JP2014070381A - Human body detection sensor and automatic faucet - Google Patents

Human body detection sensor and automatic faucet Download PDF

Info

Publication number
JP2014070381A
JP2014070381A JP2012215823A JP2012215823A JP2014070381A JP 2014070381 A JP2014070381 A JP 2014070381A JP 2012215823 A JP2012215823 A JP 2012215823A JP 2012215823 A JP2012215823 A JP 2012215823A JP 2014070381 A JP2014070381 A JP 2014070381A
Authority
JP
Japan
Prior art keywords
light
detection
area
amount
received light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012215823A
Other languages
Japanese (ja)
Other versions
JP5909170B2 (en
Inventor
Yuki Shirai
雄喜 白井
Hiroyuki Oura
裕之 大浦
Nobuaki Bando
伸明 板頭
Azumi Kamata
安住 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2012215823A priority Critical patent/JP5909170B2/en
Publication of JP2014070381A publication Critical patent/JP2014070381A/en
Application granted granted Critical
Publication of JP5909170B2 publication Critical patent/JP5909170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a human body detection sensor with reduced erroneous detection and improved detection performance, and an automatic faucet.SOLUTION: A human body detection sensor 1 includes: determination means 321 which determines that there is a detection object when an incidence position belongs to a predetermined detection area among a light-receiving area of a line sensor 261; prohibition means 322 which determines that there is a non-detecting object when a pixel having a light-receiving amount within a predetermined prohibited area exists in the light-receiving area; and detection output means 325 which outputs a detection signal when the presence of a detection object is determined by the determination means 321 and if the prohibition means 322 does not determine that it is a non-detecting object, while does not output the detection signal if the prohibition means 322 determines that it is a non-detecting object.

Description

本発明は、自動水栓や小便器用の自動洗浄装置などに適用される人体検知センサに関する。   The present invention relates to a human body detection sensor applied to an automatic faucet, an automatic cleaning device for a urinal, and the like.

従来より、使用者の手かざし操作を検知して自動的に吐水する自動水栓や、近づいて来た使用者を検知して自動的に洗浄水を供給する小便器用の自動洗浄装置などが知られている。これら自動水栓や自動洗浄装置などには、接近した人体を検知するための人体検知センサが組み込まれている。このような人体検知センサとしては、LED等の発光素子と、PSD(Position Sensitive Detector:光位置センサ)等の受光素子と、がオフセットして配置されたセンサが知られている。   Conventionally, automatic faucets that automatically detect the user's hand-holding operation and discharge water automatically, and automatic cleaning devices for urinals that automatically detect the approaching user and supply cleaning water are known. It has been. These automatic faucets and automatic cleaning devices incorporate a human body detection sensor for detecting an approaching human body. As such a human body detection sensor, a sensor in which a light emitting element such as an LED and a light receiving element such as a PSD (Position Sensitive Detector) are offset and arranged is known.

この人体検知センサは、検知対象からの反射光がPSDに入射した位置を特定し、いわゆる三角測量の原理により検知対象までの距離を計測している。PSDは、入射光の重心位置に応じた信号を出力する非常にシンプルな受光素子であり、低消費電力であるという利点がある。一方、PSDで取得できる情報は位置情報のみであり、外乱光の入射時に採り得る対処方法が少ないという実情がある。それ故、例えば、PSDを含む人体検知センサを利用した洗面台の自動水栓では、洗面鉢からの鏡面反射光など外乱光の影響で誤検知が生じ、誰もいないのに吐水が開始されるといった誤作動が起こり得る。   This human body detection sensor specifies the position where the reflected light from the detection target is incident on the PSD, and measures the distance to the detection target based on the principle of so-called triangulation. The PSD is a very simple light receiving element that outputs a signal corresponding to the position of the center of gravity of incident light, and has an advantage of low power consumption. On the other hand, information that can be acquired by PSD is only position information, and there is a fact that there are few countermeasures that can be taken when ambient light is incident. Therefore, for example, in an automatic faucet of a wash basin using a human body detection sensor including a PSD, false detection occurs due to the influence of ambient light such as specular reflected light from a wash basin, and water discharge starts even when no one is present. Such a malfunction may occur.

検知性能の向上を目的として、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子を利用した人体検知センサが提案されている(例えば、特許文献1参照。)。撮像素子を利用した人体検知センサであれば、例えば、画素毎の受光量の分布情報等を活用して外乱光の影響を排除し、検知性能を向上できる可能性がある。このような人体検知センサとしては、各画素の受光量の分布波形のピーク強度や波形の形状(特に尖度)を利用して鏡面反射光を排除して誤検知を低減したセンサが提案されている(例えば、特許文献2参照。)。   For the purpose of improving detection performance, a human body detection sensor using an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor) has been proposed (for example, see Patent Document 1). If it is a human body detection sensor using an image sensor, for example, there is a possibility that the detection performance can be improved by using the distribution information of the amount of received light for each pixel to eliminate the influence of ambient light. As such a human body detection sensor, a sensor has been proposed in which the specular reflection light is eliminated by using the peak intensity of the distribution waveform of the received light amount of each pixel and the waveform shape (particularly kurtosis) to reduce false detection. (For example, refer to Patent Document 2).

しかしながら、受光量の分布波形の形状等に着目して鏡面反射光を排除する人体検知センサであっても次のような問題が残されている。すなわち、複数の鏡面反射光が重畳して入射すると、受光量の分布波形の形状等が本来の鏡面反射光とは相違し、人体からの拡散反射光に近づいてくるため、鏡面反射光として排除できなくなり誤検知が発生するおそれがある。特に、洗面鉢など凹面状の鉢面に向けて検知領域が設定された人体検知センサの場合、鉢面上の複数箇所で鏡面反射光が同時発生し、複数の鏡面反射光が重畳(合成)して入射する可能性が高くなる。   However, the following problems remain even in the human body detection sensor that excludes specular reflection light by paying attention to the shape of the distribution waveform of the amount of received light. In other words, when multiple specular reflection lights are superimposed and incident, the shape of the distribution waveform of the amount of received light is different from the original specular reflection light and approaches the diffuse reflection light from the human body, so it is excluded as specular reflection light There is a risk of false detection due to failure. In particular, in the case of a human body detection sensor with a detection area set toward a concave bowl surface, such as a washbasin, specular reflection light is generated simultaneously at multiple locations on the bowl surface, and multiple specular reflection lights are superimposed (synthesized). Therefore, the possibility of incidence increases.

特開2005−207012号公報JP 2005-207012 A 特開2012−77472号公報JP 2012-77472 A

本発明は、前記従来の問題点に鑑みてなされたものであり、誤検知が低減され検知性能が向上された人体検知センサ、及び自動水栓を提供しようとするものである。   The present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a human body detection sensor and an automatic water faucet with reduced false detection and improved detection performance.

本発明の第1の態様は、1次元あるいは2次元的に画素が配列された撮像素子を含む撮像部と、この撮像部に対して所定方向にオフセットして配置された発光部と、を備え、この発光部が投射した光によって生じた反射光を前記撮像部が受光して所定の検知距離の範囲内に位置する検知対象を検知する人体検知センサであって、
前記発光部による発光及び前記撮像部による受光が行われる撮像動作を制御する撮像制御手段と、
前記撮像素子を構成する画素の受光量を読み出す読出手段と、
前記撮像素子を構成する画素が前記所定方向に配列された領域である受光エリア内の前記反射光の入射位置を特定すると共に、前記受光エリアのうち前記所定の検知距離に対応する検知エリア内に前記入射位置が属しているときに検知対象が有ると判定する判定手段と、
前記受光エリアのうち前記検知エリアの外側の非検知エリア内の少なくともいずれかの特定画素の受光量が、予め画素毎に設定された閾値を超える受光量であったときに非検知対象であると判定する禁止手段と、
検知対象を検知したか非検知かを判断する検知判断手段と、を備え、
この検知判断手段は、前記判定手段により検知対象が有ると判定されたとき、前記禁止手段により非検知対象であると判定されていなければ、検知と判断する一方、前記禁止手段により非検知対象であると判定された場合には、前記判定手段による判定結果の有無及びその判定結果の内容に関わらず非検知と判断する人体検知センサにある(請求項1)。
A first aspect of the present invention includes an imaging unit including an imaging device in which pixels are arranged one-dimensionally or two-dimensionally, and a light-emitting unit arranged offset in a predetermined direction with respect to the imaging unit. A human body detection sensor for detecting a detection target located within a predetermined detection distance by the imaging unit receiving reflected light generated by the light projected by the light emitting unit,
Imaging control means for controlling an imaging operation in which light emission by the light emitting unit and light reception by the imaging unit are performed;
Reading means for reading the received light amount of the pixels constituting the image sensor;
The incident position of the reflected light in a light receiving area that is an area in which pixels constituting the image sensor are arranged in the predetermined direction is specified, and in the detection area corresponding to the predetermined detection distance in the light receiving area Determining means for determining that there is a detection target when the incident position belongs;
When the light reception amount of at least one specific pixel in the non-detection area outside the detection area in the light reception area is a non-detection target when the light reception amount exceeds a threshold set in advance for each pixel A prohibition means for judging,
Detection determination means for determining whether the detection target is detected or not detected,
When it is determined by the determination unit that there is a detection target, the detection determination unit determines that the detection is not detected by the prohibition unit. If it is determined that there is a human body detection sensor that determines non-detection regardless of the presence / absence of the determination result by the determination means and the content of the determination result (claim 1).

本発明の第2の態様は、底部に排水口を設けた鉢の内部に吐水する水栓と、
前記第1の態様をなす人体検知センサと、
この人体検知センサの検知信号に応じて、前記水栓の吐水・止水の切替、あるいは吐水量の調整を実行する給水制御手段と、を備えた自動水栓にある(請求項5)。
The second aspect of the present invention is a faucet that discharges water into a bowl provided with a drain outlet at the bottom;
A human body detection sensor according to the first aspect;
According to a detection signal of the human body detection sensor, there is an automatic water faucet provided with water supply control means for executing switching of water discharge / stop water of the water faucet or adjustment of the water discharge amount (Claim 5).

本発明に係る人体検知センサでは、前記発光部と前記撮像部とのオフセット方向である前記所定方向に画素が配列された領域である前記受光エリアが設定されている。検知対象による反射光が前記撮像素子に入射したときのこの受光エリア内の入射位置は、三角測量の原理に基づき、検知対象までの3次元的な距離に対応している。   In the human body detection sensor according to the present invention, the light receiving area that is an area in which pixels are arranged in the predetermined direction that is an offset direction between the light emitting unit and the imaging unit is set. The incident position in the light receiving area when the reflected light from the detection target is incident on the image sensor corresponds to a three-dimensional distance to the detection target based on the principle of triangulation.

検知対象を検知する3次元的な範囲である前記所定の検知距離の範囲は、前記受光エリアの一部をなす前記検知エリアに対して一意に対応付けられる。例えば、前記所定の検知距離の遠距離側の端に検知対象が存在する場合には、この検知エリアの端の画素の受光量が最大値となる反射光が前記撮像部によって受光される。このような反射光が入射したときの受光量の分布を表す受光波形は、前記検知エリアの端の画素の受光量を最大値とし、この画素から離れるほど受光量が小さくなっていく波形となる。   The range of the predetermined detection distance that is a three-dimensional range in which a detection target is detected is uniquely associated with the detection area that forms part of the light receiving area. For example, when there is a detection target at the far end of the predetermined detection distance, the imaging unit receives the reflected light with the maximum amount of light received by the pixel at the end of the detection area. The received light waveform representing the distribution of the received light amount when such reflected light is incident is a waveform in which the received light amount of the pixel at the end of the detection area is the maximum value, and the received light amount decreases as the distance from the pixel increases. .

したがって、検知対象からの反射光の受光波形のうち前記非検知エリア内の受光量の分布は、上記のように検知エリア内に受光量の最大値を有する受光波形の裾野の部分となる。当然ながら、前記非検知エリア内に最大値を有するような受光波形は、検知対象の反射光によるものではない可能性が高い。また、この非検知エリアにおいては、検知対象の受光波形であれば、その受光量は前記検知エリアから離れるにつれて次第に小さくなっている筈である。例えば、前記検知エリアから離れているにも関わらず、大きな受光量を呈するような受光波形は、検知対象の反射光によるものでなく、それ以外によって生じた反射光である可能性が高いと判断できる。   Accordingly, the distribution of the received light amount in the non-detection area in the received light waveform of the reflected light from the detection target becomes the base portion of the received light waveform having the maximum value of the received light amount in the detection area as described above. Of course, it is highly likely that the received light waveform having the maximum value in the non-detection area is not due to the reflected light to be detected. Further, in this non-detection area, if the light reception waveform is a detection target, the amount of light reception should gradually decrease as the distance from the detection area increases. For example, it is determined that a received light waveform that exhibits a large received light amount despite being away from the detection area is not likely to be reflected light of the detection target, but is likely to be reflected light other than that. it can.

そこで、本発明に係る人体検知センサでは、前記非検知エリアに属する前記特定画素について、画素毎の閾値が設定されている。この人体検知センサでは、前記特定画素の受光量が対応する閾値を超えた場合、前記判定手段による判定結果の如何に関わらず、非検知と判断される。このような受光波形を検知の対象から排除すれば、誤検知を未然に回避でき検知性能を向上できる。   Therefore, in the human body detection sensor according to the present invention, a threshold for each pixel is set for the specific pixel belonging to the non-detection area. In this human body detection sensor, when the amount of light received by the specific pixel exceeds a corresponding threshold value, it is determined as non-detection regardless of the determination result by the determination unit. If such a light reception waveform is excluded from the detection target, erroneous detection can be avoided and detection performance can be improved.

以上のように、本発明に係る人体検知センサは、前記非検知エリアに属する特定画素の受光量に関する閾値判断を実行することにより、誤検知が低減され検知精度が向上されたセンサである。この人体検知センサを備えた本発明の自動水栓は、誤検知に起因した吐水等が低減された動作信頼性の高い水栓である。   As described above, the human body detection sensor according to the present invention is a sensor in which false detection is reduced and detection accuracy is improved by executing threshold determination regarding the amount of received light of a specific pixel belonging to the non-detection area. The automatic faucet of the present invention provided with this human body detection sensor is a faucet with high operational reliability in which water discharge or the like due to erroneous detection is reduced.

本発明に係る人体検知センサに適用する撮像素子としては、CCDやCMOSを利用した撮像素子を利用できる。
本発明の第2の態様をなす自動水栓における吐水量の調整としては、吐水開始や、吐水停止や、吐水量の増減等の調整がある。
As an image sensor applied to the human body detection sensor according to the present invention, an image sensor using a CCD or CMOS can be used.
Examples of the adjustment of the water discharge amount in the automatic faucet according to the second aspect of the present invention include adjustment of water discharge start, water discharge stop, and increase / decrease of the water discharge amount.

本発明の好適な一態様をなす人体検知センサでは、前記特定画素の受光量が分布する範囲の中に、検知対象の反射光が受光されたときには受光量が分布する可能性が低い禁止エリアが設けられており、前記禁止手段が閾値判断に用いる閾値は、前記禁止エリアの下限境界をなす受光量である(請求項2)。
前記禁止エリアは、一つの特定画素に対応する1次元的なエリアでも良いし、複数の特定画素に対応する2次元的なエリアであっても良い。さらに、複数の特定画素に対応して、それぞれ設けられる複数の1次元的なエリアであっても良い。受光量が小さい側の境界である前記下限境界に加えて、上限境界を設定しても良い。一般的に、画素の受光量は、物理的な上限で飽和する。この上限を、禁止エリアの上限境界に設定しても良く、上限境界は省略しても良い。
In the human body detection sensor according to a preferred aspect of the present invention, there is a prohibited area in which the amount of received light is less likely to be distributed when the reflected light of the detection target is received within the range in which the amount of received light of the specific pixel is distributed. The threshold value that is provided and used by the prohibition unit for threshold determination is the amount of received light that forms the lower limit boundary of the prohibition area.
The prohibited area may be a one-dimensional area corresponding to one specific pixel, or may be a two-dimensional area corresponding to a plurality of specific pixels. Furthermore, it may be a plurality of one-dimensional areas respectively provided corresponding to a plurality of specific pixels. An upper limit boundary may be set in addition to the lower limit boundary which is a boundary on the side where the amount of received light is small. In general, the amount of light received by a pixel is saturated at the physical upper limit. This upper limit may be set as the upper limit boundary of the prohibited area, and the upper limit boundary may be omitted.

本発明の好適な一態様をなす人体検知センサでは、前記特定画素は、前記検知エリアよりも遠距離側の非検知エリア内の1個又は複数個の画素であり、
この特定画素に対応する閾値は、前記検知エリアの遠距離側の端に位置する画素の受光量が所定の最大値であって、かつ、正規分布をなす受光量を基準として設定されている(請求項3)。
In the human body detection sensor according to a preferred aspect of the present invention, the specific pixel is one or a plurality of pixels in a non-detection area farther than the detection area,
The threshold value corresponding to the specific pixel is set with reference to the received light amount of the pixel located at the far end of the detection area having a predetermined maximum value and having a normal distribution ( Claim 3).

検知対象である人体の表面は拡散反射面であることから、前記受光エリアにおけるその反射光の受光量分布(受光波形)は、拡散反射光に対応する正規分布の波形を呈する。前記検知エリアの遠距離側の端の画素の受光量が最大値であって、かつ、正規分布をなす受光量が分布する受光波形を基準として設定すれば、前記非検知エリアにおいて、この基準となる受光波形を上回る受光量が検知対象からの反射光によって生じる可能性は少ないと判断できる。上記の基準となる正規分布を超える受光量を含む受光波形は、検知対象の反射光によるものではない可能性が高いと判断できる。   Since the surface of the human body that is the detection target is a diffuse reflection surface, the received light amount distribution (light reception waveform) of the reflected light in the light receiving area exhibits a normal distribution waveform corresponding to the diffuse reflected light. If the received light amount of the pixel at the far end of the detection area is the maximum value and the received light waveform in which the received light amount forming a normal distribution is set as a reference, in the non-detection area, the reference and It can be judged that there is little possibility that the amount of received light exceeding the received light waveform is caused by the reflected light from the detection target. It can be determined that there is a high possibility that the received light waveform including the received light amount exceeding the normal distribution as the reference is not due to the reflected light to be detected.

そこで、前記特定画素の閾値として、前記基準となる正規分布の受光波形の受光量(特定画素の受光量)を設定し、この閾値を超える受光量を含む受光波形を排除すれば、誤検知を確実性高く低減できる。さらに、前記特定画素の閾値としては、正規分布をなす受光量の値そのものよりも、画素間の受光感度(ゲイン)のバラツキや誤差等が考慮された若干、高めの受光量を設定することも良い。なお、前記所定の最大値は、想定する検知対象の反射率及び前記発光部の発光量に基づくシミュレーション計算によって決定しても良く、試験片を用いて実験的に決定しても良い。前記所定の最大値は、検知対象のうち、反射光の強度が最も高くなる対象を想定して決定されることが良い。   Therefore, if the received light amount (received light amount of the specific pixel) of the reference normal distribution waveform is set as the threshold value of the specific pixel, and the received light waveform including the received light amount exceeding the threshold value is excluded, false detection is performed. Reduced with high certainty. Furthermore, the threshold value of the specific pixel may be set to a slightly higher received light amount that takes into account variations in light reception sensitivity (gain) between pixels, errors, etc., rather than the received light amount value having a normal distribution itself. good. The predetermined maximum value may be determined by simulation calculation based on the assumed reflectance of the detection target and the light emission amount of the light emitting unit, or may be experimentally determined using a test piece. The predetermined maximum value may be determined on the assumption that the intensity of the reflected light is the highest among the detection objects.

本発明の好適な一態様の人体検知センサにおける禁止手段は、前記受光エリアの実際の受光量分布をなす受光量を、前記基準となる正規分布をなす受光量を利用して正規化し、正規化された受光量について閾値判断を実行する(請求項4)。
受光量の最大値が比較的小さい反射波であっても、上記のような正規化を施せば受光量分布の絶対値を嵩上げでき、前記禁止手段による判定処理の対象にできる。検知されるべき拡散反射光であれば、上記のように正規化しても前記非検知エリア内の受光量が前記閾値を超えるおそれは少なく、前記禁止手段による排除の対象にはならない。上記のような正規化処理を行えば、外乱光である反射光を排除できる可能性が高くなり、前記人体検知センサの検知精度を一層向上できる。
In the human body detection sensor according to a preferred aspect of the present invention, the prohibiting means normalizes the received light amount forming the actual received light amount distribution of the light receiving area using the received light amount forming the reference normal distribution, and normalizes the received light amount. A threshold judgment is executed for the received light amount (claim 4).
Even if the reflected wave has a relatively small maximum amount of received light, the absolute value of the received light amount distribution can be increased by performing the normalization as described above, and can be a target of determination processing by the prohibiting means. If it is diffuse reflection light to be detected, even if it is normalized as described above, the amount of light received in the non-detection area is less likely to exceed the threshold and is not excluded by the prohibiting means. If the normalization process as described above is performed, there is a high possibility that the reflected light, which is disturbance light, can be eliminated, and the detection accuracy of the human body detection sensor can be further improved.

実施例における、自動水栓を備えた洗面台を示す斜視断面図。The perspective sectional view showing the washstand provided with the automatic faucet in the example. 実施例における、センサユニットの断面構造を示す断面図(図1中のA−A線矢視断面図)。Sectional drawing which shows the cross-section of a sensor unit in an Example (AA sectional view taken on the line AA in FIG. 1). 実施例における、ラインセンサを示す斜視図。The perspective view which shows the line sensor in an Example. 実施例における、人体検知センサのシステム構成を示すブロック図。The block diagram which shows the system configuration | structure of the human body detection sensor in an Example. 実施例における、検知対象による拡散反射光の受光波形を例示する図。The figure which illustrates the light reception waveform of the diffuse reflection light by the detection target in an Example. 実施例における、受光波形の重心位置(入射位置)の計算方法を説明する説明図。Explanatory drawing explaining the calculation method of the gravity center position (incident position) of a light reception waveform in an Example. 実施例における、三角測量の原理の説明図。Explanatory drawing of the principle of triangulation in an Example. 実施例における、鉢面で反射光が発生する様子を示す説明図。Explanatory drawing which shows a mode that reflected light generate | occur | produces in the bowl surface in an Example. 実施例における、鉢面からの反射光A〜Cが合成される様子を示す説明図。Explanatory drawing which shows a mode that reflected light AC from the bowl surface in an Example is synthesize | combined. 実施例における、鉢面からの合成反射光による誤検知を例示する説明図。Explanatory drawing which illustrates the erroneous detection by the synthetic | combination reflected light from a bowl surface in an Example. 実施例における、禁止エリアを示す説明図。Explanatory drawing which shows the prohibition area in an Example. 実施例における、検知処理の流れを示すフロー図。The flowchart which shows the flow of a detection process in an Example. 実施例における、禁止エリアによる外乱光の排除例の説明図。Explanatory drawing of the example of exclusion of the disturbance light by a prohibition area in an Example. 実施例における、外乱光を例示する説明図。Explanatory drawing which illustrates disturbance light in an Example. 実施例における、禁止エリアによる外乱光の排除例の説明図。Explanatory drawing of the example of exclusion of the disturbance light by a prohibition area in an Example.

本発明の実施の形態につき、以下の実施例を用いて具体的に説明する。
(実施例)
本例は、洗面台15の水栓(自動水栓)16に人体検知センサ1を適用した例である。この内容について、図1〜図15を参照して説明する。
本例の洗面台15は、図1のごとく、凹状に窪む鉢151が設けられたカウンタ155と、吐水口168を有する水栓16と、を備えている。水栓16は、カウンタ155の上面をなすカウンタトップ156に立設されている。鉢151の最深部には、水を排水するための排水口152が配置されている。
The embodiment of the present invention will be specifically described with reference to the following examples.
(Example)
In this example, the human body detection sensor 1 is applied to the faucet (automatic faucet) 16 of the washstand 15. The contents will be described with reference to FIGS.
As shown in FIG. 1, the washstand 15 of this example includes a counter 155 provided with a bowl 151 that is recessed in a concave shape, and a faucet 16 having a water discharge port 168. The faucet 16 is erected on a counter top 156 that forms the upper surface of the counter 155. A drain outlet 152 for draining water is disposed at the deepest part of the pot 151.

水栓16は、カウンタトップ156に立設された略円柱状の胴部160と、この胴部160の台座をなす基部161と、を有している。胴部160は、鉢151側に傾けた状態で基部161に支持されている。鉢151側に面する胴部160の側面には、略円筒形の吐水部162が取り付けられ、その先端には、吐水口168が開口している。この吐水部162の上側に当たる胴部160の側面には、人体検知センサ1の検知面を形成するフィルタ板165が配設されている。フィルタ板165は、赤外領域の光を選択的に透過する樹脂製フィルタである。   The faucet 16 has a substantially cylindrical body portion 160 erected on the countertop 156 and a base portion 161 that forms a pedestal of the body portion 160. The trunk portion 160 is supported by the base portion 161 while being inclined toward the bowl 151 side. A substantially cylindrical water discharge portion 162 is attached to the side surface of the body portion 160 facing the pot 151 side, and a water discharge port 168 is opened at the tip thereof. A filter plate 165 that forms a detection surface of the human body detection sensor 1 is disposed on a side surface of the body portion 160 that is an upper side of the water discharge portion 162. The filter plate 165 is a resin filter that selectively transmits light in the infrared region.

本例の人体検知センサ1は、図1及び図2のごとく、水栓16に組み込まれたセンサユニット2と、センサユニット2を制御する制御ユニット3と、により構成されている。洗面台15では、この人体検知センサ1と、給水配管12に設けられた吐水弁(電磁弁)であるソレノイド(給水制御手段)11と、の組合せにより自動給水装置が形成されている。   As shown in FIGS. 1 and 2, the human body detection sensor 1 of this example includes a sensor unit 2 incorporated in a faucet 16 and a control unit 3 that controls the sensor unit 2. In the wash basin 15, an automatic water supply device is formed by a combination of the human body detection sensor 1 and a solenoid (water supply control means) 11 that is a water discharge valve (electromagnetic valve) provided in the water supply pipe 12.

センサユニット2は、図1及び図2のごとく、LED素子251及びラインセンサ(撮像素子)261を筐体21に収容したユニットであり、制御ユニット3からの電力供給を受けて動作する。センサユニット2では、水栓16のフィルタ板165に面して発光部25及び撮像部26が並列して配置されている。赤外光を発光する発光部25は、LED素子251と投光レンズ255とにより構成されている。撮像部26は、ラインセンサ261と集光レンズ265とにより構成されている。発光部25と撮像部26とは、遮光性を備えた隔壁211を挟んで水平方向(所定方向)にオフセットして配置されている。   As shown in FIGS. 1 and 2, the sensor unit 2 is a unit in which the LED element 251 and the line sensor (imaging element) 261 are accommodated in the housing 21 and operates by receiving power supply from the control unit 3. In the sensor unit 2, the light emitting unit 25 and the imaging unit 26 are arranged in parallel so as to face the filter plate 165 of the faucet 16. The light emitting unit 25 that emits infrared light includes an LED element 251 and a light projecting lens 255. The imaging unit 26 includes a line sensor 261 and a condenser lens 265. The light emitting unit 25 and the imaging unit 26 are arranged offset in the horizontal direction (predetermined direction) with a partition wall 211 having a light shielding property interposed therebetween.

LED素子251は、図2のごとく、パッケージ基板のキャビティに実装されたLEDチップ250が透明樹脂254により封止された発光素子である。発光部25では、縦方向(鉛直方向)のスリット孔253を設けた遮光性の素子ケース252によってLED素子251が覆われている。この発光部25によれば、水平方向の拡がり角が抑制されたシャープなスリット光を検知対象に向けて投射可能である。   As shown in FIG. 2, the LED element 251 is a light emitting element in which an LED chip 250 mounted in a cavity of a package substrate is sealed with a transparent resin 254. In the light emitting unit 25, the LED element 251 is covered with a light-shielding element case 252 provided with a slit hole 253 in the vertical direction (vertical direction). According to the light emitting unit 25, it is possible to project a sharp slit light whose horizontal divergence angle is suppressed toward a detection target.

ラインセンサ261は、図1〜図3のごとく、受光量を電気的な物理量に変換する画素260が直線的に配列された1次元の撮像センサである。ラインセンサ261は、有効画素として64個の画素260を有している。ラインセンサ261では、これら64個の画素260により受光エリア263が形成されている。ラインセンサ261は、図示しない電子シャッターを備えており、この電子シャッターを用いて各画素260の受光(露光)時間を調整可能である。ラインセンサ261は、受光量を表す256階調の画素値が各画素260の並び順に配列された1次元のデジタルデータである撮像データを、受光動作を実行する毎に出力する。   As shown in FIGS. 1 to 3, the line sensor 261 is a one-dimensional imaging sensor in which pixels 260 that convert a received light amount into an electrical physical amount are linearly arranged. The line sensor 261 has 64 pixels 260 as effective pixels. In the line sensor 261, a light receiving area 263 is formed by these 64 pixels 260. The line sensor 261 includes an electronic shutter (not shown), and the light reception (exposure) time of each pixel 260 can be adjusted using the electronic shutter. The line sensor 261 outputs imaging data which is one-dimensional digital data in which pixel values of 256 gradations representing the amount of received light are arranged in the arrangement order of the pixels 260 every time the light receiving operation is performed.

本例のセンサユニット2では、受光エリア263の長手方向が、発光部25と撮像部26とのオフセット方向に一致するようにラインセンサ261が組み込まれている。このセンサユニット2は、ラインセンサ261の受光エリア263によって鉢151の内周面である鉢面150が見込まれるよう、水栓16に組み込まれている。ラインセンサ261の撮像方向に手などの遮蔽物がない状態であれば、その撮像範囲に鉢面150が包含されることになる。   In the sensor unit 2 of this example, the line sensor 261 is incorporated so that the longitudinal direction of the light receiving area 263 matches the offset direction between the light emitting unit 25 and the imaging unit 26. This sensor unit 2 is incorporated in the faucet 16 so that the bowl surface 150 which is the inner peripheral surface of the bowl 151 is expected by the light receiving area 263 of the line sensor 261. If there is no shielding object such as a hand in the imaging direction of the line sensor 261, the bowl surface 150 is included in the imaging range.

制御ユニット3は、図1及び図4のごとく、センサユニット2及びソレノイド11を制御するユニットであり、商用電源から供給される電力により動作する。この制御ユニット3は、センサユニット2及びソレノイド11を制御する制御基板30を備えている。制御基板30には、ラインセンサ261及びLED素子251を制御する撮像制御部31と、検知処理を実行する検知処理部32と、ソレノイド11を制御する給水制御部33と、が設けられている。   As shown in FIGS. 1 and 4, the control unit 3 is a unit that controls the sensor unit 2 and the solenoid 11, and operates with electric power supplied from a commercial power source. The control unit 3 includes a control board 30 that controls the sensor unit 2 and the solenoid 11. The control board 30 is provided with an imaging control unit 31 that controls the line sensor 261 and the LED element 251, a detection processing unit 32 that executes detection processing, and a water supply control unit 33 that controls the solenoid 11.

撮像制御部31は、LED素子251及びラインセンサ261を制御する撮像制御手段311、ラインセンサ261から撮像データ(各画素260の受光量の分布である受光波形)を読み出す読出手段312としての機能を備えている。
撮像制御手段311は、動作期間と非動作期間が交互に現れる間欠動作が行われるようにラインセンサ261を制御する。撮像制御手段311は、前回の動作期間が終了してから所定のインターバル時間(本例では、500m秒。)が経過するまでラインセンサ261への電源供給を停止して非動作期間を設定し、インターバル時間が経過したときに電源供給を再開して動作期間を設定する。
The imaging control unit 31 functions as an imaging control unit 311 that controls the LED element 251 and the line sensor 261, and a reading unit 312 that reads imaging data (a received light waveform that is a distribution of received light amount of each pixel 260) from the line sensor 261. I have.
The imaging control unit 311 controls the line sensor 261 so that an intermittent operation in which an operation period and a non-operation period appear alternately is performed. The imaging control means 311 stops the power supply to the line sensor 261 until a predetermined interval time (in this example, 500 msec) has elapsed since the end of the previous operation period, and sets a non-operation period. When the interval time elapses, the power supply is resumed and the operation period is set.

なお、本例の撮像制御手段311は、1回の動作期間内の撮像動作により、LED素子251の発光と同期したラインセンサ261の露光(受光)と、無発光下のラインセンサ261の露光と、を連続的に実行し、2回の露光の差分の受光量を画素毎に求めている。画素毎の差分の受光波形では、周囲光の影響が抑圧され、LED光に起因した反射光の成分が抽出されている。なお、図5は、検知対象の拡散反射光が入射したときに取得される受光波形の例である。同図の横軸xは、画素番号(画素位置)を示し、縦軸D(x)は、画素番号xの画素の受光量(画素値)を示している。   Note that the imaging control unit 311 of the present example performs exposure (light reception) of the line sensor 261 synchronized with light emission of the LED element 251 and exposure of the line sensor 261 under no light emission by an imaging operation within one operation period. Are continuously executed, and the received light amount of the difference between the two exposures is obtained for each pixel. In the received light waveform of the difference for each pixel, the influence of ambient light is suppressed and the component of reflected light due to the LED light is extracted. FIG. 5 is an example of a received light waveform obtained when diffused reflected light to be detected is incident. In the figure, the horizontal axis x indicates the pixel number (pixel position), and the vertical axis D (x) indicates the amount of received light (pixel value) of the pixel with the pixel number x.

検知処理部32は、検知対象の有無を判定する判定手段321、非検知対象を判定する禁止手段322、判定手段321及び禁止手段322の判定結果に基づいて検知か非検知かを判断する検知判断手段324、検知と判断されたときに検知信号を出力する検知出力手段325としての機能を備えている。   The detection processing unit 32 determines whether there is a detection target, a determination unit 321 that determines whether there is a detection target, a prohibition unit 322 that determines a non-detection target, a detection determination that determines whether the detection is based on the determination results of the determination unit 321 and the prohibition unit 322 Means 324 has a function as detection output means 325 for outputting a detection signal when it is determined that the detection is made.

判定手段321は、撮像動作により取得される図5の受光波形(画素毎の受光量(差分)分布)を利用して検知対象の有無を判定する。判定手段321は、第1ステップとして、まず、受光エリア263に対する反射光の入射位置を表す受光波形の重心位置を特定する測距処理を実行する。その後、第2ステップ(測距判定ルーチン)として、検知対象の検知距離に対応する検知エリア内にその重心位置が属しているか否かの判断を実行する。   The determination unit 321 determines the presence or absence of a detection target using the light reception waveform (light reception amount (difference) distribution for each pixel) of FIG. 5 acquired by the imaging operation. As a first step, the determination unit 321 first performs a distance measurement process that specifies the position of the center of gravity of a received light waveform that represents the incident position of reflected light on the light receiving area 263. Thereafter, as a second step (ranging determination routine), it is determined whether or not the center of gravity position belongs to the detection area corresponding to the detection distance to be detected.

第1ステップでは、受光波形の重心位置を特定するため、図6のごとく、まず、受光波形を構成する画素毎の受光量データD(x)を積算し、64画素の画素値の総和SDを計算する。この総和SDは、図6中の右下がりの斜線ハッチングで示す領域の面積に相当している。受光エリア263の左端の画素番号ゼロの画素から順番に各画素260の画素値を積算した積算値がSD/2に達したときの画素番号Nの画素260(黒丸で図示)の位置を、この受光波形の重心位置としている。ここで、積算値SD/2は、右上がりの斜線ハッチングで示す領域の面積に相当している。この領域は、前記総和SDの領域に包含されており、同図において、クロスハッチの領域として把握される。なお、図6の画素毎の受光量の分布は、図5の受光波形を模式的に表したものである。   In the first step, in order to specify the center of gravity position of the received light waveform, as shown in FIG. 6, first, the received light amount data D (x) for each pixel constituting the received light waveform is integrated, and the sum SD of the pixel values of 64 pixels is obtained. calculate. This total SD corresponds to the area of the region indicated by hatching in the lower right direction in FIG. The position of the pixel 260 (illustrated by a black circle) of the pixel number N when the integrated value obtained by integrating the pixel values of the respective pixels 260 in order from the pixel with the pixel number zero at the left end of the light receiving area 263 reaches SD / 2. The center of gravity of the received light waveform is used. Here, the integrated value SD / 2 corresponds to the area of the region indicated by the hatching with the upward slope. This region is included in the region of the total sum SD, and is grasped as a cross hatch region in FIG. The distribution of the amount of received light for each pixel in FIG. 6 schematically represents the received light waveform in FIG.

第2ステップでは、反射光の入射位置を表す受光波形の重心位置が、図6の検知エリア内に属しているか否かの判断がなされる。この検知エリアは、センサユニット2を利用した三角測量の原理を根拠として、次に説明するように設定されている。
本例の洗面台15におけるセンサユニット2、鉢面150、使用者の手の位置関係は、図7のごとく模式的に表現できる。LED光のうち検知対象である手による反射光の成分がラインセンサ261に入射する際、検知対象までの距離Hに応じてその入射位置が異なってくる。距離Hが短いほど、ラインセンサ261に入射する反射光の入射位置が同図中、上側となり、距離Hが長くなるほど下側に位置することになる。このように、ラインセンサ261に対する反射光の入射位置は、検知対象までの距離に比例しており、この距離の度合いを表す指標となり得る。受光エリア263内に設定された検知エリア(図6)は、検知の対象となる検知距離(図7)に対応するエリアである。上記のように計算された重心位置を入射位置として取り扱い、その重心位置が検知エリア内であるか否かの判定は、反射光を生じた検知対象までの距離が図7の検知距離の範囲内であるか否かの判定と全く同義となっている。
In the second step, it is determined whether or not the position of the center of gravity of the received light waveform that represents the incident position of the reflected light belongs to the detection area of FIG. This detection area is set as described below based on the principle of triangulation using the sensor unit 2.
The positional relationship between the sensor unit 2, the bowl surface 150, and the user's hand in the wash basin 15 of this example can be schematically expressed as shown in FIG. When the reflected light component of the LED light from the hand that is the detection target is incident on the line sensor 261, the incident position differs depending on the distance H to the detection target. As the distance H is shorter, the incident position of the reflected light incident on the line sensor 261 is on the upper side in the figure, and as the distance H is longer, the incident position is on the lower side. Thus, the incident position of the reflected light with respect to the line sensor 261 is proportional to the distance to the detection target, and can be an index representing the degree of this distance. The detection area (FIG. 6) set in the light receiving area 263 is an area corresponding to the detection distance (FIG. 7) to be detected. The center of gravity calculated as described above is treated as an incident position, and whether or not the center of gravity is within the detection area is determined based on whether the distance to the detection target that causes the reflected light is within the detection distance shown in FIG. It is completely synonymous with the determination of whether or not.

ここで、判定手段321による判定では、鉢面150による反射光が入射したときに誤判定を生じることがある。鉢面150に向けて投射されるLED光は、水平方向の拡がりが絞られたスリット光である一方、垂直方向にはある程度の拡がりを有している。そのため、凹状に湾曲している鉢面150では、図8のごとく、反射が複数箇所で同時発生し、それぞれの反射光(A〜C)が合成されてセンサユニット2に入射する。鉢面150の表面をなす釉薬面150Yは鏡面に近く反射率が高いので、その反射光A・Bは鏡面反射光となる。一方、鉢面150に対して垂直に近くLED光が入射すると、釉薬面150Yを透過して陶器の素地面150Sにまで達してその反射光Cは拡散反射光となる。   Here, in the determination by the determination unit 321, an erroneous determination may occur when the reflected light from the bowl surface 150 is incident. The LED light projected toward the bowl surface 150 is slit light with a narrowed spread in the horizontal direction, but has a certain amount of spread in the vertical direction. Therefore, on the bowl surface 150 curved in a concave shape, reflection occurs simultaneously at a plurality of locations as shown in FIG. 8, and the reflected lights (A to C) are combined and incident on the sensor unit 2. Since the glaze surface 150Y forming the surface of the bowl surface 150 is close to a mirror surface and has a high reflectance, the reflected light A and B becomes specular reflection light. On the other hand, when the LED light is incident substantially perpendicular to the bowl surface 150, it passes through the glaze surface 150Y and reaches the earthenware floor 150S, and the reflected light C becomes diffusely reflected light.

このように鉢面150に向けてLED光が投射されると、図9のごとく、複数の鏡面反射光A・Bや拡散反射光Cなど同時発生した反射光が合成(重畳)されてセンサユニット2に返ってくる。単一の鏡面反射光であれば、その受光波形の形状的な判断(尖度等に関する閾値判断など)によって拡散反射光とは区別できる一方、上記のごとく複数の鏡面反射光A・Bと拡散反射光Cとが合成された反射光(以下、合成反射光という。)では、同図のごとく、その受光波形の形状的な特徴が拡散反射光に似通ってくると共に、どの反射光成分の強度が支配的かに応じて受光波形の重心位置にズレが生じる場合がある。   When the LED light is projected toward the bowl surface 150 in this way, as shown in FIG. 9, a plurality of specular reflection lights A and B and diffuse reflection light C and the like are simultaneously generated (superposed) to combine (superimpose) the sensor unit. Return to 2. In the case of a single specular reflection light, it can be distinguished from diffuse reflection light by determining the shape of the received light waveform (threshold judgment regarding kurtosis, etc.). On the other hand, as described above, a plurality of specular reflection lights A and B are diffused. In the reflected light combined with the reflected light C (hereinafter referred to as “combined reflected light”), as shown in the figure, the shape characteristic of the received light waveform resembles the diffuse reflected light, and the intensity of which reflected light component. There may be a deviation in the position of the center of gravity of the received light waveform depending on whether is dominant.

鉢面150と同じ距離で生じた拡散反射光の受光波形と、図9の合成反射光の受光波形と、を対比する図10のごとく、合成反射光の受光波形(実線)では、その重心位置が検知エリア内にずれることがある。このような場合、判定手段321による判定では、外乱光である合成反射光を排除できず、検知対象がある旨の判定結果となる。この合成反射光の受光波形の形状は、単一の鏡面反射光よりも尖度が低くなっており、上記のごとく検知対象の拡散反射光の形状に似通っている。そのため、この合成反射光を形状的な判断によって排除することも困難である。   As shown in FIG. 10 in which the received light waveform of the diffuse reflected light generated at the same distance as the bowl surface 150 is compared with the received light waveform of the combined reflected light in FIG. May shift within the detection area. In such a case, the determination by the determination unit 321 does not exclude the synthesized reflected light that is disturbance light, and results in a determination result that there is a detection target. The shape of the light reception waveform of the combined reflected light has a kurtosis lower than that of a single specular reflected light, and is similar to the shape of the diffusely reflected light to be detected as described above. For this reason, it is difficult to eliminate the combined reflected light by determining the shape.

前記禁止手段322は、鉢面150による合成反射光(図9及び図10参照。)等を外乱光と判断し、非検知対象であると判定するために設けられた手段である。
この禁止手段322による判定方法を説明するため、まず、検知距離(図7参照)に位置する検知対象の拡散反射光による受光波形の形状について説明する。検知対象の拡散反射面を再現した試験片(基材の表面に硫酸バリウムが塗布された試験片)を、検知距離に属する30〜130mmの各距離にセットしたときに実測される受光波形は、図11のようになる。
The prohibiting unit 322 is a unit provided to determine that the synthetic reflected light (see FIGS. 9 and 10) by the bowl surface 150 is disturbance light and determine that it is a non-detection target.
In order to explain the determination method by the prohibiting means 322, first, the shape of the light reception waveform by the diffuse reflected light of the detection target located at the detection distance (see FIG. 7) will be described. The light reception waveform measured when a test piece (test piece in which barium sulfate is applied to the surface of the base material) that reproduces the diffuse reflection surface to be detected is set at each distance of 30 to 130 mm belonging to the detection distance, As shown in FIG.

距離30〜70mmの受光波形では、受光量の飽和により最大値が不明となっている一方、それ以外の受光波形は、試験片までの距離に対応する画素(ピーク画素)の受光量が最大値であって、かつ、正規分布をなす波形となっている。距離が近い受光波形ほど、ピーク画素の受光量が大きくなると共に、そのピーク画素の位置が検知エリア内で左側に位置し、距離が遠いほど、ピーク画素の受光量が小さくなると共に、そのピーク画素の位置が検知エリア内で右側に位置している。   In the light reception waveform with a distance of 30 to 70 mm, the maximum value is unknown due to saturation of the light reception amount, while in other light reception waveforms, the light reception amount of the pixel (peak pixel) corresponding to the distance to the test piece is the maximum value. In addition, the waveform has a normal distribution. The closer the light reception waveform is, the larger the light reception amount of the peak pixel is, and the position of the peak pixel is located on the left side in the detection area. The farther the distance is, the smaller the light reception amount of the peak pixel is. Is located on the right side in the detection area.

そして、図11のごとく、検知エリアの外側(遠距離側)の非検知エリアの各画素では、検知距離の遠限である130mmの受光波形が同図中の最も上側に位置し、その受光量が最も大きくなっている。この非検知エリアでは、130mmの受光波形よりも上側の領域が、検知対象による拡散反射光の受光波形の受光量が存在する可能性が低い領域となっている。本例の禁止手段322は、この領域を積極的に活用し、その領域の一部に禁止エリアを設定することで、非検知対象からの反射光を排除する。   Then, as shown in FIG. 11, in each pixel in the non-detection area outside the detection area (far distance side), the 130 mm light reception waveform which is the far limit of the detection distance is located on the uppermost side in the figure, and the amount of received light Is the largest. In this non-detection area, the region above the 130 mm received light waveform is a region where there is a low possibility that the received light amount of the diffuse reflected light received by the detection target exists. The prohibiting unit 322 of this example actively utilizes this area and sets a prohibited area in a part of the area, thereby eliminating reflected light from the non-detection target.

具体的には、非検知エリアにおいて、130mmの受光波形の受光量を基準として閾値となる受光量を画素毎に決定することで、禁止エリアの下限の境界(受光量が小さい側の境界)が形成されている。各画素の閾値は、画素毎のゲインのばらつきや誤差等を吸収できるよう、基準となる130mmの受光波形をなす受光量の110%程度の値に設定している。このように設定された禁止エリアの下限境界をなす閾値は、図11のごとく、受光エリアの左端に近くなるにつれて山の裾野のように次第に小さくなっている。また、禁止エリアの左端、すなわち検知エリア側に面する境界は、実験的に最も好ましい結果が得られた画素260の位置を設定している。本例では、禁止エリアの境界をなす画素260と、検知エリアの端の画素260と、の間隔を、ラインセンサ261の画素数の数%程度に設定している。   Specifically, in the non-detection area, by determining the received light amount as a threshold for each pixel based on the received light amount of the 130 mm received light waveform, the lower limit boundary (boundary on the side where the received light amount is smaller) of the prohibited area is determined. Is formed. The threshold value of each pixel is set to a value of about 110% of the amount of received light that forms a reference 130 mm received light waveform so as to absorb gain variations and errors for each pixel. As shown in FIG. 11, the threshold value that forms the lower limit boundary of the prohibited area set in this way gradually decreases as it approaches the left end of the light receiving area. Further, the left end of the prohibited area, that is, the boundary facing the detection area side, sets the position of the pixel 260 where the most preferable result was obtained experimentally. In this example, the interval between the pixel 260 forming the boundary of the prohibited area and the pixel 260 at the end of the detection area is set to about several percent of the number of pixels of the line sensor 261.

さらに、本例の禁止手段322では、非検知エリアに属する5画素が特定画素として予め設定されている。禁止手段322は、判定対象の受光波形の特定画素の受光量と、禁止エリアの下限境界をなす閾値(特定画素の閾値)と、の閾値判断を実行する。禁止手段322は、特定画素の受光量の方が閾値を超えていれば、非検知対象からの外乱光と判断して、非検知対象であると判定する。一方、特定画素の受光量が閾値以下であれば、非検知対象である旨の判定は行わない。なお、この禁止手段322による図9及び図10の合成反射光(図10中の実線の受光波形)の判定については後で説明する通りである。   Further, in the prohibiting unit 322 of this example, five pixels belonging to the non-detection area are set in advance as specific pixels. The prohibition unit 322 performs threshold determination between the received light amount of the specific pixel of the received light waveform to be determined and the threshold value (threshold value of the specific pixel) forming the lower limit boundary of the prohibited area. If the amount of light received by the specific pixel exceeds the threshold value, the prohibiting unit 322 determines that the light is disturbance light from the non-detection target and determines that it is a non-detection target. On the other hand, if the amount of light received by the specific pixel is less than or equal to the threshold value, it is not determined that it is a non-detection target. The determination of the combined reflected light in FIG. 9 and FIG. 10 (the light reception waveform indicated by the solid line in FIG. 10) by the prohibiting means 322 is as described later.

次に、以上のように構成された本例の人体検知センサ1による検知処理の流れについて、図12のフローチャート図を参照しながら説明する。
電源投入の後、まず、LED光の投射に応じた反射光の受光波形を取得するため、撮像動作や撮像データ(受光波形)の読み出し等を含む受光波形取得ルーチンが実行される(S101)。
Next, the flow of detection processing by the human body detection sensor 1 of this example configured as described above will be described with reference to the flowchart of FIG.
After the power is turned on, first, a received light waveform acquisition routine including an imaging operation, reading of imaging data (received waveform), and the like is executed in order to acquire a received light waveform of reflected light according to the projection of the LED light (S101).

取得された受光波形については、禁止エリア(図11参照。)に属するか否かの第1の禁止エリア判定ルーチンが実行される(S102)。この第1の禁止エリア判定ルーチンでは、取得された受光波形をなす受光量を加工することなく、前記特定画素の受光量の絶対値を対象として閾値判断が実行される。この第1の禁止エリア判定ルーチンでは、取得された受光波形から特定画素の受光量が取得され、禁止エリアの下限境界をなす閾値との比較が実行される。いずれかの特定画素の受光量が閾値を超えている、すなわち取得された受光波形を構成するいずれかの画素の受光量が禁止エリア内に存在している場合には(S103:NO)、この受光波形を外乱光によるものとし非検知対象であると判定でき、これにより非検知判定が行われる(S118)。   A first prohibited area determination routine for determining whether the acquired received light waveform belongs to a prohibited area (see FIG. 11) is executed (S102). In the first prohibited area determination routine, threshold determination is performed on the absolute value of the received light amount of the specific pixel without processing the received light amount that forms the acquired received light waveform. In the first prohibited area determination routine, the received light amount of the specific pixel is acquired from the acquired received light waveform and is compared with a threshold value that forms a lower limit boundary of the prohibited area. If the received light amount of any specific pixel exceeds the threshold value, that is, the received light amount of any pixel constituting the acquired received light waveform exists in the prohibited area (S103: NO), this It can be determined that the received light waveform is due to disturbance light and is a non-detection target, and thereby non-detection determination is performed (S118).

一方、第1の禁止エリア判定ルーチンにおいて、全ての特定画素の受光量が禁止エリアの閾値以下である場合には(S103:YES)、第2の禁止エリア判定ルーチンが実行される(S104)。この第2の禁止エリア判定ルーチンは、取得された受光波形の特定画素の受光量をそのまま適用するのではなく正規化を施す点で、ステップS102の第1の禁止エリア判定ルーチンとは相違している。取得された受光波形は、130mmの受光波形(図11中の実線の受光波形)の最大受光量で正規化され、この正規化により得られた特定画素の受光量(相対値)が第2の禁止エリア判定ルーチン(S104)に適用される。   On the other hand, in the first prohibited area determination routine, when the received light amounts of all the specific pixels are equal to or smaller than the prohibited area threshold (S103: YES), the second prohibited area determination routine is executed (S104). This second prohibited area determination routine is different from the first prohibited area determination routine of step S102 in that normalization is performed instead of applying the received light amount of the specific pixel of the acquired light reception waveform as it is. Yes. The acquired light reception waveform is normalized by the maximum light reception amount of the 130 mm light reception waveform (solid light reception waveform in FIG. 11), and the light reception amount (relative value) of the specific pixel obtained by this normalization is the second. This is applied to the prohibited area determination routine (S104).

この第2の禁止エリア判定ルーチンにより、いずれかの特定画素の受光量(相対値)が禁止エリアの閾値を超えている場合、すなわち禁止エリアに受光波形の一部が含まれている場合には(S105:NO)、その受光波形が外乱光に由来するとの判断に基づき非検知対象であると判定でき、非検知判定がなされる(S118)。   When the light reception amount (relative value) of any specific pixel exceeds the threshold value of the prohibited area by this second prohibited area determination routine, that is, when a part of the received light waveform is included in the prohibited area (S105: NO), based on the determination that the received light waveform is derived from disturbance light, it can be determined that it is a non-detection target, and a non-detection determination is made (S118).

一方、ステップS105において、全ての特定画素の受光量が禁止エリアの下限境界をなす閾値以下である場合には(S105:YES)、前記判定手段321による三角測量の原理に基づく測距判定ルーチンが実行される(S106)。ここでは、上記のごとく、受光波形の重心位置が計算され、その重心位置が検知エリア(図6参照。)に属しているか否か、すなわち検知対象までの距離が検知距離の範囲内に位置するか否か判定される(S107)。重心位置が検知エリアに属していれば(S107:YES)、検知対象が有ると判定でき、検知判定がなされる(S108)。一方、重心位置が検知エリアに属しておらず、検知対象までの距離が検知距離の範囲外であれば(S107:NO)、非検知判定がなされる(S118)。   On the other hand, if the received light amount of all the specific pixels is equal to or less than the threshold value forming the lower limit boundary of the prohibited area in step S105 (S105: YES), the distance measurement determination routine based on the principle of triangulation by the determination means 321 is performed. It is executed (S106). Here, as described above, the centroid position of the received light waveform is calculated, and whether or not the centroid position belongs to the detection area (see FIG. 6), that is, the distance to the detection target is within the detection distance range. Is determined (S107). If the position of the center of gravity belongs to the detection area (S107: YES), it can be determined that there is a detection target, and a detection determination is made (S108). On the other hand, if the position of the center of gravity does not belong to the detection area and the distance to the detection target is outside the detection distance range (S107: NO), a non-detection determination is made (S118).

図12の一連の検知処理のうち、ステップS102の第1の禁止エリア判定ルーチンは、例えば、ピーク画素は検知エリア内に属しているものの受光波形の一部が禁止エリア内に含まれている鉢面150の合成反射光(図9及び図10)に有効に作用する。この合成反射光の受光波形は、図13のごとく、その一部が禁止エリアに含まれているため、上記のように禁止エリアの下限境界をなす閾値による判断によって容易に排除可能である。   Of the series of detection processes of FIG. 12, the first prohibited area determination routine of step S102 is, for example, a bowl in which the peak pixel belongs to the detection area but part of the received light waveform is included in the prohibited area. This effectively acts on the combined reflected light (FIGS. 9 and 10) of the surface 150. As shown in FIG. 13, the received light waveform of the combined reflected light is partly included in the prohibited area, and can be easily eliminated by the determination based on the threshold value that forms the lower limit boundary of the prohibited area as described above.

また、ステップS104の第2の禁止エリア判定ルーチンは、例えば、図14の鏡面が共通する2種類の鏡面反射光のうち、実線の鏡面反射光に有効に作用する。実線の鏡面反射光と破線の鏡面反射光との違いは、鏡面反射面の上下方向の傾きにある。破線の鏡面反射光は、上下方向の傾きがほとんどなく直角に近い鏡面反射面によるものであり、尖度が高いという鏡面反射光の形状的な特徴を良く備えている。一方、実線の鏡面反射光は、上下方向の傾きが大きい斜めの鏡面反射面によるものであり、尖度が低く鏡面反射光の形状的な特徴が損なわれている。   Further, the second prohibited area determination routine in step S104 effectively acts on, for example, the solid-line specular reflected light among the two types of specular reflected light having the same mirror surface in FIG. The difference between the solid-line specular reflection light and the broken-line specular reflection light lies in the vertical inclination of the specular reflection surface. The broken-line specular reflection light is caused by the specular reflection surface that has almost no vertical inclination and is close to a right angle, and has a good shape characteristic of specular reflection light with high kurtosis. On the other hand, the solid-line specular reflection light is due to an oblique specular reflection surface having a large vertical inclination, and has low kurtosis and the shape characteristics of the specular reflection light are impaired.

鏡面反射光の形状的な特徴を備えている破線の鏡面反射光であれば、受光波形の尖度に関する閾値判断によって拡散反射光とは区別できる。一方、実線の鏡面反射光はその形状が拡散反射光に似通っており尖度による区別が難しい。このような鏡面反射光の受光波形であっても、130mmの受光波形の最大受光量(図11参照。)で正規化して図15のごとくその受光波形を全体的に嵩上げすれば、受光波形の一部が禁止エリアに含まれるようになり、この受光波形を外乱光によるものと判断できる。なお、図15の横軸xは、画素番号を示し、縦軸は、130mmの受光波形の最大受光量に対する比率を示している。   If it is a broken specular reflected light having the shape characteristic of the specular reflected light, it can be distinguished from the diffuse reflected light by the threshold value judgment regarding the kurtosis of the received light waveform. On the other hand, the solid-line specular reflection light has a shape similar to that of diffuse reflection light and is difficult to distinguish by kurtosis. Even if such a light reception waveform of the specular reflection light is normalized by the maximum light reception amount (see FIG. 11) of the light reception waveform of 130 mm, and the whole light reception waveform is raised as shown in FIG. A part is included in the prohibited area, and it can be determined that this received light waveform is due to ambient light. Note that the horizontal axis x in FIG. 15 indicates the pixel number, and the vertical axis indicates the ratio of the received light waveform of 130 mm to the maximum received light amount.

以上のように本例の人体検知センサ1は、反射光の入射位置を利用して検知対象の有無を検知する測距判定ルーチンのほかに、受光波形が禁止エリアに含まれているか否かにより外乱光を排除する禁止エリア判定ルーチンを実行可能である。例えば、鉢面150の複数箇所で同時発生した複数の反射光が重畳した合成反射光は、入射位置が検知エリア内にずれて位置することがあって測距判定ルーチンでは排除できない場合がある一方、前記禁止エリア判定ルーチンによれば、このような合成反射光を精度高く検知でき非検知対象として排除できる。   As described above, the human body detection sensor 1 of the present example depends on whether or not the received light waveform is included in the prohibited area, in addition to the distance measurement determination routine that detects the presence or absence of the detection target using the incident position of the reflected light. A prohibited area determination routine that eliminates disturbance light can be executed. For example, the combined reflected light in which a plurality of reflected lights simultaneously generated at a plurality of locations on the bowl surface 150 are superimposed may be displaced in the detection area and may not be excluded by the distance measurement determination routine. According to the prohibited area determination routine, such combined reflected light can be detected with high accuracy and excluded as a non-detection target.

このように、本例の人体検知センサ1は、特に、鉢面150による反射光による誤検知が抑制されており、検知性能が向上されたセンサである。そして、この人体検知センサ1を備えた水栓16は、誤作動が少ない優れた製品となっている。   Thus, especially the human body detection sensor 1 of this example is a sensor in which the erroneous detection by the reflected light by the bowl surface 150 is suppressed, and the detection performance is improved. The faucet 16 provided with the human body detection sensor 1 is an excellent product with few malfunctions.

なお、本例では、第1及び第2の禁止エリア判定ルーチンを実行している。第1の禁止エリア判定ルーチンは、反射光の受光波形をなす受光量をそのまま利用する判定ルーチンである。一方、第2の禁止エリア判定ルーチンは、反射光の受光波形をなす受光量を正規化して利用する判定ルーチンである。第1及び第2の禁止エリア判定ルーチンを両方とも実行することは、本発明の必須の要件ではなく、いずれか一方を省略しても良い。
本例の禁止エリア判定ルーチンでは、受光波形の取得を1回ずつ実行している。受光波形の取得を複数回実行し、各受光波形について禁止エリア判定ルーチンを適用することも良い。
In this example, the first and second prohibited area determination routines are executed. The first prohibited area determination routine is a determination routine that directly uses the amount of light received that forms the light reception waveform of reflected light. On the other hand, the second prohibited area determination routine is a determination routine that normalizes and uses the amount of light received that forms the light reception waveform of the reflected light. Executing both the first and second prohibited area determination routines is not an essential requirement of the present invention, and either one may be omitted.
In the prohibited area determination routine of this example, the acquisition of the received light waveform is executed once. It is also possible to execute the acquisition of the received light waveform a plurality of times and apply the prohibited area determination routine for each received light waveform.

本例では、非検知エリアにおける特定画素として、5つの画素を選択的に設定している。特定画素の数は、本例の5画素に限定されない。5画素よりも少なくても良いし、禁止エリアを形成する全ての画素を特定画素に設定しても良い。
本例では、受光波形を正規化する際、受光波形全体を正規化(図15参照。)しているが、特定画素の受光量のみを正規化しても良い。また、本例では、図11の130mmの受光波形の最大受光量で正規化しているが、受光量の総和で正規化することも良い。
In this example, five pixels are selectively set as specific pixels in the non-detection area. The number of specific pixels is not limited to the five pixels in this example. The number may be less than 5 pixels, or all the pixels forming the prohibited area may be set as specific pixels.
In this example, when the received light waveform is normalized, the entire received light waveform is normalized (see FIG. 15), but only the received light amount of a specific pixel may be normalized. Further, in this example, normalization is performed with the maximum amount of received light of the 130 mm received light waveform in FIG. 11, but normalization may be performed with the total amount of received light.

本例では、禁止エリアを設定するに当たって、実測された受光波形(図11)を利用したが、シミュレーションのみによって禁止エリアを設定しても良く、実験とシミュレーションとを併用して禁止エリアを設定しても良い。シミュレーションの場合、反射率や表面粗さ等に基づいて受光波形の最大受光量等を決定するのが良い。   In this example, the measured light reception waveform (FIG. 11) is used to set the prohibited area. However, the prohibited area may be set only by simulation, and the prohibited area is set by using both experiments and simulation. May be. In the case of simulation, it is preferable to determine the maximum received light amount of the received light waveform based on the reflectance, surface roughness, and the like.

本例では、反射光の入射位置を特定するに当たって、受光波形の重心位置を求めている。重心位置に代えて、受光波形のピークの位置を入射位置として特定しても良い。さらに、本例では、簡易的な計算により重心位置を算出しているが、計算処理能力に余裕があれば数学的に厳密に重心位置を算出することも良い。   In this example, when the incident position of the reflected light is specified, the barycentric position of the received light waveform is obtained. Instead of the position of the center of gravity, the peak position of the received light waveform may be specified as the incident position. Furthermore, in this example, the center of gravity position is calculated by simple calculation. However, if there is a margin in calculation processing capacity, the center of gravity position may be calculated mathematically strictly.

なお、本例は、洗面台15の水栓16に人体検知センサ1を適用した例であるが、キッチン用の水栓であっても良い。さらに、自動洗浄機能付きの小用便器の自動給水装置のセンサとして、本例の人体検知センサ1を適用することも可能である。さらには、手かざし操作や人体に反応して自動点灯する照明や自動扉等、各種の自動装置に対して、本例の人体検知センサ1を適用することもできる。   In addition, although this example is an example which applied the human body detection sensor 1 to the faucet 16 of the washstand 15, the faucet for kitchens may be sufficient. Furthermore, it is also possible to apply the human body detection sensor 1 of this example as a sensor of an automatic water supply device for a toilet bowl with an automatic cleaning function. Furthermore, the human body detection sensor 1 of this example can also be applied to various automatic devices such as a hand-holding operation and lighting or automatic doors that automatically turn on in response to a human body.

なお、本例では、センサユニット2と制御ユニット3とを別体で構成している。これに代えて、センサユニット2と制御ユニット3とを一体的に構成し、水栓16に収容することも良い。
また、本例の人体検知センサ1は、給水制御部33を含んでいるが、給水制御部33を別体で構成することもできる。
In this example, the sensor unit 2 and the control unit 3 are configured separately. Instead of this, the sensor unit 2 and the control unit 3 may be configured integrally and accommodated in the faucet 16.
Moreover, although the human body detection sensor 1 of this example contains the water supply control part 33, the water supply control part 33 can also be comprised separately.

以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形あるいは変更した技術を包含している。   As described above, specific examples of the present invention have been described in detail as in the embodiments. However, these specific examples merely disclose an example of the technology included in the scope of claims. Needless to say, the scope of the claims should not be construed as limited by the configuration, numerical values, or the like of the specific examples. The scope of the claims includes techniques obtained by variously modifying or changing the specific examples using known techniques, knowledge of those skilled in the art, and the like.

1…人体検知センサ、15…洗面台、150…鉢面、16…水栓(自動水栓)、11…ソレノイド(給水制御手段)、12…給水配管、2…センサユニット、25…発光部、251…LED素子、26…撮像部、260…画素、261…ラインセンサ(撮像素子)、263…受光エリア、3…制御ユニット、30…制御基板、31…撮像制御部、311…撮像制御手段、312…読出手段、32…検知処理部、321…判定手段、322…禁止手段、324…検知判断手段、325…検知出力手段、33…給水制御部 DESCRIPTION OF SYMBOLS 1 ... Human body detection sensor, 15 ... Wash-stand, 150 ... Bowl surface, 16 ... Water faucet (automatic water faucet), 11 ... Solenoid (water supply control means), 12 ... Water supply piping, 2 ... Sensor unit, 25 ... Light emission part, 251 ... LED element, 26 ... imaging part, 260 ... pixel, 261 ... line sensor (imaging element), 263 ... light receiving area, 3 ... control unit, 30 ... control board, 31 ... imaging control part, 311 ... imaging control means, 312 ... Reading means, 32 ... Detection processing section, 321 ... Determination means, 322 ... Prohibition means, 324 ... Detection determination means, 325 ... Detection output means, 33 ... Water supply control section

Claims (5)

1次元あるいは2次元的に画素が配列された撮像素子を含む撮像部と、この撮像部に対して所定方向にオフセットして配置された発光部と、を備え、この発光部が投射した光によって生じた反射光を前記撮像部が受光して所定の検知距離の範囲内に位置する検知対象を検知する人体検知センサであって、
前記発光部による発光及び前記撮像部による受光が行われる撮像動作を制御する撮像制御手段と、
前記撮像素子を構成する画素の受光量を読み出す読出手段と、
前記撮像素子を構成する画素が前記所定方向に配列された領域である受光エリア内の前記反射光の入射位置を特定すると共に、前記受光エリアのうち前記所定の検知距離に対応する検知エリア内に前記入射位置が属しているときに検知対象が有ると判定する判定手段と、
前記受光エリアのうち前記検知エリアの外側の非検知エリア内の少なくともいずれかの特定画素の受光量が、予め画素毎に設定された閾値を超える受光量であったときに非検知対象であると判定する禁止手段と、
検知対象を検知したか非検知かを判断する検知判断手段と、を備え、
この検知判断手段は、前記判定手段により検知対象が有ると判定されたとき、前記禁止手段により非検知対象であると判定されていなければ、検知と判断する一方、前記禁止手段により非検知対象であると判定された場合には、前記判定手段による判定結果の有無及びその判定結果の内容に関わらず非検知と判断する人体検知センサ。
An image pickup unit including an image pickup device in which pixels are arranged one-dimensionally or two-dimensionally, and a light-emitting unit arranged offset in a predetermined direction with respect to the image pickup unit, and the light projected by the light-emitting unit A human body detection sensor for detecting a detection target located within a range of a predetermined detection distance when the imaging unit receives the generated reflected light,
Imaging control means for controlling an imaging operation in which light emission by the light emitting unit and light reception by the imaging unit are performed;
Reading means for reading the received light amount of the pixels constituting the image sensor;
The incident position of the reflected light in a light receiving area that is an area in which pixels constituting the image sensor are arranged in the predetermined direction is specified, and in the detection area corresponding to the predetermined detection distance in the light receiving area Determining means for determining that there is a detection target when the incident position belongs;
When the light reception amount of at least one specific pixel in the non-detection area outside the detection area in the light reception area is a non-detection target when the light reception amount exceeds a threshold set in advance for each pixel A prohibition means for judging,
Detection determination means for determining whether the detection target is detected or not detected,
When it is determined by the determination unit that there is a detection target, the detection determination unit determines that the detection is not detected by the prohibition unit. A human body detection sensor that, when determined to be present, determines non-detection regardless of the presence or absence of the determination result by the determination means and the content of the determination result.
請求項1において、前記特定画素の受光量が分布する範囲の中に、検知対象の反射光が受光されたときには受光量が分布する可能性が低い禁止エリアが設けられており、前記禁止手段が閾値判断に用いる閾値は、前記禁止エリアの下限境界をなす受光量である人体検知センサ。   In Claim 1, in the range in which the received light amount of the specific pixel is distributed, a prohibited area is provided in which the possibility that the received light amount is less likely to be distributed when the reflected light to be detected is received. The threshold used for threshold determination is a human body detection sensor which is the amount of received light that forms the lower limit boundary of the prohibited area. 請求項1又は2において、前記特定画素は、前記検知エリアよりも遠距離側の非検知エリア内の1個又は複数個の画素であり、
この特定画素に対応する閾値は、前記検知エリアの遠距離側の端に位置する画素の受光量が所定の最大値であって、かつ、正規分布をなす受光量を基準として設定されている人体検知センサ。
In Claim 1 or 2, the specific pixel is one or a plurality of pixels in a non-detection area farther than the detection area,
The threshold corresponding to the specific pixel is set based on the received light amount of the pixel located at the far end of the detection area having a predetermined maximum value and having a normal distribution. Detection sensor.
請求項3において、前記禁止手段は、前記受光エリアの実際の受光量分布をなす受光量を、前記基準となる正規分布をなす受光量を利用して正規化し、正規化された受光量について閾値判断を実行する人体検知センサ。   4. The inhibition unit according to claim 3, wherein the prohibiting unit normalizes the received light amount forming the actual received light amount distribution of the light receiving area using the received light amount forming the reference normal distribution, and thresholds the normalized received light amount. A human body detection sensor that executes a determination. 底部に排水口を設けた鉢の内部に吐水する水栓と、
請求項1〜4のいずれか1項に記載された人体検知センサと、
この人体検知センサの検知信号に応じて、前記水栓の吐水・止水の切替、あるいは吐水量の調整を実行する給水制御手段と、を備えた自動水栓。
A faucet that discharges water into a bowl with a drain at the bottom;
The human body detection sensor according to any one of claims 1 to 4,
An automatic water faucet comprising: a water supply control means for executing switching of water discharge / stop of water or adjustment of the water discharge amount in accordance with a detection signal of the human body detection sensor.
JP2012215823A 2012-09-28 2012-09-28 Human body detection sensor and automatic faucet Active JP5909170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215823A JP5909170B2 (en) 2012-09-28 2012-09-28 Human body detection sensor and automatic faucet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215823A JP5909170B2 (en) 2012-09-28 2012-09-28 Human body detection sensor and automatic faucet

Publications (2)

Publication Number Publication Date
JP2014070381A true JP2014070381A (en) 2014-04-21
JP5909170B2 JP5909170B2 (en) 2016-04-26

Family

ID=50745862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215823A Active JP5909170B2 (en) 2012-09-28 2012-09-28 Human body detection sensor and automatic faucet

Country Status (1)

Country Link
JP (1) JP5909170B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136223A (en) * 2017-02-22 2018-08-30 株式会社Lixil Object detection sensor and electrical equipment unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235824A (en) * 1990-02-13 1991-10-21 Nisca Corp Method of controlling automatic faucet of city water
JP2002071310A (en) * 2000-08-28 2002-03-08 Matsushita Electric Works Ltd Optical displacement measuring device and method therefor
JP2012077472A (en) * 2010-09-30 2012-04-19 Lixil Corp Automatic water supply device and distance measuring sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235824A (en) * 1990-02-13 1991-10-21 Nisca Corp Method of controlling automatic faucet of city water
JP2002071310A (en) * 2000-08-28 2002-03-08 Matsushita Electric Works Ltd Optical displacement measuring device and method therefor
JP2012077472A (en) * 2010-09-30 2012-04-19 Lixil Corp Automatic water supply device and distance measuring sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136223A (en) * 2017-02-22 2018-08-30 株式会社Lixil Object detection sensor and electrical equipment unit

Also Published As

Publication number Publication date
JP5909170B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP6219602B2 (en) Human body detection sensor and automatic faucet
US10072403B2 (en) Human body detection sensor and automatic faucet
JP5976531B2 (en) Human body detection sensor and automatic faucet
JP6199612B2 (en) Human body detection sensor and automatic faucet
US9598846B2 (en) Automatic water faucet
TWI592545B (en) Sensing body sensors and automatic faucets
JP5722688B2 (en) Human body detection sensor and automatic faucet
JP6029229B2 (en) Human body detection sensor and automatic faucet
JP5678318B2 (en) Automatic water supply device and distance measuring sensor
JP5909170B2 (en) Human body detection sensor and automatic faucet
JP2012233879A (en) Human body detection sensor and automatic faucet
JP2005106514A (en) Reflection type photoelectric sensor, and automatic cleaner and sanitary cleaner mounted therewith
JP5909171B2 (en) Human body detection sensor and automatic faucet
JP2019173489A (en) Faucet device
JP2021130916A (en) Water supply device
JP5635882B2 (en) Automatic faucet device
JP2004286678A (en) Human body detecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160325

R150 Certificate of patent or registration of utility model

Ref document number: 5909170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350