JP2014065940A - Porous aluminum body, aluminum electrolytic capacitor, and method of manufacturing porous aluminum body - Google Patents
Porous aluminum body, aluminum electrolytic capacitor, and method of manufacturing porous aluminum body Download PDFInfo
- Publication number
- JP2014065940A JP2014065940A JP2012211476A JP2012211476A JP2014065940A JP 2014065940 A JP2014065940 A JP 2014065940A JP 2012211476 A JP2012211476 A JP 2012211476A JP 2012211476 A JP2012211476 A JP 2012211476A JP 2014065940 A JP2014065940 A JP 2014065940A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum
- porous
- ppm
- weight
- aluminum body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 234
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 189
- 239000003990 capacitor Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000011888 foil Substances 0.000 claims abstract description 67
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 57
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 35
- 239000010703 silicon Substances 0.000 claims abstract description 35
- 229910052742 iron Inorganic materials 0.000 claims abstract description 28
- 238000005245 sintering Methods 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 12
- 239000010407 anodic oxide Substances 0.000 claims description 3
- 238000007743 anodising Methods 0.000 claims description 3
- 238000005452 bending Methods 0.000 abstract description 23
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 238000000576 coating method Methods 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 16
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 11
- 238000005530 etching Methods 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000002048 anodisation reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000025 natural resin Substances 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、アルミニウム箔の少なくとも一方面にアルミニウム多孔質層を備えた多孔性アルミニウム体、該多孔性アルミニウム体を用いたアルミニウム電解コンデンサ、および当該多孔性アルミニウム体の製造方法に関するものである。 The present invention relates to a porous aluminum body provided with an aluminum porous layer on at least one surface of an aluminum foil, an aluminum electrolytic capacitor using the porous aluminum body, and a method for producing the porous aluminum body.
アルミニウム箔に関しては、アルミニウム電解コンデンサの電極用や、汚染された大気を浄化する触媒の担体用等の用途が提案されている。かかるアルミニウム箔は、例えば、塩酸等のエッチング液中でのエッチングにより表面積を拡大した後、陽極酸化により表面に酸化皮膜が形成される。 As for the aluminum foil, there have been proposed uses such as an electrode for an aluminum electrolytic capacitor and a carrier for a catalyst for purifying contaminated air. For example, such an aluminum foil has an oxide film formed on the surface thereof by anodic oxidation after the surface area is enlarged by etching in an etching solution such as hydrochloric acid.
一方、アルミニウム粉体を焼結させてアルミニウム箔にアルミニウム多孔質層を積層した多孔性アルミニウム体が提案されており、かかる多孔性アルミニウム体によれば、塩酸等を用いたエッチング処理を行う必要がないという利点がある(特許文献1参照)。 On the other hand, a porous aluminum body in which aluminum powder is sintered and an aluminum porous layer is laminated on an aluminum foil has been proposed. According to such a porous aluminum body, it is necessary to perform etching using hydrochloric acid or the like. There is an advantage of not (see Patent Document 1).
また、多孔性アルミニウム体を形成する際、アルミニウム粉体として、珪素含有量が100〜3000重量ppmのアルミニウム粉体を用いることにより、多孔性アルミニウム体の折り曲げ強度を向上する技術が提案されている(特許文献2参照)。 Moreover, when forming a porous aluminum body, the technique which improves the bending strength of a porous aluminum body is proposed by using the aluminum powder whose silicon content is 100-3000 weight ppm as aluminum powder. (See Patent Document 2).
しかしながら、多孔性アルミニウム体を備えたアルミニウム電解コンデンサを製造する際には、多孔性アルミニウムを巻回する等の工程があり、多孔性アルミニウム体に対して所定以上の折り曲げ強度が必要とされるが、上記特許文献2に記載された構成だけでは、十分な折り曲げ強度を得ることができないという問題点がある。また、上記特許文献1、2に記載された構成だけでは、多孔性アルミニウム体の漏れ電流値が大きい場合があった。 However, when manufacturing an aluminum electrolytic capacitor having a porous aluminum body, there are steps such as winding porous aluminum, and a bending strength of a predetermined level or more is required for the porous aluminum body. There is a problem that sufficient bending strength cannot be obtained only by the configuration described in Patent Document 2. Moreover, the leak current value of the porous aluminum body may be large only with the configurations described in Patent Documents 1 and 2 above.
以上の問題点に鑑みて、本発明の課題は、十分な折り曲げ強度を有し、かつ低い漏れ電流値を呈する良質な陽極酸化皮膜を形成することのできる多孔性アルミニウム体、該多孔性アルミニウム体を用いたアルミニウム電解コンデンサ、および当該多孔性アルミニウム体の製造方法を提供することにある。 In view of the above problems, an object of the present invention is to provide a porous aluminum body that has a sufficient bending strength and can form a high-quality anodized film exhibiting a low leakage current value, and the porous aluminum body It is providing the manufacturing method of the aluminum electrolytic capacitor using this, and the said porous aluminum body.
上記課題を解決するために、本発明は、アルミニウム箔と、該アルミニウム箔の少なくとも一方面側に積層されたアルミニウム多孔質層と、を有する多孔性アルミニウム体において、前記アルミニウム箔は、厚さが10〜50μmで、鉄含有量が1000重量ppm未満、かつ、珪素含有量が500〜5000重量ppmであり、前記アルミニウム多孔質層は、鉄含有量が1000重量ppm未満、かつ、珪素含有量が50〜3000重量ppmのアルミニウム粉体を焼結してなる層であることを特徴とする。 In order to solve the above problems, the present invention provides a porous aluminum body having an aluminum foil and an aluminum porous layer laminated on at least one side of the aluminum foil, wherein the aluminum foil has a thickness of 10-50 μm, the iron content is less than 1000 ppm by weight, the silicon content is 500-5000 ppm by weight, and the aluminum porous layer has an iron content of less than 1000 ppm by weight and a silicon content of It is a layer formed by sintering 50 to 3000 ppm by weight of aluminum powder.
また、本発明の多孔性アルミニウム体の製造方法は、厚さが10〜50μmで、鉄含有量が1000重量ppm未満、かつ、珪素含有量が500〜5000重量ppmのアルミニウム箔の少なくとも一方面に、鉄含有量が1000重量ppm未満、かつ、珪素含有量が50〜3000重量ppmのアルミニウム粉体を含む組成物からなる皮膜を形成する第1工程と、前記皮膜を560℃以上660℃以下の温度で焼結する第2工程と、を含むことを特徴とする。 In addition, the method for producing a porous aluminum body of the present invention is provided on at least one surface of an aluminum foil having a thickness of 10 to 50 μm, an iron content of less than 1000 ppm by weight, and a silicon content of 500 to 5000 ppm by weight. A first step of forming a film comprising an aluminum powder having an iron content of less than 1000 ppm by weight and a silicon content of 50 to 3000 ppm by weight; And a second step of sintering at a temperature.
本発明においては、特定の組成のアルミニウム箔およびアルミニウム粉体を用いることにより、低い漏れ電流値を呈すると共に、アルミニウム箔とアルミニウム粉体との間の焼結性を向上し、折り曲げ強度を高めてある。より具体的には、アルミニウム箔の珪素含有量は500〜5000重量ppmであり、アルミニウム多孔質層に用いたアルミニウム粉体の珪素含有量は50〜3000重量ppmである。珪素含有量が上記の範囲のアルミニウム箔およびアルミニウム粉体を焼結した際、アルミニウム箔とアルミニウム多孔質層(アルミニウム粉体)との高い接合強度(焼結強度)が得られ、これにより多孔性アルミニウム体は高い折り曲げ強度を備える。また、アルミニウム箔の鉄含有量、およびアルミニウム多孔質層に用いたアルミニウム粉体の鉄含有量が1000重量ppm未満であることにより、アルミニウム多孔質層に陽極酸化を行った際、低い漏れ電流値を呈する良質な陽極酸化皮膜を形成することができる。また、アルミニウム箔は、厚さが10〜50μmであるため、適切な強度を得ることができる。より具体的には、アルミニウム箔の厚さが50μmを超えても、表面積や強度が向上することがなく、無駄に厚さが増大する一方、アルミニウム箔の厚さが10μm未満では、多孔性アルミニウム体の強度が低い。 In the present invention, by using an aluminum foil and aluminum powder having a specific composition, a low leakage current value is exhibited, the sinterability between the aluminum foil and the aluminum powder is improved, and the bending strength is increased. is there. More specifically, the silicon content of the aluminum foil is 500 to 5000 ppm by weight, and the silicon content of the aluminum powder used for the aluminum porous layer is 50 to 3000 ppm by weight. When aluminum foil and aluminum powder having a silicon content in the above range are sintered, a high bonding strength (sintering strength) between the aluminum foil and the aluminum porous layer (aluminum powder) is obtained. The aluminum body has a high bending strength. In addition, when the anodization is performed on the aluminum porous layer due to the iron content of the aluminum foil and the iron content of the aluminum powder used in the aluminum porous layer being less than 1000 ppm by weight, a low leakage current value is obtained. It is possible to form a high-quality anodic oxide film exhibiting Moreover, since aluminum foil is 10-50 micrometers in thickness, appropriate intensity | strength can be acquired. More specifically, even if the thickness of the aluminum foil exceeds 50 μm, the surface area and strength are not improved, and the thickness is increased unnecessarily. On the other hand, if the thickness of the aluminum foil is less than 10 μm, the porous aluminum The strength of the body is low.
本発明において、前記アルミニウム粉体の平均粒径が1〜10μmであることが好ましい。かかる構成によれば、多孔性アルミニウム体の表面積を効果的に拡大することができる。より具体的には、アルミニウム粉体の平均粒径が1μm未満では、アルミニウム粉体間の間隙が狭すぎて電極等として機能しない無効部分が増大する一方、アルミニウム粉体の平均粒径が10μmを超えると、アルミニウム粉体間の間隙が広すぎて表面積の拡大が不十分である。 In the present invention, the average particle size of the aluminum powder is preferably 1 to 10 μm. According to this configuration, the surface area of the porous aluminum body can be effectively expanded. More specifically, if the average particle size of the aluminum powder is less than 1 μm, the gap between the aluminum powders is too narrow and the ineffective portion that does not function as an electrode increases, while the average particle size of the aluminum powder is 10 μm. If it exceeds, the gap between the aluminum powders is too wide, and the expansion of the surface area is insufficient.
本発明において、前記アルミニウム箔の両面に前記アルミニウム多孔質層を有する構成を採用することができる。 In this invention, the structure which has the said aluminum porous layer on both surfaces of the said aluminum foil is employable.
本発明において、前記アルミニウム多孔質層には陽極酸化皮膜が形成されている構成を採用することができる。かかる多孔性アルミニウム体は、アルミニウム電解コンデンサの陽極等として用いられる。この場合、前記第1工程および前記第2工程の後、前記多孔性アルミニウム体に陽極酸化を行う第3工程を行う。 In the present invention, a configuration in which an anodized film is formed on the aluminum porous layer can be adopted. Such a porous aluminum body is used as an anode or the like of an aluminum electrolytic capacitor. In this case, a third step of anodizing the porous aluminum body is performed after the first step and the second step.
本発明の多孔性アルミニウム体は、鉄含有量が1000重量ppm未満、かつ、珪素含有量が500〜5000重量ppmのアルミニウム箔と、鉄含有量が1000重量ppm未満、かつ、珪素含有量が50〜3000重量ppmのアルミニウム多孔質層を備えることにより、高い折り曲げ強度が得られると共に、低い漏れ電流値を呈する良質な陽極酸化を形成することができる。また、アルミニウム箔は、厚さが10〜50μmであることにより、適切な強度を得ることができる。 The porous aluminum body of the present invention comprises an aluminum foil having an iron content of less than 1000 ppm by weight and a silicon content of 500 to 5000 ppm by weight, an iron content of less than 1000 ppm by weight, and a silicon content of 50 By providing an aluminum porous layer of ˜3000 ppm by weight, a high bending strength can be obtained, and a good anodic oxidation exhibiting a low leakage current value can be formed. Moreover, an aluminum foil can obtain suitable intensity | strength because thickness is 10-50 micrometers.
(多孔性アルミニウム体の構成)
図1は、本発明を適用した多孔性アルミニウム体の断面構造を示す説明図であり、多孔性アルミニウム体の断面を電子顕微鏡により600倍に拡大して撮影した写真である。図2は、本発明を適用した多孔性アルミニウム体の表面構造を示す説明図であり、多孔性アルミニウム体の表面を電子顕微鏡により撮影した写真である。なお、図2には、多孔性アルミニウム体の表面を1000倍で拡大した写真と、3000倍で拡大した写真とを示してある。
(Configuration of porous aluminum body)
FIG. 1 is an explanatory view showing a cross-sectional structure of a porous aluminum body to which the present invention is applied, and is a photograph taken by enlarging the cross section of the porous aluminum body 600 times with an electron microscope. FIG. 2 is an explanatory view showing the surface structure of a porous aluminum body to which the present invention is applied, and is a photograph of the surface of the porous aluminum body taken with an electron microscope. FIG. 2 shows a photograph in which the surface of the porous aluminum body is magnified 1000 times and a photograph in which the surface is magnified 3000 times.
図1および図2に示す多孔性アルミニウム体10は、アルミニウム箔20と、アルミニウム箔20の少なくとも一方面側に積層されたアルミニウム多孔質層30とを有しており、本形態において、多孔性アルミニウム体10は、アルミニウム箔20の両面にアルミニウム多孔質層30を有している。 A porous aluminum body 10 shown in FIGS. 1 and 2 has an aluminum foil 20 and an aluminum porous layer 30 laminated on at least one surface side of the aluminum foil 20. The body 10 has an aluminum porous layer 30 on both surfaces of the aluminum foil 20.
本形態において、アルミニウム箔20は、厚さが10〜50μmである。図1には、厚さが約30μmのアルミニウム箔20を用いた多孔性アルミニウム体10が示されている。また、図1には、厚さが約50μmのアルミニウム多孔質層30が形成された多孔性アルミニウム体10が示されている。 In this embodiment, the aluminum foil 20 has a thickness of 10 to 50 μm. FIG. 1 shows a porous aluminum body 10 using an aluminum foil 20 having a thickness of about 30 μm. FIG. 1 shows a porous aluminum body 10 in which an aluminum porous layer 30 having a thickness of about 50 μm is formed.
ここで、アルミニウム箔20は、鉄含有量が1000重量ppm未満、かつ、珪素含有量が500〜5000重量ppmである。アルミニウム箔20の珪素含有量が500重量ppm未満であると、折り曲げ強度が低下し、5000重量ppmを超えると漏れ電流値が高くなるためである。より好適には、アルミニウム箔20の珪素含有量が500〜3000重量ppmであると、高い静電容量が得られるため好ましい。また、アルミニウム多孔質層30は、鉄含有量が1000重量ppm未満、かつ、珪素含有量が50〜3000重量ppmのアルミニウム粉体を焼結してなる層であり、アルミニウム粉体は、互いに空隙を維持しながら焼結されている。アルミニウム多孔質層30の珪素含有量が50重量ppm未満であると、折り曲げ強度が低下し、3000重量ppmを超えると漏れ電流値が高くなるためである。より好適には、アルミニウム多孔質層30の珪素含有量が50〜1000重量ppmであると高い静電容量が得られるため好ましい。本形態において、アルミニウム粉体の形状は、特に限定されず、略球状、不定形状、鱗片状、繊維状等のいずれも好適に使用できる。特に、アルミニウム粉体間の空隙を維持するために、略球状粒子からなる粉体が好ましい。本形態におけるアルミニウム粉体の平均粒径は1〜10μmであることが好ましい。かかる多孔性アルミニウム体10は、従来のエッチング箔と同等、またはそれ以上の静電容量を得ることができる。特に、本形態の多孔性アルミニウム体10は、中高圧用のコンデンサ用途の太いエッチングピットを有するエッチング箔の代用となる。 Here, the aluminum foil 20 has an iron content of less than 1000 ppm by weight and a silicon content of 500 to 5000 ppm by weight. This is because if the silicon content of the aluminum foil 20 is less than 500 ppm by weight, the bending strength decreases, and if it exceeds 5000 ppm by weight, the leakage current value increases. More preferably, the aluminum content of the aluminum foil 20 is 500 to 3000 ppm by weight because a high capacitance can be obtained. The aluminum porous layer 30 is a layer formed by sintering aluminum powder having an iron content of less than 1000 ppm by weight and a silicon content of 50 to 3000 ppm by weight. It is sintered while maintaining. This is because if the silicon content of the aluminum porous layer 30 is less than 50 ppm by weight, the bending strength decreases, and if it exceeds 3000 ppm by weight, the leakage current value increases. More preferably, the silicon content of the aluminum porous layer 30 is 50 to 1000 ppm by weight because a high capacitance can be obtained. In this embodiment, the shape of the aluminum powder is not particularly limited, and any of a substantially spherical shape, an indefinite shape, a scale shape, a fiber shape, and the like can be suitably used. In particular, a powder composed of substantially spherical particles is preferable in order to maintain a gap between aluminum powders. The average particle size of the aluminum powder in this embodiment is preferably 1 to 10 μm. Such a porous aluminum body 10 can obtain a capacitance equal to or higher than that of a conventional etching foil. In particular, the porous aluminum body 10 of this embodiment is used as a substitute for an etching foil having thick etching pits for use in capacitors for medium and high pressure.
本形態において、多孔性アルミニウム体10をアルミニウム電解コンデンサの陽極として用いる場合、アルミニウム多孔質層30には陽極酸化皮膜が形成される。その際、アルミニウム箔20において、アルミニウム多孔質層30から露出している部分がある場合、アルミニウム箔20にも陽極酸化皮膜が形成される。 In this embodiment, when the porous aluminum body 10 is used as an anode of an aluminum electrolytic capacitor, an anodic oxide film is formed on the aluminum porous layer 30. At that time, when there is a portion exposed from the aluminum porous layer 30 in the aluminum foil 20, an anodized film is also formed on the aluminum foil 20.
(製造方法)
本発明を適用した多孔性アルミニウム体10の製造方法は、まず、第1工程で、厚さが10〜50μmで、鉄含有量が1000重量ppm未満、かつ、珪素含有量が500〜5000重量ppmのアルミニウム箔20の少なくとも一方面に、鉄含有量が1000重量ppm未満、かつ、珪素含有量が50〜3000重量ppmのアルミニウム粉体を含む組成物からなる皮膜を形成する。アルミニウム粉体の平均粒径は1〜10μmであることが好ましい。ここで、アルミニウム箔20およびアルミニウム粉体は、銅(Cu)、マンガン(Mn)、マグネシウム(Mg)、クロム(Cr)、亜鉛(Zn)、チタン(Ti)、バナジウム(V)、ガリウム(Ga)、ニッケル(Ni)、ホウ素(B)、ジルコニウム(Zr)等の元素の1種又は2種以上を含んでいてもよい。但し、その場合、これらの元素の含有量は、それぞれ100重量ppm以下、特に50重量ppm以下であることが好ましい。
(Production method)
The manufacturing method of the porous aluminum body 10 to which the present invention is applied is as follows. First, in the first step, the thickness is 10 to 50 μm, the iron content is less than 1000 ppm by weight, and the silicon content is 500 to 5000 ppm by weight. A film made of a composition containing aluminum powder having an iron content of less than 1000 ppm by weight and a silicon content of 50 to 3000 ppm by weight is formed on at least one surface of the aluminum foil 20. The average particle size of the aluminum powder is preferably 1 to 10 μm. Here, the aluminum foil 20 and the aluminum powder are copper (Cu), manganese (Mn), magnesium (Mg), chromium (Cr), zinc (Zn), titanium (Ti), vanadium (V), gallium (Ga). ), Nickel (Ni), boron (B), zirconium (Zr), or other elements. In this case, however, the content of these elements is preferably 100 ppm by weight or less, particularly 50 ppm by weight or less.
アルミニウム粉体は、アトマイズ法、メルトスピニング法、回転円盤法、回転電極法、その他の急冷凝固法等により製造されたものである。これらの方法のうち、工業的生産にはアトマイズ法、特にガスアトマイズ法が好ましく、アトマイズ法では、溶湯をアトマイズすることにより粉体を得る。 The aluminum powder is manufactured by an atomizing method, a melt spinning method, a rotating disk method, a rotating electrode method, other rapid solidification methods, or the like. Among these methods, the atomizing method, particularly the gas atomizing method is preferable for industrial production. In the atomizing method, powder is obtained by atomizing the molten metal.
前記組成物は、必要に応じて樹脂バインダ、溶剤、焼結助剤、界面活性剤等が含まれていても良い。これらはいずれも公知または市販のものを使用することができる。本形態では、樹脂バインダおよび溶剤の少なくとも1種を含有させてペースト状組成物として用いることが好ましい。これにより効率よく皮膜を形成することができる。樹脂バインダとしては、例えばカルボキシ変性ポリオレフィン樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、塩酢ビ共重合樹脂、ビニルアルコール樹脂、ブチラール樹脂、フッ化ビニル樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、尿素樹脂、フェノール樹脂、アクリロニトリル樹脂、ニトロセルロース樹脂、パラフィンワックス、ポリエチレンワックス等の合成樹脂またはワックス、タール、にかわ、ウルシ、松脂、ミツロウ等の天然樹脂、またはワックスが好適に使用できる。これらのバインダは、それぞれ分子量、樹脂の種類等により、加熱時に揮発するものと、熱分解によりその残渣がアルミニウム粉末とともに残存するものとがあり、静電特性等の要求に応じて使い分けすることができる。 The composition may contain a resin binder, a solvent, a sintering aid, a surfactant and the like as necessary. Any of these may be known or commercially available. In this embodiment, it is preferable to use at least one of a resin binder and a solvent as a paste composition. Thereby, a film can be formed efficiently. Examples of the resin binder include carboxy-modified polyolefin resin, vinyl acetate resin, vinyl chloride resin, vinyl chloride copolymer resin, vinyl alcohol resin, butyral resin, vinyl fluoride resin, acrylic resin, polyester resin, urethane resin, epoxy resin, A synthetic resin such as urea resin, phenol resin, acrylonitrile resin, nitrocellulose resin, paraffin wax, polyethylene wax or the like, natural resin such as wax, tar, glue, urushi, pine resin, beeswax, or wax can be suitably used. These binders are classified into those that volatilize when heated, depending on the molecular weight, the type of resin, etc., and those that remain together with the aluminum powder due to thermal decomposition. it can.
前記組成物を調製する際、溶媒を添加してもよいが、かかる溶媒としては、水、エタノール、トルエン、ケトン類、エステル類等を単独あるいは混合して用いることができる。 When preparing the composition, a solvent may be added. As such a solvent, water, ethanol, toluene, ketones, esters and the like can be used alone or in combination.
また、前記皮膜の形成は、組成物の性状等に応じて公知の方法から適宜採択することができる。例えば、組成物が粉末(固体)である場合は、その圧粉体を基材上に形成(または熱圧着)すれば良い。この場合は、圧粉体を焼結することにより固化するとともに、アルミニウム箔20上にアルミニウム粉末を固着させることができる。また、液状(ペースト状)である場合は、ローラー、刷毛、スプレー、ディッピング等の塗布方法により形成できるほか、公知の印刷方法により形成することもできる。なお、皮膜は、必要に応じて、20℃以上300℃以下の範囲内の温度で乾燥させても良い。 The formation of the film can be appropriately selected from known methods depending on the properties of the composition. For example, when the composition is a powder (solid), the green compact may be formed on a substrate (or thermocompression bonding). In this case, the green powder can be solidified by sintering and the aluminum powder can be fixed on the aluminum foil 20. Moreover, when it is liquid (paste-like), it can be formed by a known printing method in addition to a coating method such as roller, brush, spray, dipping and the like. The film may be dried at a temperature in the range of 20 ° C. to 300 ° C. as necessary.
皮膜の厚みは、特に限定されないが、一般的には20μm以上1000μm以下、特に20μm以上200μm以下とすることが好ましい。厚みが20μm未満の場合は、所望の静電容量が得られないおそれがある。また、1000μmより大きい場合は、箔との密着性不良の発生や後工程内におけるひび割れ発生のおそれがある。 The thickness of the film is not particularly limited, but generally it is preferably 20 μm or more and 1000 μm or less, particularly preferably 20 μm or more and 200 μm or less. When the thickness is less than 20 μm, a desired capacitance may not be obtained. On the other hand, when the thickness is larger than 1000 μm, adhesion failure with the foil may occur or cracks may occur in the subsequent process.
なお、アルミニウム箔20については、皮膜の形成に先立って、アルミニウム箔20の表面を粗面化する工程を行ってもよい。かかる粗面化方法としては、例えば、洗浄、エッチング、ブラスト等の公知の技術を用いることができる。 In addition, about the aluminum foil 20, you may perform the process of roughening the surface of the aluminum foil 20 before formation of a membrane | film | coat. As the roughening method, for example, a known technique such as cleaning, etching, blasting or the like can be used.
次に、第2工程においては、皮膜を560℃以上660℃以下の温度で焼結する。焼結時間は、焼結温度等により異なるが、通常は5〜24時間程度の範囲内で適宜決定することができる。焼結雰囲気は、特に制限されず、例えば真空雰囲気、不活性ガス雰囲気、酸化性ガス雰囲気(大気)、還元性雰囲気等のいずれであっても良いが、特に、真空雰囲気または還元性雰囲気とすることが好ましい。また、圧力条件についても、常圧、減圧または加圧のいずれでも良い。なお、組成物中(皮膜中)に樹脂バインダ等の有機成分が含有している場合は、第1工程後、第2工程に先立って予め100℃以上から600℃以下の温度範囲で保持時間が5時間以上の加熱処理(脱脂処理)を行なうことが好ましい。その際の加熱処理雰囲気は特に限定されず、例えば真空雰囲気、不活性ガス雰囲気または酸化性ガス雰囲気中のいずれでも良い。また、圧力条件も、常圧、減圧または加圧のいずれでも良い。 Next, in the second step, the coating is sintered at a temperature of 560 ° C. or higher and 660 ° C. or lower. The sintering time varies depending on the sintering temperature and the like, but can usually be appropriately determined within a range of about 5 to 24 hours. The sintering atmosphere is not particularly limited, and may be any of, for example, a vacuum atmosphere, an inert gas atmosphere, an oxidizing gas atmosphere (air), a reducing atmosphere, etc. In particular, a vacuum atmosphere or a reducing atmosphere is used. It is preferable. The pressure condition may be normal pressure, reduced pressure or increased pressure. If the composition (in the film) contains an organic component such as a resin binder, after the first step, prior to the second step, the holding time is in the range of 100 ° C. to 600 ° C. in advance. It is preferable to perform a heat treatment (degreasing treatment) for 5 hours or more. The heat treatment atmosphere at that time is not particularly limited, and may be, for example, a vacuum atmosphere, an inert gas atmosphere, or an oxidizing gas atmosphere. The pressure condition may be normal pressure, reduced pressure or increased pressure.
また、多孔性アルミニウム体10をアルミニウム電解コンデンサの陽極として用いる場合、第1工程および第2工程の後に、第3工程において、アルミニウム多孔質層30に陽極酸化皮膜を形成する。その際、アルミニウム箔20において、アルミニウム多孔質層30から露出している部分にも陽極酸化皮膜が形成される。 When the porous aluminum body 10 is used as an anode of an aluminum electrolytic capacitor, an anodized film is formed on the aluminum porous layer 30 in the third step after the first step and the second step. At that time, in the aluminum foil 20, an anodized film is also formed on a portion exposed from the aluminum porous layer 30.
かかる陽極酸化済みの多孔性アルミニウム体10を用いてアルミニウム電解コンデンサを製造するには、まず、陽極酸化済みの多孔性アルミニウム体10からなる陽極箔と、陰極箔とをセパレータを介在させて巻回してコンデンサ素子を形成する。次に、コンデンサ素子を電解液に含浸する。しかる後には、電解液を含んだコンデンサ素子を外装ケースに収納し、封口体でケースを封口する。 In order to manufacture an aluminum electrolytic capacitor using such anodized porous aluminum body 10, first, an anode foil made of anodized porous aluminum body 10 and a cathode foil are wound with a separator interposed therebetween. To form a capacitor element. Next, the capacitor element is impregnated with an electrolytic solution. After that, the capacitor element containing the electrolytic solution is housed in an outer case, and the case is sealed with a sealing body.
(本形態の主な効果)
以上説明したように、本形態においては、アルミニウム箔20の珪素含有量が500〜5000重量ppmであり、アルミニウム多孔質層30に用いたアルミニウム粉体の珪素含有量が50〜3000重量ppmである。このため、焼結した際、アルミニウム箔20とアルミニウム多孔質層30(アルミニウム粉体)との高い接合強度(焼結強度)が得られ、多孔性アルミニウム体10は高い折り曲げ強度が備わる。それ故、多孔性アルミニウム体10を製造する際、多孔性アルミニウム体10に対して陽極酸化を行う際、および陽極酸化済みの多孔性アルミニウム体10を用いてアルミニウム電解コンデンサを製作する際、多孔性アルミニウム体10が折れる等の不具合の発生を抑制することができる。
(Main effects of this form)
As described above, in this embodiment, the silicon content of the aluminum foil 20 is 500 to 5000 ppm by weight, and the silicon content of the aluminum powder used for the aluminum porous layer 30 is 50 to 3000 ppm by weight. . For this reason, when sintered, a high bonding strength (sintering strength) between the aluminum foil 20 and the aluminum porous layer 30 (aluminum powder) is obtained, and the porous aluminum body 10 has a high bending strength. Therefore, when the porous aluminum body 10 is manufactured, when anodizing the porous aluminum body 10 and when manufacturing an aluminum electrolytic capacitor using the anodized porous aluminum body 10, the porous aluminum body 10 is porous. Generation | occurrence | production of malfunctions, such as the aluminum body 10 breaking, can be suppressed.
また、アルミニウム箔20の鉄含有量、およびアルミニウム多孔質層30に用いたアルミニウム粉体の鉄含有量が1000重量ppm未満であるため、アルミニウム多孔質層30に陽極酸化を行った際、良質な陽極酸化皮膜を形成することができる。すなわち、鉄含有量が1000重量ppm以上であると、陽極酸化皮膜中に残存する粗大なAl-Fe系金属間化合物が起点となって漏れ電流値が大となるが、鉄含有量が1000重量ppm未満であれば、かかる漏れ電流値の増大が発生しない。 Moreover, since the iron content of the aluminum foil 20 and the iron content of the aluminum powder used for the aluminum porous layer 30 are less than 1000 ppm by weight, when the aluminum porous layer 30 is anodized, a good quality is obtained. An anodized film can be formed. That is, if the iron content is 1000 ppm by weight or more, the leakage current value becomes large starting from the coarse Al-Fe intermetallic compound remaining in the anodized film, but the iron content is 1000 wt. If it is less than ppm, the increase of the leakage current value does not occur.
また、アルミニウム箔20は、厚さが10〜50μmであるため、適切な強度を得ることができる。より具体的には、アルミニウム箔20の厚さが50μmを超えても、表面積や強度が向上することがないため、アルミニウム箔20としては無駄に厚くなってしまう。また、アルミニウム箔20の厚さが10μm未満では、多孔性アルミニウム体10の強度が低い。 Moreover, since the aluminum foil 20 is 10-50 micrometers in thickness, it can acquire appropriate intensity | strength. More specifically, even if the thickness of the aluminum foil 20 exceeds 50 μm, the surface area and the strength are not improved, so that the aluminum foil 20 becomes unnecessarily thick. Moreover, if the thickness of the aluminum foil 20 is less than 10 μm, the strength of the porous aluminum body 10 is low.
また、アルミニウム粉体の平均粒径が1〜10μmであるため、表面積を効果的に拡大することができる。より具体的には、アルミニウム粉体の平均粒径が1μm未満では、アルミニウム粉体間の間隙が狭すぎて電極等として機能しない無効部分が増大する一方、アルミニウム粉体の平均粒径が10μmを超えると、アルミニウム粉体間の間隙が広すぎて表面積の拡大が不十分である。すなわち、陽極酸化により、皮膜耐電圧が200V以上の陽極酸化皮膜を形成すると、空隙が埋没し静電容量が低下する。一方、平均粒径が10μmを超えると空隙部が大きくなりすぎ、表面積が低下して所望の静電容量が得られない。なお、アルミニウム粉体の平均粒径は、レーザー回折式粒度分布計により測定することができる。 Moreover, since the average particle diameter of aluminum powder is 1-10 micrometers, a surface area can be expanded effectively. More specifically, if the average particle size of the aluminum powder is less than 1 μm, the gap between the aluminum powders is too narrow and the ineffective portion that does not function as an electrode increases, while the average particle size of the aluminum powder is 10 μm. If it exceeds, the gap between the aluminum powders is too wide, and the expansion of the surface area is insufficient. That is, when an anodized film having a withstand voltage of 200 V or more is formed by anodization, the voids are buried and the capacitance is lowered. On the other hand, if the average particle size exceeds 10 μm, the void portion becomes too large, the surface area is reduced, and a desired capacitance cannot be obtained. The average particle diameter of the aluminum powder can be measured with a laser diffraction particle size distribution meter.
(実施例)
次に、本発明の実施例を説明する。まず、厚さ30μm、幅500mmのアルミニウム箔の両面に、平均粒径等が異なるアルミニウム粉体を、空隙を保持しながら厚さ40μmずつ焼結したアルミニウム多孔質層を形成し、多孔性アルミニウム体を作製した。より具体的には、アルミニウム粉体60重量部をセルロース系バインダ40重量部(溶剤:トルエン、7重量%が樹脂分)と混合し、固形分60重量%の組成物を得た後、かかる組成物をアルミニウム箔(JIS 1N30−H18)の両面にコンマコーターを用いて塗工し、皮膜を形成した(第1工程)。次に、皮膜を乾燥させた後、アルミニウム箔をアルゴンガス雰囲気中にて温度635℃で7時間焼結することにより、多孔性アルミニウム体を作製した(第2工程)。焼結後の多孔性アルミニウム体の厚みは約130μm(アルミニウム箔:30μm+アルミニウム多孔質層30:各面50μm)であった。
(Example)
Next, examples of the present invention will be described. First, a porous aluminum body is formed by forming an aluminum porous layer in which aluminum powders having different average particle diameters and the like are sintered on both sides of an aluminum foil having a thickness of 30 μm and a width of 500 mm, each having a thickness of 40 μm while maintaining voids. Was made. More specifically, 60 parts by weight of aluminum powder is mixed with 40 parts by weight of a cellulosic binder (solvent: toluene, 7% by weight of the resin component) to obtain a composition having a solid content of 60% by weight, and then the composition. The product was coated on both sides of an aluminum foil (JIS 1N30-H18) using a comma coater to form a film (first step). Next, after drying the film, the aluminum foil was sintered in an argon gas atmosphere at a temperature of 635 ° C. for 7 hours to produce a porous aluminum body (second step). The thickness of the sintered porous aluminum body was about 130 μm (aluminum foil: 30 μm + aluminum porous layer 30: 50 μm on each side).
次に、多孔性アルミニウム体に対してホウ酸系化成液中で陽極酸化処理を行った(第3工程)。 Next, the porous aluminum body was anodized in a boric acid-based chemical liquid (third step).
なお、陽極酸化前の多孔性アルミニウム体から特性測定用のサンプルを適量打ち抜き、折り曲げ強度を測定した。折り曲げ強度は、日本電子機械工業会規定のMIT型自動折り曲げ試験法(EIAJ RC-2364A)に従って行った。MIT型自動折り曲げ試験装置はJIS P8115で規定された装置を使用し、折り曲げ回数は、各電極材が破断する折り曲げ回数とし、90°曲げて1回、元に戻して2回、反対方向に90°曲げて3回、元に戻して4回と数えた。そして、折り曲げ強度の測定結果が所定回数未満のものは折り曲げ強度「不可」とし、陽極酸化の対象から除外し、折り曲げ強度の測定結果が所定回数以上のものについては折り曲げ強度「良」とし、陽極酸化の対象とした。また、陽極酸化後の多孔性アルミニウム体については、JEITA規格に準じて、静電容量および皮膜耐電圧の測定を行った。なお、サンプルの皮膜耐電圧はいずれも410V前後である。また、化成液と同条件のホウ酸系溶液中で皮膜耐電圧の0.9倍の電圧を印加し、10分後の電流値を測定して漏れ電流値とした。その結果を表1に示す。なお、表1において、「Al粉体」はアルミニウム粉体を意味し、「粒径」は平均粒径を意味する。「Fe量」は鉄含有量(重量ppm)を意味し、「Si量」は珪素含有量(重量ppm)を意味する。 An appropriate amount of a sample for characteristic measurement was punched out from the porous aluminum body before anodic oxidation, and the bending strength was measured. The bending strength was measured according to the MIT type automatic bending test method (EIAJ RC-2364A) stipulated by the Japan Electronic Machinery Manufacturers Association. The MIT type automatic bending test apparatus uses an apparatus defined in JIS P8115, and the number of bendings is the number of bendings at which each electrode material breaks. ° Bented 3 times, put back and counted 4 times. When the bending strength measurement result is less than the predetermined number of times, the bending strength is “impossible” and excluded from the object of anodization. When the bending strength measurement result is the predetermined number of times or more, the bending strength is “good”. Targeted for oxidation. The porous aluminum body after anodization was measured for capacitance and film withstand voltage according to JEITA standards. The film withstand voltage of the samples is around 410V. In addition, a voltage 0.9 times the film withstand voltage was applied in a boric acid solution under the same conditions as the chemical conversion solution, and the current value after 10 minutes was measured to obtain a leakage current value. The results are shown in Table 1. In Table 1, “Al powder” means aluminum powder, and “particle size” means average particle size. “Fe amount” means iron content (weight ppm), and “Si amount” means silicon content (weight ppm).
表1から分かるように、アルミニウム箔の珪素含有量が500重量ppm未満の比較例1、およびアルミニウム粉体の珪素含有量が50重量ppm未満の比較例5は、折り曲げ強度が低い。また、アルミニウム箔の珪素含有量が5000重量ppmを超える比較例2、アルミニウム粉体の鉄含有量が1000重量ppmを超える比較例3、およびアルミニウム箔の鉄含有量が1000重量ppmを超える比較例4は、漏れ電流値が著しく高い。 As can be seen from Table 1, Comparative Example 1 in which the silicon content of the aluminum foil is less than 500 ppm by weight and Comparative Example 5 in which the silicon content of the aluminum powder is less than 50 ppm by weight have low bending strength. Comparative Example 2 in which the silicon content of the aluminum foil exceeds 5000 ppm by weight, Comparative Example 3 in which the iron content of the aluminum powder exceeds 1000 ppm by weight, and Comparative Example in which the iron content of the aluminum foil exceeds 1000 ppm by weight No. 4 has a remarkably high leakage current value.
これに対して、鉄含有量が1000重量ppm未満で、珪素含有量が500〜5000重量ppmのアルミニウム箔、および鉄含有量が1000重量ppm未満、かつ、珪素含有量が50〜3000重量ppmのアルミニウム粉体を用いた実施例1〜7はいずれも、折り曲げ強度が大で、かつ、漏れ電流値が低い。 In contrast, an aluminum foil with an iron content of less than 1000 ppm by weight, a silicon content of 500 to 5000 ppm by weight, and an iron content of less than 1000 ppm by weight and a silicon content of 50 to 3000 ppm by weight In each of Examples 1 to 7 using aluminum powder, the bending strength is high and the leakage current value is low.
なお、実施例1〜7のうち、アルミニウム粉体の平均粒径が1μm未満の実施例5、およびアルミニウム粉体の平均粒径が10μmを超える実施例6は、実施例1〜4に比して静電容量が低いことから、アルミニウム粉体の平均粒径は1〜10μmであることが好ましい。 In Examples 1 to 7, Example 5 in which the average particle diameter of the aluminum powder is less than 1 μm and Example 6 in which the average particle diameter of the aluminum powder exceeds 10 μm are compared with Examples 1 to 4. In view of the low capacitance, the average particle size of the aluminum powder is preferably 1 to 10 μm.
また、実施例1〜7のうち、アルミニウム粉体の珪素含有量が1500重量ppmで、アルミニウム箔の珪素含有量が3500重量ppmの実施例7も、実施例1〜4に比して静電容量が低いことから、アルミニウム粉体の珪素含有量は50〜1000重量ppmが好ましく、アルミニウム箔の珪素含有量は500〜3000重量ppmが好ましい。 In addition, among Examples 1 to 7, Example 7 in which the silicon content of the aluminum powder is 1500 ppm by weight and the silicon content of the aluminum foil is 3500 ppm by weight is electrostatic compared to Examples 1 to 4. Since the capacity is low, the silicon content of the aluminum powder is preferably 50 to 1000 ppm by weight, and the silicon content of the aluminum foil is preferably 500 to 3000 ppm by weight.
(他の実施の形態)
上記実施の形態では、多孔性アルミニウム体をアルミニウム電解コンデンサの陽極として用いることを中心に説明したが、多孔性アルミニウム体、あるいは陽極酸化皮膜を形成した多孔性アルミニウム体については、触媒担体として使用することができる。例えば、脱臭または揮発性有機化合物や自動車排気ガス等の分解処理に適用する場合、多孔性アルミニウム体は、担持触媒として、パラジウム、白金、ルテニウム、ロジウム、イリジウム、ニッケル、コバルト、鉄、銅、亜鉛、金、銀、レニウム、マンガン、錫、これらの合金または混合物を担持することになる。
(Other embodiments)
In the above-described embodiment, the description has focused on the use of a porous aluminum body as an anode of an aluminum electrolytic capacitor. However, a porous aluminum body or a porous aluminum body on which an anodized film is formed is used as a catalyst carrier. be able to. For example, when applied to deodorization or decomposition treatment of volatile organic compounds, automobile exhaust gases, etc., the porous aluminum body is a supported catalyst, such as palladium, platinum, ruthenium, rhodium, iridium, nickel, cobalt, iron, copper, zinc. , Gold, silver, rhenium, manganese, tin, alloys or mixtures thereof.
10・・多孔性アルミニウム体
20・・アルミニウム箔
30・・アルミニウム多孔質層
10 .. Porous aluminum body 20 .. Aluminum foil 30 .. Aluminum porous layer
Claims (8)
前記アルミニウム箔は、厚さが10〜50μmで、鉄含有量が1000重量ppm未満、かつ、珪素含有量が500〜5000重量ppmであり、
前記アルミニウム多孔質層は、鉄含有量が1000重量ppm未満、かつ、珪素含有量が50〜3000重量ppmのアルミニウム粉体を焼結してなる層であることを特徴とする多孔性アルミニウム体。 In a porous aluminum body having an aluminum foil and an aluminum porous layer laminated on at least one surface side of the aluminum foil,
The aluminum foil has a thickness of 10 to 50 μm, an iron content of less than 1000 ppm by weight, and a silicon content of 500 to 5000 ppm by weight,
The porous aluminum body is a layer obtained by sintering an aluminum powder having an iron content of less than 1000 ppm by weight and a silicon content of 50 to 3000 ppm by weight.
前記皮膜を560℃以上660℃以下の温度で焼結する第2工程と、
を含むことを特徴とする多孔性アルミニウム体の製造方法。 At least one surface of an aluminum foil having a thickness of 10 to 50 μm, an iron content of less than 1000 ppm by weight, and a silicon content of 500 to 5000 ppm by weight, and an iron content of less than 1000 ppm by weight and containing silicon A first step of forming a film comprising a composition containing aluminum powder in an amount of 50 to 3000 ppm by weight;
A second step of sintering the film at a temperature of 560 ° C. or higher and 660 ° C. or lower;
The manufacturing method of the porous aluminum body characterized by including.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012211476A JP6001977B2 (en) | 2012-09-25 | 2012-09-25 | Porous aluminum body, aluminum electrolytic capacitor, and method for producing porous aluminum body |
CN201310450303.9A CN103658660B (en) | 2012-09-25 | 2013-09-25 | The manufacture method of porous aluminium body, aluminium electrolutic capacitor and porous aluminium body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012211476A JP6001977B2 (en) | 2012-09-25 | 2012-09-25 | Porous aluminum body, aluminum electrolytic capacitor, and method for producing porous aluminum body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014065940A true JP2014065940A (en) | 2014-04-17 |
JP6001977B2 JP6001977B2 (en) | 2016-10-05 |
Family
ID=50298121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012211476A Active JP6001977B2 (en) | 2012-09-25 | 2012-09-25 | Porous aluminum body, aluminum electrolytic capacitor, and method for producing porous aluminum body |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6001977B2 (en) |
CN (1) | CN103658660B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016194118A (en) * | 2015-03-31 | 2016-11-17 | 三菱マテリアル株式会社 | Porous aluminum sintered body, porous aluminum composite member, manufacturing method of porous aluminum sintered body, and manufacturing method of porous aluminum composite member |
JP2019529709A (en) * | 2016-09-15 | 2019-10-17 | ハー.ツェー.スタルク タンタルム アンド ニオビウム ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck Tantalum and Niobium GmbH | Manufacturing method of electronic parts by 3D printing |
WO2020075733A1 (en) * | 2018-10-12 | 2020-04-16 | 東洋アルミニウム株式会社 | Method of manufacturing electrode material for aluminum electrolytic capacitor |
CN111364016A (en) * | 2020-04-10 | 2020-07-03 | 西安交通大学 | Method for preparing porous anode aluminum foil by aid of ALD (atomic layer deposition) assisted nitrogen-doped micro-nano aluminum powder |
CN114555869A (en) * | 2019-10-21 | 2022-05-27 | 日本轻金属株式会社 | Aluminum member, immunochromatography test strip, and method for producing aluminum member |
WO2022196117A1 (en) * | 2021-03-17 | 2022-09-22 | 東洋アルミニウム株式会社 | Electrode material for aluminum electrolytic capacitors and method for producing same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6762888B2 (en) * | 2017-02-10 | 2020-09-30 | 日本軽金属株式会社 | Manufacturing method of electrode holder and electrode for aluminum electrolytic capacitor |
CN107030286A (en) * | 2017-05-05 | 2017-08-11 | 湖南艾华集团股份有限公司 | A kind of preparation method of porous anodized aluminum material |
CN107863487B (en) * | 2017-08-23 | 2020-07-17 | 中航锂电(洛阳)有限公司 | Lithium-sulfur battery positive electrode and preparation method thereof, lithium-sulfur battery cell and lithium-sulfur battery |
CN108281290A (en) * | 2017-12-19 | 2018-07-13 | 湖南艾华集团股份有限公司 | Use the stack capacitor and preparation method thereof of powder sintered aluminium foil |
WO2020177626A1 (en) | 2019-03-01 | 2020-09-10 | 宜都东阳光化成箔有限公司 | Electrode structure body and fabrication method thereof |
TWI840553B (en) * | 2019-05-24 | 2024-05-01 | 日商日本輕金屬股份有限公司 | Aluminum foil, electrode for aluminum electrolytic capacitor, and method for producing aluminum foil |
CN110648849B (en) * | 2019-09-26 | 2021-12-14 | 宇启材料科技南通有限公司 | Valve metal porous body coating electrode foil, manufacturing method and electrolytic capacitor |
CN111804920A (en) * | 2020-07-01 | 2020-10-23 | 益阳艾华富贤电子有限公司 | Preparation method of anode foil of aluminum electrolytic capacitor based on laser sintering |
CN112053849B (en) * | 2020-07-23 | 2021-06-15 | 新疆众和股份有限公司 | Preparation method of electrode foil |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0394039A (en) * | 1989-09-07 | 1991-04-18 | Sumitomo Light Metal Ind Ltd | Aluminum alloy foil for cathode of electrolytic capacitor |
JPH09125214A (en) * | 1995-10-30 | 1997-05-13 | Furukawa Electric Co Ltd:The | Production of aluminum alloy foil for electrolytic capacitor cathode |
JP2002124438A (en) * | 2000-10-17 | 2002-04-26 | Sumitomo Light Metal Ind Ltd | Aluminum alloy foil for electrolytic capacitor cathode |
JP2008098279A (en) * | 2006-10-10 | 2008-04-24 | Toyo Aluminium Kk | Electrode material for aluminum electrolytic capacitor, and its manufacturing method |
JP2011052291A (en) * | 2009-09-03 | 2011-03-17 | Toyo Aluminium Kk | Porous aluminum material having improved bending strength and production method therefor |
-
2012
- 2012-09-25 JP JP2012211476A patent/JP6001977B2/en active Active
-
2013
- 2013-09-25 CN CN201310450303.9A patent/CN103658660B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0394039A (en) * | 1989-09-07 | 1991-04-18 | Sumitomo Light Metal Ind Ltd | Aluminum alloy foil for cathode of electrolytic capacitor |
JPH09125214A (en) * | 1995-10-30 | 1997-05-13 | Furukawa Electric Co Ltd:The | Production of aluminum alloy foil for electrolytic capacitor cathode |
JP2002124438A (en) * | 2000-10-17 | 2002-04-26 | Sumitomo Light Metal Ind Ltd | Aluminum alloy foil for electrolytic capacitor cathode |
JP2008098279A (en) * | 2006-10-10 | 2008-04-24 | Toyo Aluminium Kk | Electrode material for aluminum electrolytic capacitor, and its manufacturing method |
JP2011052291A (en) * | 2009-09-03 | 2011-03-17 | Toyo Aluminium Kk | Porous aluminum material having improved bending strength and production method therefor |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016194118A (en) * | 2015-03-31 | 2016-11-17 | 三菱マテリアル株式会社 | Porous aluminum sintered body, porous aluminum composite member, manufacturing method of porous aluminum sintered body, and manufacturing method of porous aluminum composite member |
JP2019529709A (en) * | 2016-09-15 | 2019-10-17 | ハー.ツェー.スタルク タンタルム アンド ニオビウム ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck Tantalum and Niobium GmbH | Manufacturing method of electronic parts by 3D printing |
JP7094271B2 (en) | 2016-09-15 | 2022-07-01 | タニオビス ゲー・エム・ベー・ハー | Manufacturing method of electronic parts by 3D printing |
WO2020075733A1 (en) * | 2018-10-12 | 2020-04-16 | 東洋アルミニウム株式会社 | Method of manufacturing electrode material for aluminum electrolytic capacitor |
JPWO2020075733A1 (en) * | 2018-10-12 | 2021-09-02 | 東洋アルミニウム株式会社 | Manufacturing method of electrode material for aluminum electrolytic capacitors |
JP7317852B2 (en) | 2018-10-12 | 2023-07-31 | 東洋アルミニウム株式会社 | METHOD FOR MANUFACTURING ELECTRODE MATERIAL FOR ALUMINUM ELECTROLYTIC CAPACITOR |
TWI837192B (en) * | 2018-10-12 | 2024-04-01 | 日商東洋鋁股份有限公司 | Method for manufacturing electrode materials for aluminum electrolytic capacitors |
CN114555869A (en) * | 2019-10-21 | 2022-05-27 | 日本轻金属株式会社 | Aluminum member, immunochromatography test strip, and method for producing aluminum member |
CN114555869B (en) * | 2019-10-21 | 2023-12-22 | 日本轻金属株式会社 | Aluminum member, test strip for immunochromatography, and method for producing aluminum member |
CN111364016A (en) * | 2020-04-10 | 2020-07-03 | 西安交通大学 | Method for preparing porous anode aluminum foil by aid of ALD (atomic layer deposition) assisted nitrogen-doped micro-nano aluminum powder |
CN111364016B (en) * | 2020-04-10 | 2021-05-28 | 西安交通大学 | Method for preparing porous anode aluminum foil by aid of ALD (atomic layer deposition) assisted nitrogen-doped micro-nano aluminum powder |
WO2022196117A1 (en) * | 2021-03-17 | 2022-09-22 | 東洋アルミニウム株式会社 | Electrode material for aluminum electrolytic capacitors and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
CN103658660B (en) | 2017-08-15 |
JP6001977B2 (en) | 2016-10-05 |
CN103658660A (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6001977B2 (en) | Porous aluminum body, aluminum electrolytic capacitor, and method for producing porous aluminum body | |
JP5614960B2 (en) | Porous aluminum material with improved bending strength and method for producing the same | |
JP4958510B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
WO2009130765A1 (en) | Electrode material for aluminum electrolytic capacitor and process for producing the electrode material | |
JP5769528B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
JP5511630B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
TWI544509B (en) | Electrode for electrolytic capacitor for electrolysis and method for manufacturing the same | |
JP5757867B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
JP6461794B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
TW201539502A (en) | Electrode foil for aluminum electrolytic capacitor and production method for same | |
JP2014057000A (en) | Method for manufacturing electrode for aluminum electrolytic capacitor use | |
JP6073255B2 (en) | Method for producing electrode material for aluminum electrolytic capacitor | |
JP5618714B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
JP2018206910A (en) | Electrode material for aluminum electrolytic capacitor, and method for manufacturing the same | |
JP6629288B2 (en) | Electrode material for aluminum electrolytic capacitor and method for producing the same | |
WO2019073616A1 (en) | Electrode material for aluminum electrolytic capacitors and method for producing same | |
JP6740213B2 (en) | Electrode material for aluminum electrolytic capacitor and manufacturing method thereof | |
JP2022143009A (en) | Electrode material for aluminum electrolytic capacitor, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160614 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160902 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6001977 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |