JP2014065673A - Photosensitization compound specific to target cell - Google Patents

Photosensitization compound specific to target cell Download PDF

Info

Publication number
JP2014065673A
JP2014065673A JP2012210943A JP2012210943A JP2014065673A JP 2014065673 A JP2014065673 A JP 2014065673A JP 2012210943 A JP2012210943 A JP 2012210943A JP 2012210943 A JP2012210943 A JP 2012210943A JP 2014065673 A JP2014065673 A JP 2014065673A
Authority
JP
Japan
Prior art keywords
group
compound
hydrogen atom
enzyme
target cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012210943A
Other languages
Japanese (ja)
Other versions
JP6116842B2 (en
Inventor
Yasuteru Urano
泰照 浦野
Hiroki Ichikawa
裕樹 市川
Tetsuo Nagano
哲雄 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2012210943A priority Critical patent/JP6116842B2/en
Publication of JP2014065673A publication Critical patent/JP2014065673A/en
Application granted granted Critical
Publication of JP6116842B2 publication Critical patent/JP6116842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photosensitization compound which can apply oxidation stress selectively to a target cell, particularly a reporter enzyme expression cell such as β-galactosidase.SOLUTION: A selective photosensitization compound includes a compound represented by general formula (I) or salt thereof, where A represents a univalent group cut by an enzyme; R, R, R, R, R, and Rrepresent a hydrogen atom, a hydroxyl group or the like; and X represents a C-Calkylene group.

Description

本発明は、標的細胞特異的に作用し得る新規な光増感用化合物、及び当該化合物を用いて特定の酵素が発現している標的細胞の細胞死を特異的に誘発する方法に関する。より詳細には、β−ガラクトシダーゼ等のレポーター酵素を発現する細胞を選択的に細胞死に導く光増感用化合物に関する。 The present invention relates to a novel photosensitizing compound capable of acting specifically on a target cell, and a method for specifically inducing cell death of a target cell expressing a specific enzyme using the compound. More specifically, the present invention relates to a photosensitizing compound that selectively induces cell death in cells expressing a reporter enzyme such as β-galactosidase.

光増感剤は、光照射により一重項酸素()などの活性酸素種を生成し、周辺環境に酸化ストレスを負荷することができる色素化合物である。暗所での毒性が比較的小さく、光照射を制御することによって任意のタイミングで酸化ストレスを負荷することが出来るため、条件付きで細胞死を導き、その機能を解析するためのツールとしての期待が高まっている。 A photosensitizer is a dye compound that can generate active oxygen species such as singlet oxygen ( 1 O 2 ) by light irradiation and can load oxidative stress on the surrounding environment. Expected as a tool to conditionally induce cell death and analyze its function because it is relatively toxic in the dark and can be loaded with oxidative stress at any time by controlling light irradiation Is growing.

代表的な光増感剤としては、フォトフリンやポルフィリンが当業界で知られている。しかしながら、特定の細胞群を細胞死を導くためには、それら標的細胞でのみ光毒性を発揮する必要があるが、従来の光増感剤は生体内に投与された後に光照射により必ず活性酸素種を生成するため、酸化ストレスを与えるべき細胞や組織以外において増感剤による非特異的な障害が起こるという問題があった。例えば、光増感剤を用いてin vivoで特定細胞の選択的細胞死を狙う場合、標的細胞以外に分布した光増感剤に起因する非特異的細胞死が発現し、高い空間分解での選択的細胞死の実現は難しい。多様な細胞のうち、特定の種類の細胞にだけ酸化ストレスを負荷し、細胞死を実現することができれば、画期的な生物学的ツールとしての活用が期待される。 As typical photosensitizers, photofurin and porphyrin are known in the art. However, in order to induce cell death in a specific cell group, it is necessary to exhibit phototoxicity only in those target cells. However, conventional photosensitizers are always activated by irradiation with light after being administered in vivo. In order to generate seeds, there has been a problem that non-specific damage caused by the sensitizer occurs outside the cells and tissues to which oxidative stress is to be applied. For example, when a specific cell death is aimed at in vivo using a photosensitizer, nonspecific cell death caused by a photosensitizer distributed outside the target cell is expressed, and high spatial resolution is achieved. Realizing selective cell death is difficult. If oxidative stress is applied to only certain types of cells among various cells and cell death can be realized, it is expected to be used as an innovative biological tool.

β−ガラクトシダーゼは、緑色蛍光タンパク質(GFP)、ルシフェラーゼ、β−ガラクトシダーゼ、アルカリホスファターゼ等と同様に、転写制御を検証したり、トランスフェクションの効率を評価するためのレポーター酵素として広く用いられている(非特許文献1及び2)。これまで、生体細胞中におけるβ−ガラクトシダーゼの活性を可視化するための蛍光性基質の開発が試みられているが、その選択性が十分でなかったり、細胞透過性が低いなどの問題があった(非特許文献3)。また、β−ガラクトシダーゼ発現細胞群に酸化ストレスを負荷してその機能を検証するためには、それら標的細胞でのみ光毒性を発揮する必要があるが、従来の光増感剤では十分な選択性を有するものがなく、汎用されるに至っていないのが現状である。 Similar to green fluorescent protein (GFP), luciferase, β-galactosidase, alkaline phosphatase and the like, β-galactosidase is widely used as a reporter enzyme for verifying transcriptional control and evaluating transfection efficiency ( Non-Patent Documents 1 and 2). Until now, development of a fluorescent substrate for visualizing the activity of β-galactosidase in living cells has been attempted, but there are problems such as insufficient selectivity and low cell permeability ( Non-patent document 3). In addition, in order to load β-galactosidase-expressing cells with oxidative stress and verify their functions, it is necessary to exhibit phototoxicity only in those target cells, but conventional photosensitizers have sufficient selectivity. At present, there is no such thing that has not been widely used.

J.Alam et al.、Anal.Biochem.、1990、188、245J. et al. Alam et al. Anal. Biochem. 1990, 188, 245 D.J.Spergel et al.、Prog.Neurobiol.、2001、63、673D. J. et al. Supergel et al. Prog. Neurobiol. , 2001, 63, 673 V.A.Rakhmanova et al.、Anal.Biochem.、1998、257、234V. A. Rakhmanova et al. Anal. Biochem. 1998, 257, 234

本発明の解決しようする課題は、標的細胞、特にβ−ガラクトシダーゼなどのレポーター酵素発現細胞に対して選択的に酸化ストレスを負荷することができる光増感用化合物を提供することにある。 The problem to be solved by the present invention is to provide a photosensitizing compound capable of selectively applying oxidative stress to a target cell, particularly a reporter enzyme-expressing cell such as β-galactosidase.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、β−ガラクトシダーゼ等のレポーター酵素によって切断される基を導入した含セレンロドール骨格の化合物を用いることで、酵素反応によるスピロ環の開環を制御して当該化合物の可視光吸収を変化させることによって、当該酵素発現細胞を選択的に細胞死に導く光増感作用が可能となることを見出した。この知見に基づき、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a compound having a serenrodol skeleton containing a group cleaved by a reporter enzyme such as β-galactosidase to thereby produce a spiro ring by an enzymatic reaction. It has been found that by controlling the ring opening of the compound to change the visible light absorption of the compound, a photosensitizing action that selectively causes cell death of the enzyme-expressing cells becomes possible. Based on this finding, the present invention has been completed.

すなわち、本発明は、一態様において、以下の式(I)で表される化合物又はその塩を含む選択的光増感用化合物を提供するものである。

Figure 2014065673
That is, this invention provides the compound for selective photosensitization containing the compound or its salt represented by the following formula | equation (I) in one aspect | mode.
Figure 2014065673

式中、Aは酵素によって切断される一価の基を表し;Rは水素原子又はベンゼン環に結合する1個ないし4個の同一又は異なる置換基を表し;R、R、R、R、R、及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子又はアルキル基を示し;XはC-Cアルキレン基を表す。好ましくは、R、R、R、R、R、R、及びRが水素であり、R及びRがエチル基であり、Xがメチレン基である。 In the formula, A represents a monovalent group cleaved by an enzyme; R 1 represents 1 to 4 identical or different substituents bonded to a hydrogen atom or a benzene ring; R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom; R 8 and R 9 each independently represent a hydrogen atom or an alkyl group; X is C 1 —C 3 represents an alkylene group. Preferably, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are hydrogen, R 8 and R 9 are ethyl groups, and X is a methylene group.

上記Aは、好ましくは、レポーター酵素によって切断される基であり、ここで、レポーター酵素は、好ましくは、β−ガラクトシダーゼ、β−ラクタマーゼ、アルカリフォスファターゼ、ルシフェラーゼ、又はペルオキシダーゼである。 A is preferably a group cleaved by a reporter enzyme, wherein the reporter enzyme is preferably β-galactosidase, β-lactamase, alkaline phosphatase, luciferase, or peroxidase.

より好ましい態様では、前記レポーター酵素がβ−ガラクトシダーゼであって、Aがガラクトピラノシル基である。具体的には、以下の式(II)で表される化合物又はその塩を含む選択的光増感用化合物である(式中、Etはエチル基を表す)。

Figure 2014065673
In a more preferred embodiment, the reporter enzyme is β-galactosidase and A is a galactopyranosyl group. Specifically, it is a compound for selective photosensitization including a compound represented by the following formula (II) or a salt thereof (wherein Et represents an ethyl group).
Figure 2014065673

別の態様において、本発明は、以下の式(III)で表される光増感剤に関する。

Figure 2014065673
式中、R〜Rは、上記式(I)における定義と同じである。当該式(III)の光増感剤は、式(I)の化合物と酵素との反応によって基Aが切断され、含セレンロドール骨格におけるスピロ環部位が開環し構造変化したものである。当該化合物に光照射することによって、空気中の酸素から一重項酸素()などの活性酸素種が生成され、それによって、標的細胞に酸化ストレスを与え細胞死を誘発することができる。すなわち、上記の一般式(I)で表される本発明の化合物はそれ自身は光照射に伴ない活性酸素種を生成する光増感能を有しないが、酵素との接触による基Aの切断によって上記の一般式(III)で表される強い光増感能を有する化合物を与える性質を有する。 In another embodiment, the present invention relates to a photosensitizer represented by the following formula (III).
Figure 2014065673
In the formula, R 1 to R 9 are the same as defined in the above formula (I). In the photosensitizer of the formula (III), the group A is cleaved by the reaction of the compound of the formula (I) with an enzyme, and the spiro ring site in the serenrodol skeleton is opened to change the structure. By irradiating the compound with light, reactive oxygen species such as singlet oxygen ( 1 O 2 ) are generated from oxygen in the air, thereby applying oxidative stress to the target cell and inducing cell death. That is, the compound of the present invention represented by the above general formula (I) does not itself have a photosensitizing ability to generate reactive oxygen species upon light irradiation, but the group A is cleaved by contact with an enzyme. To give a compound having a strong photosensitizing ability represented by the above general formula (III).

別の態様において、本発明は、上記式(I)の光増感用化合物を用いて、特定の酵素が発現している標的細胞の細胞死を特異的に誘発する方法を提供するものである。当該方法は、式(I)の光増感用化合物と当該標的細胞において特異的に発現する酵素とを接触させ、上記式(III)で表される化合物を生成させる工程、及び、励起光照射を行って前記式(III)で表される化合物により活性酸素種を発生させて前記標的細胞に酸化ストレスを負荷する工程を含むことを特徴とする。好ましくは、標的細胞は、β−ガラクトシダーゼ発現細胞である。 In another aspect, the present invention provides a method for specifically inducing cell death of a target cell in which a specific enzyme is expressed, using the photosensitizing compound of the above formula (I). . The method comprises a step of bringing a compound for photosensitization of formula (I) into contact with an enzyme that is specifically expressed in the target cell to produce a compound represented by formula (III) above, and irradiation with excitation light And a step of generating reactive oxygen species with the compound represented by the formula (III) and loading the target cells with oxidative stress. Preferably, the target cell is a β-galactosidase expressing cell.

また、本発明は、特定の酵素が発現している標的細胞の細胞死を特異的に誘発するための、式(I)の光増感用化合物の使用に関する。上記と同様、標的細胞は、β−ガラクトシダーゼ発現細胞であることが好ましい。 The present invention also relates to the use of the photosensitizing compound of formula (I) for specifically inducing cell death in target cells expressing a specific enzyme. As above, the target cell is preferably a β-galactosidase expressing cell.

本発明によれば、β−ガラクトシダーゼ等のレポーター酵素によって切断される基を導入した含セレンロドール骨格の化合物を用いることで、酵素反応によるスピロ環の開環を制御して当該化合物の可視光吸収を変化させることによって、当該酵素発現細胞を選択的に細胞死に導く光増感作用をもたらすことが可能になる。   According to the present invention, by using a compound having a selenrodol skeleton into which a group cleaved by a reporter enzyme such as β-galactosidase is introduced, the opening of the spiro ring by the enzymatic reaction is controlled, and the visible light absorption of the compound is achieved. It is possible to bring about a photosensitizing effect that selectively causes cell death of the enzyme-expressing cells.

より詳細には、式(I)の化合物は、酵素との反応前は可視光吸収を持たないため光毒性を極めて小さく抑えられているが、酵素と反応により基Aが切断され含セレンロドール骨格におけるスピロ環部位が開環する構造変化によって可視光吸収が大きく回復し、高い光毒性を有するようになる。かかる手法を用いることによって、特定の酵素をトランスフェクションした標的細胞のみが光増感剤の濃度依存的に細胞死に導かれるため、従来の光増感剤では達成できなかった選択的な光毒性の制御が可能となるという優れた効果を奏するものである。 More specifically, the compound of formula (I) has no visible light absorption before the reaction with the enzyme, so that the phototoxicity is suppressed to a very low level. Due to the structural change in which the spiro ring site is opened, visible light absorption is greatly recovered, and high phototoxicity is obtained. By using such a technique, only target cells transfected with a specific enzyme lead to cell death depending on the concentration of the photosensitizer. Therefore, selective phototoxicity that could not be achieved with conventional photosensitizers. It has an excellent effect that control becomes possible.

また、光増感剤の基本骨格として細胞内滞留性の高いロドール骨格を用いているため、本発明の化合物は、細胞内に滞留し十分な光毒性を発揮し得ること、及び生体内に近いpH環境において光増感剤として用いることが可能な優れた吸収特性を有するという効果も奏する。 Further, since a rhodol skeleton having a high intracellular retention property is used as the basic skeleton of the photosensitizer, the compound of the present invention can be retained in the cell and exhibit sufficient phototoxicity, and is close to the living body. There is also an effect of having excellent absorption characteristics that can be used as a photosensitizer in a pH environment.

特に、本発明で用いられる式(III)の光増感剤は、汎用されるランプの緑色の光で励起でき、特別な装置が無くても任意のタイミングでトランスフェクション細胞を死に導く系が設立できるため、レポーター酵素として広く汎用されているβ−ガラクトシダーゼを発現させる細胞を対象とする場合に非常に有用である。そして、ショウジョウバエやマウスといった遺伝学が確立している動物を用いて、特定の部位や組織でβ−ガラクトシダーゼを発現させる技術と組み合わせることも容易であり、in vivoでの任意の細胞に任意のタイミングで酸化ストレスを負荷してその機能を調査することも可能になる点で実用性の面でも優れたものである。 In particular, the photosensitizer of formula (III) used in the present invention can be excited by the green light of a general-purpose lamp, and a system that leads to the death of transfected cells at any timing without special equipment is established. Therefore, it is very useful when targeting cells that express β-galactosidase, which is widely used as a reporter enzyme. It can be easily combined with a technique for expressing β-galactosidase at a specific site or tissue using an animal with established genetics such as Drosophila or mouse, and can be applied to any cell in vivo at any timing. It is also excellent in terms of practicality in that it can be subjected to oxidative stress to investigate its function.

図1は、本発明の光増感用化合物であるSeRhodol−galと、当該化合物とβ−ガラクトシダーゼとの酵素反応によって生じる光増感剤であるSeRhodolの吸収スペクトル変化(図1a)、蛍光スペクトル変化(図1b)、及び励起された一重項酸素()の発光(図1c)を示した図である。FIG. 1 shows changes in the absorption spectrum (FIG. 1a) and fluorescence spectrum of SeRhodol, a photosensitizer produced by an enzymatic reaction between SeRhodol-gal, which is a photosensitizing compound of the present invention, and β-galactosidase. (FIG. 1 b) and the emission of excited singlet oxygen ( 1 O 2 ) (FIG. 1 c). 図2は、本発明の光増感用化合物であるSeRhodol−galと、当該化合物とβ−ガラクトシダーゼとの酵素反応によって生じる光増感剤であるSeRhodolの吸収スペクトル変化のpH依存性を示した図である。FIG. 2 is a diagram showing the pH dependence of the absorption spectrum change of SeRhodol-gal, which is a photosensitizer produced by an enzymatic reaction between SeRhodol-gal, which is a photosensitizing compound of the present invention, and β-galactosidase. It is. 図3は、β−ガラクトシダーゼ(LacZ)を導入したHEK293細胞を本発明の化合物により光増感処理を行った後のCCKアッセイの結果を、ルシフェラーゼ(Luc)を導入した場合との比較として示すグラフである。FIG. 3 is a graph showing the result of CCK assay after HEK293 cells introduced with β-galactosidase (LacZ) are subjected to photosensitization treatment with the compound of the present invention as compared with the case where luciferase (Luc) is introduced. It is.

以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Hereinafter, embodiments of the present invention will be described. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.

本明細書において、アルキル基は直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなるアルキル基のいずれであってもよい。アルキル基の炭素数は特に限定されないが、例えば炭素数1〜6個程度、好ましくは炭素数1〜4個程度である。本明細書において、アルキル基は任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれであってもよい)、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、アシル基、又はアリール基などを挙げることができるが、これらに限定されることはない。アルキル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アルキル部分を含む他の置換基(例えばアルキルオキシ基やアラルキル基など)のアルキル部分についても同様である。 In this specification, the alkyl group may be any of an alkyl group composed of a straight chain, a branched chain, a ring, or a combination thereof. Although carbon number of an alkyl group is not specifically limited, For example, it is about C1-C6, Preferably it is C1-C4. In the present specification, the alkyl group may have one or more arbitrary substituents. Examples of the substituent include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group. A group, an aryl group, and the like can be mentioned, but are not limited thereto. When the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl moiety of other substituents containing an alkyl moiety (for example, an alkyloxy group or an aralkyl group).

また、本明細書において、アリール基は単環性アリール基又は縮合多環性アルール基のいずれであってもよく、環構成原子としてヘテロ原子(例えば、酸素原子、窒素原子、又は硫黄原子など)を1個以上含んでいてもよい。本明細書において、アリール基はその環上に任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシル基などを挙げることができるが、これらに限定されることはない。アリール基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アリール部分を含む他の置換基(例えばアリールオキシ基やアラルキル基など)のアリール部分についても同様である。 In the present specification, the aryl group may be either a monocyclic aryl group or a condensed polycyclic aryl group, and a hetero atom (for example, an oxygen atom, a nitrogen atom, or a sulfur atom) as a ring constituent atom 1 or more may be included. In the present specification, an aryl group may have one or more arbitrary substituents on the ring. Examples of the substituent include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group. When the aryl group has two or more substituents, they may be the same or different. The same applies to the aryl moiety of other substituents containing an aryl moiety (for example, an aryloxy group and an aralkyl group).

(1)選択的光増感用化合物
本発明の選択的光増感用化合物は、一態様において、以下の一般式(I)で表される構造を有する化合物である。

Figure 2014065673
(1) Compound for selective photosensitization The compound for selective photosensitization of the present invention is a compound having a structure represented by the following general formula (I) in one aspect.
Figure 2014065673

上記一般式(I)において、Rは水素原子又はベンゼン環に結合する1個ないし4個の置換基を示す。置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシル基などを挙げることができるが、これらに限定されることはない。ベンゼン環上に2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。Rとしては、水素原子、低級アルキル基又は低級アルコキシ基であることがより好ましい。水素原子が特に好ましい。 In the above general formula (I), R 1 represents a hydrogen atom or 1 to 4 substituents bonded to a benzene ring. Examples of the substituent include, but are not limited to, an alkyl group, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group. When having two or more substituents on the benzene ring, they may be the same or different. R 1 is more preferably a hydrogen atom, a lower alkyl group or a lower alkoxy group. A hydrogen atom is particularly preferred.

、R、R、R、R、及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を示す。R及びRが水素原子であることが好ましい。また、R、R、R、Rが水素原子であることも好ましい。R、R、R、R、R、及びRがいずれも水素原子であることがさらに好ましい。 R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom. R 2 and R 7 are preferably hydrogen atoms. It is also preferred that R 3 , R 4 , R 5 , R 6 are hydrogen atoms. More preferably, R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are all hydrogen atoms.

及びRはそれぞれ独立に水素原子又はアルキル基を示す。R及びRがともにアルキル基を示す場合には、それらは同一でも異なっていてもよい。例えば、R及びRはそれぞれ独立に、メチル基又はエチル基であることが好ましく、R及びRがいずれもエチル基である場合がさらに好ましい。 R 8 and R 9 each independently represent a hydrogen atom or an alkyl group. When R 8 and R 9 both represent an alkyl group, they may be the same or different. For example, R 8 and R 9 are each independently preferably a methyl group or an ethyl group, and more preferably R 8 and R 9 are both ethyl groups.

XはC−Cアルキレン基を示す。アルキレン基は直鎖状アルキレン基又は分枝鎖状アルキレン基のいずれであってもよい。例えば、メチレン基(−CH−)、エチレン基(−CH−CH−)、プロピレン基(−CH−CH−CH−)のほか、分枝鎖状アルキレン基として−CH(CH)−、−CH−CH(CH)−、−CH(CHCH)−なども使用することができる。これらのうち、メチレン基又はエチレン基が好ましく、メチレン基がさらに好ましい。 X represents a C 1 -C 3 alkylene group. The alkylene group may be a linear alkylene group or a branched alkylene group. For example, in addition to a methylene group (—CH 2 —), an ethylene group (—CH 2 —CH 2 —), a propylene group (—CH 2 —CH 2 —CH 2 —), a branched alkylene group such as —CH ( CH 3 ) —, —CH 2 —CH (CH 3 ) —, —CH (CH 2 CH 3 ) — and the like can also be used. Among these, a methylene group or an ethylene group is preferable, and a methylene group is more preferable.

基Aは、酵素によって切断される一価の基を表し、Aを切断するための酵素としては、例えば、還元酵素、酸化酵素、又は加水分解酵素などを挙げることができ、より具体的には、例えば、β−ガラクトシダーゼ、β−ラクタマーゼ、アルカリフォスファターゼ、ルシフェラーゼ、ペルオキシダーゼチトクロームP450酸化酵素、β-グルコシダーゼ、β-グルクロニダーゼ、β-ヘキソサミニダーゼ、ラクターゼ、などを挙げることができるが、これらに限定されることはない。好ましくは、β−ガラクトシダーゼ、β−ラクタマーゼ、アルカリフォスファターゼ、ルシフェラーゼ、又はペルオキシダーゼのようなレポーターとして用いられ得る酵素である。最も好ましくは、β−ガラクトシダーゼである。 The group A represents a monovalent group that can be cleaved by an enzyme. Examples of the enzyme for cleaving A include a reductase, an oxidase, a hydrolase, and the like. More specifically, Examples include, but are not limited to, β-galactosidase, β-lactamase, alkaline phosphatase, luciferase, peroxidase cytochrome P450 oxidase, β-glucosidase, β-glucuronidase, β-hexosaminidase, lactase, etc. It will never be done. Preferred are enzymes that can be used as reporters such as β-galactosidase, β-lactamase, alkaline phosphatase, luciferase, or peroxidase. Most preferred is β-galactosidase.

上記式(I)で表される化合物(式(II)の態様の場合を含む。以下の記載においても同じ。)は塩として存在する場合がある。塩としては、塩基付加塩、酸付加塩、アミノ酸塩などを挙げることができる。塩基付加塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩、ピペリジン塩、モルホリン塩などの有機アミン塩を挙げることができ、酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩、クエン酸塩、シュウ酸塩などの有機酸塩を挙げることができる。アミノ酸塩としてはグリシン塩などを例示することができる。もっとも、本発明の化合物の塩はこれらに限定されることはない。 The compound represented by the above formula (I) (including the case of the embodiment of formula (II). The same applies to the following description) may exist as a salt. Examples of the salt include base addition salts, acid addition salts, amino acid salts and the like. Examples of the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or organic amine salts such as triethylamine salt, piperidine salt, morpholine salt, and acid addition salt. Examples thereof include mineral acid salts such as hydrochloride, sulfate, and nitrate, and organic acid salts such as methanesulfonate, paratoluenesulfonate, citrate, and oxalate. Examples of amino acid salts include glycine salts. However, the salt of the compound of the present invention is not limited to these.

式(I)で表される化合物は、置換基の種類に応じて1個または2個以上の不斉炭素を有する場合があり、光学異性体又はジアステレオ異性体などの立体異性体が存在する場合がある。純粋な形態の立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。 The compound represented by the formula (I) may have one or more asymmetric carbons depending on the type of substituent, and there are stereoisomers such as optical isomers or diastereoisomers. There is a case. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.

式(I)で表される化合物又はその塩は、水和物又は溶媒和物として存在する場合もあるが、これらの物質はいずれも本発明の範囲に包含される。溶媒和物を形成する溶媒の種類は特に限定されないが、例えば、エタノール、アセトン、イソプロパノールなどの溶媒を例示することができる。 The compound represented by the formula (I) or a salt thereof may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention. Although the kind of solvent which forms a solvate is not specifically limited, For example, solvents, such as ethanol, acetone, isopropanol, can be illustrated.

本明細書の実施例には、一般式(I)で表される本発明の化合物に包含される代表的化合物についての製造方法が具体的に示されているので、当業者は本明細書の開示を参照することにより、及び必要に応じて出発原料や試薬、反応条件などを適宜選択することにより、一般式(I)に包含される任意の化合物を容易に製造することができる。   In the examples of the present specification, production methods for typical compounds included in the compounds of the present invention represented by the general formula (I) are specifically shown. Any compound included in the general formula (I) can be easily produced by referring to the disclosure and appropriately selecting starting materials, reagents, reaction conditions and the like as necessary.

(2)本発明における光増感作用の機構
本発明により提供される式(I)で表される選択的光増感用化合物を細胞内に取り込ませた場合、Aで表される基を切断可能な酵素が発現している細胞では該細胞内でAで表される基が切断されて光増感能を有する式(III)の化合物が生成する。

Figure 2014065673
(2) Mechanism of photosensitizing action in the present invention When the selective photosensitizing compound represented by the formula (I) provided by the present invention is incorporated into cells, the group represented by A is cleaved. In a cell expressing a possible enzyme, the group represented by A is cleaved in the cell to produce a compound of formula (III) having a photosensitizing ability.
Figure 2014065673

例えば、式(II)の光増感用化合物の場合には、以下のようにβ−ガラクトシダーゼによって基Aの切断とスピロ環の開環が生じ、式(III)に対応する光増感剤が生成する。

Figure 2014065673
For example, in the case of a photosensitizing compound of the formula (II), cleavage of the group A and opening of the spiro ring are caused by β-galactosidase as follows, and a photosensitizer corresponding to the formula (III) is obtained. Generate.
Figure 2014065673

この状態で励起光を照射すると、該細胞内に存在する上記式(II)で表される化合物から一重項酸素()などの活性酸素種が生成し、酸化ストレスが該細胞に負荷され、結果として細胞死が誘発される。一方、式(I)で表される選択的光増感用化合物を取り込んだ細胞がAで表される基を切断可能な酵素又は活性酸素種を発現していない場合には式(III)で表される化合物は生成せず、光照射により一重項酸素などの活性酸素種が該細胞内で生成することはない。式(I)で表される化合物自体も光増感能を有していないことから、光照射によっても酸化ストレス負荷されない。このように式(I)で表される選択的光増感用化合物を用いることにより、Aで表される基を切断可能な酵素又は活性酸素種が発現している細胞のみを選択的に細胞死に導くことが可能である。 When irradiated with excitation light in this state, active oxygen species such as singlet oxygen ( 1 O 2 ) are generated from the compound represented by the above formula (II) existing in the cell, and oxidative stress is loaded on the cell. As a result, cell death is induced. On the other hand, if the cell incorporating the selective photosensitizing compound represented by formula (I) does not express an enzyme or reactive oxygen species capable of cleaving the group represented by A, formula (III) The represented compound is not generated, and reactive oxygen species such as singlet oxygen are not generated in the cells by light irradiation. Since the compound represented by the formula (I) itself does not have photosensitizing ability, it is not loaded with oxidative stress even by light irradiation. As described above, by using the selective photosensitizing compound represented by the formula (I), only cells expressing an enzyme or reactive oxygen species capable of cleaving the group represented by A are selectively selected. It can lead to death.

従って、本発明の式(I)で表される化合物は、レポーター酵素を発現させた細胞系における細胞生物学的研究用のツールとして用いることができる。細胞生物学的研究においては公知の遺伝子導入方法を使用することができ、外界からの刺激への応答を光照射前後で比較することで、遺伝子導入された細胞の機能、役割を解析することができる。 Therefore, the compound represented by the formula (I) of the present invention can be used as a tool for cell biological research in a cell line in which a reporter enzyme is expressed. In cell biology research, known gene transfer methods can be used, and the function and role of the gene-transferred cells can be analyzed by comparing the response to external stimuli before and after light irradiation. it can.

本発明の式(I)で表される選択的光増感用化合物、及び当該化合物と標的酵素との酵素反応によって生じる光増感剤である式(III)で表される光増感剤は、典型的には、以下のような酸解離平衡を示し、図2に示すとおり生体内環境である中性pH付近における吸光度差が非常に大きいため、光増感作用の選択性をOn/Off的に提供することができる。従って、上記のような細胞生物学的研究用のツールの用途において、非常に有用である。

Figure 2014065673
The compound for selective photosensitization represented by the formula (I) of the present invention, and the photosensitizer represented by the formula (III), which is a photosensitizer generated by an enzymatic reaction between the compound and a target enzyme, Typically, the acid dissociation equilibrium is shown as follows, and as shown in FIG. 2, the absorbance difference in the vicinity of neutral pH, which is the in vivo environment, is very large. Can be provided. Therefore, it is very useful in the use of the tool for cell biological research as described above.
Figure 2014065673

(3)本発明の光増感用化合物による選択的細胞死の誘発方法
上述の光増感作用の機構を示すため、本発明の光増感用化合物を、特定の酵素が発現している標的細胞の細胞死を特異的に誘発する方法に用いることができる。具体的には、式(I)の光増感用化合物と標的細胞において特異的に発現するβ−ガラクトシダーゼ等の酵素とを接触させ、式(III)で表される化合物を生成させる工程、次いで、励起光照射を行って前記式(III)で表される化合物により活性酸素種を発生させて前記標的細胞に酸化ストレスを負荷する工程を行うことによって、β−ガラクトシダーゼ発現細胞等の標的細胞のみを特異的に細胞死に導くことができる。
(3) Method for inducing selective cell death by the photosensitizing compound of the present invention In order to show the above-described mechanism of photosensitizing action, the photosensitizing compound of the present invention is expressed as a target expressed by a specific enzyme. It can be used in a method for specifically inducing cell death of cells. Specifically, the step of contacting the photosensitizing compound of formula (I) with an enzyme such as β-galactosidase that is specifically expressed in the target cell to produce a compound represented by formula (III), Only target cells such as β-galactosidase-expressing cells by performing a step of irradiating excitation light to generate reactive oxygen species with the compound represented by the formula (III) and loading the target cells with oxidative stress. Can specifically lead to cell death.

本発明の光増感用化合物と標的細胞において特異的に発現する酵素とを接触させる手段としては、代表的には、光増感用化合物を含む溶液を試料添加、塗布、或いは噴霧することが挙げられるが、その用途に応じて適宜選択することが可能である。 As a means for bringing the photosensitizing compound of the present invention into contact with an enzyme that is specifically expressed in a target cell, typically, a sample containing a photosensitizing compound may be added, applied, or sprayed. Although it is mentioned, it is possible to select appropriately according to the use.

また、標的細胞に行う光照射は、当該細胞に対して光を直接或いは導波管(光ファイバー等)を介して照射することができる。光源としては、式(III)で表される光増感剤の吸収波長を含む光を照射できるものであれば任意の光源を用いることができ、本発明の方法を実施する環境等に応じて適宜選択され得る。 Moreover, the light irradiation performed to a target cell can irradiate the said cell with light directly or via a waveguide (optical fiber etc.). As the light source, any light source can be used as long as it can irradiate light including the absorption wavelength of the photosensitizer represented by the formula (III). Depending on the environment in which the method of the present invention is performed, etc. It can be appropriately selected.

本発明の光増感用化合物としては、上記一般式(I)で表される化合物又はその塩をそのまま用いてもよいが、必要に応じて、試薬の調製に通常用いられる添加剤を配合して組成物として用いてもよい。例えば、生理的環境で試薬を用いるための添加剤として、溶解補助剤、pH調節剤、緩衝剤、等張化剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。これらの組成物は、一般的には、粉末形態の混合物、凍結乾燥物、顆粒剤、錠剤、液剤など適宜の形態の組成物として提供されるが、使用時に注射用蒸留水や適宜の緩衝液に溶解して適用すればよい。 As the photosensitizing compound of the present invention, the compound represented by the above general formula (I) or a salt thereof may be used as it is. And may be used as a composition. For example, additives such as a solubilizer, pH adjuster, buffer, and isotonic agent can be used as an additive for using the reagent in a physiological environment. Is possible. These compositions are generally provided as a composition in an appropriate form such as a mixture in powder form, a lyophilized product, a granule, a tablet, or a liquid, but distilled water for injection or an appropriate buffer at the time of use. It is sufficient to dissolve and apply to.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these.

以下のスキームに従って、本発明の選択的光増感用化合物である化合物5(SeRhodol−gal)を合成した。

Figure 2014065673
Compound 5 (SeRhodol-gal), which is a selective photosensitizing compound of the present invention, was synthesized according to the following scheme.
Figure 2014065673

(a)化合物1(N,N−ジエチル−4−ヒドロキシベンズアミド)の合成

Figure 2014065673
4−ヒドロキシ安息香酸(3.0g、21.7mmol)を15mLのSOCl中に懸濁させ、2時間還流した後、反応溶媒を減圧除去した。残渣をジクロロメタン50mLに溶解し、ジエチルアミン15mLを滴下した。混合物を室温で2時間攪拌し、反応溶媒を減圧除去した。再度、ジエチルアミン20mLを添加し、18時間還流した。反応溶媒を減圧除去し、粗生成物をシリカゲルクロマトグラフィーで精製して(ジクロロメタン、5%メタノール)、白色固体の目的化合物を得た(3.28g、収率78%)。 (A) Synthesis of Compound 1 (N, N-diethyl-4-hydroxybenzamide)
Figure 2014065673
4-Hydroxybenzoic acid (3.0 g, 21.7 mmol) was suspended in 15 mL of SOCl 2 and refluxed for 2 hours, after which the reaction solvent was removed under reduced pressure. The residue was dissolved in 50 mL of dichloromethane, and 15 mL of diethylamine was added dropwise. The mixture was stirred at room temperature for 2 hours and the reaction solvent was removed under reduced pressure. Again, 20 mL of diethylamine was added and refluxed for 18 hours. The reaction solvent was removed under reduced pressure, and the crude product was purified by silica gel chromatography (dichloromethane, 5% methanol) to obtain the target compound as a white solid (3.28 g, yield 78%).

(b)化合物2(4−(アリルオキシ)−N,N−ジエチルベンズアミド)の合成

Figure 2014065673
N,N−ジエチル−4−ヒドロキシベンズアミド(1.2g、6.25mmol)及びKCO(2.0g、14.5mmol)をジメチルホルムアミド(DMF)20mLに懸濁し、臭化アリル20mL(23.7mmol)を滴下した。混合物を80℃まで加熱し、攪拌した。室温に冷却後、反応溶液に水50mLを添加し、酢酸エチルで抽出し、食塩水で洗浄後、NaSOで乾燥した。反応溶媒を減圧除去し、シリカゲルクロマトグラフィーで精製して(ジクロロメタン)、無色油状の目的化合物を得た(1.36g、収率75%)。 (B) Synthesis of compound 2 (4- (allyloxy) -N, N-diethylbenzamide)
Figure 2014065673
N, N-diethyl-4-hydroxybenzamide (1.2 g, 6.25 mmol) and K 2 CO 3 (2.0 g, 14.5 mmol) were suspended in 20 mL of dimethylformamide (DMF), and 20 mL of allyl bromide (23 0.7 mmol) was added dropwise. The mixture was heated to 80 ° C. and stirred. After cooling to room temperature, 50 mL of water was added to the reaction solution, extracted with ethyl acetate, washed with brine, and dried over Na 2 SO 4 . The reaction solvent was removed under reduced pressure, and the residue was purified by silica gel chromatography (dichloromethane) to obtain the target compound as a colorless oil (1.36 g, yield 75%).

H NMR(300MHz,CDCl): 1.19(br s, 6H), 3.43 (br s, 4H), 4.58 (d, 2H, J = 6.0 Hz), 5.45 - 5.48 (m, 2H), 6.03 - 6.11 (m, 1H), 6.93 (d, 2H, J = 8.8 Hz), 7.35 (d, 2H, J = 8.8 Hz)
13C NMR(75MHz,CDCl): 168.8, 101.6, 114.4, 117.9, 128.2, 132.9, 171.2, 188.8
LRMS (ESI):[M+H] 234,Found 234
1 H NMR (300 MHz, CDCl 3 ): 1.19 (br s, 6H), 3.43 (br s, 4H), 4.58 (d, 2H, J = 6.0 Hz), 5.45-5.48 (m, 2H), 6.03-6.11 (m, 1H), 6.93 (d, 2H, J = 8.8 Hz), 7.35 (d, 2H, J = 8.8 Hz)
13 C NMR (75 MHz, CDCl 3 ): 168.8, 101.6, 114.4, 117.9, 128.2, 132.9, 171.2, 188.8
LRMS (ESI + ): [M + H] + 234, Found 234

(c)3,3’−ジセランジイルビス(N,N−ジエチルアニリン)の合成
(c−1) N,N−ジエチル−3−ブロモアニリンの合成:

Figure 2014065673
3−ブロモアニリン(6.3g、36.7mmol)をリン酸トリエチル6.2ml(36.2mmol)に加え、210℃まで加熱し、3時間攪拌した。室温まで冷却した後、反応溶液に食塩水を添加してCHClで抽出し、食塩水で洗浄後、NaSOによって乾燥した。続いて、反応溶媒を減圧除去し、粗生成物をシリカゲルクロマトグラフィーで精製して(ジクロロメタン/ヘキサン=2/8)、無色油状の目的化合物(5.74g、収率69%)を得た。 (C) Synthesis of 3,3′-diselanediylbis (N, N-diethylaniline) (c-1) Synthesis of N, N-diethyl-3-bromoaniline:
Figure 2014065673
3-Bromoaniline (6.3 g, 36.7 mmol) was added to 6.2 ml (36.2 mmol) of triethyl phosphate, heated to 210 ° C., and stirred for 3 hours. After cooling to room temperature, brine was added to the reaction solution, extracted with CH 2 Cl 2 , washed with brine, and dried over Na 2 SO 4 . Subsequently, the reaction solvent was removed under reduced pressure, and the crude product was purified by silica gel chromatography (dichloromethane / hexane = 2/8) to obtain a colorless oily target compound (5.74 g, yield 69%).

H NMR(300MHz,CDCl): 1.14(t, 6H J = 7.3 Hz), 3.31 (q, 4H, J = 7.3 Hz), 6.56 (dd, 1H J = 2.2, 8.8 Hz), 6.72 - 6.76(m, 2H), 7.03 (t, 1H, J = 8.8 Hz)
13C NMR(75MHz,CDCl): 12.4, 44.3, 110.2, 114.2, 117.9, 123.6, 130.4, 148.9
1 H NMR (300 MHz, CDCl 3 ): 1.14 (t, 6H J = 7.3 Hz), 3.31 (q, 4H, J = 7.3 Hz), 6.56 (dd, 1H J = 2.2, 8.8 Hz), 6.72-6.76 ( m, 2H), 7.03 (t, 1H, J = 8.8 Hz)
13 C NMR (75 MHz, CDCl 3 ): 12.4, 44.3, 110.2, 114.2, 117.9, 123.6, 130.4, 148.9

(c−2) 3,3’−ジセランジイルビス(N,N−ジエチルアニリン)の合成:

Figure 2014065673
Mg(1.23g、50mmol)をアルゴン雰囲気下で乾燥テトラヒドロフラン(THF)50mLに添加した。溶液が暗灰色になるまでN,N−ジエチル−3−ブロモアニリン(2.89g、12.7mmol)の乾燥TFH溶液50mLを添加し、50℃に加熱した。混合物を室温に冷却し、セレン粉末(1.0g、12.7mmol)を添加した。続いて、混合物を3時間攪拌し、飽和NaHCO溶液30mLを添加し、酢酸エチルで抽出し、食塩水で洗浄後、NaSOで乾燥した。残渣をシリカゲルクロマトグラフィーで精製して(ジクロロメタン/ヘキサン=3/7)、黄色油状のジセレニドを得た(1.78g、収率62%)。 (C-2) Synthesis of 3,3′-diselanediylbis (N, N-diethylaniline):
Figure 2014065673
Mg (1.23 g, 50 mmol) was added to 50 mL of dry tetrahydrofuran (THF) under an argon atmosphere. 50 mL of a dry TFH solution of N, N-diethyl-3-bromoaniline (2.89 g, 12.7 mmol) was added and heated to 50 ° C. until the solution turned dark gray. The mixture was cooled to room temperature and selenium powder (1.0 g, 12.7 mmol) was added. Subsequently, the mixture was stirred for 3 hours, 30 mL of saturated NaHCO 3 solution was added, extracted with ethyl acetate, washed with brine and dried over Na 2 SO 4 . The residue was purified by silica gel chromatography (dichloromethane / hexane = 3/7) to give a yellow oily diselenide (1.78 g, 62% yield).

(d)化合物3(セレノキサンテン)の合成

Figure 2014065673
4−(アリルオキシ)−N,N−ジエチルベンズアミド(661mg、2.3mmol)をアルゴン雰囲気下にて乾燥THF10mLに溶解させた。溶液を−78℃に冷却し、1Mのs−BuLi(2.3mL)をゆっくり添加した。溶液を10分間攪拌し続け、ジセレニド(850mg、1.68mmol)のTFH溶液10mLを添加した。混合物を室温の戻し、2時間攪拌した。反応溶液にNaHPO溶液を添加し、酢酸エチルで抽出し、食塩水で洗浄後、NaSOで乾燥した。反応溶媒を減圧除去し、シリカゲルクロマトグラフィーで粗精製して(酢酸エチル/ヘキサン=1/9)、淡黄色油状の中間体を得た(261mg)。続いて、当該中間体及び1mLのジエチルベンズアミドをアセトニトリル5mLに溶解し、1mLのPOClを添加した。混合物をアルゴン雰囲気下で1時間加熱還流した。室温に冷却後、2NのNaOHを15mL添加し、3時間攪拌した。溶液に水を添加し、酢酸エチルで抽出し、食塩水で洗浄後、減圧除去し、NaSOで乾燥した。残渣をシリカゲルクロマトグラフィーで精製して(酢酸エチル/ヘキサン=2/8)、淡黄色固体のセレノキサンテンを得た(112mg、2ステップで収率17%)。 (D) Synthesis of compound 3 (selenoxanthene)
Figure 2014065673
4- (Allyloxy) -N, N-diethylbenzamide (661 mg, 2.3 mmol) was dissolved in 10 mL of dry THF under an argon atmosphere. The solution was cooled to −78 ° C. and 1M s-BuLi (2.3 mL) was added slowly. The solution was kept stirring for 10 minutes and 10 mL of a TFH solution of diselenide (850 mg, 1.68 mmol) was added. The mixture was allowed to warm to room temperature and stirred for 2 hours. A NaH 2 PO 4 solution was added to the reaction solution, extracted with ethyl acetate, washed with brine, and dried over Na 2 SO 4 . The reaction solvent was removed under reduced pressure, and the residue was roughly purified by silica gel chromatography (ethyl acetate / hexane = 1/9) to obtain a pale yellow oily intermediate (261 mg). Subsequently, the intermediate and 1 mL of diethylbenzamide were dissolved in 5 mL of acetonitrile and 1 mL of POCl 3 was added. The mixture was heated to reflux under an argon atmosphere for 1 hour. After cooling to room temperature, 15 mL of 2N NaOH was added and stirred for 3 hours. Water was added to the solution, extracted with ethyl acetate, washed with brine, removed under reduced pressure, and dried over Na 2 SO 4 . The residue was purified by silica gel chromatography (ethyl acetate / hexane = 2/8) to give selenoxanthene as a pale yellow solid (112 mg, 17% yield over 2 steps).

H NMR(300MHz,CDCl): 1.19 (t, 6H, J = 7.2 Hz), 3.39 (q, 4H, J = 7.2 Hz), 4.58 (d, 2H, J = 5.9 Hz), 5.29 - 5.45 (m, 2H), 6.01 - 6.04 (m, 1H), 6.60 (d, 1H , J = 2.6 Hz), 6.72 (dd, 1H, J = 2.6, 9.2 Hz), 6.95 (dd, 1H, J =2.2, 8.8 Hz), 6.98 (d, 1H, J = 2.6 Hz), 8.45 (d, 1H, J = 8.8 Hz), 8.55 (d, 1H, J = 8.8 Hz)
13C NMR(75MHz,CDCl): 12.5, 44.4, 68.9, 106.9, 111.3, 111.7, 114.4, 118.1, 119.2, 125.0, 132.3, 136.2, 137.0, 149.7, 160.6, 179.6
LRMS (ESI):[M+H] 388,Found 388
1 H NMR (300 MHz, CDCl 3 ): 1.19 (t, 6H, J = 7.2 Hz), 3.39 (q, 4H, J = 7.2 Hz), 4.58 (d, 2H, J = 5.9 Hz), 5.29-5.45 ( m, 2H), 6.01-6.04 (m, 1H), 6.60 (d, 1H, J = 2.6 Hz), 6.72 (dd, 1H, J = 2.6, 9.2 Hz), 6.95 (dd, 1H, J = 2.2, 8.8 Hz), 6.98 (d, 1H, J = 2.6 Hz), 8.45 (d, 1H, J = 8.8 Hz), 8.55 (d, 1H, J = 8.8 Hz)
13 C NMR (75 MHz, CDCl 3 ): 12.5, 44.4, 68.9, 106.9, 111.3, 111.7, 114.4, 118.1, 119.2, 125.0, 132.3, 136.2, 137.0, 149.7, 160.6, 179.6
LRMS (ESI + ): [M + H] + 388, Found 388

(e)化合物4(SeRhodol)の合成

Figure 2014065673
1−ブロモ−2−(tert−ブトキシメチル)ベンゼン(142mg、0.58mmol)をアルゴン雰囲気下にて乾燥THF5mLに溶解させた。当該溶液を−78℃に維持し、1Mのs−BuLi(2.3mL)を滴下した。溶液を10分間攪拌し続け、セレノキサンテン(31mg、0.080mmol)のTFH溶液5mLを添加した。混合物を室温の戻し、3時間攪拌した。反応溶液に2NのHClを添加して酸性化し、数分間攪拌した。反応溶液を飽和NaHCOで中和し、酢酸エチルで抽出し、食塩水で洗浄後、NaSOで乾燥し、減圧除去した。残渣をジクロロメタン2mLに溶解し、TFA2mLを添加し、40℃で1時間攪拌した。続いて、混合物に2NのNaOHを10mL添加し、さらに30分間攪拌し、酢酸エチルで抽出し、食塩水で洗浄後、NaSOで乾燥し、減圧除去した。残渣をシリカゲルクロマトグラフィーで粗精製した。 (E) Synthesis of Compound 4 (SeRhodol)
Figure 2014065673
1-Bromo-2- (tert-butoxymethyl) benzene (142 mg, 0.58 mmol) was dissolved in 5 mL of dry THF under an argon atmosphere. The solution was maintained at −78 ° C. and 1M s-BuLi (2.3 mL) was added dropwise. The solution was kept stirring for 10 minutes and 5 mL of a TFH solution of selenoxanthene (31 mg, 0.080 mmol) was added. The mixture was allowed to warm to room temperature and stirred for 3 hours. The reaction solution was acidified by adding 2N HCl and stirred for several minutes. The reaction solution was neutralized with saturated NaHCO 3 , extracted with ethyl acetate, washed with brine, dried over Na 2 SO 4 and removed under reduced pressure. The residue was dissolved in 2 mL of dichloromethane, 2 mL of TFA was added, and the mixture was stirred at 40 ° C. for 1 hour. Subsequently, 10 mL of 2N NaOH was added to the mixture, and the mixture was further stirred for 30 minutes, extracted with ethyl acetate, washed with brine, dried over Na 2 SO 4 and removed under reduced pressure. The residue was roughly purified by silica gel chromatography.

粗精製物にKCO(13.0mg、0.094mmol)及びPd(PPh(40.6mg、0.0048mmol)のメタノール溶液3mLを添加し、アルゴン雰囲気下、室温で3時間攪拌した。10mLno水を添加し、混合物を酢酸エチルで抽出し、食塩水で洗浄後、NaSOで乾燥し、減圧除去した。分取HPLCで精製し、ピンク色粉末のSeRhodolを得た(6.8mg、3ステップで収率20%)。 To the crude product, 3 mL of a methanol solution of K 2 CO 3 (13.0 mg, 0.094 mmol) and Pd (PPh 3 ) 4 (40.6 mg, 0.0048 mmol) was added and stirred at room temperature for 3 hours under an argon atmosphere. did. 10 mL no water was added, the mixture was extracted with ethyl acetate, washed with brine, dried over Na 2 SO 4 and removed under reduced pressure. Purification by preparative HPLC gave pink powder SeRhodol (6.8 mg, 20% yield over 3 steps).

H NMR(300MHz,CDOH): 1.33 (t, 6H, J = 7.1 Hz), 3.74 (q, 4H, J = 7.1 Hz), 4.23 (s, 2H), 6.97 (dd, 1H, J = 8.8, 2.2 Hz), 7.18 (dd, 1H, J = 2.6, 9.5 Hz), 7.23 (d, 1H, J = 7.3 Hz), 7.46 (d, 1H, J = 9.5 Hz), 7.53 - 7.57 (m, 3H), 7.67 (t, 1H, J = 7.3 Hz), 7.76 - 7.78 (m, 2H)
HRMS (ESI):Calcd for [M+H], 438.09723、Found,438.09640(-0.83mmu)
1 H NMR (300 MHz, CD 3 OH): 1.33 (t, 6H, J = 7.1 Hz), 3.74 (q, 4H, J = 7.1 Hz), 4.23 (s, 2H), 6.97 (dd, 1H, J = 8.8, 2.2 Hz), 7.18 (dd, 1H, J = 2.6, 9.5 Hz), 7.23 (d, 1H, J = 7.3 Hz), 7.46 (d, 1H, J = 9.5 Hz), 7.53-7.57 (m, 3H), 7.67 (t, 1H, J = 7.3 Hz), 7.76-7.78 (m, 2H)
HRMS (ESI + ): Calcd for [M + H] + , 438.09723, Found, 438.09640 (-0.83mmu)

(f)化合物5(SeRhodol−gal)の合成

Figure 2014065673
SeRhodol(4.2mg、0.0095mmol)及びCsCo(15.8mg、0.044mmol)を2mLのDMF中に懸濁させ、0.053mLの2,3,4,6−テトラ−O−アセチル−α−D−ガラクト−ピラノシル ブロミドのDMF溶液(1M)を添加した。アルゴン雰囲気下、混合物を室温で一晩攪拌した。反応混合物に水を添加し、酢酸エチルで抽出し、食塩水で洗浄後、NaSOで乾燥し、減圧除去した。残渣を1mLのメタノールに溶解し、28%ナトリウムメトキシドのメタノール溶液を200μL添加し、4時間攪拌した。混合物をアンバーライト(登録商標)で中和し、ろ過後、減圧除去した。粗生成物をHPLCで精製し、ピンク色粉末のSeRhodol−galを得た(4.9mg、収率86%)。 (F) Synthesis of Compound 5 (SeRhodol-gal)
Figure 2014065673
SeRhodol (4.2 mg, 0.0095 mmol) and Cs 2 Co 3 (15.8 mg, 0.044 mmol) were suspended in 2 mL DMF and 0.053 mL 2,3,4,6-tetra-O—. A DMF solution of acetyl-α-D-galacto-pyranosyl bromide (1M) was added. The mixture was stirred overnight at room temperature under an argon atmosphere. Water was added to the reaction mixture, extracted with ethyl acetate, washed with brine, dried over Na 2 SO 4 and removed under reduced pressure. The residue was dissolved in 1 mL of methanol, and 200 μL of 28% sodium methoxide in methanol was added and stirred for 4 hours. The mixture was neutralized with Amberlite (registered trademark), filtered and removed under reduced pressure. The crude product was purified by HPLC to obtain pink powder SeRhodol-gal (4.9 mg, 86% yield).

H NMR(300MHz,アセトン−d): 1.01 (t, 6H, J = 7.1 Hz), 3.26 (q, 4H, J = 7.1 Hz), 3.49 - 3.52 (m, 1H), 3.65 - 3.70 (m, 4H), 3.84 (d, 1H, J = 3.7 Hz), 4.79 (m, 1H), 5.40 (d, 2H, J = 6.6 Hz), 6.44 - 6.47 (m, 1H), 6.74 (d, 1H, J = 2.9 Hz), 6.78 - 6.80 (m, 1H), 6.97 - 7.03 (m, 1H), 7.10 - 7.23 (m, 3H), 7.27 (d, 1H, J = 8.1 Hz), 7.36 (d, 1H, J = 8.1 Hz), 7.66 (m, 1H)
LRMS (ESI):Calcd for [M+H], 600.15005、Found, 600.14729 (-2.76 mmu)
1 H NMR (300 MHz, acetone-d 6 ): 1.01 (t, 6H, J = 7.1 Hz), 3.26 (q, 4H, J = 7.1 Hz), 3.49-3.52 (m, 1H), 3.65-3.70 (m , 4H), 3.84 (d, 1H, J = 3.7 Hz), 4.79 (m, 1H), 5.40 (d, 2H, J = 6.6 Hz), 6.44-6.47 (m, 1H), 6.74 (d, 1H, J = 2.9 Hz), 6.78-6.80 (m, 1H), 6.97-7.03 (m, 1H), 7.10-7.23 (m, 3H), 7.27 (d, 1H, J = 8.1 Hz), 7.36 (d, 1H , J = 8.1 Hz), 7.66 (m, 1H)
LRMS (ESI + ): Calcd for [M + H] + , 600.15005, Found, 600.14729 (-2.76 mmu)

化合物4(SeRhodol)及び化合物5(SeRhodol−gal)のスペクトル変化
本発明の光増感用化合物である化合物5(SeRhodol−gal)と、当該化合物とβ−ガラクトシダーゼとの酵素反応によって生じる光増感剤である化合物4(SeRhodol)の吸収スペクトル変化及び蛍光スペクトル変化(励起波長550nm)を図1a及び図1bにそれぞれ示す。測定は、リン酸ナトリウム緩衝液100mM存在下(pH7.4)で行った。
Spectral changes of Compound 4 (SeRhodol) and Compound 5 (SeRhodol-gal) By an enzymatic reaction between Compound 5 (SeRhodol-gal), which is a photosensitizing compound of the present invention, and β-galactosidase. Changes in absorption spectrum and fluorescence spectrum (excitation wavelength: 550 nm) of compound 4 (SeRhodol), which is the resulting photosensitizer, are shown in FIGS. 1a and 1b, respectively. The measurement was performed in the presence of 100 mM sodium phosphate buffer (pH 7.4).

図1aより、化合物5は全く吸収を示さないのに対し、化合物4は、570nm付近をピークとする吸収を示した。なお、図1bより、化合物4は、590nm付近に蛍光発光を示していることから、本発明の光増感用化合物が、β−ガラクトシダーゼとの酵素反応に対する蛍光プローブとしての機能を有し得ることも示唆される。 From FIG. 1a, compound 5 showed no absorption, whereas compound 4 showed absorption with a peak at around 570 nm. From FIG. 1b, since compound 4 exhibits fluorescence emission at around 590 nm, the photosensitizing compound of the present invention can have a function as a fluorescent probe for enzyme reaction with β-galactosidase. Is also suggested.

図1cは、化合物4及び5をそれぞれ532nmで励起した場合における、励起された一重項酸素()の発光を示したものである。化合物4では、一重項酸素が基底状態の酸素(三重項)に戻る際の発光波長である近赤外の1270nm付近にスペクトルが見られることから、化合物4によって一重項酸素が生成し、化合物4が光増感剤として機能することが明らかになった。一方、化合物5では、一重項酸素に起因する発光が見られなかった。 FIG. 1c shows the emission of excited singlet oxygen ( 1 O 2 ) when compounds 4 and 5 are each excited at 532 nm. In Compound 4, since a spectrum is observed in the vicinity of 1270 nm in the near infrared, which is an emission wavelength when singlet oxygen returns to ground state oxygen (triplet), singlet oxygen is generated by Compound 4, and Compound 4 Has been shown to function as a photosensitizer. On the other hand, compound 5 did not emit light due to singlet oxygen.

化合物5(SeRhodol−gal)を用いたβ−ガラクトシダーゼ発現細胞への選択的酸化ストレス負荷
β−ガラクトシダーゼとの酵素反応によって切断されるガラクトピラノシル基を有する化合物5を用いて、β-ガラクトシダーゼの発現の有無によって光照射に伴う酸化ストレス負荷(細胞死)に変化が認められるか否かを検討した。試験は被検細胞としてβ−ガラクトシダーゼ(LacZ)を発現したHEK293細胞と、比較例としてルシフェラーゼ(Luc)を発現したHEK293細胞を用いて行った。なお、各HEK293細胞は、PLLコートした96ウェルプラスチックボトムプレートで培養し、細胞密度が2〜5×10cell/mLとなったものを用いた。
Using compound 5 having a galactopyranosyl group cleaved by enzymatic reaction with β-galactosidase selectively loaded with β-galactosidase on β-galactosidase expressing cells using compound 5 (SeRhodol-gal) We examined whether changes in oxidative stress load (cell death) associated with light irradiation were observed depending on the presence or absence of expression. The test was performed using HEK293 cells expressing β-galactosidase (LacZ) as test cells and HEK293 cells expressing luciferase (Luc) as comparative examples. Each HEK293 cell was cultured in a PLL-coated 96-well plastic bottom plate, and a cell density of 2 to 5 × 10 5 cells / mL was used.

各被検細胞に、化合物5を添加して4時間後に光照射(510−550nm、50mW/cm、180秒)して、24時間後にCCKアッセイを行い生存細胞を確認した。得られた結果を図3に示す。図3より、化合物5を用いることによって、LacZ発現細胞を選択的に細胞死させることができ、また、その程度は化合物5の濃度に依存することが分かった。一方、Luc発現細胞では、化合物5の濃度が増加しても、生存細胞の割合に変化はほとんど観測されなかった。以上の結果は、本発明の光増感用化合物である化合物5を用いることで、光照射によってLacZ発現細胞のみに選択的に酸化ストレスを負荷し、細胞死へと誘導できることを実証するものである。 Each test cell was irradiated with light (510-550 nm, 50 mW / cm 2 , 180 seconds) 4 hours after compound 5 was added, and 24 hours later, a CCK assay was performed to confirm viable cells. The obtained results are shown in FIG. From FIG. 3, it was found that LacZ-expressing cells can be selectively killed by using Compound 5, and the degree thereof depends on the concentration of Compound 5. On the other hand, in the Luc-expressing cells, even when the concentration of Compound 5 was increased, almost no change was observed in the proportion of viable cells. The above results demonstrate that by using Compound 5 which is a photosensitizing compound of the present invention, only lactress-expressing cells can be selectively loaded with oxidative stress by light irradiation and induced to cell death. is there.

Claims (12)

以下の式(I)で表される化合物又はその塩を含む選択的光増感用化合物:
Figure 2014065673
(式中、Aは酵素によって切断される一価の基を表し;Rは水素原子又はベンゼン環に結合する1個ないし4個の同一又は異なる置換基を表し;R、R、R、R、R、及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子又はアルキル基を示し;XはC-Cアルキレン基を表す)。
A compound for selective photosensitization comprising a compound represented by the following formula (I) or a salt thereof:
Figure 2014065673
(Wherein A represents a monovalent group cleaved by an enzyme; R 1 represents 1 to 4 identical or different substituents bonded to a hydrogen atom or a benzene ring; R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom; R 8 and R 9 each independently represent a hydrogen atom or an alkyl group; Represents a 1 -C 3 alkylene group).
Aが、レポーター酵素によって切断される基である、請求項1に記載の光増感用化合物。 The photosensitizing compound according to claim 1, wherein A is a group cleaved by a reporter enzyme. 前記レポーター酵素が、β−ガラクトシダーゼ、β−ラクタマーゼ、アルカリフォスファターゼ、ルシフェラーゼ、又はペルオキシダーゼである、請求項2に記載の光増感用化合物。 The photosensitizing compound according to claim 2, wherein the reporter enzyme is β-galactosidase, β-lactamase, alkaline phosphatase, luciferase, or peroxidase. 前記レポーター酵素がβ−ガラクトシダーゼであって、Aがガラクトピラノシル基である、請求項3に記載の光増感用化合物。 The photosensitizing compound according to claim 3, wherein the reporter enzyme is β-galactosidase and A is a galactopyranosyl group. 、R、R、R、R、R、及びRが水素であり、R及びRがエチル基であり、Xがメチレン基である、請求項1〜4のいずれか1項に記載の光増感用化合物。 R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are hydrogen, R 8 and R 9 are ethyl groups, and X is a methylene group. The photosensitizing compound according to any one of the above. 以下の式(II)で表される化合物又はその塩を含む選択的光増感用化合物:
Figure 2014065673
(式中、Etはエチル基を表す)。
A compound for selective photosensitization comprising a compound represented by the following formula (II) or a salt thereof:
Figure 2014065673
(In the formula, Et represents an ethyl group).
以下の式(III)で表される光増感剤:
Figure 2014065673
(式中、Rは水素原子又はベンゼン環に結合する1個ないし4個の同一又は異なる置換基を表し;R、R、R、R、R、及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子又はアルキル基を示し;XはC-Cアルキレン基を表す)。
Photosensitizer represented by the following formula (III):
Figure 2014065673
Wherein R 1 represents 1 to 4 identical or different substituents bonded to a hydrogen atom or a benzene ring; R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are each independently Represents a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom; R 8 and R 9 each independently represent a hydrogen atom or an alkyl group; X represents a C 1 -C 3 alkylene group).
請求項1〜6のいずれか1項に記載の光増感用化合物を用いて、特定の酵素が発現している標的細胞の細胞死を特異的に誘発する方法。 A method for specifically inducing cell death of a target cell in which a specific enzyme is expressed, using the photosensitizing compound according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載の光増感用化合物と当該標的細胞において特異的に発現する酵素とを接触させ、以下の式(III)で表される化合物を生成させる工程、及び、励起光照射を行って前記式(III)で表される化合物により活性酸素種を発生させて前記標的細胞に酸化ストレスを負荷する工程を含むことを特徴とする、請求項8に記載の方法。
Figure 2014065673
(式中、Rは水素原子又はベンゼン環に結合する1個ないし4個の同一又は異なる置換基を表し;R、R、R、R、R、及びRはそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、又はハロゲン原子を表し;R及びRはそれぞれ独立に水素原子又はアルキル基を示し;XはC-Cアルキレン基を表す)。
Contacting the photosensitizing compound according to any one of claims 1 to 6 with an enzyme that is specifically expressed in the target cell to produce a compound represented by the following formula (III): The method according to claim 8, further comprising a step of irradiating the target cell with oxidative stress by generating an active oxygen species with the compound represented by the formula (III) by irradiation with excitation light. Method.
Figure 2014065673
Wherein R 1 represents 1 to 4 identical or different substituents bonded to a hydrogen atom or a benzene ring; R 2 , R 3 , R 4 , R 5 , R 6 , and R 7 are each independently Represents a hydrogen atom, a hydroxyl group, an alkyl group, or a halogen atom; R 8 and R 9 each independently represent a hydrogen atom or an alkyl group; X represents a C 1 -C 3 alkylene group).
前記標的細胞が、β−ガラクトシダーゼ発現細胞である、請求項8又は9に記載の方法。 The method according to claim 8 or 9, wherein the target cell is a β-galactosidase expressing cell. 特定の酵素が発現している標的細胞の細胞死を特異的に誘発するための、請求項1〜6のいずれか1項に記載の光増感用化合物の使用。 Use of the photosensitizing compound according to any one of claims 1 to 6, for specifically inducing cell death of a target cell in which a specific enzyme is expressed. 前記標的細胞が、β−ガラクトシダーゼ発現細胞である、請求項11に記載の使用。 The use according to claim 11, wherein the target cell is a β-galactosidase expressing cell.
JP2012210943A 2012-09-25 2012-09-25 Target cell specific photosensitizing compound. Expired - Fee Related JP6116842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012210943A JP6116842B2 (en) 2012-09-25 2012-09-25 Target cell specific photosensitizing compound.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012210943A JP6116842B2 (en) 2012-09-25 2012-09-25 Target cell specific photosensitizing compound.

Publications (2)

Publication Number Publication Date
JP2014065673A true JP2014065673A (en) 2014-04-17
JP6116842B2 JP6116842B2 (en) 2017-04-19

Family

ID=50742440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012210943A Expired - Fee Related JP6116842B2 (en) 2012-09-25 2012-09-25 Target cell specific photosensitizing compound.

Country Status (1)

Country Link
JP (1) JP6116842B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174460A1 (en) * 2014-05-14 2015-11-19 国立大学法人 東京大学 Enzyme-specific fluorescent compound capable of being retained in cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293752A (en) * 1983-07-01 1994-10-21 F Hoffmann La Roche Ag New thioxanthene and serenoxanthene derivative
WO2007072800A1 (en) * 2005-12-19 2007-06-28 The University Of Tokyo Photosensitizing compound
JP2012508189A (en) * 2008-11-07 2012-04-05 クロクス テクノロジーズ インコーポレイテッド Combination of oxidant and photoactivator for wound healing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06293752A (en) * 1983-07-01 1994-10-21 F Hoffmann La Roche Ag New thioxanthene and serenoxanthene derivative
WO2007072800A1 (en) * 2005-12-19 2007-06-28 The University Of Tokyo Photosensitizing compound
JP2012508189A (en) * 2008-11-07 2012-04-05 クロクス テクノロジーズ インコーポレイテッド Combination of oxidant and photoactivator for wound healing

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 20, JPN6016016197, 2010, pages 4320 - 4323, ISSN: 0003499831 *
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, JPN6016016199, 2007, pages 3918 - 3929, ISSN: 0003499833 *
JOURNAL OF THE CHEMICAL SOCIETY. PERKIN TRANSACTIONS 2, JPN6016016198, 1991, pages 523 - 526, ISSN: 0003499832 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174460A1 (en) * 2014-05-14 2015-11-19 国立大学法人 東京大学 Enzyme-specific fluorescent compound capable of being retained in cells
CN106459125A (en) * 2014-05-14 2017-02-22 国立大学法人东京大学 Enzyme-specific fluorescent compound capable of being retained in cells
JPWO2015174460A1 (en) * 2014-05-14 2017-04-20 国立大学法人 東京大学 Enzyme-specific intracellular fluorescent compounds
EP3144315A4 (en) * 2014-05-14 2017-12-13 The University of Tokyo Enzyme-specific fluorescent compound capable of being retained in cells
US9981934B2 (en) 2014-05-14 2018-05-29 The University Of Tokyo Enzyme-specific fluorescent compound capable of being retained in cells

Also Published As

Publication number Publication date
JP6116842B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
US9714260B2 (en) Asymmetrical Si rhodamine and rhodol synthesis
JP5228190B2 (en) Peroxynitrite fluorescent probe
US7868147B2 (en) Fluorescent probe
ES2307829T3 (en) COMPOSITIONS, PROCEDURES AND KITS RELATED TO LUMINESCENT COMPOUNDS.
JP4899046B2 (en) New luciferin derivatives
JP5711218B2 (en) New indicator system
JP5441882B2 (en) Hydrogen peroxide specific fluorescent probe
US11591359B2 (en) Enzyme-specific intracellularly-retained red fluorescent probe
EP2754657B1 (en) Luminescent substrate for luciferase
WO2012099218A1 (en) Fluorescent probe
JP2006219381A (en) Heterocyclic compound and photogenic substrate for photogenic beetle luciferase photogenic system
JP2016033134A (en) Fluorescent probe
JP6116842B2 (en) Target cell specific photosensitizing compound.
WO2006019105A1 (en) Fluorescent labeling agents
JP2010180191A (en) Photogenesis substrate of luciferase
WO2019168199A1 (en) Fluorescent probe for detecting carboxypeptidase activity
JP2008239615A (en) Compound susceptible to oxidation-reduction and isoalloxazine derivative
Harmon et al. Incorporation of a FRET pair within a phosphonate diester
JP5360609B2 (en) Reagent for low oxygen environment measurement
WO2021167022A1 (en) Novel photosensitizer
Hirano et al. Modulation of intramolecular heterodimer-induced fluorescence quenching of tricarbocyanine dye for the development of fluorescent sensor
Eshghi et al. Fluorometric assay of lipase by some new synthetized fluorescein aralkyl esters
Heinrich Chemical Biology Applications of Photoresponsive DNA-Binding Agents
JP2022133199A (en) Novel heterocyclic compound and salt thereof, and luminescent substrate composition
WO2007072800A1 (en) Photosensitizing compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6116842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees