JP2014067512A - Vacuum circuit breaker - Google Patents

Vacuum circuit breaker Download PDF

Info

Publication number
JP2014067512A
JP2014067512A JP2012210349A JP2012210349A JP2014067512A JP 2014067512 A JP2014067512 A JP 2014067512A JP 2012210349 A JP2012210349 A JP 2012210349A JP 2012210349 A JP2012210349 A JP 2012210349A JP 2014067512 A JP2014067512 A JP 2014067512A
Authority
JP
Japan
Prior art keywords
contact
contact pair
pair
vacuum
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012210349A
Other languages
Japanese (ja)
Other versions
JP5836907B2 (en
Inventor
Toshinori Kimura
俊則 木村
Mitsuru Tsukima
満 月間
Daiki Donen
大樹 道念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012210349A priority Critical patent/JP5836907B2/en
Publication of JP2014067512A publication Critical patent/JP2014067512A/en
Application granted granted Critical
Publication of JP5836907B2 publication Critical patent/JP5836907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve breaking performance especially in a small capacitive current breaking test and a capacitor bank opening and closing test by improving withstand voltage performance without increasing the open electrode distance and open electrode speed of a movable electrode.SOLUTION: Respective movable contacts 2 of one side contact pair B and the other side contact pair A are driven by an opening and closing mechanism 23 so that when closing the vacuum circuit breaker, after the movable contact 2 of one side contact pair B is brought into contact with the stationary contact 3 of the other side contact pair B, the movable contact 2 of the other side contact pair A is brought into contact with the stationary contact 3 of the other side contact pair A, and when opening the vacuum circuit breaker, timing of separation of the movable contact 2 of the other side contact pair A from the stationary contact 3 of the other side contact pair A does not precede timing of separation of the movable contacts 2 of one side contact pair B from the stationary contacts 3 of the one side contact pair B.

Description

この発明は、それぞれ真空空間内で開閉する2組の接点対を有する真空遮断装置に関するもので、特に定格電圧が高く、進み小電流遮断試験およびコンデンサバンク開閉試験における遮断性能の高い真空遮断装置に適する。   The present invention relates to a vacuum circuit breaker having two contact pairs each opened and closed in a vacuum space, and particularly to a vacuum circuit breaker having a high rated voltage and high shutoff performance in an advanced small current break test and a capacitor bank open / close test. Suitable.

真空遮断装置に用いられる真空バルブでは、一対の接点を用いて遮断と耐電圧の両性能を確保するのが基本構造であるが、近年の高電圧化、大容量化に対応するため、1つの真空容器の内部に2組の接点を設けた真空バルブが考案されている。   The basic structure of a vacuum valve used in a vacuum shut-off device is to ensure both shut-off and withstand voltage performance using a pair of contacts. However, in order to cope with the recent increase in voltage and capacity, A vacuum valve in which two sets of contacts are provided inside a vacuum vessel has been devised.

図13は特許文献1の構造を説明するための図である。気密の絶縁材で作られた円筒状の包囲体1に非磁性材で作られた中央基板7を設ける。中央基板7には円板状接点10、11が固定される。可動接点12、13は導電性の基部22と渦巻状の巻回体23と導電性プレート24とリング25、ジャンパ26で構成される。可動接点12、13は導電性ロッド14、15に接続される。   FIG. 13 is a diagram for explaining the structure of Patent Document 1. In FIG. A central substrate 7 made of a nonmagnetic material is provided in a cylindrical enclosure 1 made of an airtight insulating material. Disk-shaped contacts 10 and 11 are fixed to the central substrate 7. The movable contacts 12 and 13 include a conductive base 22, a spiral wound body 23, a conductive plate 24, a ring 25, and a jumper 26. The movable contacts 12 and 13 are connected to the conductive rods 14 and 15.

真空ギャップの絶縁耐力はギャップ長の0.5乗でしか増加しないため、高電圧の真空バルブの場合、印加する電圧を2組の接点で分圧した方が1組の接点の場合より合計のギャップ長を短くすることができる。このため、絶縁耐力を高くし、かつ材料消費量を減少させるという効果がある。   Since the dielectric strength of the vacuum gap increases only by the 0.5th power of the gap length, in the case of a high-voltage vacuum valve, the total gap length is greater when the applied voltage is divided by two sets of contacts than when one set of contacts is used. Can be shortened. For this reason, there exists an effect of making a dielectric strength high and reducing material consumption.

この他にも、一対の接点を収納した真空バルブを2本直列に設けた2点切り真空遮断装置が開発されている。これらの真空遮断装置では、2組の接点を同時に開閉して印加電圧を2組の接点で分圧する形態となっている。   In addition to this, a two-point cut-off vacuum breaker has been developed in which two vacuum valves containing a pair of contacts are provided in series. In these vacuum circuit breakers, two sets of contacts are opened and closed simultaneously, and the applied voltage is divided by the two sets of contacts.

以上の方法とは別に、接点材料の改善によって耐電圧性能を向上させる工夫もなされている。しかし、高耐圧材料は遮断性能が低下する傾向があるため、耐電圧性能と遮断性能の両方を同時に向上させることは困難な状況にある。   Apart from the above methods, a device for improving the withstand voltage performance by improving the contact material has been devised. However, since the high pressure resistant material tends to have a low breaking performance, it is difficult to improve both the withstand voltage performance and the breaking performance at the same time.

特開昭58−145035号公報Japanese Patent Laid-Open No. 58-14504

送電線もしくはコンデンサバンク開閉に用いられる真空遮断装置は、送電線の対地キャパシタンスまたはコンデンサバンクのキャパシタンスによって決まる進み小電流を遮断する能力が要求される。このため、進み小電流遮断試験やコンデンサバンク開閉試験を実施して遮断性能を検査する必要がある。なお、日本国内で一般に用いられている交流遮断器の規格JEC2300では送電線、コンデンサバンクに接続される遮断器に対する進み小電流試験を合わせて「進み小電流遮断試験」と称しているので、以下、進み小電流遮断試験と称する。   The vacuum circuit breaker used for opening and closing the power transmission line or the capacitor bank is required to have a capability of interrupting a small current that is determined by the ground capacitance of the power transmission line or the capacitance of the capacitor bank. For this reason, it is necessary to perform an advanced small current interruption test and a capacitor bank switching test to inspect the interruption performance. The AC circuit breaker standard JEC2300 commonly used in Japan is referred to as the “advanced small current interruption test” together with the advanced small current test for the circuit breaker connected to the transmission line and capacitor bank. This is referred to as the advanced small current interruption test.

進み小電流遮断試験において、回路電圧を印加した状態で電極を閉じていくと、固定電極と可動電極の間の電界が高くなり、該電極が閉じる前に絶縁破壊が生じる。この時に生じるアーク(以後、プレアークと呼ぶ)の熱によって電極の接点表面に溶融が生じる。この後、電極は閉じ、溶融部位は熱拡散により温度が下がり溶着する。続く開極動作によって、溶着部位は引き剥がされるので、接点表面に損傷が生じる。このために、耐電圧性能が低下し再点弧の原因となっている。   In the advanced small current interruption test, when the electrode is closed with the circuit voltage applied, the electric field between the fixed electrode and the movable electrode increases, and dielectric breakdown occurs before the electrode is closed. The heat of the arc generated at this time (hereinafter referred to as pre-arc) causes melting on the contact surface of the electrode. Thereafter, the electrode is closed, and the melted portion is welded with the temperature lowered by thermal diffusion. Subsequent opening operation causes the welded site to be peeled off, causing damage to the contact surface. For this reason, the withstand voltage performance is lowered, causing re-ignition.

図13の従来の真空遮断装置は、2組の接点を同時に閉極、開極するため、溶着引き外しによる損傷はどちらの接点にも起こりうる。さらに、進み小電流遮断試験では試験を例えば24回という多数回実施するため、2組の接点の両方に損傷が生じる可能性高い。この状態で、再起電圧が印加すると、2組の接点で分圧していても、接点の損傷部に局所的な高電界が発生するため、耐電圧は低下し再点弧の原因となる。 Since the conventional vacuum circuit breaker of FIG. 13 closes and opens two sets of contacts at the same time, damage due to welding pull-out can occur at either contact. Furthermore, in the advanced small current interruption test, since the test is performed many times, for example, 24 times, it is highly possible that both of the two sets of contacts are damaged. In this state, when a re-start voltage is applied, even if the voltage is divided by the two sets of contacts, a local high electric field is generated at the damaged portion of the contacts, so that the withstand voltage decreases and causes re-ignition.

この発明は、前述のような課題に鑑みてなされたもので、2組の接点対の内の一つには溶着引き外しによる損傷が生じないようにして清浄な状態を維持することで、可動電極の開極距離や開極速度を大きくすること無く耐電圧性能を向上させ、進み小電流遮断試験およびコンデンサバンク開閉試験における遮断性能を向上させることを目的とする。   The present invention has been made in view of the above-mentioned problems, and is movable by maintaining a clean state in one of the two contact pairs so as not to cause damage due to welding removal. The purpose is to improve the withstand voltage performance without increasing the electrode opening distance and speed, and to improve the breaking performance in the advanced small current breaking test and the capacitor bank switching test.

この発明に係る真空遮断装置は、それぞれ真空空間内で開閉する2組の接点対A,Bを有する真空遮断装置において、前記真空遮断装置の閉極時には、一方の前記接点対B可動接点が前記一方の接点対Bの固定接点に接触した後に、他方の前記接点対Aの可動接点が前記他方の接点対Aの固定接点に接触するという順番になるように、さらに前記真空遮断装置の開極時には、前記他方の接点対Aの前記可動接点が前記他方の接点対Aの前記固定接点から開離するタイミングが、前記一方の接点対Bの前記可動接点が前記一方の接点対Bの前記固定接点から開離するタイミングより前にならないように、前記一方の接点対Bおよび前記他方の接点対Aのそれぞれの前記可動接点が、開閉機構によって駆動されるものである。 The vacuum circuit breaker according to the present invention is a vacuum circuit breaker having two pairs of contact pairs A and B each opened and closed in a vacuum space. When the vacuum circuit breaker is closed , the movable contact of one of the contact pairs B is The vacuum circuit breaker is further opened so that the movable contact of the other contact pair A contacts the fixed contact of the other contact pair A after contacting the fixed contact of the one contact pair B. At an extreme time, the timing at which the movable contact of the other contact pair A is separated from the fixed contact of the other contact pair A is such that the movable contact of the one contact pair B is the one of the one contact pair B. The movable contacts of each of the one contact pair B and the other contact pair A are driven by an opening / closing mechanism so as not to come before the timing of releasing from the fixed contact.

この発明は、それぞれ真空空間内で開閉する2組の接点対A,Bを有する真空遮断装置において、前記真空遮断装置の閉極時には、一方の前記接点対Bの可動接点が前記一方の接点対Bの固定接点に接触した後に、他方の前記接点対Aの可動接点が前記他方の接点対Aの固定接点に接触するという順番になるように、さらに前記真空遮断装置の開極時には、前記他方の接点対Aの前記可動接点が前記他方の接点対Aの前記固定接点から開離するタイミングが、前記一方の接点対Bの前記可動接点が前記一方の接点対Bの前記固定接点から開離するタイミングより前にならないように、前記一方の接点対Bおよび前記他方の接点対Aのそれぞれの前記可動接点が、開閉機構によって駆動されるので、可動電極の開極距離や開極速度を大きくすることなく耐電圧性能を向上させ、進み小電流遮断試験およびコンデンサバンク開閉試験における遮断性能を向上させることができる。   The present invention provides a vacuum interrupter having two pairs of contact pairs A and B each opened and closed in a vacuum space, and when the vacuum interrupter is closed, the movable contact of one of the contact pairs B is the one contact pair. In order that the movable contact of the other contact pair A contacts the fixed contact of the other contact pair A after the contact with the fixed contact B, the other contact pair A is opened when the vacuum breaker is opened. When the movable contact of the contact pair A is separated from the fixed contact of the other contact pair A, the movable contact of the one contact pair B is separated from the fixed contact of the one contact pair B. The movable contact of each of the one contact pair B and the other contact pair A is driven by an opening / closing mechanism so that the opening distance and the opening speed of the movable electrode are increased so that the timing is not earlier than Do And without improving withstand voltage performance, blocking performance in a small current interrupting test and capacitor bank closing test proceeds can be improved.

この発明の実施の形態1に係る真空遮断装置を示す側面断面図である。It is side surface sectional drawing which shows the vacuum interrupting device which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る真空遮断装置の開閉機構のリンク機構の構造を示す概略構造図、および接点の動作を説明する説明図である。It is the schematic structure figure which shows the structure of the link mechanism of the opening-and-closing mechanism of the vacuum circuit breaker concerning Embodiment 1 of this invention, and explanatory drawing explaining operation | movement of a contact. 進み小電流遮断試験における接点間の平均電界と再起電圧を示す図である。It is a figure which shows the average electric field and regenerative voltage between contacts in an advance small current interruption test. 従来の真空遮断装置における接点間の平均電界を示す図である。It is a figure which shows the average electric field between the contacts in the conventional vacuum interrupter. この発明の実施の形態1に係る真空遮断装置の接点間の平均電界を示す図である。It is a figure which shows the average electric field between the contacts of the vacuum interrupter which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る真空遮断装置で分圧コンデンサを設けた真空バルブの拡大図である。It is an enlarged view of the vacuum valve which provided the voltage dividing capacitor with the vacuum circuit breaker concerning Embodiment 2 of this invention. この発明の実施の形態2に係る真空遮断装置の接点間の平均電界を示す図である。It is a figure which shows the average electric field between the contacts of the vacuum interrupter concerning Embodiment 2 of this invention. この発明の実施の形態2に係る真空遮断装置において、開極距離を短くした場合の接点間の平均電界を示す図である。In the vacuum circuit breaker concerning Embodiment 2 of this invention, it is a figure which shows the average electric field between contacts when opening distance is shortened. この発明の実施の形態3に係る真空遮断装置で分圧コンデンサを設け、かつ接点Aが1ms遅れて開く場合の接点間の平均電界を示す図である。It is a figure which shows the average electric field between contacts when a voltage dividing capacitor is provided in the vacuum circuit breaker according to Embodiment 3 of the present invention and contact A opens with a delay of 1 ms. この発明の実施の形態3に係る真空遮断装置で分圧コンデンサ無しとし、かつ接点Aが1サイクル遅れて開く場合の接点間の平均電界を示す図である。It is a figure which shows the average electric field between contacts when there is no voltage dividing capacitor in the vacuum circuit breaker concerning Embodiment 3 of this invention, and the contact A opens 1 cycle behind. この発明の実施の形態4と実施の形態5に係る真空遮断装置で、分圧コンデンサによってA側の分圧高くした場合の接点間の平均電界を示す図である。In the vacuum circuit breaker concerning Embodiment 4 and Embodiment 5 of this invention, it is a figure which shows the average electric field between contacts at the time of making the partial pressure of the A side high with a voltage dividing capacitor. この発明の実施の形態6に係る真空遮断装置で、衝撃吸収構造を設けた真空バルブの拡大図である。It is an enlarged view of the vacuum valve which provided the impact-absorbing structure in the vacuum interrupter concerning Embodiment 6 of this invention. 従来の真空遮断装置における真空バルブの構造を示す断面図であるIt is sectional drawing which shows the structure of the vacuum valve in the conventional vacuum interrupter.

実施の形態1.
以下この発明の実施の形態1を図1〜図5により説明する。
図1において、真空遮断装置はタンク20と、該タンク20内の中央部に設置された真空バルブ1と、タンク20の外部に設けられた開閉機構23および図示していないブッシングを主要部品とし、ブッシングの中心導体25と真空バルブ1、可とう導体16で電路を構成し、前記開閉機構で真空バルブ1内の2組の対をなす固定接点3と可動接点2をそれぞれ開閉することにより電流を入り切りする。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS.
In FIG. 1, the vacuum shut-off device mainly includes a tank 20, a vacuum valve 1 installed at the center of the tank 20, an opening / closing mechanism 23 provided outside the tank 20 and a bushing (not shown). The bushing center conductor 25, the vacuum valve 1, and the flexible conductor 16 constitute an electric circuit, and the opening / closing mechanism opens and closes two pairs of the fixed contact 3 and the movable contact 2 in the vacuum valve 1 to thereby open and close the current. Cut into pieces.

前記真空バルブ1は、密封状態に保持された絶縁筒10内に、該絶縁筒10の軸方向に対向して接離可能に配置された2組の対をなす固定接点3と可動接点2とを備え、各組の固定接点3および可動接点2はそれぞれコイル5を介して、各々対応する固定電極棒7および可動電極棒6に固着される。短絡遮断の際に、コイル5を流れる電流が軸方向の磁界(縦磁界)を発生することにより、固定接点3と可動接点2の間に発生するアークを拡散状態に維持する。このような電極構造を縦磁界電極と呼び、高い遮断性能を持つ。さらに、各組の各接点2,3が何れも平板で、溝や突出部などの電界を高める構造をもたないため高い耐電圧性能を持つ。アーク時間が0.5サイクル以上の長い遮断責務においては、アークが接点表面に滞在する時間が長いため金属蒸気の発生量が多くなり、一時的に電極周囲の耐電圧が低下してアークが電極以外に移行する危険がある。
そこで、固定接点3と支持部材15との間には固定電極棒7を介して所定長の距離を設けて、アークが支持部材15に移行しないようにした。また、アークが固定接点3から固定電極棒7に移行しないように固定接点3を固定電極棒7より大径にした。
なお、以後、2組の対をなす固定接点3および可動接点2のうち、図示左側の組の固定接点3と可動接点2を「接点対A」、図示右側の組の固定接点3と可動接点2を「接点対B」と記す。
The vacuum valve 1 includes two pairs of a fixed contact 3 and a movable contact 2 which are disposed in an insulating cylinder 10 held in a sealed state so as to be opposed to and separated from each other in the axial direction of the insulating cylinder 10. The fixed contact 3 and the movable contact 2 of each set are fixed to the corresponding fixed electrode rod 7 and movable electrode rod 6 via the coil 5, respectively. When the short circuit is interrupted, the current flowing through the coil 5 generates an axial magnetic field (longitudinal magnetic field), thereby maintaining the arc generated between the fixed contact 3 and the movable contact 2 in a diffused state. Such an electrode structure is called a longitudinal magnetic field electrode and has a high blocking performance. Furthermore, since each contact 2 and 3 of each set is a flat plate and does not have the structure which raises electric fields, such as a groove | channel and a protrusion part, it has high withstand voltage performance. For long interruption duties with an arc time of 0.5 cycles or more, the amount of metal vapor generated increases because the arc stays on the contact surface for a long time. There is a risk of migration.
Therefore, a predetermined distance is provided between the fixed contact 3 and the support member 15 via the fixed electrode rod 7 so that the arc does not move to the support member 15. The fixed contact 3 is made larger in diameter than the fixed electrode rod 7 so that the arc does not move from the fixed contact 3 to the fixed electrode rod 7.
In the following, of the two pairs of fixed contact 3 and movable contact 2, the left set of fixed contact 3 and movable contact 2 are referred to as “contact pair A”, and the right set of fixed contact 3 and movable contact 2 are illustrated. 2 is referred to as “contact pair B”.

固定電極棒7は、支持部材15に固定され、絶縁筒10の軸方向中央および径方向中央に取り付けられる。可動電極棒6はベローズ8とフランジ9を介して絶縁筒10に取り付ける。
2組の固定接点3と可動接点2とを囲む位置に各組毎にアークシールド11を設ける。アークシールド11は、電流遮断時に接点から発生する金属蒸気が絶縁筒10の内面に付着するのを防止し、沿面耐圧の低下を防止する。2つのアークシールド11,11は個別に設け、別々の電位となることができるようにする。
The fixed electrode rod 7 is fixed to the support member 15 and attached to the center in the axial direction and the center in the radial direction of the insulating cylinder 10. The movable electrode rod 6 is attached to the insulating cylinder 10 via the bellows 8 and the flange 9.
An arc shield 11 is provided for each set at a position surrounding the two sets of fixed contact 3 and movable contact 2. The arc shield 11 prevents the metal vapor generated from the contact when the current is interrupted from adhering to the inner surface of the insulating cylinder 10 and prevents the creepage breakdown voltage from decreasing. The two arc shields 11 and 11 are provided separately so that they can have different potentials.

支持部材15には電界緩和シールド14が取り付けられている。真空バルブ1は支持部材15を介して真空バルブ支持ブッシング22によってタンク20に強固に固定される。可動電極棒6は絶縁ロッド12およびタンク側ベローズ13、ロッド31を介して、開閉機構23の動作を伝えるリンク機構24に接続する。タンク側ベローズ13はタンク20に取り付けられている。可動電極棒6には割り端子26が取り付けられ、ブッシング25Bの中心導体23とは可撓導体16によって接続する。   An electric field relaxation shield 14 is attached to the support member 15. The vacuum valve 1 is firmly fixed to the tank 20 by a vacuum valve support bushing 22 through a support member 15. The movable electrode rod 6 is connected to the link mechanism 24 that transmits the operation of the opening / closing mechanism 23 through the insulating rod 12, the tank side bellows 13, and the rod 31. The tank side bellows 13 is attached to the tank 20. A split terminal 26 is attached to the movable electrode rod 6, and is connected to the central conductor 23 of the bushing 25 </ b> B by the flexible conductor 16.

絶縁筒10はセラミックで形成されており、該セラミックには薄い金属であるメタライズ層を設けてフランジ9および支持部材15とロウ付けにより固定する。メタライズ層の端部が高電界となるため電界緩和シールド14を設けて電界緩和し、セラミック製絶縁筒10の沿面での放電を防止する。絶縁筒10の両端に位置する電界緩和シールド14はフランジ9に支持される。   The insulating cylinder 10 is made of ceramic, and a thin metallized layer is provided on the ceramic and fixed to the flange 9 and the support member 15 by brazing. Since the end portion of the metallized layer has a high electric field, the electric field relaxation shield 14 is provided to relax the electric field and prevent discharge along the creeping surface of the ceramic insulating cylinder 10. The electric field relaxation shields 14 positioned at both ends of the insulating cylinder 10 are supported by the flange 9.

タンク20は接地電位であるが、ブッシング25Bの中心導体25と真空バルブ1の中の各導体は高電圧となるので、真空バルブ支持ブッシング22はセラミックやモールド樹脂といった絶縁材料製として耐電圧を確保する。さらに、真空バルブ支持ブッシング22は固定接点3と可動接点2とを開閉する時の衝撃に耐えるだけの機械的強度を持たせる必要がある。開閉衝撃は固定電極棒7と支持部材15にも加わるので、これらの部品も同様に機械的強度を持たせる。
タンク27の中は絶縁性ガスであるSF6ガス、空気、窒素ガス等を封入する。
Although the tank 20 is at ground potential, the central conductor 25 of the bushing 25B and each conductor in the vacuum valve 1 are at a high voltage, so the vacuum valve support bushing 22 is made of an insulating material such as ceramic or mold resin to ensure a withstand voltage. To do. Furthermore, the vacuum valve support bushing 22 needs to have a mechanical strength sufficient to withstand an impact when the fixed contact 3 and the movable contact 2 are opened and closed. Since the open / close impact is also applied to the fixed electrode rod 7 and the support member 15, these components also have mechanical strength.
The tank 27 is filled with SF6 gas, air, nitrogen gas or the like, which is an insulating gas.

次に開閉機構の説明をする。
図2(1)は開閉機構23の動作を可動電極棒6に伝えるためのリンク機構24の構造を示す。接点対A、Bの動作の説明のため、図1から接点対A、Bの固定接点3と可動接点2だけを抽出して示した。
開閉機構23によって駆動するシャフト30は直線状の継手A27と接続され、該継手A27はくの字状の継手B28に接続される。継手A27および継手B28は回転軸29によって支持され、シャフト30の動きを伝える。継手B28はロッド31に接続され、ロッド31の動きは可動電極棒6を駆動する。右側の(接点対B側の)ロッド31にはスライダ32が設けられ、継手B28の端の連結部33がスライダ32内を接点対Bの開閉方向に所定長滑ってからロッド31を動かすことができるようになっている。
Next, the opening / closing mechanism will be described.
FIG. 2A shows the structure of the link mechanism 24 for transmitting the operation of the opening / closing mechanism 23 to the movable electrode rod 6. For the explanation of the operation of the contact pair A, B, only the fixed contact 3 and the movable contact 2 of the contact pair A, B are extracted from FIG.
The shaft 30 driven by the opening / closing mechanism 23 is connected to a linear joint A27, and the joint A27 is connected to a dog-shaped joint B28. The joint A27 and the joint B28 are supported by the rotating shaft 29 and transmit the movement of the shaft 30. The joint B28 is connected to the rod 31, and the movement of the rod 31 drives the movable electrode rod 6. The rod 31 on the right side (contact pair B side) is provided with a slider 32, and the connecting portion 33 at the end of the joint B28 slides within the slider 32 in the opening and closing direction of the contact pair B for a predetermined length to move the rod 31. It can be done.

図2(1)の中の矢印は投入の際の動きを示している。また、図2(1)の中の白丸○は回転軸を、黒丸●は連結部を、それぞれ示す。
開閉機構23によってシャフト30が図示上方向に動くと、この動きは継手A27、継手B28によって連結部33に伝わり、連結部33が、図中の矢印方向に動く。右側の接点対B側のロッド31は、連結部33がスライダ32内を前記所定長滑った後に動き始めるので、右側の接点対Bは左側の接点対Aより遅れて接点を閉じることができる。接点が閉じた後には、図示していないラッチ機構によって可動電極棒6を接点閉成位置に保持し、接点が閉じた状態を維持する。
The arrow in FIG. 2 (1) shows the movement at the time of insertion. In FIG. 2 (1), the white circle ◯ indicates the rotation axis, and the black circle ● indicates the connecting portion.
When the shaft 30 moves in the upward direction in the figure by the opening / closing mechanism 23, this movement is transmitted to the connecting portion 33 by the joint A27 and the joint B28, and the connecting portion 33 moves in the direction of the arrow in the figure. Since the rod 31 on the right contact pair B side starts to move after the connecting portion 33 slides within the slider 32 for the predetermined length, the right contact pair B can close the contact later than the left contact pair A. After the contact is closed, the movable electrode rod 6 is held at the contact closing position by a latch mechanism (not shown), and the contact is kept closed.

開極時は、左側の接点対Aの可動電極棒6のラッチ機構を外して左の可動電極棒6が動けるようにすると同時に、シャフト30が図示下方向(図示矢印と逆方向)に動く。まず、左側の(接点対A側の)継手B28の動きにより接点対A側のロッド31が動いて、左側の可動電極棒6が左側の接点対Aを開く方向に動く。右側の継手B28の動きによりその先端の連結部33がスライダ32内を滑り、連結部33がスライダ32の右端に至る直前に右側の接点対Bの可動電極棒6のラッチ機構を外して右の可動電極棒6が動けるようにする。連結部33がスライダ32の右端に来ると、右側の接点対B側のロッド31が動き始め右の可動電極棒6が右側の接点対Bを開く方向に動く。以上の動作の結果、左側の接点対Aが先に開極し、右側の接点対Bが遅れて開極する。
接点対Aに対応する左側の連結部33の速度VA、および接点対Bに対応する右側の連結部33の速度VBは、対応する継手B28のそれぞれの長さa(接点対Aに対応する左側の継手B28の回動軸29−連結部33間の長さ)、b(接点対Bに対応する右側の継手B28の回動軸29−連結部33間の長さ)を違った長さにすることで変えることができる。
At the time of opening, the latch mechanism of the movable electrode rod 6 of the left contact pair A is removed so that the left movable electrode rod 6 can move, and at the same time, the shaft 30 moves downward in the figure (the direction opposite to the arrow in the figure). First, the rod 31 on the contact pair A side is moved by the movement of the joint B28 on the left side (on the contact pair A side), and the left movable electrode rod 6 moves in the direction to open the left contact pair A. By the movement of the right joint B28, the connecting portion 33 at the tip thereof slides in the slider 32, and immediately before the connecting portion 33 reaches the right end of the slider 32, the latch mechanism of the movable electrode rod 6 of the right contact pair B is removed to the right. The movable electrode rod 6 can be moved. When the connecting portion 33 comes to the right end of the slider 32, the rod 31 on the right contact pair B side starts to move, and the right movable electrode rod 6 moves in the direction to open the right contact pair B. As a result of the above operation, the left contact pair A is opened first, and the right contact pair B is opened later.
The speed VA of the left connecting portion 33 corresponding to the contact pair A and the speed VB of the right connecting portion 33 corresponding to the contact pair B are the length a of the corresponding joint B28 (the left side corresponding to the contact pair A). The length between the rotating shaft 29 of the joint B28 and the connecting portion 33), b (the length between the rotating shaft 29 of the right joint B28 corresponding to the contact pair B and the connecting portion 33) are set to different lengths. You can change it.

以上のように、図2の開閉機構とリンク機構によれば、左側の接点対Aと右側の接点対Bの開閉タイミング、開閉速度を様々に変えることができる。本実施の形態では、図2(2)のように、閉極時は右側の接点対Bが接触後に左側の接点対Aが接触するように、接点対A側の可動電極棒6および接点対B側の可動電極棒6をそれぞれ動作させ、開極時は、接点対Aと接点対Bとが同時に開離するように開極させる。   As described above, according to the opening / closing mechanism and the link mechanism of FIG. 2, the opening / closing timing and the opening / closing speed of the left contact pair A and the right contact pair B can be variously changed. In the present embodiment, as shown in FIG. 2 (2), the movable electrode rod 6 and the contact pair on the contact pair A side are contacted so that the contact point A on the left side comes into contact with the contact pair B on the right side after contact with the contact pair B on the right side. The movable electrode rod 6 on the B side is operated, and at the time of opening, the contact pair A and the contact pair B are opened at the same time.

次いで本構造(実施の形態1)の作用、効果を説明する。
前記のように構成された真空遮断装置の遮断性能および耐電圧性能について、従来の真空遮断装置と対比させて説明する。
Next, the operation and effect of this structure (Embodiment 1) will be described.
The breaking performance and withstand voltage performance of the vacuum breaker configured as described above will be described in comparison with a conventional vacuum breaker.

進み小電流遮断試験では、[発明が解決しようとする課題]に述べたように、投入時のプレアークによって接点表面に溶融が生じ、その後の開極によって溶着部位が引き剥がされ損傷が生じる。接点表面分析や高速度カメラでの放電分析の結果、接点表面には溶着部位の引き剥がしの結果、高さ数十μmから数百μmの微小な突起が生じており、この先端に高電界が生じるため耐電圧性能が低下する。さらに、溶着部位の引き剥がしは微粒子が接点表面に発生する原因となり、その微粒子が接点間に電圧が印加された時の静電力により接点から剥がれて、接点間の電界により加速されて対向接点に衝突すると放電を引き起こす。   In the advanced small current interruption test, as described in [Problems to be Solved by the Invention], the contact surface is melted by the pre-arc at the time of charging, and the welded site is peeled off and damaged by the subsequent opening. As a result of contact surface analysis and discharge analysis with a high-speed camera, the contact surface has peeled off the welded part, resulting in minute protrusions of several tens to several hundreds of μm. As a result, the withstand voltage performance decreases. Furthermore, peeling of the weld site causes fine particles to be generated on the contact surface, and the fine particles are peeled off from the contact by an electrostatic force when a voltage is applied between the contacts, and accelerated by an electric field between the contacts to become a counter contact. When it collides, it causes discharge.

図3は進み小電流遮断試験における接点間の平均電界(図3(1))と再起電圧(図3(2))を示す。同図において、横軸は電流ゼロ点からの経過時間を示す。
進み小電流遮断試験ではアーク持続時間(以下「アーク時間」と記す)を変えて試験を行うことが規定されているが、この図はアーク時間が0msの場合を示している。アーク時間0msの場合は、アーク時間が0msより長い場合に比べて接点間電界が高くなるため厳しい試験条件であり、進み小電流遮断性能を説明するのに適していると考えられる。
FIG. 3 shows the average electric field between the contacts (FIG. 3 (1)) and the regenerated voltage (FIG. 3 (2)) in the advanced small current interruption test. In the figure, the horizontal axis indicates the elapsed time from the current zero point.
In the advanced small current interruption test, it is stipulated that the test is performed by changing the arc duration (hereinafter referred to as “arc time”), but this figure shows the case where the arc time is 0 ms. When the arc time is 0 ms, the electric field between the contacts is higher than when the arc time is longer than 0 ms, which is a severe test condition, and is considered suitable for explaining the advanced small current interruption performance.

接点間の平均電界は、時間0sで接点が乖離し開極を始め0.02sで規定のギャップ長まで開極した場合の値を示している。図3(1)のように、開極途中の0.007sで接点間の平均電界は最大となる。接点表面の損傷がない場合はこの最大電界でも放電しないが、前述の接点表面の損傷が生じて耐電圧性能が低下すると、接点間の平均電界がこの最大電界値まで上昇する途中や最大電界値前後で再点弧が発生する。そこで、以下では開極直後の接点間電界の立上りや最大電界に注目する。
損傷が生じた後の耐電圧性能として、ここでは再起電圧を下げることによって、接点間の平均電界が図3(1)の「溶着ありの場合の耐電圧」のレベルまで下がれば再点弧が生じないと仮定する。この場合の耐電圧性能は接点表面に損傷が無い場合の70%に低下している。
The average electric field between the contacts indicates a value when the contacts are separated at time 0 s and start to open to the specified gap length at 0.02 s. As shown in FIG. 3 (1), the average electric field between the contacts becomes maximum at 0.007 s in the middle of the opening. If there is no damage on the contact surface, even this maximum electric field does not discharge, but if the contact surface damage occurs and the withstand voltage performance decreases, the average electric field between the contacts will rise to this maximum electric field value or the maximum electric field value. Re-ignition occurs before and after. Therefore, in the following, attention is paid to the rise of the electric field between the contacts immediately after opening and the maximum electric field.
As the withstand voltage performance after the damage has occurred, here, by reducing the regenerative voltage, if the average electric field between the contacts falls to the level of “withstand voltage with welding” in FIG. Assume that it does not occur. In this case, the withstand voltage performance is reduced to 70% when the contact surface is not damaged.

以上の条件を用いて、図13の従来構造で進み小電流遮断試験を行った場合の接点間の平均電界と放電が発生するかどうかを調べる。従来構造では2組の接点を同時に閉極、開極する。
2組の接点対の両方に損傷が生じたとし、このため各々の接点間の電界が、図3(1)の「溶着ありの場合の耐電圧」よりも大きくなると放電が生じるとする。2組の接点対の分圧の計算には図4(3)の回路を用いた。C(A)は接点対Aの接点間の静電容量、C(B)は接点対Bの接点間の静電容量、C(ブッシング)は真空バルブ支持ブッシング22の静電容量である。
接点対Aに再起電圧が印加され、接点対Bと真空バルブ支持ブッシング22の下端(タンク20)は接地されている。接点対Aと接点対Bとは同時に開離し、同じ開極速度で開極する。この開極速度をV(m/s)と記し、以下ではこの速度を基準として開極速度を相対値で示す(例えば、0.8倍の開極速度を0.8V(m/s)と記す)。
なお、アークシールド11と接点との間の静電容量が接点対Aと接点対Bの電位分担に大きな影響を与えないようにするため、アークシールド11は接点対A側と接点対B側とで別々に設け、支持部材15とは絶縁されている形態を仮定した。
Using the above conditions, it is investigated whether or not an average electric field between contacts and discharge are generated when a small current interruption test is performed in the conventional structure of FIG. In the conventional structure, two sets of contacts are closed and opened simultaneously.
Assume that both of the two contact pairs are damaged. For this reason, when the electric field between the contacts becomes larger than the “withstand voltage with welding” in FIG. The circuit shown in FIG. 4 (3) was used to calculate the partial pressure of the two contact pairs. C (A) is a capacitance between the contacts of the contact pair A, C (B) is a capacitance between the contacts of the contact pair B, and C (bushing) is a capacitance of the vacuum valve support bushing 22.
The regenerative voltage is applied to the contact pair A, and the contact pair B and the lower end (tank 20) of the vacuum valve support bushing 22 are grounded. The contact pair A and the contact pair B are simultaneously opened and opened at the same opening speed. This opening speed is denoted as V (m / s), and in the following, the opening speed is indicated as a relative value based on this speed (for example, a 0.8 times opening speed is denoted as 0.8 V (m / s)).
In order to prevent the electrostatic capacitance between the arc shield 11 and the contact from greatly affecting the potential sharing between the contact pair A and the contact pair B, the arc shield 11 includes the contact pair A side and the contact pair B side. It was assumed that the support member 15 and the support member 15 are insulated from each other.

計算の結果、接点対Aの分圧が70%となり接点対Bより高電圧が印加されるため、図4(1)のように開極直後の0.005s付近で耐電圧性能を上回る電界となり放電が発生する。すると、図4(2)のように全電圧が接点対Bに印加されるが、接点対Bにも損傷があって耐電圧性能が低下しているため、接点対Bでも放電してしまう。
なお、耐電圧性能とは例えば放電確率0.1%となる電界のように、放電確率が低く試験を規定の回数行っても放電が生じない接点間の平均電界のことを指す。
進み小電流遮断試験での試験回数は規格で規定されており、この耐電圧性能より高い電界が印加されると規定の試験回数の内に再点弧が発生する確率が高くなる。
As a result of the calculation, the partial pressure of contact pair A is 70%, and a higher voltage is applied than contact pair B. Therefore, the electric field exceeds the withstand voltage performance near 0.005s immediately after opening as shown in FIG. Will occur. Then, as shown in FIG. 4 (2), the entire voltage is applied to the contact pair B. However, the contact pair B is also damaged and the withstand voltage performance is lowered, so that the contact pair B is also discharged.
The withstand voltage performance refers to an average electric field between contacts where the discharge probability is low and no discharge occurs even if the test is performed a specified number of times, such as an electric field with a discharge probability of 0.1%.
The number of tests in the advanced small current interruption test is defined by the standard, and when an electric field higher than the withstand voltage performance is applied, the probability of re-ignition within the specified number of tests increases.

図5はこの発明の実施の形態1の場合を示す。図2の開閉機構23を用いて、閉極時は、右側の接点対Bの接点2,3の接触後に左側の接点対Aの接点2,3が接触するように可動電極棒6,6を動作させ、開極時は、接点対Aと接点対Bとは同時に開離し、同じ速度で開極させる。
この結果、接点対Aには損傷があるが、接点対Bには損傷が無く清浄な状態となる。このため、接点対Bの表面には溶着部位の引き剥がしが生じておらず、微小な突起や微粒子の発生が抑制されるため耐電圧性能が高くなる。
FIG. 5 shows the case of Embodiment 1 of the present invention. 2 is used to close the movable electrode rods 6 and 6 so that the contacts 2 and 3 of the left contact pair A come into contact with each other after the contacts 2 and 3 of the right contact pair B contact. At the time of opening and opening, the contact pair A and the contact pair B are simultaneously opened and opened at the same speed.
As a result, the contact pair A is damaged, but the contact pair B is not damaged and is in a clean state. For this reason, peeling of the welded portion does not occur on the surface of the contact pair B, and generation of minute protrusions and fine particles is suppressed, so that the withstand voltage performance is improved.

図5(3)に本実施の形態1の構造を模擬する回路を示す。図5(1)のように、接点対A側の分圧が70%であるため、開極直後の0.005s付近で耐電圧性能を上回る電界が印加され放電が発生する。しかし、接点対Bは清浄な状態であるため、全電圧が接点対Bに印加されても耐電圧性能を上回ることが無く放電が発生しない。
接点対Aの耐電圧低下は70%に限らずもっと低くなる可能性もある。その場合はより早い時間に接点対Aでの放電が発生し、接点対Bに全電圧が印加されるが、清浄な接点対Bの接点間平均電界は耐電圧性能を上回ることが無く放電は発生しない。
図5(3)とは逆に清浄な接点対Bに高電圧H.Vを印加する場合は、接点対Bの耐電圧性能が高いため放電が発生しない。
FIG. 5 (3) shows a circuit for simulating the structure of the first embodiment. As shown in FIG. 5A, since the partial pressure on the contact pair A side is 70%, an electric field exceeding the withstand voltage performance is applied in the vicinity of 0.005 s immediately after the opening of the electrode to generate a discharge. However, since the contact pair B is in a clean state, even if the entire voltage is applied to the contact pair B, the withstand voltage performance is not exceeded and no discharge occurs.
The withstand voltage drop of the contact pair A is not limited to 70% and may be lower. In that case, the discharge at the contact pair A occurs earlier, and the entire voltage is applied to the contact pair B, but the average electric field between the contacts of the clean contact pair B does not exceed the withstand voltage performance, and the discharge does not occur. Does not occur.
Contrary to FIG. 5 (3), a high voltage H.P. When V is applied, no discharge occurs because the withstand voltage performance of the contact pair B is high.

図5では、接点対Aと接点対Bとが同じ速度で開極する場合を示したが、接点対Aの開極速度を上げることで、接点対Aの接点間電界が耐電圧性能を上回らないようにすることができる。この場合は、接点対Aも接点対Bも接点間平均電界が耐電圧性能を上回ることがなく信頼性が増すという効果がある。
逆に、接点対Aの開極速度を下げると、接点対Aの接点間電界が耐電圧性能を上回る時間が早くなるが、清浄な接点対Bでは放電が起こらないため効果は維持される。この場合は、接点対A側のベローズ8の負担が減るので接点対A側のベローズ8を小形化することが可能となる。
FIG. 5 shows the case where the contact pair A and the contact pair B are opened at the same speed. However, by increasing the opening speed of the contact pair A, the electric field between the contacts of the contact pair A exceeds the withstand voltage performance. Can not be. In this case, both the contact pair A and the contact pair B have an effect that the average electric field between the contacts does not exceed the withstand voltage performance and the reliability is increased.
Conversely, when the opening speed of the contact pair A is lowered, the time during which the electric field between the contacts of the contact pair A exceeds the withstand voltage performance is shortened, but the effect is maintained because no discharge occurs in the clean contact pair B. In this case, since the burden on the bellows 8 on the contact pair A side is reduced, the bellows 8 on the contact pair A side can be downsized.

以上のように、本実施の形態1では、1つの絶縁筒内に2組の接点対A,Bを直列に設け、その各々の可動電極棒6にベローズ8を設けた構造として接点対A,Bを別々に開閉できるようにし、
さらに、1つの開閉機構23とリンク機構24によって、
閉極時は、接点対Bの接触後に接点対Aが接触するように可動電極棒6,6を動作させ、開極時には接点対Aと接点対Bとが同時に開離するように可動電極棒6,6を動作させたため、
接点対Aには損傷があるが、接点対Bには損傷が無く清浄な状態となり、
進み小電流遮断試験、コンデンサバンク開閉試験において、
接点対Aで放電が生じても清浄な接点対Bでは放電が発生しないため、進み小電流遮断性能、コンデンサバンク開閉性能が高いという効果がある。
As described above, in the first embodiment, two pairs of contact pairs A and B are provided in series in one insulating cylinder, and the bellows 8 is provided on each movable electrode rod 6. B can be opened and closed separately,
Furthermore, by one opening / closing mechanism 23 and link mechanism 24,
The movable electrode rods 6 and 6 are operated so that the contact pair A comes into contact with the contact pair B after the contact is closed, and the contact electrode pair A and the contact pair B are opened at the same time when the contact is opened. Because 6 and 6 were operated,
Contact pair A is damaged, but contact pair B is not damaged and is clean,
In advanced small current interruption test and capacitor bank switching test,
Even if a discharge occurs in the contact pair A, the clean contact pair B does not generate a discharge, so that there is an effect that the advanced small current interruption performance and the capacitor bank switching performance are high.

2組の接点対を1つの真空容器の中に収めたため、タンク20の中に組み込む作業の手間が省けるという効果がある。また、2つの真空バルブ1,1を組んで使うよりも真空バルブが小形化し、真空遮断装置全体を小さくすることができるという効果がある。これは、材料の削減、運搬作業の低減、設置場所のコンパクト化という効果をもたらす。   Since two pairs of contact pairs are housed in one vacuum vessel, there is an effect that the labor of assembling into the tank 20 can be saved. In addition, the vacuum valve can be made smaller than the two vacuum valves 1 and 1 in combination, and the entire vacuum shut-off device can be reduced. This brings about the effect of reduction of material, reduction of transportation work, and compact installation location.

開閉動作を1つの開閉機構23とリンク機構24とによって行うため、部品点数が減り、製造、調整の信頼性が増すという効果がある。   Since the opening / closing operation is performed by the single opening / closing mechanism 23 and the link mechanism 24, the number of parts is reduced, and the reliability of manufacturing and adjustment is increased.

実施の形態2.
以下、本実施の形態2を図6〜8によって説明する。
図6は本実施の形態2による真空遮断装置の構造を示すもので、分圧コンデンサ34,34を設けることを特徴とする。この他の真空遮断装置の構造および開極閉極のタイミングは前述の実施の形態1と同じである。
分圧コンデンサ34,34は、2組の接点対A,Bの両方に対して設けられ、それらの一端が支持部材15を介して固定電極棒7と電気的につながり、他端がフランジ9を介して可動電極棒6と電気的につながるように設置される。分圧コンデンサ34,34は何れもその詳細構造は図示省略してあるが、何れも円柱形状のセラミックコンデンサを直列につなげたものを絶縁筒の中に固定して耐圧を確保するように構成されている。
分圧コンデンサ34,34の静電容量は、対応する接点対A,Bの接点2,3が開極距離だけ開いた時の当該接点間の静電容量より、例えば70倍と十分に大きくしてある。接点対Aと接点対Bとは同時に開離させて開極する。
Embodiment 2. FIG.
Hereinafter, the second embodiment will be described with reference to FIGS.
FIG. 6 shows the structure of the vacuum interrupter according to the second embodiment, which is characterized by providing voltage dividing capacitors 34 and 34. The structure of the other vacuum circuit breaker and the timing of opening and closing are the same as those in the first embodiment.
The voltage dividing capacitors 34 and 34 are provided for both of the two contact pairs A and B, one end of which is electrically connected to the fixed electrode rod 7 through the support member 15 and the other end is connected to the flange 9. So as to be electrically connected to the movable electrode rod 6. Although the detailed structure of each of the voltage dividing capacitors 34 and 34 is omitted, both are configured to secure a withstand voltage by fixing a cylindrical ceramic capacitor connected in series in an insulating cylinder. ing.
The capacitance of the voltage dividing capacitors 34, 34 is made sufficiently large, for example, 70 times larger than the capacitance between the contacts 2 and 3 of the corresponding contact pair A, B when the contacts 2 and 3 are opened by the opening distance. It is. The contact pair A and the contact pair B are opened simultaneously to be separated.

図7(3)の回路で計算した結果、図7(1)に例示するように、接点対Aと接点対Bの分圧がほぼ均等(接点対Aに52%分圧)となり、各接点に印加電圧の約1/2の電圧が印加されるので、極間の電界は1/2に抑えられる。このため、開極速度を落とすことが可能となる。この例では、図7(1)に例示するように、接点対Aの開極速度を分圧コンデンサが無い場合の開極速度Vの0.8倍、接点対Bの開極速度を分圧コンデンサが無い場合の開極速度Vの0.55倍にまで下げることができ、図7(1)(2)ではこれらの速度で開極したときの電界を示した。
このように開極速度が低減されると、開閉機構の小形化が可能となる。さらに、ベローズ8に対する負担も減ることになるため、ベローズ8の小形化に伴う真空バルブの小形化が可能となる。
As a result of calculation by the circuit of FIG. 7 (3), as shown in FIG. 7 (1), the partial pressures of the contact pair A and the contact pair B are substantially equal (52% partial pressure to the contact pair A). Since a voltage about 1/2 of the applied voltage is applied to, the electric field between the electrodes is suppressed to 1/2. For this reason, it is possible to reduce the opening speed. In this example, as illustrated in FIG. 7 (1), the opening speed of the contact pair A is 0.8 times the opening speed V when the dividing capacitor is not provided, and the opening speed of the contact pair B is set by the dividing capacitor. It can be lowered to 0.55 times the opening speed V in the absence, and FIGS. 7 (1) and (2) show the electric field when opening at these speeds.
If the opening speed is thus reduced, the opening / closing mechanism can be downsized. Furthermore, since the burden on the bellows 8 is also reduced, the vacuum valve can be downsized as the bellows 8 is downsized.

真空バルブでは遮断性能も必要であるのでそのための開極速度が必要であるが、進み小電流遮断性能のための開極速度の方が大きいので、本実施の形態2とすることにより開極速度を低減することができる。   Since the vacuum valve also requires a breaking performance, the opening speed for that is necessary. However, since the opening speed for the advanced small current breaking performance is larger, the opening speed can be increased by adopting the second embodiment. Can be reduced.

また、開極速度は接点対Aも接点対Bも元々の開極速度Vのままとすると、開極距離を短くすることが可能となる。図8は開極距離を元の82.5%にした場合の接点間電界を示す。接点対Aに損傷が生じたことで、耐電圧性能は開極直後の1波目だけでなく、2波目以降も70%に低下したとしている。接点対A(図8(1)に例示)も接点対B(図8(2)に例示)も耐電圧性能以下の電界となっており、放電は発生しない。   Further, if the opening speed is the original opening speed V for both the contact pair A and the contact pair B, the opening distance can be shortened. FIG. 8 shows the electric field between the contacts when the opening distance is the original 82.5%. Because the contact pair A is damaged, the withstand voltage performance is reduced to 70% not only after the first wave but also after the second wave. Both the contact pair A (illustrated in FIG. 8 (1)) and the contact pair B (illustrated in FIG. 8 (2)) have an electric field below the withstand voltage performance, and no discharge occurs.

以上のように、本実施の形態2では、分圧コンデンサ34,34を接点対A,Bのそれぞれに対応して設けることで接点対Aと接点対Bの分圧を均等化したため、各接点間電界が抑制される。このため、開極速度の低減、開極距離の短縮という効果がある。   As described above, in the second embodiment, the voltage dividing capacitors 34 and 34 are provided corresponding to the contact pairs A and B, respectively, so that the partial pressures of the contact pair A and the contact pair B are equalized. The inter-field is suppressed. For this reason, there is an effect of reducing the opening speed and shortening the opening distance.

実施の形態3.
以下、本実施の形態3を図9,10によって説明する。
前述の実施の形態1および2では開極の際に2つの接点対A,Bを同時に開離させたが、本実施の形態3では、開極時に接点対Aの方を接点対Bより遅らせて開極する。
以下の(1)〜(4)の4つの場合について検討する。
Embodiment 3 FIG.
The third embodiment will be described below with reference to FIGS.
In the first and second embodiments described above, the two contact pairs A and B are simultaneously opened at the time of opening. However, in the third embodiment, the contact pair A is delayed from the contact pair B at the time of opening. Open the pole.
Consider the following four cases (1) to (4).

(1)分圧コンデンサ34,34あり(図6の事例)で、接点対Aが接点対Bより1ms遅れて開く場合。
分圧コンデンサ34,34の静電容量は対応する接点2,3が開極距離だけ開いた時の静電容量より例えば70倍と十分に大きくしてある。開極速度は接点対Aも接点対BもVm/sとした。
図9(1)のように、接点対Aの開極直後から0.005sまで、再起電圧は上昇の途中であるが、ギャップ長が短いため接点対Aには高電界が印加され耐電圧性能を上回る。このため、接点対Aで放電が発生するが、接点対Bは清浄な状態にあるため、全電圧が接点対Bに印加されても耐電圧性能を上回ることが無く放電が発生しない。
ここで、接点対Aの接点材料を高耐圧、溶着引き外しに強い材料にすると、開極直後の高電界での放電が抑制される。この場合、接点対Bは図9(2)の「接点対Aが放電しない場合」の電界が印加され、ピーク値は抑制される。よって、接点対Bの開極距離を短くすることができる。
接点対Bが開極してから接点対Aが開極するまでの間は接点対Bだけに全電圧が印加するので、接点対Bの材料はこれに耐える材料とする必要がある。また、接点対Aを高耐圧材料とすると、高耐圧材料は遮断性能が低い傾向があるので、接点対Bで遮断性能も確保する必要がある。
(1) When the voltage dividing capacitors 34 and 34 are present (example in FIG. 6) and the contact pair A opens 1 ms later than the contact pair B.
The capacitances of the voltage dividing capacitors 34, 34 are sufficiently larger, for example, 70 times than the capacitance when the corresponding contacts 2, 3 are opened by the opening distance. The opening speed was Vm / s for both contact pair A and contact pair B.
As shown in FIG. 9 (1), the re-emergence voltage is on the way from 0.005s immediately after the opening of the contact pair A. However, since the gap length is short, a high electric field is applied to the contact pair A and the withstand voltage performance is improved. Exceed. For this reason, discharge occurs in the contact pair A, but since the contact pair B is in a clean state, even if all the voltages are applied to the contact pair B, the withstand voltage performance is not exceeded and no discharge occurs.
Here, when the contact material of the contact pair A is made of a material having a high withstand voltage and a strong resistance to welding removal, discharge in a high electric field immediately after opening is suppressed. In this case, the electric field of “when the contact pair A does not discharge” in FIG. 9B is applied to the contact pair B, and the peak value is suppressed. Therefore, the opening distance of the contact pair B can be shortened.
Since the entire voltage is applied only to the contact pair B from when the contact pair B is opened until the contact pair A is opened, the material of the contact pair B needs to be a material that can withstand this. Further, if the contact pair A is made of a high pressure resistant material, the high pressure resistant material tends to have a low breaking performance, so that the contact pair B needs to secure the breaking performance.

(2)分圧コンデンサ無し(図1の事例)として、同様に接点対Aを接点対Bより1ms遅れで開極する場合。
接点対Aの分圧が60〜70%に増加するのでピーク電界は13.3に増える。この場合でも、接点対Aが放電しても接点対Bが高い耐電圧性能を維持しているため、全電圧が接点対Bに印加されても放電は生じない。
(2) In the case where the contact pair A is opened with a delay of 1 ms from the contact pair B in the same manner without the voltage dividing capacitor (example in FIG. 1).
Since the partial pressure of the contact pair A increases to 60 to 70%, the peak electric field increases to 13.3. Even in this case, even if the contact pair A is discharged, the contact pair B maintains a high withstand voltage performance, so that no discharge occurs even when the entire voltage is applied to the contact pair B.

(3)分圧コンデンサ無し(図1の事例)として、接点対Aを開くタイミングを接点対Bの開極タイミングに比べて1msよりさらに長い時間遅らせる場合。
再起電圧が高くなったところで開極することになるため開極直後の接点間電界が大きくなる。このため接点対Aを高耐圧接点材料としても放電が生じてしまう可能性が高いが、前記の場合と同様に接点対Bは耐電圧性能が高いので放電は生じない。
再起電圧が高いところで接点対Aを開極すると、極間に高い電界が印加する時間が長くなるので放電による接点の損傷が大きくなる。そこで、再起電圧が低い、再起電圧の立ち上りから2ms程度までと、1サイクル後の電流零点前後の2ms程度の範囲で開極する方が望ましい。
(3) When there is no voltage dividing capacitor (example in FIG. 1), the timing for opening the contact pair A is delayed for a time longer than 1 ms compared to the opening timing of the contact pair B.
Since the contact is opened when the re-emergence voltage becomes high, the electric field between the contacts immediately after the opening becomes large. For this reason, there is a high possibility that discharge will occur even if the contact pair A is made of a high withstand voltage contact material. However, since the contact pair B has a high withstand voltage performance as in the case described above, no discharge will occur.
When the contact pair A is opened at a high regenerative voltage, the time during which a high electric field is applied between the electrodes becomes long, so that damage to the contact due to discharge increases. Therefore, it is desirable to open the electrode in a range where the reactivation voltage is low, about 2 ms from the rise of the reactivation voltage, and about 2 ms before and after the current zero point after one cycle.

(4)接点対Aが電流零点から1サイクル後に開極した場合。
図10に示すように、接点対Aがちょうど再起電圧0kVから開極するので、開極直後の高電界が発生せず、図10(1)に示すように耐電圧性能以下に納まっている。
接点対Aの耐電圧性能が損傷によってもっと下がった場合は、接点対Aで放電が発生するが、前記の場合と同様に接点対Bでは放電しない。
接点Aの分圧は50〜70%である。
実際には、開閉機構23の動作により接点が開離する時間のばらつきの幅Δtがあるので、再起電圧の立ち上りから1サイクル後の前記Δtの範囲で接点対Aが開極することになる。電磁アクチュエーターを使用すると前記Δtを小さくすることができる。
(4) When contact pair A is opened one cycle after the current zero point.
As shown in FIG. 10, since the contact pair A is opened just from the reactivation voltage of 0 kV, a high electric field is not generated immediately after the opening, and is kept below the withstand voltage performance as shown in FIG.
When the withstand voltage performance of the contact pair A further decreases due to damage, a discharge occurs in the contact pair A, but the contact pair B does not discharge as in the case described above.
The partial pressure of the contact A is 50 to 70%.
Actually, since there is a width Δt of variation in the time at which the contact is opened due to the operation of the opening / closing mechanism 23, the contact pair A is opened within the range of Δt one cycle after the rise of the reactivation voltage. When an electromagnetic actuator is used, Δt can be reduced.

以上の場合とは別に、接点対Aを先に開く方式も考えられる。アーク時間が数ms以上の場合は再起電圧が立ち上がる時に接点対Aのギャップが開いているので電界緩和されるが、アーク時間0msの場合には、接点対Bは閉じていて接点対Aだけに再起電圧が印加する時間が生じてしまう。このために接点対Aで放電が生じると即失敗となる。よって、このタイミングは適用すべきではない。   Apart from the above case, a method of opening the contact pair A first is also conceivable. When the arc time is several ms or more, the electric field is relaxed because the gap between the contact pair A is open when the re-starting voltage rises. However, when the arc time is 0 ms, the contact pair B is closed and only the contact pair A is present. Time for applying the re-emergence voltage occurs. For this reason, when a discharge occurs at the contact pair A, it immediately fails. Therefore, this timing should not be applied.

以上のように、開極時に接点対Aの方を接点対Bより遅らせて開極すると、接点対Aの開極直後に高電界が印加して放電が発生するが、接点対Bが清浄で耐電圧が高いので接点対Bでは放電が発生しない。この結果、進み小電流が高くなるという効果がある。接点対Aの開極タイミングは再起電圧の立ち上りから2ms程度までと、1サイクル後の電流零点前後の2ms程度の範囲が望ましい。さらに、分圧コンデンサ34,34を設けさらに接点
対Aに高耐圧接点を適用すると、接点対Aでの放電を抑制することができる。
As described above, when the contact pair A is opened later than the contact pair B at the time of opening, a high electric field is applied immediately after the contact pair A is opened, and a discharge occurs. However, the contact pair B is clean. Since the withstand voltage is high, the contact pair B does not discharge. As a result, there is an effect that the advance small current becomes high. The opening timing of the contact pair A is preferably in the range of about 2 ms from the rise of the re-start voltage and about 2 ms before and after the current zero point after one cycle. Furthermore, if the voltage dividing capacitors 34 and 34 are provided and a high voltage contact is applied to the contact pair A, the discharge at the contact pair A can be suppressed.

実施の形態4.
以下、本実施の形態4を図11によって説明する。
前述の実施の形態2や実施の形態3では分圧コンデンサ34,34によって2つの接点対A,Bの分圧を均等化したが、本実施の形態4では、分圧コンデンサ34によって接点対Bの分圧を下げることで、接点対Aを耐圧用、接点対Bを遮断用と機能分別する。高耐圧材料は比較的遮断性能が低く、逆に遮断性能の高い材料は耐電圧性能が低い傾向があるので、本実施の形態4では機能分別することで耐電圧性能と遮断性能の両方を向上させる。
Embodiment 4 FIG.
Hereinafter, the fourth embodiment will be described with reference to FIG.
In the second embodiment and the third embodiment described above, the partial pressures of the two contact pairs A and B are equalized by the voltage dividing capacitors 34 and 34. However, in the fourth embodiment, the voltage dividing capacitor 34 provides the contact pair B. Thus, the function of the contact pair A is divided into that for withstanding pressure and the contact pair B is divided into functions for breaking. High breakdown voltage materials have relatively low breaking performance, and conversely, materials with high breaking performance tend to have low withstand voltage performance. In this fourth embodiment, both the withstand voltage performance and the breaking performance are improved by separating the functions. Let

図11は、分圧コンデンサ34,34を設けた上にこれらコンデンサ34,34の静電容量の大きさを接点対B側が接点対A側の2倍とした場合の接点間電界である。開極は接点対A,B同時としている。計算の結果、接点対Aの分圧が66%、接点対Bの分圧が34%となった。
そこで、接点対Aを溶着引き外しの後でも高耐圧を維持する材料とし、他の実施の形態の接点の1.1倍の耐圧性能を溶着引き外しの後に持つとする。一方、接点対Bを遮断性能が良い材料とし、耐電圧性能は元の耐電圧性能の70%とした。
FIG. 11 shows the electric field between the contacts when the voltage dividing capacitors 34 and 34 are provided and the capacitance of the capacitors 34 and 34 is double on the contact pair B side than on the contact pair A side. The opening is performed simultaneously with the contact pairs A and B. As a result of calculation, the partial pressure of contact pair A was 66%, and the partial pressure of contact pair B was 34%.
Therefore, it is assumed that the contact pair A is made of a material that maintains a high withstand voltage even after the welding is removed, and has a withstand voltage performance 1.1 times that of the contacts of the other embodiments after the welding is removed. On the other hand, the contact pair B is made of a material having a good breaking performance, and the withstand voltage performance is 70% of the original withstand voltage performance.

この構成により、図11のように接点対Aも接点対Bも耐電圧性能以下となり放電しない。
高耐圧材料は遮断性能が低くなるので、遮断時は接点対Aで遮断失敗して、接点対Bで遮断することになる。このため、接点対Bの分圧は遮断の再起電圧に耐える比率とする必要がある。
高耐圧接点材料としては例えばCuW、CuCrにおいてCrの比率を50%以上としたり、CuCrに第3元素としてWなどの高耐圧材料を入れたものがあり、高遮断性能接点材にはCuCrにおいてCrの比率を30%以下にしたものがある。
With this configuration, as shown in FIG. 11, neither the contact pair A nor the contact pair B has a withstand voltage performance and does not discharge.
Since the high pressure resistant material has a low breaking performance, the breaking of the contact pair A fails at the time of breaking, and the breaking is performed by the contact pair B. For this reason, the partial pressure of the contact pair B needs to be a ratio that can withstand the reactivation voltage of interruption.
High-voltage contact materials include, for example, CuW, CuCr with a Cr ratio of 50% or more, and CuCr with a high-voltage material such as W as the third element. There are some which made the ratio of 30% or less.

以上のように、本実施の形態4では分圧コンデンサによって接点対Bの分圧を下げることで、接点対Aを耐圧用、接点対Bを遮断用と機能分別した結果、進み小電流遮断性能と大電流遮断性能の両方を高くすることができる。   As described above, according to the fourth embodiment, by dividing the function of the contact pair A from the withstand voltage and the contact pair B from breaking by reducing the partial pressure of the contact pair B by the voltage dividing capacitor, the advanced small current breaking performance is obtained. And high current interruption performance can be improved.

実施の形態5.
前述の実施の形態4では、接点対Aに高耐圧接点材、接点対Bに高遮断性能接点材を適用し機能分別したが、本実施の形態5では接点対Aを高耐圧化に適した電極構造、接点対Bを遮断性能の高い電極構造として機能分別する事例であり、以下の組合わせがある。
Embodiment 5 FIG.
In the above-described fourth embodiment, the contact pair A is applied with a high-breakdown-voltage contact material and the contact pair B is applied with a high-breaking-performance contact material. This is an example of functional separation of the electrode structure and the contact pair B as an electrode structure with a high breaking performance, and there are the following combinations.

(1)接点対Aを縦磁界電極、接点対Bも縦磁界電極とする。
長所は、縦磁界電極は後述のスパイラル電極に比べて低い開極速度、短い開極距離とすることができる。さらに接点対Aおよび接点対Bの接点2,3が平板である(図1(2)参照)ため耐電圧性能も高い。
短所は、コイル部5(図1(2)参照)の抵抗のため通電での発熱が大きい。コイル部5の抵抗を抑えようとすると磁界が弱くなって遮断性能が低下する。
(1) The contact pair A is a longitudinal magnetic field electrode, and the contact pair B is also a longitudinal magnetic field electrode.
As an advantage, the longitudinal magnetic field electrode can have a lower opening speed and a shorter opening distance than a spiral electrode described later. Furthermore, since the contacts 2 and 3 of the contact pair A and the contact pair B are flat plates (see FIG. 1 (2)), the withstand voltage performance is also high.
The disadvantage is that the heat generated by energization is large due to the resistance of the coil section 5 (see FIG. 1B). If it is going to suppress resistance of coil part 5, a magnetic field will become weak and interception performance will fall.

(2)接点対Aを平板電極、接点対Bを縦磁界電極とする。
長所は、平板電極の抵抗が小さいため、接点対Aの通電容量を増すことが可能である。
短所は、平板電極の遮断性能が低いため、接点対Aおよび接点対Bの両方を縦磁界電極とした場合よりも遮断性能が劣る。
(2) The contact pair A is a flat plate electrode, and the contact pair B is a longitudinal magnetic field electrode.
As an advantage, since the resistance of the plate electrode is small, it is possible to increase the current carrying capacity of the contact pair A.
The disadvantage is that since the interruption performance of the flat plate electrode is low, the interruption performance is inferior to the case where both the contact pair A and the contact pair B are longitudinal magnetic field electrodes.

(3)接点対Aを平板電極、接点対Bをスパイラル電極とする。
長所は、縦磁界電極に比べて構造が簡単であるため製造が容易である。抵抗が小さいため、通電容量を増すことが可能である。
短所は、スパイラル電極での遮断のため、縦磁界電極に比べて開極速度を上げ、開極距離を増やす必要がある。
(3) The contact pair A is a flat plate electrode, and the contact pair B is a spiral electrode.
The advantage is that the structure is simple compared to the longitudinal magnetic field electrode, so that the manufacture is easy. Since the resistance is small, the current carrying capacity can be increased.
Disadvantages are interruption by a spiral electrode, and therefore it is necessary to increase the opening speed and increase the opening distance compared to the longitudinal magnetic field electrode.

以上のように、本実施の形態5では分圧コンデンサ34,34(図6参照)によって接点対Bの分圧を下げることで、接点対Aを耐圧用、接点対Bを遮断用と機能分別した結果、進み小電流遮断性能と大電流遮断性能の両方を高くすることができる。
なお、分圧コンデンサを設けない場合でも、遮断装置に対する責務に応じた最適な電極構造の組合わせを選んで最適化すればよい。
As described above, in the fifth embodiment, the voltage dividing capacitors 34 and 34 (see FIG. 6) are used to lower the partial pressure of the contact pair B, thereby separating the function of the contact pair A from the withstand voltage and the contact pair B from breaking. As a result, both the advanced small current interruption performance and the large current interruption performance can be enhanced.
Even when the voltage dividing capacitor is not provided, an optimal combination of electrode structures may be selected and optimized in accordance with the responsibility for the interrupting device.

実施の形態6.
以下、本実施の形態6を図12によって説明する。
前述の実施の形態1〜5では、固定電極棒7を支持部材15に固定し、さらに該支持部材15を真空バルブ支持ブッシング22に固定したため、閉極時の衝撃が吸収されにくく接点2,3の投入直後に接点2,3のチャタリングが発生しやすかった。そこで、本実施の形態6では閉極時の衝撃吸収構造体35を設ける。
Embodiment 6 FIG.
Hereinafter, the sixth embodiment will be described with reference to FIG.
In the first to fifth embodiments described above, the fixed electrode rod 7 is fixed to the support member 15, and the support member 15 is further fixed to the vacuum valve support bushing 22. Therefore, the contacts 2, 3 are less likely to absorb the impact at the time of closing. The chattering of the contacts 2 and 3 was likely to occur immediately after turning on. Therefore, in the sixth embodiment, a shock absorbing structure 35 at the time of closing is provided.

図12の衝撃吸収構造体35は円板をくり抜いて凹形にしたものを組合わせて支持部材15に、固定電極棒7の軸方向中間部に介在するように、固定したものである。投入時の衝撃によって衝撃吸収構造体35が歪むことで投入時の衝撃のエネルギーを吸収し接点2,3のチャタリングを防止する。衝撃吸収構造体35には小さい穴36が開いていて、中央の空洞部が真空引きされるようにする。電流路と衝撃吸収構造体35とを分けるため、電流路となるCuの可撓導体を別に設けてもよい。
衝撃吸収構造体としてバネを設けても良いが、前記の凹形構造は簡単で製造しやすいという長所がある。
The shock absorbing structure 35 shown in FIG. 12 is a combination of hollowed hollow discs and fixed to the support member 15 so as to be interposed in the intermediate portion in the axial direction of the fixed electrode rod 7. The impact absorbing structure 35 is distorted by the impact at the time of charging, so that the energy of the impact at the time of charging is absorbed and chattering of the contacts 2 and 3 is prevented. The shock absorbing structure 35 has a small hole 36 so that the central cavity is evacuated. In order to separate the current path and the shock absorbing structure 35, a Cu flexible conductor serving as a current path may be provided separately.
Although a spring may be provided as the shock absorbing structure, the concave structure has an advantage that it is simple and easy to manufacture.

以上のように、本実施の形態6では支持部材15に衝撃吸収構造を設けたため、投入直後の接点2,3のチャタリングが抑制される。このためチャタリングによるアークでの接点2,3の表面の損傷が抑制され、特に先に投入する接点対Bの耐圧を維持する効果がある。この結果として、進み小電流遮断性能が高くなる。   As described above, since the shock absorbing structure is provided in the support member 15 in the sixth embodiment, chattering of the contacts 2 and 3 immediately after the charging is suppressed. For this reason, damage to the surface of the contacts 2 and 3 due to the arc due to chattering is suppressed, and in particular, there is an effect of maintaining the withstand voltage of the contact pair B to be input first. As a result, the advanced small current interruption performance is enhanced.

なお、前述の実施の形態1〜6は次のような特徴を有している。
特徴1:密封状態に保持された絶縁筒内に、前記絶縁筒の軸方向に対向して接離可能に配置された可動接点および固定接点と、前記可動接点に固着された可動電極棒をベローズとフランジを介して前記絶縁筒に取り付け、前記固定接点に固着された固定電極棒を支持部材を介して前記絶縁筒に取り付けた真空バルブを備えた真空遮断器に対して、前記真空バルブを2個直列に配置、または、1つの絶縁筒内に2組の接点対A,Bを直列に設け、その各々の可動電極棒にベローズを設け別々に開閉できる構造とし、さらに、1つの開閉機構によって、閉極時は、接点Bが接触後に接点Aが接触するように可動電極棒を動作させ、開極時は、開極時には接点Bが接点Aより後に乖離することがないように可動電極棒を動作させることを特徴とする真空遮断装置である。
この特徴により、接点Aだけに溶着引き外しが生じ、接点Bは清浄な状態が維持される。さらに、開極時に接点対Aと接点対Bとを同時に開離させる場合は、印加電圧を2組の接点で分圧するため、溶着引き外しが生じる接点対Aの電界が緩和される。
開極時に接点対Bを先に開離し接点対Aを後から開離させると、接点対Aは開極直後の分担電圧で高電界が発生し放電する可能性があるが、接点対Bは清浄な状態であるので耐電圧は高く放電しない。
この結果、進み小電流遮断試験性能、コンデンサバンク開閉試験性能が向上する。
また、開閉動作を1つの開閉機構によって行うため、部品点数が減り、製造、調整の信頼性が増す。
The first to sixth embodiments described above have the following characteristics.
Feature 1: A movable contact and a fixed contact disposed in an insulating tube held in a sealed state so as to be able to contact and separate in the axial direction of the insulating tube, and a movable electrode rod fixed to the movable contact are bellows The vacuum valve is attached to the insulating cylinder via a flange and a vacuum circuit breaker having a vacuum valve in which a fixed electrode rod fixed to the fixed contact is attached to the insulating cylinder via a support member. Arranged in series, or two contact pairs A and B are provided in series in one insulating cylinder, each of which has a bellows on each movable electrode bar, and can be opened and closed separately. When the electrode is closed, the movable electrode bar is operated so that the contact A comes into contact with the contact B. When the electrode is opened, the movable electrode bar is set so that the contact B is not separated from the contact A when the electrode is opened. True, characterized by operating It is an air shut-off device.
Due to this feature, welding pull-out occurs only at the contact A, and the contact B is kept clean. Further, when the contact pair A and the contact pair B are simultaneously opened at the time of opening, the applied voltage is divided by the two sets of contacts, so that the electric field of the contact pair A that causes welding pull-out is relaxed.
If the contact pair B is first opened at the time of opening and the contact pair A is opened later, the contact pair A may be discharged due to a high electric field generated by the shared voltage immediately after the opening. Since it is in a clean state, the withstand voltage is high and does not discharge.
As a result, the advanced small current interruption test performance and the capacitor bank switching test performance are improved.
In addition, since the opening / closing operation is performed by a single opening / closing mechanism, the number of parts is reduced, and the reliability of manufacturing and adjustment is increased.

特徴2:前述の特徴1において、開閉機構の動作により接点が開離する時間のばらつきの幅をΔtとすると、開極時に、再起電圧の立ち上りから1サイクル後のΔtの範囲で接点Aが開極することを特徴とする真空遮断装置である。
この特徴により、接点対Aがちょうど再起電圧0kVから開極するので、開極直後の高電界が発生しない。このため、接点対Aでの放電が抑制され進み小電流遮断試験での放電確率がさらに低下し信頼性が増す。
Feature 2: In the above-mentioned feature 1, if the variation in the time for which the contact is opened by the operation of the switching mechanism is Δt, the contact A is opened in the range of Δt one cycle after the rise of the reactivation voltage at the time of opening. It is a vacuum shut-off device characterized by being poled.
Due to this feature, the contact pair A is opened just from the regenerative voltage 0 kV, so that a high electric field immediately after the opening is not generated. For this reason, the discharge at the contact pair A is suppressed, the discharge probability in the small current interruption test is further lowered, and the reliability is increased.

特徴3:前述の特徴1および特徴2の少なくとも一において、分圧コンデンサを設けて、接点対Aと接点対Bとの分圧をほぼ均等にしたことを特徴とする真空遮断装置である。
この特徴により、接点対Aと接点対Bとの分圧が均等となり、極間の電界は1/2に抑えられる。このため、開極速度を落とすことや開極距離を短くすることが可能となる。
Feature 3: A vacuum circuit breaker characterized in that, in at least one of the above-mentioned features 1 and 2, a voltage dividing capacitor is provided to make the partial pressure of the contact pair A and the contact pair B substantially equal.
Due to this feature, the partial pressures of the contact pair A and the contact pair B are equalized, and the electric field between the electrodes is suppressed to 1/2. For this reason, it is possible to reduce the opening speed and shorten the opening distance.

特徴4:前述の特徴1および特徴2の少なくとも一において、分圧コンデンサを設けて、接点対Bの分圧を下げることで、接点対Aを耐圧用、接点対Bを遮断用と機能分別し、接点対Aに高耐圧接点材料を、接点対Bに高遮断性能接点材を、それぞれ適用することを特徴とする真空遮断装置である。
この特徴により、接点対Aに高耐圧接点材料を、接点対Bに高遮断性能接点材を、それぞれ適用することで、進み小電流遮断性能と大電流遮断性能の両方を高くすることができる。
Feature 4: In at least one of the above-mentioned features 1 and 2, by providing a voltage dividing capacitor and lowering the partial pressure of the contact pair B, the contact pair A is separated from the function for breakdown voltage, and the contact pair B is separated from the function for breaking. The vacuum breaker is characterized in that a high-breakdown-voltage contact material is applied to the contact pair A and a high-breaking-performance contact material is applied to the contact pair B.
With this feature, by applying a high-breakdown-voltage contact material to the contact pair A and a high-breaking-performance contact material to the contact pair B, both the advanced small current breaking performance and the large current breaking performance can be enhanced.

特徴5:特徴1〜4において、接点対Aと接点対Bに係る電極構造を、両者とも縦磁界電極、もしくは平板電極と縦磁界電極の組合せ、もしくは平板電極とスパイラル電極の組合せとしたことを特徴とする真空遮断装置である。
この特徴により、縦磁界電極は耐電圧性能と遮断性能は優れているが、コイル部の抵抗のため通電での発熱が大きいという欠点がある。スパイラル電極や平板電極は通電での発熱には優れているが遮断性能が劣るという欠点がある。そこで、遮断装置に求められる責務に応じて組合せを選んで最適化する。
前記特徴4のように、分圧コンデンサを設けて、接点対Bの分圧を下げることで、接点対Aを耐圧用、接点対Bを遮断用と機能分別した上で電極構造を選ぶと、進み小電流遮断性能と大電流遮断性能の両方を最大限に高くすることができる。
Feature 5: In the features 1 to 4, the electrode structures related to the contact pair A and the contact pair B are both longitudinal magnetic field electrodes, a combination of flat plate electrodes and vertical magnetic field electrodes, or a combination of flat plate electrodes and spiral electrodes. This is a featured vacuum shut-off device.
Due to this feature, the longitudinal magnetic field electrode is excellent in the withstand voltage performance and the interruption performance, but has a disadvantage that heat generation by energization is large due to the resistance of the coil portion. Spiral electrodes and flat plate electrodes are excellent in heat generation when energized, but have a drawback of poor shut-off performance. Therefore, a combination is selected and optimized according to the duty required for the shut-off device.
As in the feature 4, by providing a voltage dividing capacitor and lowering the partial pressure of the contact pair B, when the electrode structure is selected after separating the function of the contact pair A from the withstand voltage and the contact pair B from being cut off, Both the advanced small current interruption performance and the large current interruption performance can be maximized.

特徴6:前述の特徴1〜5において、固定接点と支持部との間には距離を設けて、アークが支持部に移行しないようにしたことを特徴とする真空遮断装置である。
この特徴により、アーク時間が0.5サイクル以上の長い遮断責務においては、金属蒸気の発生量が多いため、一時的に電極周囲の耐電圧が低下してアークが電極以外に移行する危険がある。その場合でも、アークが支持部に移行しないため、遮断性能が高いという効果がある。
Feature 6: A vacuum interrupting device according to the features 1 to 5 described above, wherein a distance is provided between the fixed contact and the support portion so that the arc does not move to the support portion.
Due to this feature, in the interrupting duty with a long arc time of 0.5 cycle or more, the generation amount of metal vapor is large, so that the withstand voltage around the electrode temporarily decreases and there is a risk that the arc moves to other than the electrode. Even in that case, since the arc does not move to the support portion, there is an effect that the interruption performance is high.

特徴7:前述の特徴1〜6において、固定電極棒と支持部材の間に衝撃吸収構造を設けたことを特徴とする真空遮断装置である。
この特徴により、支持部材に衝撃吸収構造を設けて投入直後のチャタリングを抑制し、接点表面の損傷を防止することで、耐圧を維持する。この結果として、進み小電流遮断性能が高くなる。
Feature 7: A vacuum shut-off device according to the above features 1 to 6, wherein an impact absorbing structure is provided between the fixed electrode rod and the support member.
Due to this feature, a shock absorbing structure is provided on the support member to suppress chattering immediately after being thrown in and prevent damage to the contact surface, thereby maintaining the pressure resistance. As a result, the advanced small current interruption performance is enhanced.

特徴8:前述の特徴1〜7において、電磁アクチュエーターまたはバネによって駆動する1台の開閉機構と、該開閉機構の動きを2つの可動電極に伝達するリンク機構で構成され、可動電極に接続されたロッドにスライダを設けることで、2つの可動電極の動くタイミングをずらすことを特徴とする真空遮断装置である。
この特徴により、1台の開閉機構によって2つの可動電極を開閉するので、部品点数の削減、小形化が可能となる。
Feature 8: In the above-described features 1 to 7, it is composed of one opening / closing mechanism driven by an electromagnetic actuator or a spring, and a link mechanism that transmits the movement of the opening / closing mechanism to two movable electrodes, and is connected to the movable electrode The vacuum interrupter is characterized in that the moving timing of the two movable electrodes is shifted by providing a slider on the rod.
With this feature, since the two movable electrodes are opened and closed by a single opening / closing mechanism, the number of parts can be reduced and the size can be reduced.

特徴9:2組の接点対A,Bを直列に設け、各々の可動電極棒にベローズを設け別々に開閉できるような構造として、投入時には常に接点対Bが先に閉じ、接点対Aは後から閉じるように動作させる。一方、開極時には接点対Bが接点対Aより後に開離することがないようにする。この動作により、接点対Aだけに溶着引き外しが生じ、接点対Bは清浄な状態が維持される。以上の開閉動作を1つの開閉機構によって行う。   Feature 9: Two pairs of contacts A and B are provided in series, and each movable electrode rod is provided with a bellows so that it can be opened and closed separately. Operate to close. On the other hand, the contact pair B is prevented from opening after the contact pair A at the time of opening. By this operation, only the contact pair A is welded and pulled off, and the contact pair B is kept clean. The above opening / closing operation is performed by one opening / closing mechanism.

特徴10:開極時に接点対Aと接点対Bを同時に開離させる場合は、印加電圧を2組の接点で分圧するため、溶着引き外しが生じる接点対Aの電界が緩和される。開極時に接点対Bを先に開離し接点対Aを後から開離させると、接点対Aは開極直後の分担電圧で接点間が高電界となるため放電が生じる可能性があるが、接点対Bは清浄な状態であるので耐電圧は高く放電しない。この結果、進み小電流遮断試験性能、コンデンサバンク開閉試験性能が向上する。また、開閉動作を1つの開閉機構によって行うため、部品点数が減り、製造、調整の信頼性が増す。   Characteristic 10: When the contact pair A and the contact pair B are simultaneously opened at the time of opening, the applied voltage is divided by the two sets of contacts, so that the electric field of the contact pair A that causes welding pull-out is relaxed. If the contact pair B is first opened at the time of opening and the contact pair A is opened later, the contact pair A may be discharged due to a high electric field between the contacts due to the shared voltage immediately after opening. Since the contact pair B is in a clean state, the withstand voltage is high and does not discharge. As a result, the advanced small current interruption test performance and the capacitor bank switching test performance are improved. Further, since the opening / closing operation is performed by one opening / closing mechanism, the number of parts is reduced, and the reliability of manufacturing and adjustment is increased.

特徴11:2組の接点対Aおよび接点対Bを直列に設け、各々の可動電極棒にベローズを設け別々に開閉できるような構造として、投入時には常に接点対Bが先に閉じ、接点対Aは後から閉じるように動作させる。一方、開極時には接点対Bが接点対Aより後に開離することがないようにする。この動作により、接点対Aだけに溶着引き外しが生じ、接点対Bは清浄な状態が維持される。このため、接点対Aで放電が生じても、接点対Bは清浄な状態であるので耐電圧は高く放電しない。結果として、進み小電流遮断試験性能、コンデンサバンク開閉試験性能が向上する。   Feature 11: Two pairs of contact pairs A and B are provided in series, and each movable electrode rod is provided with a bellows so that it can be opened and closed separately. Is operated to close later. On the other hand, the contact pair B is prevented from opening after the contact pair A at the time of opening. By this operation, only the contact pair A is welded and pulled off, and the contact pair B is kept clean. For this reason, even if a discharge occurs in the contact pair A, the contact pair B is in a clean state, so the withstand voltage is high and does not discharge. As a result, the advanced small current interruption test performance and the capacitor bank switching test performance are improved.

特徴12:それぞれ真空空間内で開閉する2組の接点対A,Bを有する真空遮断装置において、前記真空遮断装置の閉極時には、一方の前記接点対Bの可動接点が前記接点対Bの固定接点に接触するタイミングTBCが、他方の前記接点対Aの可動接点が前記接点対Aの固定接点に接触するタイミングTACより前になるように(つまりTBC<TACとなるように)閉極し、前記真空遮断装置の開極時には、前記他方の接点対Aの前記可動接点が前記接点対Aの前記固定接点から開離するタイミングTAOが、前記一方の接点対Bの前記可動接点が前記接点対Bの前記固定接点から開離するタイミングTBOより前にならないように(つまりTBO≦TAOとなるように)開極するように、前記一方の接点対Bおよび前記他方の接点対Aのそれぞれの前記可動接点が、開閉機構によって駆動されるものであり、前記閉極動作により前記他方の接点対Aでプレアークが生じ接点表面の損傷が生じるが、前記一方の接点対Bは清浄に保たれることから、開極動作時は清浄な前記一方の接点対Bを先に開く、もしくは前記他方の接点対Aと前記一方の接点対Bとを同時に開き、前記他方の接点対Aの電界を下げるように動作する。 Feature 12: In a vacuum breaker having two contact pairs A and B that open and close in a vacuum space, the movable contact of one of the contact pairs B is fixed to the contact pair B when the vacuum breaker is closed. The timing T BC when contacting the contact is made before the timing T AC when the movable contact of the other contact pair A contacts the fixed contact of the contact pair A (that is, T BC <T AC ). When the vacuum closing device is opened, the timing T AO at which the movable contact of the other contact pair A is separated from the fixed contact of the contact pair A is the movable contact of the one contact pair B. The one contact pair B and the other contact point are opened so that the contact point does not come before the timing T BO when the contact point B is separated from the fixed contact point (that is, T BO ≦ T AO ). That of contact pair A The movable contact is driven by an opening / closing mechanism, and the closing operation causes a pre-arc in the other contact pair A and damages the contact surface, but the one contact pair B is kept clean. Therefore, at the time of opening operation, the one contact pair B that is clean is opened first, or the other contact pair A and the one contact pair B are opened simultaneously, and the electric field of the other contact pair A is opened. Works to lower.

特徴13:それぞれ真空空間内で開閉する2組の接点対A,Bを有する真空遮断装置において、真空遮断装置の閉極時には、一方の接点対Bはその可動接点2がその固定接点3に接触した後に、他方の接点対Aの可動接点2が接点対Aの固定接点3に接触し、真空遮断装置の開極時には、他方の接点対Aの可動接点2の他方の接点対Aの固定接点3からの開離より後に一方の接点対Bの可動接点2が一方の接点対Bの固定接点3から開離しないように開離するように、一方の接点対Bおよび他方の接点対Aのそれぞれの可動接点2が、開閉機構23によって駆動されることにより、可動電極の開極距離や開極速度を大きくすることなく耐電圧性能が向上し、特に進み小電流遮断試験およびコンデンサバンク開閉試験における遮断性能が向上する。   Feature 13: In a vacuum breaker having two pairs of contact pairs A and B that open and close in the vacuum space, when the vacuum breaker is closed, one contact pair B has its movable contact 2 in contact with its fixed contact 3 After that, the movable contact 2 of the other contact pair A contacts the fixed contact 3 of the contact pair A, and when the vacuum breaker is opened, the fixed contact of the other contact pair A of the movable contact 2 of the other contact pair A Of the one contact pair B and the other contact pair A so that the movable contact 2 of one contact pair B is not separated from the fixed contact 3 of one contact pair B after the separation from the third contact pair B. Each movable contact 2 is driven by an opening / closing mechanism 23, so that the withstand voltage performance is improved without increasing the opening distance or opening speed of the movable electrode. Improved shut-off performance at .

なお、本発明は、その発明の範囲内において、各実施の形態を適宜、変形、省略することができる。
なお、図1,2,6,12の各図において、CL1は可動接点2,固定接点3,コイル5,可動電極棒6,固定電極棒7,ベローズ8,アークシールド11,絶縁ロッド12,ロッド31の共通の中心線、CL2は固定電極棒7,電界緩和シールド14,支持部材15,真空バルブ支持ブッシング22の共通の中心線である。また、図1〜12の各図中、同一符合は同一または相当部分を示す。
In the present invention, each embodiment can be appropriately modified or omitted within the scope of the invention.
In each of FIGS. 1, 2, 6 and 12, CL1 is movable contact 2, fixed contact 3, coil 5, movable electrode rod 6, fixed electrode rod 7, bellows 8, arc shield 11, insulating rod 12, rod A common center line 31, CL 2, is a common center line for the fixed electrode rod 7, the electric field relaxation shield 14, the support member 15, and the vacuum valve support bushing 22. Moreover, in each figure of FIGS. 1-12, the same code | symbol shows the same or an equivalent part.

1 真空バルブ、 2 可動接点、 3 固定接点、
4 縦磁界電極、 5 コイル、 6 可動電極棒、
7 固定電極棒、 8 ベローズ、 9 フランジ、
10 絶縁筒、 11 アークシールド、 12 絶縁ロッド、
13 タンク側ベローズ、14 電界緩和シールド、 15 支持部材、
16 可とう導体、 17 ガイド、 18 ブロックS、
19 支持用絶縁体、 20 タンク、 21 蓋、
22 真空バルブ支持ブッシング、 23 開閉機構、
24 リンク機構、 25 ブッシングの中心導体、
25B ブッシング、 26 割り端子、 27 継手A、
28 継手B、 29 回転軸、 30 シャフト、
31 ロッド、 32 スライダ、 33 連結部、
34 分圧コンデンサ、35 衝撃吸収構造体、 36 穴、
CL1,CL2 中心線。
1 vacuum valve, 2 movable contact, 3 fixed contact,
4 longitudinal magnetic field electrode, 5 coil, 6 movable electrode rod,
7 fixed electrode rod, 8 bellows, 9 flange,
10 insulation cylinder, 11 arc shield, 12 insulation rod,
13 tank side bellows, 14 electric field relaxation shield, 15 support member,
16 flexible conductors, 17 guides, 18 blocks S,
19 support insulators, 20 tanks, 21 lids,
22 Vacuum valve support bushing, 23 Opening / closing mechanism,
24 link mechanism, 25 bushing center conductor,
25B bushing, 26 split terminal, 27 joint A,
28 joint B, 29 rotating shaft, 30 shaft,
31 rod, 32 slider, 33 connecting part,
34 partial pressure capacitor, 35 shock absorbing structure, 36 holes,
CL1, CL2 center line.

Claims (17)

それぞれ真空空間内で開閉する2組の接点対A,Bを有する真空遮断装置において、前記真空遮断装置の閉極時には、一方の前記接点対Bの可動接点が前記一方の接点対Bの固定接点に接触した後に、他方の前記接点対Aの可動接点が前記他方の接点対Aの固定接点に接触するという順番になるように、さらに前記真空遮断装置の開極時には、前記他方の接点対Aの前記可動接点が前記他方の接点対Aの前記固定接点から開離するタイミングが、前記一方の接点対Bの前記可動接点が前記一方の接点対Bの前記固定接点から開離するタイミングより前にならないように、前記一方の接点対Bおよび前記他方の接点対Aのそれぞれの前記可動接点が、開閉機構によって駆動されることを特徴とする真空遮断装置。   In a vacuum breaker having two pairs of contact pairs A and B that open and close in the vacuum space, when the vacuum breaker is closed, the movable contact of one contact pair B is the fixed contact of the one contact pair B In order that the movable contact of the other contact pair A contacts the fixed contact of the other contact pair A after the contact with the other contact pair A, the other contact pair A is further opened when the vacuum interrupter is opened. The timing at which the movable contact of the one contact pair B is separated from the fixed contact of the other contact pair A is before the timing at which the movable contact of the one contact pair B is separated from the fixed contact of the one contact pair B. In order to prevent this, the movable contact of each of the one contact pair B and the other contact pair A is driven by an opening / closing mechanism. それぞれ真空空間内で開閉する2組の接点対A,Bを有する真空遮断装置において、前記真空遮断装置の閉極時には、一方の前記接点対Bはその可動接点がその固定接点に接触した後に、他方の前記接点対Aの可動接点が前記接点対Aの固定接点に接触し、前記真空遮断装置の開極時には、前記一方の接点対Bの前記可動接点の前記一方の接点対Bの前記固定接点からの開離と、前記他方の接点対Aの前記可動接点の前記他方の接点対Aの前記固定接点からの開離とが同時に行われるように、前記一方の接点対Bおよび前記他方の接点対Aのそれぞれの前記可動接点が、開閉機構によって駆動されることを特徴とする真空遮断装置。   In the vacuum circuit breaker having two pairs of contact pairs A and B that open and close in the vacuum space, when the vacuum circuit breaker is closed, one of the contact pairs B has its movable contact brought into contact with the fixed contact, The movable contact of the other contact pair A contacts the fixed contact of the contact pair A, and the fixed contact of the one contact pair B of the movable contact of the one contact pair B when the vacuum interrupter is opened. The one contact pair B and the other contact pair B and the other contact pair A and the other contact pair A are separated from the fixed contact of the other contact pair A at the same time. A vacuum circuit breaker characterized in that each movable contact of the contact pair A is driven by an opening / closing mechanism. それぞれ真空空間内で開閉する2組の接点対A,Bを有する真空遮断装置において、前記真空遮断装置の閉極時には、一方の前記接点対Bはその可動接点がその固定接点に接触した後に、他方の前記接点対Aの可動接点が前記接点対Aの固定接点に接触し、前記真空遮断装置の開極時には、前記一方の接点対Bの前記可動接点の前記一方の接点対Bの前記固定接点からの開離が、前記他方の接点対Aの前記可動接点の前記他方の接点対Aの前記固定接点からの開離より先に行われるように、前記一方の接点対Bおよび前記他方の接点対Aのそれぞれの前記可動接点が、開閉機構によって駆動されることを特徴とする真空遮断装置。   In the vacuum circuit breaker having two pairs of contact pairs A and B that open and close in the vacuum space, when the vacuum circuit breaker is closed, one of the contact pairs B has its movable contact brought into contact with the fixed contact, The movable contact of the other contact pair A contacts the fixed contact of the contact pair A, and the fixed contact of the one contact pair B of the movable contact of the one contact pair B when the vacuum interrupter is opened. The one contact pair B and the other contact pair are separated from the other contact pair A so that the movable contact of the other contact pair A is separated from the fixed contact of the other contact pair A. A vacuum circuit breaker characterized in that each movable contact of the contact pair A is driven by an opening / closing mechanism. 請求項3に記載の真空遮断装置において、前記開閉機構の動きを前記一方の接点対Bおよび前記他方の接点対Aの各前記可動接点に伝達するリンク機構を備え、前記他方の接点対Bの前記可動接点に可動電極棒を介して連結されているロッドに、前記一方の接点対Bおよび前記他方の接点対Aの各前記可動接点の動くタイミングをずらすスライダが設けられていることを特徴とする真空遮断装置。   The vacuum interrupter according to claim 3, further comprising a link mechanism that transmits the movement of the opening / closing mechanism to the movable contacts of the one contact pair B and the other contact pair A, The rod connected to the movable contact through a movable electrode rod is provided with a slider for shifting the moving timing of the movable contacts of the one contact pair B and the other contact pair A. Vacuum shut-off device. 請求項1〜4の何れか一に記載の真空遮断装置において、前記2組の接点対A,Bが、共通の真空容器内に配設されていることを特徴とする真空遮断装置。   The vacuum interrupter according to any one of claims 1 to 4, wherein the two pairs of contact points A and B are disposed in a common vacuum vessel. 請求項1〜4の何れか一に記載の真空遮断装置において、前記2組の接点対A,Bが、それぞれ個別の真空容器内に配設されていることを特徴とする真空遮断装置。   The vacuum interrupter according to any one of claims 1 to 4, wherein the two sets of contact pairs A and B are respectively disposed in individual vacuum vessels. 請求項1〜6の何れか一に記載の真空遮断装置において、前記2組の接点対A,Bの各前記可動接点が、共通の前記開閉機構により駆動されることを特徴とする真空遮断装置。   7. The vacuum circuit breaker according to claim 1, wherein the movable contacts of the two pairs of contact pairs A and B are driven by the common opening / closing mechanism. . 請求項1〜7の何れか一に記載の真空遮断装置において、前記他方の接点対Aの前記可動接点が前記他方の接点対Aの前記固定接点から開離する時間のばらつきの幅をΔtとすると、前記開極時に、再起電圧の立ち上がりから1サイクル後の前記Δtの範囲で前記他方の接点対Aの前記可動接点が前記他方の接点対Aの前記固定接点から開離することを特徴とする真空開閉装置。   The vacuum interrupter according to any one of claims 1 to 7, wherein Δt is a width of variation in time when the movable contact of the other contact pair A is separated from the fixed contact of the other contact pair A. Then, at the time of opening, the movable contact of the other contact pair A is separated from the fixed contact of the other contact pair A within a range of Δt after one cycle from the rise of the reactivation voltage. A vacuum switchgear. 請求項1〜8の何れか一に記載の真空遮断装置において、分圧コンデンサが設けられ、前記一方の接点対Bと前記他方の接点対Aとの分圧が前記分圧コンデンサによってほぼ均等であることを特徴とする真空遮断装置。 The vacuum circuit breaker according to any one of claims 1 to 8, wherein a voltage dividing capacitor is provided, and a partial pressure of the one contact pair B and the other contact pair A is substantially equal by the voltage dividing capacitor. A vacuum shut-off device characterized by being. 請求項1〜8の何れか一に記載の真空遮断装置において、分圧コンデンサが設けられ、前記分圧コンデンサにより前記一方の接点対Bの分圧を前記他方の接点対Aの分圧より下げることによって前記他方の接点対Bが遮断用の接点対とされ前記一方の接点対Aが耐圧用の接点対とされると共に、前記他方の接点対Bが高遮断性能接点材で形成され、前記一方の接点対Aが高耐圧接点材で形成されていることを特徴とする真空遮断装置。   9. The vacuum circuit breaker according to claim 1, wherein a voltage dividing capacitor is provided, and the partial pressure of the one contact pair B is lowered from the divided pressure of the other contact pair A by the voltage dividing capacitor. Accordingly, the other contact pair B is a breaking contact pair, the one contact pair A is a pressure-resistant contact pair, and the other contact pair B is formed of a high breaking performance contact material, A vacuum circuit breaker characterized in that one contact pair A is formed of a high pressure resistant contact material. 請求項1〜10の何れか一に記載の真空遮断装置において、前記一方の接点対Bおよび前記他方の接点対Aの何れも平板電極であることを特徴とする真空遮断装置。   The vacuum interrupter according to any one of claims 1 to 10, wherein each of the one contact pair B and the other contact pair A is a flat plate electrode. 請求項1〜10の何れか一に記載の真空遮断装置において、前記一方の接点対Bおよび前記他方の接点対Aの何れも縦磁界電極であることを特徴とする真空遮断装置。   The vacuum circuit breaker according to any one of claims 1 to 10, wherein each of the one contact pair B and the other contact pair A is a longitudinal magnetic field electrode. 請求項1〜10の何れか一に記載の真空遮断装置において、前記一方の接点対Bおよび前記他方の接点対Aが平板電極と縦磁界電極との組み合わせであることを特徴とする真空遮断装置。   The vacuum circuit breaker according to any one of claims 1 to 10, wherein the one contact pair B and the other contact pair A are a combination of a plate electrode and a longitudinal magnetic field electrode. . 請求項1〜10の何れか一に記載の真空遮断装置において、前記一方の接点対Bおよび前記他方の接点対Aが平板電極とスパイラル電極との組み合わせであることを特徴とする真空遮断装置。   The vacuum interrupter according to any one of claims 1 to 10, wherein the one contact pair B and the other contact pair A are a combination of a plate electrode and a spiral electrode. 請求項1〜14の何れか一に記載の真空遮断装置において、前記固定接点を支持する支持部と前記固定接点とは、アークが前記固定接点から前記支持部に移行しないように固定電極棒を介して所定距離離間していることを特徴とする真空遮断装置。   The vacuum interrupter according to any one of claims 1 to 14, wherein the support portion that supports the fixed contact and the fixed contact include a fixed electrode rod so that an arc does not move from the fixed contact to the support portion. A vacuum shut-off device characterized by being spaced apart by a predetermined distance. 請求項15に記載の真空遮断装置において、前記固定電極棒と前記支持部との間に、前記閉極時の衝撃を吸収する衝撃吸収構造体が設けられていることを特徴とする真空遮断装置。   16. The vacuum interrupter according to claim 15, wherein an impact absorbing structure that absorbs an impact at the time of closing is provided between the fixed electrode rod and the support portion. . 請求項1〜16の何れか一に記載の真空遮断装置において、前記開閉機構が電磁アクチュエーターによって前記駆動をする開閉機構であることを特徴とする真空遮断装置。   17. The vacuum circuit breaker according to claim 1, wherein the opening / closing mechanism is an open / close mechanism that is driven by an electromagnetic actuator.
JP2012210349A 2012-09-25 2012-09-25 Vacuum shut-off device Active JP5836907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012210349A JP5836907B2 (en) 2012-09-25 2012-09-25 Vacuum shut-off device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210349A JP5836907B2 (en) 2012-09-25 2012-09-25 Vacuum shut-off device

Publications (2)

Publication Number Publication Date
JP2014067512A true JP2014067512A (en) 2014-04-17
JP5836907B2 JP5836907B2 (en) 2015-12-24

Family

ID=50743727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210349A Active JP5836907B2 (en) 2012-09-25 2012-09-25 Vacuum shut-off device

Country Status (1)

Country Link
JP (1) JP5836907B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160081565A (en) * 2014-12-31 2016-07-08 주식회사 효성 Vacuum interrupter and operating method thereof
JP6075423B1 (en) * 2015-09-03 2017-02-08 株式会社明電舎 Vacuum circuit breaker

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160081565A (en) * 2014-12-31 2016-07-08 주식회사 효성 Vacuum interrupter and operating method thereof
KR101689180B1 (en) 2014-12-31 2016-12-23 주식회사 효성 Vacuum interrupter and operating method thereof
US10304644B2 (en) 2014-12-31 2019-05-28 Hyosung Heavy Industries Corporation Vacuum interrupter and driving method therefor
JP6075423B1 (en) * 2015-09-03 2017-02-08 株式会社明電舎 Vacuum circuit breaker
WO2017038538A1 (en) * 2015-09-03 2017-03-09 株式会社明電舎 Vacuum circuit breaker
US10262819B2 (en) 2015-09-03 2019-04-16 Meidensha Corporation Vacuum circuit breaker

Also Published As

Publication number Publication date
JP5836907B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5434406B2 (en) Disconnector
US20190304721A1 (en) Vacuum switching devices
US10014139B2 (en) Over-current protection assembly
US4079219A (en) SF 6 Puffer for arc spinner
JP5836907B2 (en) Vacuum shut-off device
US8901447B2 (en) Circuit breaker with parallel rated current paths
Schellekens et al. Compact high-voltage vacuum circuit breaker, a feasibility study
JP2007305497A (en) Vacuum switch and conditioning processing method therefor
JPWO2016088405A1 (en) Circuit input device and circuit input system
JP6057887B2 (en) Vacuum circuit breaker
Voshall et al. Experiments on vacuum interrupters in high voltage 72kV circuits
Zheng et al. Failure analysis of power relays with multiple breaks in the electrical endurance experiments
Godechot et al. Design and tests of vacuum interrupters for high voltage circuit breakers
Dullni et al. Switching of capacitive currents
Heinz et al. Why vacuum technology is not a simple scaling from medium to high voltage?
Giere et al. Control of diffuse vacuum arc using axial magnetic fields in commercial high voltage switchgear
Renz High voltage vacuum interrupters; technical and physical feasibility versus economical efficiency
KR100797982B1 (en) Disconnecting Switch
JP2016127744A (en) Vacuum circuit breaker
KR101610190B1 (en) Switch-gear
JP2015082368A (en) Gas circuit breaker
Falkingham Vacuum interrupter design for HV and VHV Applications
Schellekens et al. High-voltage vacuum circuit breaker a feasibility study
KR101621765B1 (en) Switch-gear
Rieder Circuit breakers Physical and engineering problems II-Design considerations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151104

R151 Written notification of patent or utility model registration

Ref document number: 5836907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250