JP2014065645A - Ito powder and production method thereof - Google Patents

Ito powder and production method thereof Download PDF

Info

Publication number
JP2014065645A
JP2014065645A JP2012213762A JP2012213762A JP2014065645A JP 2014065645 A JP2014065645 A JP 2014065645A JP 2012213762 A JP2012213762 A JP 2012213762A JP 2012213762 A JP2012213762 A JP 2012213762A JP 2014065645 A JP2014065645 A JP 2014065645A
Authority
JP
Japan
Prior art keywords
tin
ito powder
indium
ito
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012213762A
Other languages
Japanese (ja)
Other versions
JP5949395B2 (en
Inventor
Takehiro Yonezawa
岳洋 米澤
Kazuhiko Yamazaki
和彦 山崎
Ai Takenoshita
愛 竹之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012213762A priority Critical patent/JP5949395B2/en
Priority to CN201310283707.3A priority patent/CN103693677B/en
Priority to KR1020130095588A priority patent/KR101729366B1/en
Priority to TW102129798A priority patent/TWI568676B/en
Publication of JP2014065645A publication Critical patent/JP2014065645A/en
Application granted granted Critical
Publication of JP5949395B2 publication Critical patent/JP5949395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data

Abstract

PROBLEM TO BE SOLVED: To provide ITO powder the powder compact of which is made to have the volume resistivity lower than before while dispensing with post treatment in a powder state thereof.SOLUTION: The ITO powder being a sample is packed in a sample holder belonging to an X-ray diffraction apparatus and the sample-packed sample holder is irradiated with an X-ray in a range of 2θ/θ=15-90 degrees to obtain a diffraction line. When a lattice constant, crystallite size and a lattice strain are refined by using the obtained diffraction line, the obtained lattice strain is within 0.2-0.8.

Description

本発明は、圧粉体にしたときに低い体積抵抗率を示すITO粉末及びその製造方法に関するものである。本明細書において、ITOとはインジウム錫酸化物(Indium Tin Oxide)をいう。   The present invention relates to an ITO powder showing a low volume resistivity when it is made into a green compact and a method for producing the same. In this specification, ITO refers to indium tin oxide.

ITOは、Inに錫(Sn)をドープした化合物であり、1020〜1021cm−3の高いキャリア濃度を有し、スパッタリング法等の気相法で成膜したITO膜では、1×10−4Ωcm程度の低い抵抗率が得られる。しかしながら、ITO粉末の状態では、通常、その抵抗値は高抵抗であり、10Ωcm以上の範囲にある(例えば、特許文献1及び2参照。)。ITO粉末の抵抗値を低下させるために、特許文献1又は2に記載された方法では、アルコキシド法により調製されたITO粉末をアルコールガス又はヒドラジン水化物ガスを含有する不活性ガス雰囲気中で200〜450℃の温度で加熱して、脱酸素を行い、酸素の格子欠陥を生じさせている。これらの方法によれば、100kgf/cm(9.80MPa)の圧力を加えたとき、0.01〜0.50Ωcmの範囲に低抵抗化されたITO粉末が得られる。 ITO is a compound in which tin (Sn) is doped into In 2 O 3 , has a high carrier concentration of 10 20 to 10 21 cm −3 , and an ITO film formed by a vapor phase method such as a sputtering method, A resistivity as low as 1 × 10 −4 Ωcm is obtained. However, in the state of ITO powder, the resistance value is usually high resistance and is in the range of 10 Ωcm or more (see, for example, Patent Documents 1 and 2). In order to reduce the resistance value of the ITO powder, in the method described in Patent Document 1 or 2, the ITO powder prepared by the alkoxide method is 200 to 200 in an inert gas atmosphere containing alcohol gas or hydrazine hydrate gas. Deoxygenation is performed by heating at a temperature of 450 ° C., thereby causing oxygen lattice defects. According to these methods, when a pressure of 100 kgf / cm 2 (9.80 MPa) is applied, an ITO powder having a low resistance in the range of 0.01 to 0.50 Ωcm can be obtained.

またITO粉末を低抵抗化する別の方法として、塩化インジウム及び塩化錫の混合水溶液を、混合の最終pHが2〜8となる量のアンモニウム炭酸塩と5℃〜95℃で混合することによってインジウムと錫の水酸化物を共沈させ、得られた沈殿を400℃〜950℃で30〜8時間加水分解する方法が開示されている(例えば、特許文献3参照)。この製造方法によれば50kgf/cm(4.90MPa)の圧力を加えたとき、比抵抗が70Ωcm以下若しくは15Ωcm以下のITO粉末が得られる。またこの方法では、塩化錫として4価錫化合物であるSnCl水溶液を用いている。 Another method for reducing the resistance of ITO powder is to mix indium chloride and tin chloride with indium carbonate in an amount such that the final pH of mixing is 2 to 8 at 5 ° C. to 95 ° C. And a method of hydrolyzing the resulting precipitate at 400 ° C. to 950 ° C. for 30 to 8 hours (for example, see Patent Document 3). According to this manufacturing method, when a pressure of 50 kgf / cm 2 (4.90 MPa) is applied, an ITO powder having a specific resistance of 70 Ωcm or less or 15 Ωcm or less is obtained. In this method, SnCl 4 aqueous solution which is a tetravalent tin compound is used as tin chloride.

特開平5−024837号公報(特許請求の範囲、段落[0005]、[0010]、[0011])JP-A-5-024837 (Claims, paragraphs [0005], [0010], [0011]) 特開平5−193940号公報(特許請求の範囲、段落[0005]、[0010]、[0011])JP-A-5-193940 (Claims, paragraphs [0005], [0010], [0011]) 特開平5−201731号公報(特許請求の範囲、段落[0012]〜[0015])JP-A-5-201731 (Claims, paragraphs [0012] to [0015])

ITO粉末を低抵抗化するために、特許文献1及び2の方法では、ITO粉末をアルコールガス又はヒドラジン水化物ガスを含有する不活性ガス雰囲気中で加熱する後処理が必要があった。また従来の方法では、塩化錫として4価錫化合物であるSnClを用いるか、或いはSnClを用いている。即ち、単一の価数の原料を使用しているため、InイオンとSnイオンのイオン半径の違いにより、前駆体(例えば、水酸化物など)が不安定となり、Sn化合物が析出しやすく、十分にSnをドープすることができなかった。 In order to reduce the resistance of the ITO powder, the methods of Patent Documents 1 and 2 require post-treatment of heating the ITO powder in an inert gas atmosphere containing alcohol gas or hydrazine hydrate gas. In the conventional method, SnCl 4 that is a tetravalent tin compound is used as tin chloride, or SnCl 2 is used. That is, since a raw material having a single valence is used, the precursor (for example, hydroxide) becomes unstable due to the difference in ionic radius between In ions and Sn ions, and Sn compounds are likely to precipitate. Sn could not be sufficiently doped.

本発明の目的は、粉末状態での後処理を要することなく、ITO粉末の圧粉体において従来より低い体積抵抗率を得ることができるITO粉末及びその製造方法を提供することにある。   An object of the present invention is to provide an ITO powder capable of obtaining a lower volume resistivity than conventional ones in a green compact of an ITO powder without requiring post-treatment in a powder state, and a method for producing the same.

本発明の第1の観点は、BrukerAXS社製、X線回折装置D8 Advanceを用いて、この装置に付属する試料ホルダーに実施例1〜5及び比較例1、2で得られた各ITO粉末を充填して2θ/θ=15〜90degの範囲でX線を照射し、得られた回折線からRietveld解析ソフトであるTOPAS(BrukerAXS社製)を使用し、プロファイル関数としてFPを用いたPawley法にて解析し、ローレンツ関数成分の半値幅から結晶子サイズと格子歪を算出したときの格子歪が0.2〜0.8の範囲にあることを特徴とするITO粉末である。   The first aspect of the present invention is that each ITO powder obtained in Examples 1 to 5 and Comparative Examples 1 and 2 is attached to a sample holder attached to this apparatus using an X-ray diffraction apparatus D8 Advance manufactured by Bruker AXS. Fill and irradiate X-rays in the range of 2θ / θ = 15 to 90 deg., And use the TOPAS (manufactured by Bruker AXS), which is Rietveld analysis software, from the obtained diffraction lines, and the Pawley method using FP as a profile function The ITO powder is characterized in that the lattice strain is in the range of 0.2 to 0.8 when the crystallite size and the lattice strain are calculated from the half width of the Lorentz function component.

また本発明の第2の観点は、第1の観点に基づく発明であって、3価インジウム化合物と錫化合物の混合水溶液にアルカリ水溶液を混合して、インジウムと錫の共沈水酸化物を生成する工程と、前記沈殿物を純水又はイオン交換水で洗浄する工程と、前記沈殿物の上澄み液を捨ててインジウム錫水酸化物粒子が分散したスラリーを調製する工程と、前記スラリーを乾燥する工程と、前記乾燥したインジウム水錫酸化物を焼成してインジウム錫酸化物を得る工程とを含むITO粉末を製造する方法の改良である。その特徴ある点は、前記錫化合物が4価錫化合物と2価錫化合物の混合物であって、Sn4+:Sn2+の錫イオン比が90:10〜10:90の範囲にあることにある。 A second aspect of the present invention is an invention based on the first aspect, wherein an alkaline aqueous solution is mixed with a mixed aqueous solution of a trivalent indium compound and a tin compound to produce a coprecipitated hydroxide of indium and tin. A step, a step of washing the precipitate with pure water or ion-exchanged water, a step of discarding a supernatant of the precipitate and preparing a slurry in which indium tin hydroxide particles are dispersed, and a step of drying the slurry And improving the method for producing ITO powder, comprising firing the dried indium water tin oxide to obtain indium tin oxide. The characteristic point is that the tin compound is a mixture of a tetravalent tin compound and a divalent tin compound, and the tin ion ratio of Sn 4+ : Sn 2+ is in the range of 90:10 to 10:90.

また本発明の第3の観点は、第2の観点に基づく発明であって、前記4価錫化合物がSnCl水溶液であり、前記2価錫化合物がSnCl・2HO粉末であるITO粉末の製造方法である。
また本発明の第4の観点は、第1の観点のITO粉末又は第2若しくは第3の方法により製造されたITO粉末を溶媒に分散させて分散液を製造する方法である。
更に本発明の第5の観点は、第4の観点の分散液からITO膜を製造する方法である。
The third aspect of the present invention is an invention based on the second aspect, wherein the tetravalent tin compound is an SnCl 4 aqueous solution, and the divalent tin compound is SnCl 2 .2H 2 O powder. It is a manufacturing method.
A fourth aspect of the present invention is a method for producing a dispersion by dispersing the ITO powder of the first aspect or the ITO powder produced by the second or third method in a solvent.
Furthermore, a fifth aspect of the present invention is a method for producing an ITO film from the dispersion liquid according to the fourth aspect.

本発明の第1の観点のITO粉末は、所定のX線回折装置で所定の条件でX線を照射し、得られた回折線から所定の解析ソフトを使用し、プロファイル関数としてFPを用いたPawley法にて解析し、ローレンツ関数成分の半値幅から結晶子サイズと格子歪を算出した格子歪が0.2〜0.8の範囲にある。格子歪が大きいほど、圧粉体にしたときに低い体積抵抗率を得ることができる。具体的には、格子歪が0.2〜0.8の範囲にあるITO粉末は、この圧粉体に4.9MPa(50kgf/cm)の圧力を加えたときの圧粉体の体積抵抗率は0.20Ωcm以下にすることができる。 The ITO powder according to the first aspect of the present invention irradiates X-rays with a predetermined X-ray diffractometer under predetermined conditions, uses predetermined analysis software from the obtained diffraction lines, and uses FP as a profile function. The lattice strain obtained by analyzing by the Pawley method and calculating the crystallite size and the lattice strain from the half width of the Lorentz function component is in the range of 0.2 to 0.8. The larger the lattice strain, the lower the volume resistivity when the green compact is made. Specifically, the ITO powder having a lattice strain in the range of 0.2 to 0.8 has a volume resistance of the green compact when a pressure of 4.9 MPa (50 kgf / cm 2 ) is applied to the green compact. The rate can be 0.20 Ωcm or less.

また本発明の第2の観点のITO粉末の製造方法では、インジウムと錫の共沈水酸化物を生成する工程で、錫化合物が4価錫化合物と2価錫化合物の混合物であって、Sn4+:Sn2+の錫イオン比が90:10〜10:90の範囲である。この範囲にすることによりインジウム錫水酸化物の前駆体の構造が安定するものと考えられ、これにより、この前駆体中に取り込まれるSnの量が増加し、Inの格子歪を増加させて、ITO粉末からなる圧粉体の低い体積抵抗率を得ることができる。 In the method for producing ITO powder according to the second aspect of the present invention, in the step of producing a coprecipitated hydroxide of indium and tin, the tin compound is a mixture of a tetravalent tin compound and a divalent tin compound, and Sn 4+ : Tin ion ratio of Sn 2+ is in the range of 90:10 to 10:90. This range is considered to stabilize the structure of the indium tin hydroxide precursor, thereby increasing the amount of Sn incorporated into the precursor and increasing the lattice strain of In 2 O 3. Thus, a low volume resistivity of the green compact made of ITO powder can be obtained.

更に本発明の第3の観点のITO粉末の製造方法では、SnCl水溶液とSnCl・2HO粉末とを混合して錫含有水溶液を調製する。この4価錫化合物と2価錫化合物の組合せは汎用性やコストの点で優れている。 Further in the manufacturing method of the third aspect of the ITO powder of the present invention, by mixing a SnCl 4 solution and SnCl 2 · 2H 2 O powder to prepare a tin-containing aqueous solution. This combination of a tetravalent tin compound and a divalent tin compound is excellent in terms of versatility and cost.

ITO粉末の圧粉体の抵抗率を測定する装置の模式図である。It is a schematic diagram of the apparatus which measures the resistivity of the green compact of ITO powder. ITOの格子歪の逆数とその抵抗率との関係を示す図である。It is a figure which shows the relationship between the reciprocal number of the lattice distortion of ITO, and its resistivity.

次に本発明を実施するための形態を説明する。ITO粉末の抵抗率は、このITO粉末から作られるITO膜の特性を評価するうえで重要な指標である。特にITO膜を導電性シートや電極として使用する場合には、高い導電性、即ち低い抵抗率が求められる。   Next, the form for implementing this invention is demonstrated. The resistivity of the ITO powder is an important index for evaluating the characteristics of the ITO film made from the ITO powder. In particular, when an ITO film is used as a conductive sheet or electrode, high conductivity, that is, low resistivity is required.

このITOはInに錫(Sn)を固溶させた固溶体であり、Inサイトに置換固溶したSn原子1つに対し、1つのキャリア電子が生成することで、高い導電性を発現させることができる。また、In3+のイオン半径(Shannon半径)が0.80Åであり、Sn4+のイオン半径(Shannon半径)がこれより小さい0.69Åであることから、InのInサイトへSnが固溶すると、Inの結晶格子に歪が生じると考えられる。従って、これら二つを総合すると、置換したSnが多い、即ちSnから生成したキャリア電子が多い程、Inの結晶格子の格子歪が大きくなると考えられる。 This ITO is a solid solution in which tin (Sn) is dissolved in In 2 O 3 , and one carrier electron is generated for one Sn atom substituted and dissolved in the In site, thereby exhibiting high conductivity. Can be made. In addition, since the ion radius of In 3+ (Shannon radius) is 0.80Å and the ion radius of Sn 4+ (Shannon radius) is 0.69Å, which is smaller than this, Sn is fixed to the In site of In 2 O 3. It is considered that distortion occurs in the crystal lattice of In 2 O 3 when dissolved. Therefore, when these two are combined, it is considered that the more the substituted Sn, that is, the more carrier electrons generated from Sn, the greater the lattice strain of the crystal lattice of In 2 O 3 .

図2に示すように、Inの結晶格子の格子歪の逆数とITO粉末の圧粉体の体積抵抗率に直線関係が得られることから、格子歪が大きいほど、圧粉体の低い体積抵抗率を得ることができる。この高い格子歪を作り出すためには、前駆体であるインジウム錫水酸化物をより安定な構造にして、Inへの錫(Sn)の固溶量を増加することが必要になる。 As shown in FIG. 2, since a linear relationship is obtained between the reciprocal of the lattice strain of the crystal lattice of In 2 O 3 and the volume resistivity of the green compact of the ITO powder, the larger the lattice strain, the lower the green compact. Volume resistivity can be obtained. In order to produce this high lattice strain, it is necessary to increase the solid solution amount of tin (Sn) in In 2 O 3 by making the precursor indium tin hydroxide a more stable structure.

Inへの錫(Sn)の固溶に関して、In3+とSn4+とSn2+の各イオン半径に着目すると、前述したように、In3+のイオン半径(Shannon半径)が0.80Åであり、Sn4+のイオン半径(Shannon半径)がこの0.80Åより小さい0.69Åである。一方、Sn2+のイオン半径(Shannon半径)は0.80Åより大きい1.18Åである。このIn3+とSn4+とSn2+の各イオン半径の差異から、錫化合物を4価錫化合物と2価錫化合物との混合物とした場合、In3+よりイオン半径が小さいSn4+が固溶することにより生じる歪を、In3+よりイオン半径が大きいSn2+が緩和することで、インジウム錫水酸化物の構造が安定するものと推察される。この前駆体の構造が安定になれば、この前駆体中に取り込まれるSnの量が増加し、Inの結晶格子の格子歪を増加させて、ITO粉末からなる圧粉体の低い体積抵抗率を得ることができる。 Regarding the solid solution of tin (Sn) in In 2 O 3 , focusing on the ionic radii of In 3+ , Sn 4+ and Sn 2+ , as described above, the ionic radius (Shannon radius) of In 3+ is 0.80 前述. Yes, the ion radius of Sn 4+ (Shannon radius) is 0.69 Å which is smaller than 0.80 こ の. On the other hand, the ion radius (Shannon radius) of Sn 2+ is 1.18 Å, which is larger than 0.80 Å. From the difference in ionic radii of In 3+ , Sn 4+ and Sn 2+ , when the tin compound is a mixture of a tetravalent tin compound and a divalent tin compound, Sn 4+ having an ionic radius smaller than that of In 3+ is dissolved. It is presumed that the structure of indium tin hydroxide is stabilized by the relaxation of Sn 2+ having an ionic radius larger than that of In 3+ . If the structure of the precursor becomes stable, the amount of Sn incorporated into the precursor increases, increasing the lattice strain of the crystal lattice of In 2 O 3 and reducing the volume of the green compact made of ITO powder. Resistivity can be obtained.

本発明のITO粉末の格子歪は0.2〜0.8の範囲にある。0.2未満ではInへの錫(Sn)の固溶量が少なく、低い体積抵抗率が得られない。また0.8を超える値は本発明の製造方法では得られていない。 The lattice strain of the ITO powder of the present invention is in the range of 0.2 to 0.8. If it is less than 0.2, the solid solution amount of tin (Sn) in In 2 O 3 is small, and a low volume resistivity cannot be obtained. Moreover, the value exceeding 0.8 is not obtained by the manufacturing method of the present invention.

本発明のITO粉末は、以下の方法で製造される。先ず、3価インジウム化合物に4価錫化合物と2価錫化合物の混合物を混合して混合水溶液を調製する。この混合水溶液にアルカリ水溶液を混合して、インジウムと錫の共沈水酸化物を生成し、この沈澱を乾燥し、焼成した後、得られたインジウム錫酸化物を粉砕することにより得られる。3価インジウム化合物としては3塩化インジウム(InCl)、硝酸インジウム(In(NO))、酢酸インジウム(In(CHCOO))などが挙げられ、4価錫化合物としては、4塩化錫(SnCl)水溶液、臭化スズ(SnBr)などが挙げられ、2価錫化合物としては、2塩化錫(SnCl・2HO)、硫酸錫(SnSO4)、臭化スズ(SnBr)などが挙げられる。この4価錫化合物と2価錫化合物の組合せとして、SnCl水溶液とSnCl・2HO粉末とを混合することが汎用性やコストの点で好ましい。アルカリ水溶液としては、アルカリ金属の残留の心配のない、アンモニア(NH)水、炭酸水素アンモニウム(NHHCO)水などが挙げられる。 The ITO powder of the present invention is produced by the following method. First, a mixed aqueous solution is prepared by mixing a trivalent indium compound with a mixture of a tetravalent tin compound and a divalent tin compound. This mixed aqueous solution is mixed with an aqueous alkaline solution to form a coprecipitated hydroxide of indium and tin, dried and calcined, and then pulverized indium tin oxide obtained. Examples of the trivalent indium compound include indium trichloride (InCl 3 ), indium nitrate (In (NO 3 ) 3 ), indium acetate (In (CH 3 COO) 3 ), and the tetravalent tin compound includes tetrachloride. tin (SnCl 4) solution, tin tetrabromide (SnBr 4). Examples of the divalent tin compound, stannic chloride (SnCl 2 · 2H 2 O) , tin sulfate (SnSO 4), tin bromide (SnBr 2 ). As a combination of the tetravalent tin compound and the divalent tin compound, it is preferable in terms of versatility and cost to mix an SnCl 4 aqueous solution and SnCl 2 · 2H 2 O powder. Examples of the alkaline aqueous solution include ammonia (NH 3 ) water, ammonium hydrogen carbonate (NH 4 HCO 3 ) water, and the like, which do not cause the concern of residual alkali metal.

3価インジウム化合物に混合する4価錫化合物と2価錫化合物の混合物の両者の混合割合は、Sn4+:Sn2+の錫イオン比で90:10〜10:90の範囲である。この範囲外となる、Sn4+が多すぎてSn2+が少なすぎる場合にはSnの水酸化物が析出しやすく、Snがドープされないため、導電性が低い不具合があり、Sn4+が少なすぎてSn2+が多すぎる場合にはSnOが析出しやすく、Snがドープされないため、導電性が低い不具合がある。好ましくは15:85〜85:15の範囲である。言い換えれば、3価インジウム化合物に混合する錫化合物が4価錫化合物のみの場合も、2価錫化合物のみの場合もSnがドープされにくい不具合がある。 The mixing ratio of both the tetravalent tin compound and the mixture of the divalent tin compound mixed with the trivalent indium compound is in the range of 90:10 to 10:90 in the Sn 4+ : Sn 2+ tin ion ratio. When there is too much Sn 4+ and too little Sn 2+ outside this range, Sn hydroxide is likely to precipitate, and Sn is not doped, so there is a problem of low conductivity, and Sn 4+ is too little. When there is too much Sn 2+, SnO is likely to precipitate and Sn is not doped, so that there is a problem of low conductivity. Preferably it is the range of 15: 85-85: 15. In other words, both the case where the tin compound mixed with the trivalent indium compound is only the tetravalent tin compound and the case where only the divalent tin compound is used have a problem that Sn is hardly doped.

インジウムと錫の水酸化物を共沈させるときの反応液の最終pHを3.5〜9.3、好ましくはpH5.0〜8.0、液温を5℃以上、好ましくは液温10℃〜80℃に調整することによって、インジウム錫の共沈水酸化物を沈澱させることができる。アルカリ水溶液の混合は、上記混合水溶液にアルカリ水溶液を滴下し、上記pH範囲に調整しながら行われるか、或いは上記混合水溶液とアルカリ水溶液とを同時に水に滴下し、上記pH範囲に調整しながら行われる。   The final pH of the reaction solution when coprecipitating indium and tin hydroxide is 3.5 to 9.3, preferably pH 5.0 to 8.0, and the solution temperature is 5 ° C. or more, preferably 10 ° C. By adjusting to ˜80 ° C., a coprecipitated hydroxide of indium tin can be precipitated. The mixing of the alkaline aqueous solution is performed while dropping the alkaline aqueous solution into the mixed aqueous solution and adjusting it to the pH range, or simultaneously dropping the mixed aqueous solution and the alkaline aqueous solution into water and adjusting the pH range. Is called.

上記共沈インジウム錫水酸化物の生成後、この沈殿物を純水又はイオン交換水で洗浄し、上澄み液の抵抗率が少なくとも5000Ω・cm、好ましくは少なくとも50000Ω・cmになるまで洗浄する。上澄み液の抵抗率が5000Ω・cmより低いと塩素等の不純物が十分に除去されておらず、高純度のインジウム錫酸化物粉末を得ることができない。抵抗率が5000Ω・cm以上となった上記沈殿物の上澄み液を捨て、インジウム錫水酸化物粒子が分散した粘度の高いスラリーを得る。   After the coprecipitated indium tin hydroxide is formed, the precipitate is washed with pure water or ion-exchanged water and washed until the supernatant has a resistivity of at least 5000 Ω · cm, preferably at least 50000 Ω · cm. If the resistivity of the supernatant liquid is lower than 5000 Ω · cm, impurities such as chlorine are not sufficiently removed, and high-purity indium tin oxide powder cannot be obtained. The supernatant liquid of the precipitate having a resistivity of 5000 Ω · cm or more is discarded to obtain a highly viscous slurry in which indium tin hydroxide particles are dispersed.

このスラリーを、大気中、好ましくは窒素やアルゴンなどの不活性ガス雰囲気下、100〜200℃の範囲で2〜24時間乾燥した後、大気中250〜800℃の範囲で0.5〜6時間焼成炉にて焼成する。この焼成により形成された凝集体をハンマーミルやボールミルなどを用いて粉砕してほぐし、ITO粉末を得る。このITO粉末を50〜95質量部の無水エタノールと5〜50質量部の蒸留水を混合した表面処理液に入れて含浸させた後、ガラスシャーレに入れて窒素ガス雰囲気下、200〜400℃の範囲で0.5〜5時間加熱すると、表面改質処理したITO粉末が得られる。   The slurry is dried in air, preferably in an inert gas atmosphere such as nitrogen or argon, in the range of 100 to 200 ° C. for 2 to 24 hours, and then in the air in the range of 250 to 800 ° C. for 0.5 to 6 hours. Firing in a firing furnace. Aggregates formed by this firing are pulverized using a hammer mill, ball mill, or the like, and ITO powder is obtained. The ITO powder was impregnated with a surface treatment solution in which 50 to 95 parts by mass of absolute ethanol and 5 to 50 parts by mass of distilled water were mixed, and then placed in a glass petri dish under a nitrogen gas atmosphere at 200 to 400 ° C. When heated in the range for 0.5 to 5 hours, ITO powder subjected to surface modification treatment is obtained.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, examples of the present invention will be described in detail together with comparative examples.

<実施例1>
〔表面改質処理したITO粉末の製法〕
In金属濃度が24質量%の塩化インジウム(InCl)水溶液に、濃度55質量%の四塩化錫(SnCl)水溶液と二塩化錫(SnCl2HO)粉末とを混合した錫含有水溶液を添加し、攪拌して原料液を調製した。このとき、錫含有水溶液はSn4+:Sn2+の錫イオン比で表1に示す割合で四塩化錫と二塩化錫を混合して調製した。また原料液は錫含有水溶液を錫(Sn):インジウム(In)の質量比を表1に示すように混合した。
<Example 1>
[Production of surface-modified ITO powder]
A tin-containing aqueous solution prepared by mixing an aqueous solution of indium chloride (InCl 3 ) having an In metal concentration of 24% by mass with an aqueous solution of tin tetrachloride (SnCl 4 ) having a concentration of 55% by mass and tin dichloride (SnCl 2 2H 2 O) powder. The mixture was added and stirred to prepare a raw material solution. At this time, a tin-containing aqueous solution was prepared by mixing tin tetrachloride and tin dichloride at a ratio shown in Table 1 with a Sn 4+ : Sn 2+ tin ion ratio. The raw material solution was prepared by mixing a tin-containing aqueous solution as shown in Table 1 with a mass ratio of tin (Sn): indium (In).

45℃に加温した純水中に、上記原料液と25質量%のアンモニア(NH)水溶液とをpHを調整しながら同時に滴下した。このとき反応温度を45℃、最終の反応液のpHを8.0に調整した。生成したインジウム錫共沈水酸化物である沈殿物をイオン交換水によって繰り返し傾斜洗浄を行った。上澄み液の抵抗率が5000Ω・cm以上になったところで、上記沈殿物の上澄み液を捨て、インジウム錫水酸化物粒子が分散した粘度の高いスラリーを得た In purified water was heated to 45 ° C., and the and the raw material solution and 25% by weight of ammonia (NH 3) solution was simultaneously added dropwise to adjust the pH. At this time, the reaction temperature was adjusted to 45 ° C., and the pH of the final reaction solution was adjusted to 8.0. The generated precipitate of indium tin coprecipitated hydroxide was repeatedly washed with ion-exchanged water using an inclined exchange. When the resistivity of the supernatant liquid became 5000 Ω · cm or more, the supernatant liquid of the precipitate was discarded, and a highly viscous slurry in which indium tin hydroxide particles were dispersed was obtained.

このスラリーを、大気中、110℃で10時間乾燥した後、大気中600℃で3時間焼成し、凝集体を粉砕してほぐし、ITO粉末を得た。このITO粉末を無水エタノールと蒸留水を混合した表面処理液(混合比率はエタノール95質量部に対して蒸留水5質量部)に入れて含浸させた後、ガラスシャーレに入れて窒素ガス雰囲気下、400℃にて2時間加熱して表面改質処理したITO粉末を得た。   The slurry was dried in air at 110 ° C. for 10 hours, and then calcined in air at 600 ° C. for 3 hours. The aggregate was pulverized and loosened to obtain ITO powder. This ITO powder was impregnated in a surface treatment liquid (mixing ratio of 5 parts by mass of distilled water with respect to 95 parts by mass of ethanol) mixed with absolute ethanol and distilled water, and then placed in a glass petri dish under a nitrogen gas atmosphere. An ITO powder having been surface-modified by heating at 400 ° C. for 2 hours was obtained.

〔ITO膜の製造〕
この表面改質処理したITO粉末20gを、蒸留水(0.020g)、トリエチレングリコール−ジ−2−エチルヘキサノエート[3G](23.8g)、無水エタノール(2.1g)、リン酸ポリエステル(1.0g)、2−エチルヘキサン酸(2.0g)、2,4−ペンタンジオン(0.5g)の混合液に入れて分散させた。調製した分散液を無水エタノールで固形分であるITO粉末の含有量が10質量%になるまで希釈した。この希釈した分散液をスピンコーティングにより石英ガラス板に塗布して成膜し、厚さ0.2μmのITO膜を得た。
[Production of ITO film]
20 g of this surface-modified ITO powder was added to distilled water (0.020 g), triethylene glycol-di-2-ethylhexanoate [3G] (23.8 g), absolute ethanol (2.1 g), phosphoric acid The mixture was dispersed in a mixed solution of polyester (1.0 g), 2-ethylhexanoic acid (2.0 g), and 2,4-pentanedione (0.5 g). The prepared dispersion was diluted with absolute ethanol until the content of ITO powder as a solid content was 10% by mass. This diluted dispersion was applied to a quartz glass plate by spin coating to form a film, and an ITO film having a thickness of 0.2 μm was obtained.

<実施例2〜5>
実施例1と同じ塩化インジウムと四塩化錫と二塩化錫を用いて、表1に示す錫イオン比で、四塩化錫と二塩化錫を混合して錫含有水溶液を調製し、かつ表1に示す質量比で、この錫含有水溶液と原料液とを混合した。上記錫イオン比と上記質量比を変えた以外は、実施例1と同様にして、表面改質したITO粉末を得た。
<Examples 2 to 5>
Using the same indium chloride, tin tetrachloride and tin dichloride as in Example 1, tin tetrachloride and tin dichloride were mixed at a tin ion ratio shown in Table 1 to prepare a tin-containing aqueous solution. The tin-containing aqueous solution and the raw material liquid were mixed at the indicated mass ratio. A surface-modified ITO powder was obtained in the same manner as in Example 1 except that the tin ion ratio and the mass ratio were changed.

<比較例1>
In金属濃度が24質量%の塩化インジウム(InCl)水溶液に、濃度55質量%の四塩化錫(SnCl)水溶液を添加混合し、InCl−SnCl混合溶液を調製した。このとき、混合溶液は錫(Sn):インジウム(In)の質量比が表1に示すように混合した。以下、実施例1と同様にして、表面改質したITO粉末を得た。
<Comparative Example 1>
An aqueous solution of tin tetrachloride (SnCl 4 ) having a concentration of 55% by mass was added to and mixed with an aqueous solution of indium chloride (InCl 3 ) having an In metal concentration of 24% by mass to prepare an InCl 3 -SnCl 4 mixed solution. At this time, the mixed solution was mixed such that the mass ratio of tin (Sn): indium (In) was as shown in Table 1. Thereafter, a surface-modified ITO powder was obtained in the same manner as in Example 1.

<比較例2>
In金属濃度が24質量%の塩化インジウム(InCl)水溶液に、二塩化錫(SnCl2HO)粉末を添加混合し、InCl−SnCl混合溶液を調製した。このとき、混合溶液は錫(Sn):インジウム(In)の質量比が表1に示すように混合した。以下、実施例1と同様にして、表面改質したITO粉末を得た。
<Comparative example 2>
Tin dichloride (SnCl 2 2H 2 O) powder was added to and mixed with an indium chloride (InCl 3 ) aqueous solution having an In metal concentration of 24 mass% to prepare an InCl 3 -SnCl 2 mixed solution. At this time, the mixed solution was mixed such that the mass ratio of tin (Sn): indium (In) was as shown in Table 1. Thereafter, a surface-modified ITO powder was obtained in the same manner as in Example 1.

<比較試験>
〔ITO粉末の格子歪〕
BrukerAXS社製、X線回折装置D8 Advanceを用いて、この装置に付属する試料ホルダーに実施例1〜5及び比較例1、2で得られた各ITO粉末を充填して2θ/θ=15〜90degの範囲でX線を照射し、得られた回折線からRietveld解析ソフトであるTOPAS(BrukerAXS社製)を使用し、プロファイル関数としてFPを用いたPawley法にて解析し、ローレンツ関数成分の半値幅から結晶子サイズと格子歪を算出した。測定は、CuKaを管球として用い、40kV、40mAとし、特定X線(波長1.54Å)でステップ間隔を0.05degとして行った。その結果を表1に示す。
<Comparison test>
[Lattice strain of ITO powder]
Using the X-ray diffractometer D8 Advance manufactured by BrukerAXS, the sample holder attached to the apparatus was filled with each ITO powder obtained in Examples 1 to 5 and Comparative Examples 1 and 2, and 2θ / θ = 15 to The X-ray is irradiated in the range of 90 deg., And the obtained diffraction lines are analyzed by the Pawley method using FP as a profile function using TOPAS (manufactured by BrukerAXS), which is Rietveld analysis software, and half of the Lorentz function component. The crystallite size and lattice strain were calculated from the value width. The measurement was performed using CuKa as a tube, 40 kV, 40 mA, a specific X-ray (wavelength 1.54 mm) and a step interval of 0.05 deg. The results are shown in Table 1.

〔ITO粉末の体積抵抗率〕
実施例1〜5及び比較例1、2で得られた各ITO粉末の体積抵抗率を図1に示す測定装置(三菱化学アナリティック製 MCP-PD51)を用いて測定した。その結果を表1に示す。具体的には、各ITO粉末の体積抵抗率の測定は、図1に示す、内径φが25mmのシリンダー1にITO粉末2.00gを充填し、4.9MPa(50kgf/cm)の圧力を加えて、実施例1〜5及び比較例1、2で得られたITO粉末の抵抗率をそれぞれ測定した。圧力は図示しない圧力センサにより、抵抗率は直流4端子法で測定した。図1において、2はITO粉末の圧粉体である。
[Volume resistivity of ITO powder]
The volume resistivity of each ITO powder obtained in Examples 1 to 5 and Comparative Examples 1 and 2 was measured using a measuring apparatus (MCP-PD51 manufactured by Mitsubishi Chemical Analytic) shown in FIG. The results are shown in Table 1. Specifically, the volume resistivity of each ITO powder is measured by filling 2.00 g of ITO powder in a cylinder 1 having an inner diameter φ of 25 mm shown in FIG. 1 and applying a pressure of 4.9 MPa (50 kgf / cm 2 ). In addition, the resistivity of the ITO powder obtained in Examples 1 to 5 and Comparative Examples 1 and 2 was measured. The pressure was measured by a pressure sensor (not shown), and the resistivity was measured by a DC four-terminal method. In FIG. 1, 2 is a green compact of ITO powder.

Figure 2014065645
Figure 2014065645

<評価>
表1から明らかなように、4価錫化合物のみの比較例1及び2価錫化合物のみの比較例2では、ITO粉末の格子歪がそれぞれ0.155、0.075であり、この場合には体積抵抗率が0.239Ωcm、0.201Ωcmであったのに対して、Sn4+:Sn2+の錫イオン比が90:10〜10:90の範囲にある実施例1〜5では、ITO粉末の格子歪が0.2〜0.8の範囲にあり、この場合には体積抵抗率は0.20Ωcm以下の範囲にあった。これにより格子歪が0.2〜0.8の範囲のITO粉末は体積抵抗率が低いことが立証された。
<Evaluation>
As apparent from Table 1, in Comparative Example 1 containing only the tetravalent tin compound and Comparative Example 2 containing only the divalent tin compound, the lattice strain of the ITO powder was 0.155 and 0.075, respectively. In Examples 1 to 5 where the Sn 4+ : Sn 2+ tin ion ratio is in the range of 90:10 to 10:90, while the volume resistivity was 0.239 Ωcm and 0.201 Ωcm, the ITO powder The lattice strain was in the range of 0.2 to 0.8. In this case, the volume resistivity was in the range of 0.20 Ωcm or less. This proved that the ITO powder having a lattice strain in the range of 0.2 to 0.8 has a low volume resistivity.

Claims (5)

X線回折装置に付属する試料ホルダーに試料となるITO粉末を充填して2θ/θ=15〜90degの範囲でX線を照射し、得られた回折線から格子定数、結晶子サイズ、格子歪の精密化を行った結果、得られた格子歪が0.2〜0.8の範囲にあることを特徴とするITO粉末。   A sample holder attached to the X-ray diffractometer is filled with ITO powder as a sample and irradiated with X-rays in the range of 2θ / θ = 15 to 90 deg. From the obtained diffraction lines, the lattice constant, crystallite size, and lattice distortion As a result of the refinement of the ITO, the obtained lattice strain is in the range of 0.2 to 0.8. 3価インジウム化合物と錫化合物の混合水溶液にアルカリ水溶液を混合して、インジウムと錫の共沈水酸化物を生成する工程と、前記沈殿物を純水又はイオン交換水で洗浄する工程と、前記沈殿物の上澄み液を捨ててインジウム錫水酸化物粒子が分散したスラリーを調製する工程と、前記スラリーを乾燥する工程と、前記乾燥したインジウム水錫酸化物を焼成してインジウム錫酸化物を得る工程とを含むITO粉末を製造する方法において、
前記錫化合物が4価錫化合物と2価錫化合物の混合物であって、Sn4+:Sn2+の錫イオン比が90:10〜10:90の範囲にあることを特徴とする請求項1記載のITO粉末の製造方法。
A step of mixing an aqueous alkaline solution with a mixed aqueous solution of a trivalent indium compound and a tin compound to produce a coprecipitated hydroxide of indium and tin, a step of washing the precipitate with pure water or ion-exchanged water, and the precipitation Discarding the supernatant of the product to prepare a slurry in which indium tin hydroxide particles are dispersed, drying the slurry, and firing the dried indium tin oxide to obtain indium tin oxide In a method for producing an ITO powder comprising:
The tin compound is a mixture of a tetravalent tin compound and a divalent tin compound, and a tin ion ratio of Sn 4+ : Sn 2+ is in a range of 90:10 to 10:90. Production method of ITO powder.
前記4価錫化合物がSnCl水溶液であり、前記2価錫化合物がSnCl・2HO粉末である請求項2記載の製造方法。 The production method according to claim 2 , wherein the tetravalent tin compound is an SnCl 4 aqueous solution, and the divalent tin compound is SnCl 2 · 2H 2 O powder. 請求項1記載のITO粉末又は請求項2若しくは3記載の方法により製造されたITO粉末を溶媒に分散させて分散液を製造する方法。   A method for producing a dispersion by dispersing the ITO powder according to claim 1 or the ITO powder produced by the method according to claim 2 or 3 in a solvent. 請求項4記載の分散液からITO膜を製造する方法。   A method for producing an ITO film from the dispersion according to claim 4.
JP2012213762A 2012-09-27 2012-09-27 Production method of ITO powder Active JP5949395B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012213762A JP5949395B2 (en) 2012-09-27 2012-09-27 Production method of ITO powder
CN201310283707.3A CN103693677B (en) 2012-09-27 2013-07-08 ITO powder and manufacture method thereof and dispersion liquid and the manufacture method of ITO film
KR1020130095588A KR101729366B1 (en) 2012-09-27 2013-08-12 Ito powder and method of producing same
TW102129798A TWI568676B (en) 2012-09-27 2013-08-20 ITO powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012213762A JP5949395B2 (en) 2012-09-27 2012-09-27 Production method of ITO powder

Publications (2)

Publication Number Publication Date
JP2014065645A true JP2014065645A (en) 2014-04-17
JP5949395B2 JP5949395B2 (en) 2016-07-06

Family

ID=50355374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012213762A Active JP5949395B2 (en) 2012-09-27 2012-09-27 Production method of ITO powder

Country Status (4)

Country Link
JP (1) JP5949395B2 (en)
KR (1) KR101729366B1 (en)
CN (1) CN103693677B (en)
TW (1) TWI568676B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111463110B (en) * 2020-04-15 2023-05-09 武汉华星光电半导体显示技术有限公司 Preparation method of ITO film based on solution method
CN113583523B (en) * 2021-08-23 2022-12-13 苏州中来光伏新材股份有限公司 Coating and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185916A (en) * 1998-10-14 2000-07-04 Nippon Shokubai Co Ltd Metal oxide-based particle, its production and use
JP2002068744A (en) * 2000-08-30 2002-03-08 Mitsui Mining & Smelting Co Ltd Tin oxide-added indium oxide powder and its manufacturing method
JP2004123523A (en) * 2002-09-11 2004-04-22 Sumitomo Chem Co Ltd Method for producing indium oxide-tin oxide powder
US20040140456A1 (en) * 2002-09-11 2004-07-22 Sumitomo Chemical Company, Limited Method of producing indium Tin oxide powder
WO2005021436A1 (en) * 2003-08-29 2005-03-10 Japan Science And Technology Agency Ito thin film and method for producing same
JP2005179096A (en) * 2003-12-17 2005-07-07 Hitachi Maxell Ltd Aluminum-substituted tin-containing indium oxide particles, method for manufacturing the same, conductive coating material using the particles, conductive coating film and conductive sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686776B2 (en) 2006-08-28 2011-05-25 Dowaエレクトロニクス株式会社 ITO powder and manufacturing method thereof, coating material for ITO conductive film, and transparent conductive film
JP5060781B2 (en) * 2006-12-26 2012-10-31 三菱マテリアル電子化成株式会社 Composition for forming transparent conductive film, transparent conductive film and display
KR100787635B1 (en) 2007-01-22 2007-12-21 삼성코닝 주식회사 Indium tin oxide target, method of manufacturing the same and transparent electrode manufactured by using the same
US20100129533A1 (en) * 2008-11-21 2010-05-27 Dilip Kumar Chatterjee Conductive Film Formation On Glass
JP5760219B2 (en) * 2011-01-04 2015-08-05 平岡織染株式会社 Solar heat control membrane material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000185916A (en) * 1998-10-14 2000-07-04 Nippon Shokubai Co Ltd Metal oxide-based particle, its production and use
JP2002068744A (en) * 2000-08-30 2002-03-08 Mitsui Mining & Smelting Co Ltd Tin oxide-added indium oxide powder and its manufacturing method
JP2004123523A (en) * 2002-09-11 2004-04-22 Sumitomo Chem Co Ltd Method for producing indium oxide-tin oxide powder
US20040140456A1 (en) * 2002-09-11 2004-07-22 Sumitomo Chemical Company, Limited Method of producing indium Tin oxide powder
WO2005021436A1 (en) * 2003-08-29 2005-03-10 Japan Science And Technology Agency Ito thin film and method for producing same
US20070154629A1 (en) * 2003-08-29 2007-07-05 Japan Science And Technology Agency Thin ito films and method of producing the same
JP2005179096A (en) * 2003-12-17 2005-07-07 Hitachi Maxell Ltd Aluminum-substituted tin-containing indium oxide particles, method for manufacturing the same, conductive coating material using the particles, conductive coating film and conductive sheet

Also Published As

Publication number Publication date
CN103693677A (en) 2014-04-02
KR101729366B1 (en) 2017-04-24
CN103693677B (en) 2016-11-23
TW201422534A (en) 2014-06-16
KR20140041331A (en) 2014-04-04
TWI568676B (en) 2017-02-01
JP5949395B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
Zhang et al. Surfactant-free solution phase synthesis of monodispersed SnO 2 hierarchical nanostructures and gas sensing properties
JP2011116623A (en) Heat ray shielding composition and method for manufacturing the same
Mansoor et al. Lanthanum–titanium oxide composite from a single molecular cluster: Non-enzymatic mesoporous electrochemical nitrite ion sensor
JP5949395B2 (en) Production method of ITO powder
WO2009128495A1 (en) Sputtering target
JP5924214B2 (en) ITO powder and method for producing the same
JP2011100710A (en) Method of manufacturing conductive particulate and conductive particulate
KR20200038742A (en) Silver powder manufacturing method
JP5829386B2 (en) Fine ITO powder with high crystallinity, its use and manufacturing method, etc.
JP5285412B2 (en) Tin-doped indium oxide particles and method for producing the same
JP2012176859A (en) Indium tin oxide particle and method for producing the same
JP5954082B2 (en) ITO powder and method for producing the same
JPH0721831A (en) Manufacture of conductive oxide powder
KR102302205B1 (en) Silver powder manufacturing method
JP2014010903A (en) White conductive powder, fluid dispersion of the same, coating material, and film composition
WO2012014337A1 (en) Indium tin oxide powder, production method therefor, transparent conductive composition, and indium tin hydroxide
Darul et al. Influence of lattice defects on the high pressure properties of Ni0. 66Mn2. 34O4 NTC ceramics
JP5592067B2 (en) Method for producing conductive tin oxide powder
JP5335328B2 (en) Method for producing conductive tin oxide powder
JPWO2018088163A1 (en) Tin oxide particles and method for producing the same
JP5885507B2 (en) Indium tin oxide powder and method for producing the same
WO2014003066A1 (en) White conductive powder, dispersion liquid thereof, coating material, and film composition
JP2015174790A (en) Conductive fine particle and production method of the same, conductive fine particle dispersion liquid, transparent conductive fine particle dispersion, and transparent conductive fine particle dispersion film
JP2017031016A (en) Method for producing aluminum borate whisker
JP5366712B2 (en) Conductive indium oxide particles, dispersion using the particles, and method for producing the particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150