのEDFで少し増大することになる。図5(a)の制御の場合の各EDFの時間変化を図6に示す。   When the control amount of the pump light control power is reduced as shown in FIG. 5A, the instantaneous level error (Err # 1) of EDF # 1 is larger than that in FIG. The level errors (Err # 2 to Err # n) of the EDFs # 2 to #n are small, and the level fluctuation range of the EDFs # 2 to #n at the moment when the excitation light is changed can be suppressed. However, since the excitation light becomes excessive, the level when the adjustment of the branching ratio ends and returns to the steady state slightly increases for all EDFs. FIG. 6 shows a time change of each EDF in the case of the control of FIG.

また、図5(b)に示す励起光パワーの制御量を大きくした場合には、EDF#1の瞬時的なレベルの誤差(Err#1)は、図4の場合よりも小さくなるが、EDF#2〜#nのレベル誤差(Err#2〜Err#n)が大きく、励起光を変化させた瞬間のEDF#2〜#nのレベル変動幅が大きくなる。   When the control amount of the excitation light power shown in FIG. 5B is increased, the instantaneous level error (Err # 1) of EDF # 1 becomes smaller than that in FIG. The level error (Err # 2 to Err # n) of # 2 to #n is large, and the level fluctuation range of EDF # 2 to #n at the moment when the excitation light is changed becomes large.

ここで、励起光パワーの制御量を次のように決定する。
PD13を用いて波長数を検出し(S101)、波長数変動量から仮励起光パワー制御量を算出する(S102)。分岐比可変光スプリッタ19の分岐比は波長数変動前と同じで、励起光パワーを変更した場合に、各EDF11におけるレベル偏差量を算出する(S103〜S108)。ここでレベル誤差は、各EDF#i(i=1〜n)の入力波長数から算出される必要励起光パワーよりも供給される励起光パワーが大きい場合には、正の値の誤差として算出し、供給される励起光パワーが小さい場合には、負の値の誤差と算出する。
次に各EDF11のレベル誤差の最大値と最小値を算出し(S104)、その最大値と最小値の中間値が0となるように励起光パワーの制御量を決定する(S105〜S107)。
Here, the control amount of the excitation light power is determined as follows.
The number of wavelengths is detected using the PD 13 (S101), and the provisional pumping light power control amount is calculated from the amount of wavelength number fluctuation (S102). The branching ratio of the variable branching ratio optical splitter 19 is the same as that before the change in the number of wavelengths, and when the pumping light power is changed, the level deviation amount in each EDF 11 is calculated (S103 to S108). Here, the level error is calculated as a positive value error when the pumping light power supplied is larger than the necessary pumping light power calculated from the number of input wavelengths of each EDF # i (i = 1 to n). If the supplied pumping light power is small, it is calculated as a negative error.
Next, the maximum value and the minimum value of the level error of each EDF 11 are calculated (S104), and the control amount of the excitation light power is determined so that the intermediate value between the maximum value and the minimum value becomes 0 (S105 to S107).

具体的には図5においては、EDF#1のレベル誤差(Err#1)が最大値(>0)に相当し、EDF#2(図5では#3〜#nでも可)のレベル誤差(Err#2)が最小値(<0)に相当する。よって、図5においては、(Err#1+Err#2)/2の値が0になるように励起光パワーの制御量を決定すればよい。これにより全てのEDF11のレベル誤差が平均化され、特定のEDF11のみでのレベル変動を抑えることが可能となる。上記一連の制御フローを図7に示す。   Specifically, in FIG. 5, the level error (Err # 1) of EDF # 1 corresponds to the maximum value (> 0), and the level error of EDF # 2 (# 3 to #n in FIG.5 is also acceptable) ( Err # 2) corresponds to the minimum value (<0). Therefore, in FIG. 5, the control amount of the pumping light power may be determined so that the value of (Err # 1 + Err # 2) / 2 becomes zero. As a result, the level errors of all the EDFs 11 are averaged, and it is possible to suppress level fluctuations only with a specific EDF 11. A series of the above control flow is shown in FIG.

上述のとおりレベル変動幅を抑えるように励起光パワーの制御量を決める場合、定常状態でのレベルに誤差が生じることになる。そのため、波長数変化が生じた瞬間の励起光パワーの制御量は、図7に示すとおり決めて、レベル変動幅を抑え、その後、波長数変化量に応じた励起光パワーの変化量になるように励起光パワーを分岐比可変光スプリッタ19と同じ時定数で変化させる。この場合の制御フローを図8に示し、動作を図9に示す。   As described above, when the control amount of the pumping light power is determined so as to suppress the level fluctuation range, an error occurs in the level in the steady state. For this reason, the control amount of the pumping light power at the moment when the wavelength number change occurs is determined as shown in FIG. 7, and the level fluctuation width is suppressed, and then the pumping light power change amount according to the wavelength number changing amount. The pumping light power is changed with the same time constant as that of the branching ratio variable optical splitter 19. The control flow in this case is shown in FIG. 8, and the operation is shown in FIG.

図8に示す制御フローと図7に示す制御フローとの差は、波長数変化量に応じた励起光パワーの変化量になるように励起光パワーを分岐比可変光スプリッタ19と同じ時定数で変化させるステップS109が最後に追加された点であり、それ以外は、図7と同じ制御である。   The difference between the control flow shown in FIG. 8 and the control flow shown in FIG. 7 is that the pump light power is changed with the same time constant as that of the branching ratio variable optical splitter 19 so that the pump light power change amount according to the wavelength number change amount. Step S109 to be changed is added at the end, and the other control is the same as in FIG.

図9のΔP1で示す制御量が図7に示すステップS107の制御量であり、図9のΔP2で示す制御量が図8の最後のステップS109の制御量となる。これにより、波長数変動時の出力レベル変動幅を抑えることができ、かつ、定常状態での出力レベルも波長数変化前と同じ値に設定できることになる。   The control amount indicated by ΔP1 in FIG. 9 is the control amount in step S107 shown in FIG. 7, and the control amount indicated by ΔP2 in FIG. 9 is the control amount in the last step S109 in FIG. As a result, the output level fluctuation range when the number of wavelengths changes can be suppressed, and the output level in the steady state can also be set to the same value as before the change in the number of wavelengths.

本発明は、EDFAをはじめとする、複数の光励起型の光増幅器を、PLCを用いて集積化し、共通の励起半導体レーザ14で各光増幅器を励起する光増幅器システムにおいて、各光増幅器への入射光信号の波長数が急激に変動しても高速に最適な励起状態を実現することが可能となる。   The present invention integrates a plurality of optically pumped optical amplifiers such as an EDFA using a PLC, and pumps the optical amplifiers with a common pumping semiconductor laser 14 to be incident on each optical amplifier. Even if the number of wavelengths of the optical signal fluctuates abruptly, it becomes possible to realize an optimum excitation state at high speed.

(実施形態2)
図10に本発明の第2の実施形態を示す。本実施形態に係る光増幅器システムは、実施形態1の構成に加えて、各励起光のパワーを調整する可変光減衰器23と、各EDF11通過後の光信号パワーを測定するPD22と、FB(Feedback)制御部18と、をさらに備える。
(Embodiment 2)
FIG. 10 shows a second embodiment of the present invention. In addition to the configuration of the first embodiment, the optical amplifier system according to the present embodiment includes a variable optical attenuator 23 that adjusts the power of each pump light, a PD 22 that measures the optical signal power after passing through each EDF 11, and an FB ( And a feedback control unit 18.

本実施形態では、FB制御部18は、各EDF11に入射する光信号のパワーと各EDF11から出射する光信号のパワーをモニタすることにより、各EDF11の利得の所望の利得からの偏差を検出し、その偏差が小さくなるように、可変光減衰器23の減衰量をフィードバック制御する。   In the present embodiment, the FB control unit 18 detects the deviation of the gain of each EDF 11 from the desired gain by monitoring the power of the optical signal incident on each EDF 11 and the power of the optical signal emitted from each EDF 11. The attenuation amount of the variable optical attenuator 23 is feedback-controlled so that the deviation becomes small.

本実施形態では、各EDF11への励起光パワーを可変光減衰器23で調整できるとともに、各EDF11に関して光信号の入出力レベルをモニタできる。したがって、スプリッタ20の分岐比が固定であっても、各EDF11の入出力信号レベルをモニタして得た利得の偏差を可変光減衰器23にフィードバックすることにより、励起光パワーを所望の利得が得られる値に最適化することができる。分岐比固定の場合、励起用半導体レーザの出力設定だけでは最適化はできないので本実施形態は有用である。   In the present embodiment, the pumping light power to each EDF 11 can be adjusted by the variable optical attenuator 23, and the input / output level of the optical signal can be monitored for each EDF 11. Therefore, even if the branching ratio of the splitter 20 is fixed, the difference in gain obtained by monitoring the input / output signal level of each EDF 11 is fed back to the variable optical attenuator 23, so that the pump light power has a desired gain. It can be optimized to the value obtained. When the branching ratio is fixed, this embodiment is useful because optimization cannot be performed only by setting the output of the pumping semiconductor laser.

(実施形態3)
図11には本発明の第3の実施形態を示す。本実施形態に係る光増幅器システムは、実施形態1の構成に加えて、各励起光のパワーを調整する可変光減衰器23と、各EDF11通過後の光信号パワーを測定するPD22と、FB制御部18と、をさらに備える。
(Embodiment 3)
FIG. 11 shows a third embodiment of the present invention. In addition to the configuration of the first embodiment, the optical amplifier system according to the present embodiment includes a variable optical attenuator 23 that adjusts the power of each pump light, a PD 22 that measures the optical signal power after passing through each EDF 11, and FB control. And a unit 18.

本実施形態では、FF制御部17は、励起半導体レーザ14の出力レベルを計算し、その後分岐比可変光スプリッタ19の分岐比を計算する。そして、これらの計算結果の値に、励起半導体レーザ14及び分岐比可変光スプリッタ19を設定する。さらに実施形態3のように利得偏差を用いて可変光減衰器23をフィードバック制御する。   In the present embodiment, the FF control unit 17 calculates the output level of the pumping semiconductor laser 14 and then calculates the branching ratio of the branching ratio variable optical splitter 19. Then, the pumping semiconductor laser 14 and the branching ratio variable optical splitter 19 are set to these calculation result values. Further, the variable optical attenuator 23 is feedback controlled using the gain deviation as in the third embodiment.

ここで、分岐比可変光スプリッタ19の分岐比は、変動後の各EDFへの入力波長数の比となる。例えば、EDFの数が3であり、EDF#1〜#3への入力波長数が、5、10並びに15であれば、5:10:15=1:2:3となる。   Here, the branching ratio of the variable branching ratio optical splitter 19 is the ratio of the number of input wavelengths to each EDF after the change. For example, if the number of EDFs is 3 and the number of input wavelengths to EDFs # 1 to # 3 is 5, 10, and 15, 5: 10: 15 = 1: 2: 3.

本実施形態では、分岐比可変スプリッタ19の分岐比を設定の後、FB制御部18が上記のフィードバック制御を行うとともに、励起用半導体レーザ14の出力を、波長数変動から計算される値に、分岐比可変光スプリッタ19の時定数で変化させるが、可変光減衰器23と分岐比可変スプリッタ19の可変機能を併用することにより、実施例1より短い時間で波長変動前の出力レベルに到達することが可能となる。   In the present embodiment, after setting the branching ratio of the branching ratio variable splitter 19, the FB control unit 18 performs the above feedback control, and the output of the pumping semiconductor laser 14 is set to a value calculated from the wavelength number fluctuation. Although the time constant of the branching ratio variable optical splitter 19 is changed, by using the variable optical attenuator 23 and the variable function of the branching ratio variable splitter 19 together, the output level before the wavelength fluctuation is reached in a shorter time than in the first embodiment. It becomes possible.

(実施形態4)
図12には本発明の第4の実施形態を示す。本実施形態では、可変カプラ24を分岐ごとに片方の分岐方向のみ用いてカスケードに連結することにより分岐比可変光スプリッタ19を構成している。本構成を採用することにより、光スプリッタ単体で、どのEDF11にも励起光を入射させないという選択ができる(オフポートからだけ励起光を出射させる選択)。
(Embodiment 4)
FIG. 12 shows a fourth embodiment of the present invention. In this embodiment, the branching ratio variable optical splitter 19 is configured by connecting the variable coupler 24 to the cascade using only one branching direction for each branching. By adopting this configuration, it is possible to select that the excitation light is not incident on any EDF 11 with a single optical splitter (selection for emitting the excitation light only from the off-port).

(実施形態5)
図13には本発明の第5の実施形態を示す。可変カプラ24を分岐ごとにどちらの分岐方向にも用いて分岐比可変光スプリッタ19を構成している。本構成を採用することにより、1×2分岐比可変カプラの数が少なくて済む。
(Embodiment 5)
FIG. 13 shows a fifth embodiment of the present invention. A variable branching ratio optical splitter 19 is configured by using the variable coupler 24 in either branch direction for each branch. By adopting this configuration, the number of 1 × 2 branching ratio variable couplers can be reduced.

以上説明したように、本発明は、複数の光増幅器を、PLCを用いて集積化し、共通の半導体レーザで各光増幅器を励起する光増幅器システムにおいて入射信号の波長数変動の利得への影響を高速に緩和するものであり、光通信システムの運用に有用である。   As described above, the present invention integrates a plurality of optical amplifiers using a PLC, and affects the gain of the fluctuation of the number of wavelengths of incident signals in an optical amplifier system that excites each optical amplifier with a common semiconductor laser. It relaxes at high speed and is useful for the operation of optical communication systems.

11:EDF
12、15、21:光カプラ
13、22:PD
14:励起半導体レーザ
15:励起光結合部
17:FF制御部
18:FB制御部
19:分岐比可変光スプリッタ
20:分岐比固定スプリッタ
23:可変光減衰器
24:可変カプラ
51、66:WDM用光増幅器
52、64:カプラ
53、65:WSS
54、63:CDC用光アンプ
55、62:CDC−less用光スイッチ
56:受信機
61:送信機
11: EDF
12, 15, 21: Optical coupler 13, 22: PD
14: pumping semiconductor laser 15: pumping light coupling unit 17: FF control unit 18: FB control unit 19: branching ratio variable optical splitter 20: branching ratio fixed splitter 23: variable optical attenuator 24: variable couplers 51, 66: for WDM Optical amplifiers 52 and 64: couplers 53 and 65: WSS
54, 63: CDC optical amplifier 55, 62: CDC-less optical switch 56: Receiver 61: Transmitter

Claims (8)

複数の光信号を増幅する光増幅システムであって、
各光信号を増幅する複数の光増幅器と、
光増幅器を通過前の各光信号の波長数を測定する複数の波長測定部と、
各光増幅器において光信号を増幅するための励起光を発生する励起光源と、
励起光源からの励起光を各光増幅器へ分岐する光スプリッタと、
光信号の波長数に変動があった際に、変動後の波長数と変動前の光スプリッタの分岐比の値を基に、実際に各光増幅器へ分配される励起光のパワーと所望の利得が得られる励起光のパワーとの偏差の値の集合のうちの最大値と最小値の中間値が事前に設定した値より小さくなるような励起光源の出力レベルを計算し、励起光源の出力レベルを当該計算値に設定するフィードフォワード制御を行う励起光制御部と、
を備える光増幅器システム。
An optical amplification system for amplifying a plurality of optical signals,
A plurality of optical amplifiers for amplifying each optical signal;
A plurality of wavelength measuring units for measuring the number of wavelengths of each optical signal before passing through the optical amplifier;
An excitation light source that generates excitation light for amplifying an optical signal in each optical amplifier;
An optical splitter for branching the pumping light from the pumping light source to each optical amplifier;
When there are fluctuations in the number of wavelengths of the optical signal, the power and desired gain of the pumping light actually distributed to each optical amplifier based on the number of wavelengths after fluctuation and the branching ratio value of the optical splitter before fluctuation The output level of the excitation light source is calculated by calculating the output level of the excitation light source so that the intermediate value between the maximum value and the minimum value of the set of deviation values from the excitation light power obtained is smaller than the preset value. An excitation light control unit that performs feedforward control to set the calculated value to the calculated value;
An optical amplifier system comprising:
前記光スプリッタの分岐比が可変であって、
前記励起光制御部は、前記変動後の各光増幅器への入射信号の波長数の比から光スプリッタの分岐比の値を計算し、光スプリッタの分岐比の値を当該計算値に設定するフィードフォワード制御を行うことを特徴とする請求項1に記載の光増幅器システム。
The branching ratio of the optical splitter is variable,
The pumping light control unit calculates the value of the branching ratio of the optical splitter from the ratio of the number of wavelengths of the incident signal to each optical amplifier after the change, and sets the value of the branching ratio of the optical splitter to the calculated value. 2. The optical amplifier system according to claim 1, wherein forward control is performed.
前記励起光制御部は、各光増幅器へ供給される励起光のパワーが前記所望の利得が得られる値に到達するまで励起光源の出力レベルを光スプリッタの動作速度と同程度で変化させることを特徴とする請求項2に記載の光増幅器システム。   The pumping light controller changes the output level of the pumping light source at the same level as the operation speed of the optical splitter until the power of the pumping light supplied to each optical amplifier reaches a value at which the desired gain is obtained. The optical amplifier system according to claim 2, wherein: 前記光スプリッタで分岐された各励起光のパワーを調整する可変光減衰器を有し、
前記励起光制御部は、各光増幅器に入射する光信号のパワーと各光増幅器から出射する光信号のパワーをモニタすることにより、各光増幅器の利得の前記所望の利得からの偏差を検出し、その偏差が小さくなるように、前記可変光減衰器の減衰量を制御することを特徴とする請求項1から3のいずれかに記載の光増幅器システム。
A variable optical attenuator for adjusting the power of each pumping light branched by the optical splitter;
The pumping light control unit detects a deviation of the gain of each optical amplifier from the desired gain by monitoring the power of the optical signal incident on each optical amplifier and the power of the optical signal emitted from each optical amplifier. 4. The optical amplifier system according to claim 1, wherein an attenuation amount of the variable optical attenuator is controlled so that the deviation becomes small.
複数の光信号を個別の光増幅器を用いて増幅する光増幅方法であって、
各光信号の波長数を測定する測定手順と、
光信号の波長数に変動があった際に、変動後の波長数と各光増幅器に供給する励起光の分岐比の値を基に、実際に各光増幅器へ分配される励起光のパワーと所望の利得が得られる励起光のパワーとの偏差の値の集合のうちの最大値と最小値の中間値が事前に設定した値より小さくなるように、励起光源の出力レベルを設定する設定手順と、
設定した出力レベルの励起光を励起光源で発生し、当該励起光を各光増幅器に分岐し、分岐した励起光を用いて各光信号を増幅する光増幅手順と、
を有する光増幅方法。
An optical amplification method for amplifying a plurality of optical signals using individual optical amplifiers,
A measurement procedure for measuring the number of wavelengths of each optical signal;
When there is a change in the number of wavelengths of the optical signal, the power of the pumping light actually distributed to each optical amplifier based on the number of changed wavelengths and the branching ratio of the pumping light supplied to each optical amplifier Setting procedure for setting the output level of the pumping light source so that the intermediate value between the maximum value and the minimum value among the set of deviation values from the pumping light power at which a desired gain can be obtained is smaller than a preset value. When,
An optical amplification procedure for generating excitation light of a set output level with an excitation light source, branching the excitation light to each optical amplifier, and amplifying each optical signal using the branched excitation light;
An optical amplification method comprising:
前記設定手順において、前記変動後の各光増幅器への入射信号の波長数の比から前記分岐比の値を計算し、励起光を分岐する光スプリッタの分岐比の値を当該計算値に設定し、
前記光増幅手順において、設定した分岐比の光スプリッタで励起光を分岐する
ことを特徴とする請求項5に記載の光増幅方法。
In the setting procedure, the branching ratio value is calculated from the ratio of the number of wavelengths of the incident signals to the optical amplifiers after the change, and the branching ratio value of the optical splitter that branches the pumping light is set to the calculated value. ,
6. The optical amplification method according to claim 5, wherein in the optical amplification procedure, the excitation light is branched by an optical splitter having a set branching ratio.
前記設定手順において、各光増幅器へ供給される励起光のパワーが前記所望の利得が得られる値に到達するまで励起光源の出力レベルを光スプリッタの動作速度と同程度で変化させる
ことを特徴とする請求項5又は6に記載の光増幅方法。
In the setting procedure, the output level of the pumping light source is changed at the same level as the operation speed of the optical splitter until the power of the pumping light supplied to each optical amplifier reaches a value at which the desired gain is obtained. The optical amplification method according to claim 5 or 6.
前記測定手順において、各光増幅器に入射する光信号のパワーと各光増幅器から出射する光信号のパワーを測定し、
前記設定手順において、各光増幅器の利得の前記所望の利得からの偏差を検出し、その偏差が小さくなるように、各励起光の減衰量を設定し、
前記光増幅手順において、各光増幅器に入射する励起光のパワーを、設定した減衰量だけ減衰させる
ことを特徴とする請求項5から7のいずれかに記載の光増幅方法。
In the measurement procedure, the power of the optical signal incident on each optical amplifier and the power of the optical signal emitted from each optical amplifier are measured,
In the setting procedure, a deviation of the gain of each optical amplifier from the desired gain is detected, and an attenuation amount of each pumping light is set so that the deviation becomes small,
The optical amplification method according to any one of claims 5 to 7, wherein in the optical amplification procedure, the power of pumping light incident on each optical amplifier is attenuated by a set attenuation amount.
JP2012215742A 2012-09-28 2012-09-28 Optical amplifier system and optical amplification method Active JP5759437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215742A JP5759437B2 (en) 2012-09-28 2012-09-28 Optical amplifier system and optical amplification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215742A JP5759437B2 (en) 2012-09-28 2012-09-28 Optical amplifier system and optical amplification method

Publications (2)

Publication Number Publication Date
JP2014072283A true JP2014072283A (en) 2014-04-21
JP5759437B2 JP5759437B2 (en) 2015-08-05

Family

ID=50747259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215742A Active JP5759437B2 (en) 2012-09-28 2012-09-28 Optical amplifier system and optical amplification method

Country Status (1)

Country Link
JP (1) JP5759437B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168593A1 (en) * 2017-03-13 2018-09-20 日本電気株式会社 Optical amplification module and optical amplification method
JP2022505417A (en) * 2018-11-05 2022-01-14 ライトループ・テクノロジーズ・エルエルシー Systems and methods for building, operating and controlling multiple amplifiers, regenerators and transceivers using shared common components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094181A (en) * 1999-09-27 2001-04-06 Sumitomo Electric Ind Ltd Optical amplifier
JP2001111151A (en) * 1999-08-25 2001-04-20 Lucent Technol Inc Optical amplifier control placement and its control method
JP2004258622A (en) * 2003-02-07 2004-09-16 Sumitomo Electric Ind Ltd Raman amplifier and optical communication system including the same
JP2006084882A (en) * 2004-09-17 2006-03-30 Fujitsu Ltd Optical node
JP2008193512A (en) * 2007-02-06 2008-08-21 Nippon Telegr & Teleph Corp <Ntt> Channel filter, and optical branching and inserting device
WO2012053320A1 (en) * 2010-10-22 2012-04-26 日本電気株式会社 Excitation light distribution device, excitation light distribution method, light-amplifying system, and node device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001111151A (en) * 1999-08-25 2001-04-20 Lucent Technol Inc Optical amplifier control placement and its control method
JP2001094181A (en) * 1999-09-27 2001-04-06 Sumitomo Electric Ind Ltd Optical amplifier
JP2004258622A (en) * 2003-02-07 2004-09-16 Sumitomo Electric Ind Ltd Raman amplifier and optical communication system including the same
JP2006084882A (en) * 2004-09-17 2006-03-30 Fujitsu Ltd Optical node
JP2008193512A (en) * 2007-02-06 2008-08-21 Nippon Telegr & Teleph Corp <Ntt> Channel filter, and optical branching and inserting device
WO2012053320A1 (en) * 2010-10-22 2012-04-26 日本電気株式会社 Excitation light distribution device, excitation light distribution method, light-amplifying system, and node device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168593A1 (en) * 2017-03-13 2018-09-20 日本電気株式会社 Optical amplification module and optical amplification method
JPWO2018168593A1 (en) * 2017-03-13 2020-01-09 日本電気株式会社 Optical amplification module and optical amplification method
JP2022505417A (en) * 2018-11-05 2022-01-14 ライトループ・テクノロジーズ・エルエルシー Systems and methods for building, operating and controlling multiple amplifiers, regenerators and transceivers using shared common components

Also Published As

Publication number Publication date
JP5759437B2 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP3903650B2 (en) Optical amplifier and optical amplifier control method
US8482849B2 (en) Raman amplifier and control method thereof
JPH08278523A (en) Light amplifier
KR20020008772A (en) Raman amplifier
JP2009229784A (en) Method and device for monitoring noise light by raman amplification, and optical communication system using the same
JP2012156285A (en) Light amplifier
JP2008034532A (en) Optical amplifier
JP5759437B2 (en) Optical amplifier system and optical amplification method
JP2011066142A (en) Optical amplifier, and optical amplification method
JP5841517B2 (en) Optical fiber amplifier system and optical fiber amplification method
JP2004119979A (en) Long-wavelength optical fiber amplifier
US6381065B1 (en) Optical pump unit for an optical amplifier
JP6020640B2 (en) Optical amplifier
JP2006237613A (en) High-speed dynamic gain control in optical fiber amplifier
US7068422B2 (en) Optical fiber amplification method and apparatus for controlling gain
WO2017085822A1 (en) Optical amplifier
JP4605662B2 (en) Gain clamp type optical amplifier
JP2004273481A (en) Optical amplifier system
US9391426B2 (en) Raman amplifier and gain control method
JP5682677B2 (en) Optical amplifier and optical amplification method
JP2012043934A (en) Amplification device, communication system and amplification method
JP2004361979A (en) Raman amplifier and optical communication system
JP4580404B2 (en) Optical amplifier
JP4773703B2 (en) Optical amplifier
JP5142024B2 (en) Optical amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150605

R150 Certificate of patent or registration of utility model

Ref document number: 5759437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350