JP2014064013A - Reactor and converter - Google Patents

Reactor and converter Download PDF

Info

Publication number
JP2014064013A
JP2014064013A JP2013225065A JP2013225065A JP2014064013A JP 2014064013 A JP2014064013 A JP 2014064013A JP 2013225065 A JP2013225065 A JP 2013225065A JP 2013225065 A JP2013225065 A JP 2013225065A JP 2014064013 A JP2014064013 A JP 2014064013A
Authority
JP
Japan
Prior art keywords
coil
core
powder
magnetic
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013225065A
Other languages
Japanese (ja)
Inventor
Shinichiro Yamamoto
伸一郎 山本
Hajime Kawaguchi
肇 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013225065A priority Critical patent/JP2014064013A/en
Publication of JP2014064013A publication Critical patent/JP2014064013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reactor capable of reducing magnetic fluxes leaking outside the core.SOLUTION: A reactor includes a core 1 and a coil C. The core includes a coil arrangement portion 11 that is inserted into the coil and an exposed portion 12 that is not covered with the coil, and is formed by integrating the coil arrangement portion and the exposed portion without a gap. The coil arrangement portion is a hardened molded body containing magnetic powder, which is iron-group metal powder or Fe-based alloy powder, and resin, and the exposed portion is a powder-compressed molded body using the iron-group metal powder or the Fe-based alloy powder. The relative permeability of the coil arrangement portion ranges from 3 or more to 50 or less, and the relative permeability of the exposed portion is higher than that of the coil arrangement portion.

Description

本発明は、外周にコイルが配置されてリアクトルに用いられるコアに関するものである。特に、コア外部への漏れ磁束を低減することができるリアクトル用コアに関するものである。   The present invention relates to a core used in a reactor having a coil arranged on the outer periphery. In particular, the present invention relates to a reactor core that can reduce magnetic flux leakage to the outside of the core.

近年、地球環境保護の観点からハイブリッド自動車が実用化されている。ハイブリッド自動車は、エンジン及びモータを駆動源として具え、その一方又は双方を用いて走行する自動車である。このようなハイブリッド自動車は、バッテリの直流をインバータで交流に変換し、その交流を走行用のモータに供給する。最近のハイブリッド自動車は、バッテリ及びモータの小型化のために昇圧コンバータを具えている。このコンバータは、バッテリの電圧を昇圧してインバータ(モータ)に供給する役割と、ジェネレータ(モータ)からの回生電流をバッテリ電圧に降圧し、バッテリに充電を行う役割を持つ。このコンバータの部品の一つに、電気エネルギーを磁気エネルギーとして蓄えられるリアクトルがある。   In recent years, hybrid vehicles have been put into practical use from the viewpoint of protecting the global environment. A hybrid vehicle is a vehicle that includes an engine and a motor as drive sources and travels using one or both of them. Such a hybrid vehicle converts the direct current of the battery into alternating current with an inverter, and supplies the alternating current to a motor for traveling. Modern hybrid vehicles include a boost converter to reduce the size of the battery and motor. This converter has the role of boosting the voltage of the battery and supplying it to the inverter (motor), and the role of reducing the regenerative current from the generator (motor) to the battery voltage and charging the battery. One of the components of this converter is a reactor that can store electrical energy as magnetic energy.

リアクトルは、磁性材料、代表的には電磁鋼板と呼ばれる珪素鋼板を積層してなるコアと、コアの外周に配されるコイルとを具える。コア100は、図6に示すように複数の分割片101a〜101dを組み合わせてなる環状のものが代表的である。珪素鋼は一般に比透磁率が高いため、電磁鋼板からなるコアは、磁気飽和し易い。そこで、磁気飽和し難くするために、分割片間に空隙(エアギャップ)を設けたり、ギャップ材を配することが行われている。図6に示すコア100は、コイルCが配置されてコイルCで覆われる分割片101a,101bと、コイルCが配置されず、コイルCで覆われない分割片101c,101dとの間にそれぞれ、アルミナといった非磁性材料からなるギャップ材102を介在させて環状に形成されている。なお、比透磁率μrとは、材料の透磁率μと真空の透磁率μ0との比率μ/μ0のことである(真空の透磁率μ0=4π×10-7H/m)。 The reactor includes a core formed by laminating magnetic materials, typically silicon steel plates called electromagnetic steel plates, and a coil disposed on the outer periphery of the core. As shown in FIG. 6, the core 100 is typically an annular core formed by combining a plurality of pieces 101a to 101d. Since silicon steel generally has a high relative permeability, a core made of an electromagnetic steel sheet is likely to be magnetically saturated. Therefore, in order to make it difficult for magnetic saturation, gaps (air gaps) are provided between divided pieces, or gap materials are provided. The core 100 shown in FIG. 6 is divided between the divided pieces 101a and 101b in which the coil C is arranged and covered with the coil C, and the divided pieces 101c and 101d in which the coil C is not arranged and covered with the coil C, respectively. It is formed in an annular shape with a gap material 102 made of a nonmagnetic material such as alumina interposed. The relative permeability μ r is the ratio μ / μ 0 between the material permeability μ and the vacuum permeability μ 0 (vacuum permeability μ 0 = 4π × 10 −7 H / m) .

しかし、ギャップがあると、ギャップに起因する漏れ磁束が生じる。そこで、漏れ磁束を低減するために、特許文献1は、高透磁率の珪素鋼板を用いず、低透磁率の圧粉磁性材料で分割片を作製し、分割片同士を接着剤で接合してなるギャップレス構造の環状コアを提案している。   However, if there is a gap, leakage magnetic flux due to the gap is generated. Therefore, in order to reduce the leakage magnetic flux, Patent Document 1 does not use a high-permeability silicon steel sheet, but produces divided pieces using a low magnetic permeability powder magnetic material, and joins the divided pieces with an adhesive. An annular core with a gapless structure is proposed.

特開2006-344868号公報JP 2006-344868

漏れ磁束は、コイルに侵入することで渦電流損などの損失を生じたり、リアクトルの周辺機器に影響を与えるなどの問題がある。従って、漏れ磁束は、できるだけ少ないことが望まれる。しかし、上記ギャップレス構造のコアでは、漏れ磁束の低減に限界がある。   Leakage magnetic flux has problems such as eddy current loss caused by entering the coil and affecting peripheral devices of the reactor. Therefore, it is desirable that the leakage magnetic flux is as small as possible. However, the gapless core has a limit in reducing leakage flux.

図5は、ギャップレス構造の環状コアにおいて磁束の流れる状態を示す説明図である。例えば、コア110に配置される一方のコイルC1が生成する磁束は、理想的には、]状の破線矢印で示すように、コア110においてコイルC1内に挿入される部分(コイル配置部111a)を通過し、コイルCが配置されずに露出された部分(露出部111c)、他方のコイルC2内に挿入されるコイル配置部111b、別の露出部111dを順に経て、コイル配置部111aに戻る。他方のコイルC2が生成する磁束は、コイル配置部111b→露出部111d→コイル配置部111a→露出部111cを経て、コイル配置部111bに戻る。しかし、実際には、コイルが生成する磁束の一部は、一方のコイル配置部から他方のコイル配置部を通過する際、露出部を通らずに、コイル配置部と露出部で囲まれる空間(以下、内側空間と呼ぶ)を通ると考えられる。 FIG. 5 is an explanatory diagram showing a state in which magnetic flux flows in the annular core having a gapless structure. For example, the magnetic flux generated by one of the coils C 1 arranged in the core 110 is ideally a portion inserted into the coil C 1 in the core 110 (coil arrangement part) as shown by a dotted arrow passes through 111a), the exposed portion without the coil C is placed (exposed portion 111c), through the coil arrangement portion 111b which is inserted into the other in the coil C 2, another exposed portion 111d sequentially, coil arrangement portion Return to 111a. Magnetic flux and the other coil C 2 generates undergoes a coil arrangement portion 111b → the exposed portion 111d → coil arrangement portion 111a → exposed portion 111c, the flow returns to the coil arrangement portion 111b. However, in actuality, when a part of the magnetic flux generated by the coil passes from one coil placement portion to the other coil placement portion, the space surrounded by the coil placement portion and the exposure portion without passing through the exposure portion ( Hereinafter, it is considered to pass through the inner space).

コア110は、その全体を一様な低透磁率材料で形成していることから、コア110部分と、内側空間といったコア110外部との比透磁率の差が小さい。そのため、コア110部分と内側空間とにおいて、磁束の通り易さの差が小さくなる。つまり、全体が一様な高透磁率材料で構成されたコア100と比較すると、コア110は、内側空間に磁束が漏れる割合が大きくなり易い。そのため、磁束の一部は、一方のコイル配置部から他方のコイル配置部を通過するにあたり、露出部を介さず内側空間を介して通り易くなる。即ち、図5の直線状の破線矢印で示すように磁束の一部がショートカットするようになる。   Since the core 110 is entirely formed of a uniform low-permeability material, the difference in relative permeability between the core 110 portion and the outside of the core 110 such as the inner space is small. Therefore, the difference in the ease of passing the magnetic flux between the core 110 portion and the inner space becomes small. That is, as compared with the core 100 made of a uniform high magnetic permeability material as a whole, the core 110 tends to have a higher rate of magnetic flux leakage into the inner space. Therefore, a part of the magnetic flux easily passes through the inner space without passing through the exposed portion when passing from one coil placement portion to the other coil placement portion. That is, a part of the magnetic flux is short-cut as shown by the straight dashed arrow in FIG.

また、コア110は、その全体が低透磁率材料で構成されることから、コア110の周囲にも磁束が漏れる割合が大きくなり易い。   In addition, since the core 110 is entirely made of a low magnetic permeability material, the rate at which magnetic flux leaks around the core 110 is likely to increase.

本発明は、上記の事情を鑑みてなされたもので、その目的の一つは、漏れ磁束を効果的に低減することができるリアクトル用コアを提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a reactor core capable of effectively reducing leakage magnetic flux.

本発明は、コア全体を一様な磁性材料で構成するのではなく、比透磁率を部分的に異ならせることで、上記目的を達成する。   The present invention achieves the above object by making the relative permeability partially different from each other rather than configuring the entire core with a uniform magnetic material.

本発明リアクトル用コアは、リアクトルを構成するコイルで覆われるコイル配置部と、コイルで覆われない露出部とを具える環状のコアであり、コイル配置部と露出部とがギャップを介することなく一体化されてなる。そして、露出部は、コイル配置部よりも比透磁率が高い。   The reactor core according to the present invention is an annular core including a coil arrangement portion covered with a coil constituting the reactor and an exposed portion not covered with the coil, and the coil arrangement portion and the exposed portion do not pass through a gap. It is integrated. The exposed portion has a relative permeability higher than that of the coil placement portion.

本発明リアクトル用コアは、ギャップを介することなく一体化されたギャップレス構造であるため、ギャップに起因する漏れ磁束や騒音が実質的に生じない。   Since the reactor core according to the present invention has a gapless structure integrated without a gap, leakage magnetic flux and noise due to the gap are not substantially generated.

そして、本発明コアは、部分的に比透磁率が異なる構成、具体的には、コイル内に配置される部分(コイル配置部)の比透磁率が低く、コイルが配置されない部分(露出部)の比透磁率が高い。このような特性を実現するために本発明コアは、全体を一様な磁性材料で構成せず、部分的に異なる磁性材料で構成する。このような構成を具える本発明コアは、全体が一様な低透磁率の磁性材料で構成された環状コアのように、内側空間や周囲に漏れ磁束が生じることを低減することができる。従って、漏れ磁束による損失やリアクトル周辺機器への影響を効果的に抑制することができる。また、本発明コアは、漏れ磁束を低減することで、コイルが発生した磁束を十分に活用することができる。   The core of the present invention has a configuration in which the relative permeability is partially different, specifically, the portion where the coil is disposed (coil placement portion) is low in relative permeability, and the portion where the coil is not placed (exposed portion) The relative permeability of is high. In order to realize such characteristics, the core of the present invention is not entirely composed of a uniform magnetic material, but is partially composed of different magnetic materials. The core of the present invention having such a configuration can reduce the occurrence of leakage magnetic flux in the inner space and surroundings like an annular core made of a magnetic material having a uniform low magnetic permeability as a whole. Therefore, it is possible to effectively suppress the loss due to the leakage magnetic flux and the influence on the peripheral devices of the reactor. Moreover, the present invention core can fully utilize the magnetic flux generated by the coil by reducing the leakage magnetic flux.

以下、本発明をより詳細に説明する。
本発明コアは、その外周に配されるコイルを励磁した際に閉磁路が形成される磁性部材であり、コイル配置部と露出部とが一体化されて環状に構成されている。代表的には、一対のコイル配置部と一対の露出部とを枠状に配置した構成が挙げられる。
Hereinafter, the present invention will be described in more detail.
The core of the present invention is a magnetic member in which a closed magnetic path is formed when a coil disposed on the outer periphery thereof is excited, and the coil arrangement portion and the exposed portion are integrated to form an annular shape. A typical example is a configuration in which a pair of coil arrangement portions and a pair of exposed portions are arranged in a frame shape.

本発明コアは、例えば、複数の分割片を形成し、分割片同士を接着剤やボルトなどの締結部材で接合することで得られる。分割片の区切りは、種々考えられ、例えば、コイル配置部、露出部のそれぞれを分割片としてもよい。このとき、接合箇所は4つである。その他、一方のコイル配置部と一方の露出部とが一体のL字状分割片と、他方のコイル配置部と他方の露出部とが一体のL字状分割片とからなる構成(接合箇所:2つ)や、各コイル配置部が二つに分割され、一方のコイル配置部を分割した一の短片と一方の露出部と他方のコイル配置部を分割した一の短片とが一体の]状分割片と、一方のコイル配置部を分割した他の短片と他方の露出部と他方のコイル配置部を分割した他の短片とが一体の]状分割片とからなる構成(接合箇所:2つ)などが挙げられる。接着剤は、エポキシ系接着剤などが利用できる。   The core of the present invention can be obtained, for example, by forming a plurality of divided pieces and joining the divided pieces with a fastening member such as an adhesive or a bolt. Various divisions of the divided pieces are conceivable. For example, each of the coil arrangement part and the exposed part may be a divided piece. At this time, there are four joints. In addition, one coil arrangement part and one exposed part are composed of an integral L-shaped piece, and the other coil placement part and the other exposed part are an integral L-shaped piece (joint location: 2) or each coil arrangement part is divided into two, and one short piece obtained by dividing one coil arrangement part, one exposed part, and one short piece obtained by dividing the other coil arrangement part are integrated] A structure composed of a split piece, and another short piece obtained by dividing one coil placement portion, the other exposed portion, and another short piece obtained by splitting the other coil placement portion. ) And the like. An epoxy adhesive or the like can be used as the adhesive.

分割片同士を接着剤で接合すると、分割片の接合箇所に接着剤が介在される。接着剤は、通常非磁性であるが、ここでの接着剤はリアクトルのインダクタンスを調整するためのギャップ材ではなく、単に分割片同士を接合するものに過ぎない。そのため、本発明コアにおいて分割片間に接着剤が存在してもギャップを介することなく一体化されているものとする。   When the split pieces are joined together with an adhesive, the adhesive is interposed at the joint location of the split pieces. The adhesive is usually non-magnetic, but the adhesive here is not a gap material for adjusting the inductance of the reactor, but merely for joining the divided pieces. Therefore, even if an adhesive exists between the divided pieces in the core of the present invention, it is integrated without a gap.

本発明コアを圧粉成形体とする場合、所望の三次元形状の分割片を容易に成形可能であり、所望の特性を有するように材料を調整したり、製造条件を調整することで、本発明コアを得ることができる。   When the core of the present invention is used as a green compact, it is possible to easily mold a desired three-dimensional segment and adjust the material so that it has the desired characteristics, or adjust the manufacturing conditions. Invention cores can be obtained.

コイル配置部の別の形態として、焼結体や樹脂の硬化成形体が挙げられる。硬化成形体は、磁性粉末と流動性のある樹脂との混合体を成形し、得られた成形体の樹脂を硬化させたものである。これら焼結体や硬化成形体とする場合も所望の三次元形状の分割片を容易に成形可能である。   As another form of a coil arrangement | positioning part, the sintered compact and the hardening molded object of resin are mentioned. The cured molded body is obtained by molding a mixture of magnetic powder and flowable resin and curing the resin of the obtained molded body. Even when these sintered bodies and cured molded bodies are used, it is possible to easily form a desired three-dimensional divided piece.

露出部の別の形態として、電磁鋼板を積層してなる積層体が挙げられる。電磁鋼板を用いることで、比透磁率が高い露出部を簡単に形成できる。なお、電磁鋼板の比透磁率は、4000〜8000程度であり、このような高透磁率の磁性材料でコア全体を構成すると、ギャップレス構造とすることが難しい。   As another form of the exposed portion, a laminate formed by laminating electromagnetic steel sheets can be mentioned. By using an electromagnetic steel sheet, an exposed portion having a high relative permeability can be easily formed. In addition, the relative magnetic permeability of the electromagnetic steel sheet is about 4000 to 8000, and if the entire core is composed of such a high magnetic permeability material, it is difficult to obtain a gapless structure.

本発明コアは、ギャップレス構造が可能な磁性材料を用いて製造する。コア全体を比透磁率が低い一様な磁性材料で構成するとギャップレス構造が可能であるが、上述のように内側空間などのコア外部に漏れ磁束が生じ易くなる。そこで、本発明コアにおいてコイルが配置されるコイル配置部は、比透磁率が低くなるような磁性材料で構成し、コイルが配置されない露出部は、比透磁率が比較的高い磁性材料で構成し、本発明コア全体の平均透磁率(実効透磁率)が比較的低くなるように磁性材料を選択することが好ましい。具体的には、本発明コア全体の平均透磁率が比透磁率で5以上50以下であることが好ましい。   The core of the present invention is manufactured using a magnetic material capable of a gapless structure. If the entire core is made of a uniform magnetic material having a low relative permeability, a gapless structure is possible. However, as described above, leakage magnetic flux tends to be generated outside the core such as the inner space. Therefore, the coil placement portion where the coil is placed in the core of the present invention is made of a magnetic material having a low relative permeability, and the exposed portion where no coil is placed is made of a magnetic material having a relatively high relative permeability. The magnetic material is preferably selected so that the average permeability (effective permeability) of the entire core of the present invention is relatively low. Specifically, the average permeability of the entire core of the present invention is preferably 5 or more and 50 or less in terms of relative permeability.

例えば、露出部は、比透磁率が50以上の材料で構成し、コイル配置部は、露出部よりも比透磁率が低い材料、具体的には、比透磁率が3以上50以下の材料で構成することで、本発明コア全体の平均的な比透磁率を5〜50とすることができる。また、コイル配置部は、その全体が均一的な比透磁率の磁性材料から構成されるものとする。このようなコイル配置部は、その全体に亘って均一的に磁束が通る構造とすることができる。   For example, the exposed portion is made of a material having a relative permeability of 50 or more, and the coil placement portion is made of a material having a relative permeability lower than that of the exposed portion, specifically, a material having a relative permeability of 3 or more and 50 or less. By comprising, the average relative magnetic permeability of the whole core of the present invention can be made 5-50. In addition, the coil placement portion is entirely composed of a magnetic material having a uniform relative permeability. Such a coil arrangement | positioning part can be made into the structure where a magnetic flux passes uniformly over the whole.

コイル配置部を構成する磁性材料の比透磁率を上記範囲に調整するには、以下の手法が挙げられる。いずれの手法の場合も、コアのサイズに応じて材料の比透磁率を調整することができる。   In order to adjust the relative magnetic permeability of the magnetic material constituting the coil placement portion within the above range, the following method is exemplified. In any case, the relative magnetic permeability of the material can be adjusted according to the size of the core.

<圧粉成形体の場合>
コイル配置部を圧粉成形体で構成する場合、通常、表面に絶縁被膜を具える軟磁性粉末とバインダ樹脂とを混合し、この混合粉末を成形後、絶縁被膜の耐熱温度以下で焼成する。そして、軟磁性粉末とバインダ樹脂との混合比を調整することで、低透磁率材料からなるコイル配置部が得られる。具体的には、バインダ樹脂の配合量を増やすことで、コイル配置部において磁束が通過する断面に対する磁性材料(軟磁性粉末)の割合を下げる。磁性材の割合が少ないことで、比透磁率が小さくなる。その他、混合粉末を成形する際の圧力を変えることでもコイル配置部を構成する材料の比透磁率を調整することができる。バインダ樹脂の配合量が多い方が、又は混合粉末の成形圧力が低い方がコイル配置部の比透磁率が低くなる傾向にある。圧粉成形体は、後述する焼結体と異なり、焼成後にバインダ樹脂が残存し、この樹脂により軟磁性粉末同士が絶縁される。そのため、圧粉成形体からなるコイル配置部は、リアクトルに用いた際、焼結体からなるコイル配置部と比較して渦電流損失を低減でき、コイルに高周波が通電される場合の使用に適する。
<For compacted compact>
When the coil placement portion is formed of a compacted body, usually, a soft magnetic powder having an insulating coating on the surface and a binder resin are mixed, and the mixed powder is molded and then fired at a temperature lower than the heat resistance temperature of the insulating coating. And the coil arrangement | positioning part which consists of a low magnetic permeability material is obtained by adjusting the mixing ratio of soft-magnetic powder and binder resin. Specifically, by increasing the blending amount of the binder resin, the ratio of the magnetic material (soft magnetic powder) to the cross section through which the magnetic flux passes in the coil placement portion is reduced. Since the ratio of the magnetic material is small, the relative permeability becomes small. In addition, the relative magnetic permeability of the material constituting the coil placement portion can be adjusted by changing the pressure when forming the mixed powder. The relative permeability of the coil placement portion tends to be lower when the amount of the binder resin is larger or when the molding pressure of the mixed powder is lower. Unlike a sintered body, which will be described later, in the green compact, a binder resin remains after firing, and the soft magnetic powders are insulated from each other by this resin. Therefore, when the coil placement portion made of a compacted body is used for a reactor, it can reduce eddy current loss as compared with the coil placement portion made of a sintered body, and is suitable for use when a high frequency is applied to the coil. .

軟磁性粉末は、Fe,Co,Niといった鉄族金属粉末の他、Fe-Si,Fe-Ni,Fe-Al,Fe-Co,Fe-Cr,Fe-Si-AlなどのFe基合金粉末、或は希土類金属粉末、フェライト粉末などが利用できる。このような粉末の作製法は、アトマイズ法(ガス又は水)や、機械的粉砕法が挙げられる。特に、結晶がナノサイズであるナノ結晶材料からなる粉末、好ましくは異方性ナノ結晶材料からなる粉末を用いると、高異方性で低保磁力の分割片が得られる。軟磁性粉末に形成される絶縁被覆は、燐酸化合物、珪素化合物、ジルコニウム化合物又は硼素化合物などから構成されることが好ましい。バインダ樹脂は、熱可塑性樹脂、非熱可塑性樹脂、又は高級脂肪酸を利用することが好ましい。   Soft magnetic powder is Fe group metal powder such as Fe, Co, Ni, Fe-based alloy powder such as Fe-Si, Fe-Ni, Fe-Al, Fe-Co, Fe-Cr, Fe-Si-Al, Or rare earth metal powder, ferrite powder, etc. can be used. Examples of a method for producing such a powder include an atomizing method (gas or water) and a mechanical grinding method. In particular, when a powder made of a nanocrystalline material whose crystals are nano-sized, and preferably a powder made of an anisotropic nanocrystalline material, a highly anisotropic and low coercive piece is obtained. The insulating coating formed on the soft magnetic powder is preferably composed of a phosphoric acid compound, a silicon compound, a zirconium compound or a boron compound. The binder resin preferably uses a thermoplastic resin, a non-thermoplastic resin, or a higher fatty acid.

<焼結体の場合>
コイル配置部を焼結体で構成する場合、通常、非磁性粉末及びバインダ樹脂の混合粉末と軟磁性粉末とを混合し、この混合粉末を成形後、高温にて焼結する。焼結時、バインダ樹脂はほぼ消失して、軟磁性粉末と非磁性粉末とが焼結される。そのため、軟磁性粉末と非磁性粉末との混合比を調整することで、上述した圧粉成形体の場合と同様に、低透磁率材料からなるコイル配置部が得られる。その他、混合粉末の成形時の圧力を変えることでも、コイル配置部の比透磁率を調整できる。非磁性粉末の配合量が多い方が、又は混合粉末の成形圧力が低い方がコイル配置部の比透磁率を低くできる傾向にある。
<For sintered body>
When the coil placement portion is formed of a sintered body, usually, a mixed powder of nonmagnetic powder and binder resin and soft magnetic powder are mixed, and the mixed powder is molded and then sintered at a high temperature. During sintering, the binder resin almost disappears and the soft magnetic powder and the nonmagnetic powder are sintered. Therefore, by adjusting the mixing ratio of the soft magnetic powder and the nonmagnetic powder, a coil arrangement portion made of a low magnetic permeability material can be obtained as in the case of the above-described powder compact. In addition, the relative permeability of the coil placement portion can be adjusted by changing the pressure at the time of forming the mixed powder. The more the non-magnetic powder is mixed, or the lower the molding pressure of the mixed powder, the lower the relative permeability of the coil placement portion tends to be.

軟磁性粉末は、上記圧粉成形体と同様に、鉄族金属粉末、Fe基合金粉末、或は希土類金属粉末、フェライト粉末などが利用できる。非磁性粉末は、Cu,Al,Siなどの単一元素によるものの他、Al2O3やSiO2などの化合物によるものが利用できる。バインダ樹脂は、熱可塑性樹脂、非熱可塑性樹脂、又は高級脂肪酸が好適に利用できる。 As the soft magnetic powder, iron group metal powder, Fe-based alloy powder, rare earth metal powder, ferrite powder or the like can be used as in the above compacted body. The nonmagnetic powder can be based on a single element such as Cu, Al, Si, or a compound such as Al 2 O 3 or SiO 2 . As the binder resin, a thermoplastic resin, a non-thermoplastic resin, or a higher fatty acid can be suitably used.

<硬化成形体の場合>
コイル配置部を硬化成形体で構成する場合、硬化成形体を得る方法は、射出成形と注型成形とがある。射出成形は、通常、軟磁性粉末(必要に応じて更に非磁性粉末を加えた混合粉末)と流動性のあるバインダ樹脂とを混合し、この混合流体を、圧力をかけて成形型に流し込んで成形した後、バインダ樹脂を硬化させる。一方、注型成形は、射出成形と同様の混合流体を得た後、この混合流体を、圧力をかけることなく成形型に注入して成形・硬化させる。いずれの成形手法も、バインダ樹脂は、エポキシ樹脂、フェノール樹脂、シリコーン樹脂などの熱硬化性樹脂が好適に利用できる。バインダ樹脂に熱硬化性樹脂を用いた場合、成形体を加熱して樹脂を熱硬化させる。バインダ樹脂に常温硬化性樹脂或は低温硬化性樹脂を用いてもよく、この場合、成形体を常温〜比較的低温に放置して樹脂を硬化させる。その他、射出成形後に成形体を高温にて熱処理して、軟磁性粉末同士又は軟磁性粉末と非磁性粉末とを焼結させてもよい(MIM:Metal Injection Molding)。射出成形や注型成形を利用する場合も、焼結させない場合は、軟磁性粉末(非磁性粉末)とバインダ樹脂の配合を変えることで、焼結させる場合は、軟磁性粉末と非磁性粉末との配合を変えることで、コイル配置部の構成材料の比透磁率を調整できる。例えば、軟磁性粉末の配合量を減らすと、比透磁率は小さくなる傾向にある。
<For cured molded products>
In the case where the coil arrangement portion is formed of a cured molded body, methods for obtaining the cured molded body include injection molding and cast molding. Injection molding usually involves mixing soft magnetic powder (mixed powder with non-magnetic powder added if necessary) and fluid binder resin, and pouring this mixed fluid into a mold under pressure. After molding, the binder resin is cured. On the other hand, in cast molding, a mixed fluid similar to that of injection molding is obtained, and then the mixed fluid is injected into a molding die without applying pressure to be molded and cured. In any molding technique, a thermosetting resin such as an epoxy resin, a phenol resin, or a silicone resin can be suitably used as the binder resin. When a thermosetting resin is used as the binder resin, the molded body is heated to thermoset the resin. A normal temperature curable resin or a low temperature curable resin may be used as the binder resin. In this case, the molded body is allowed to stand at a normal temperature to a relatively low temperature to be cured. In addition, after injection molding, the molded body may be heat treated at a high temperature to sinter soft magnetic powders or soft magnetic powder and nonmagnetic powder (MIM: Metal Injection Molding). Even when using injection molding or cast molding, if not sintered, soft magnetic powder (non-magnetic powder) and binder resin are mixed, and when sintering, soft magnetic powder and non-magnetic powder The relative magnetic permeability of the constituent material of the coil placement portion can be adjusted by changing the composition of. For example, when the blending amount of the soft magnetic powder is reduced, the relative permeability tends to decrease.

一方、露出部の比透磁率を高くするには、例えば、比透磁率が大きい高透磁率材料を用いることが挙げられる。例えば、露出部は、上述したように電磁鋼板を用いて形成する。露出部を圧粉成形体で構成する場合、上述した低透磁率材料からなるコイル配置部を得る場合と逆に、軟磁性粉末とバインダ樹脂との混合粉末において軟磁性粉末の配合量を増やしたり、混合粉末の成形圧力を高くすることで、露出部の比透磁率を高くできる傾向にある。また、露出部を圧粉成形体で構成する場合、比透磁率が50〜500の磁性材料で構成することが挙げられる。なお、露出部も全体が均一的な比透磁率の磁性材料から構成されると、全体に亘って均一的に磁束が通る構造とすることができて好ましい。   On the other hand, in order to increase the relative permeability of the exposed portion, for example, a high permeability material having a large relative permeability can be used. For example, the exposed portion is formed using a magnetic steel sheet as described above. When the exposed part is formed of a compacted body, the amount of the soft magnetic powder is increased in the mixed powder of the soft magnetic powder and the binder resin, contrary to the case where the coil arrangement part made of the low magnetic permeability material is obtained. The relative magnetic permeability of the exposed portion tends to be increased by increasing the molding pressure of the mixed powder. Moreover, when comprising an exposed part with a compacting body, comprising with a magnetic material with a relative magnetic permeability of 50-500 is mentioned. Note that it is preferable that the exposed portion is made of a magnetic material having a uniform relative permeability as a whole because a structure in which the magnetic flux can be uniformly passed over the entire exposed portion.

露出部の比透磁率は、コイル配置部の2倍以上高いことが好ましい。2倍未満であると、漏れ磁束の低減効果が少なくなる。従って、比透磁率の関係が上記範囲になるように本発明コアを構成することが好ましい。   The relative permeability of the exposed portion is preferably at least twice as high as that of the coil placement portion. If it is less than twice, the effect of reducing the leakage magnetic flux decreases. Therefore, it is preferable to configure the core of the present invention so that the relationship of relative magnetic permeability is in the above range.

本発明リアクトル用コアは、コイル配置部の外周にコイルを配置してリアクトルとして好適に利用することができる。コイルは、巻線を巻回することで形成される。巻線は、代表的には絶縁被膜を有する金属線により構成される。金属線は、その断面形状が円形の他、四角形、六角形といった多角形など、種々の形状のものがあり、いずれの形状のものを用いてもよい。コイルの形態は、コイルが配されるコイル配置部の外形に適合した形態にする。上記金属線は、導電性が高い銅や銅合金からなるものが好ましく、上記絶縁被覆は、エナメルなどが挙げられる。   The core for reactor of this invention can arrange | position a coil on the outer periphery of a coil arrangement | positioning part, and can be utilized suitably as a reactor. The coil is formed by winding a winding. The winding is typically composed of a metal wire having an insulating coating. The metal wire has various shapes such as a polygonal shape such as a quadrangle and a hexagon in addition to a circular cross-sectional shape, and any shape may be used. The form of the coil is adapted to the outer shape of the coil placement portion where the coil is arranged. The metal wire is preferably made of copper or copper alloy having high conductivity, and examples of the insulating coating include enamel.

このようなコイルは、励磁した際のコイルの振動による騒音を低減するため、接着剤などを用いて本発明コアに固定することが好ましい。接着剤は、例えば、エポキシ樹脂やウレタン樹脂などが利用できる。   Such a coil is preferably fixed to the core of the present invention by using an adhesive or the like in order to reduce noise caused by vibration of the coil when excited. For example, an epoxy resin or a urethane resin can be used as the adhesive.

本発明コアと上記コイルとが接触する部分にインシュレータを配置したリアクトルとすると、コイルと本発明コアとの間をより確実に絶縁することができ、コイルに大電流が流れたとしても、絶縁破壊や渦電流の発生を防止できる。インシュレータを構成する絶縁材料は、例えば、PPS(Poly Phenylene Sulfide)やLCP(Liquid Crystal Polymer)などの樹脂が挙げられる。このような樹脂に、ガラス(二酸化珪素)、アルミナ(酸化アルミニウム)、酸化チタンなどの無機充填剤を添加させて、熱伝導性を高めると、コイルの熱を本発明コアに伝え易く好ましい。無機充填剤の添加量は、適宜選択するとよい。このインシュレータは、分割片を組み合わせて一体となる構成とすると、本発明コアに配置し易く好ましい。   When the reactor in which the insulator is disposed at the portion where the core of the present invention and the coil are in contact is provided, the coil and the core of the present invention can be more reliably insulated, and even if a large current flows through the coil, the dielectric breakdown occurs. And generation of eddy currents can be prevented. Examples of the insulating material constituting the insulator include resins such as PPS (Poly Phenylene Sulfide) and LCP (Liquid Crystal Polymer). It is preferable to add an inorganic filler such as glass (silicon dioxide), alumina (aluminum oxide), and titanium oxide to such a resin to enhance the thermal conductivity so that the heat of the coil can be easily transferred to the core of the present invention. The amount of the inorganic filler added may be appropriately selected. It is preferable that this insulator is easily arranged in the core of the present invention when the divided pieces are combined and integrated.

本発明リアクトル用コアを用いることで、リアクトルにおける漏れ磁束を低減することができる。   By using the reactor core of the present invention, leakage magnetic flux in the reactor can be reduced.

部分的に異なる磁性材料からなるギャップレス構造の環状のコアを模式的に示す概略構成図である。It is a schematic block diagram which shows typically the cyclic | annular core of the gapless structure which consists of a partially different magnetic material. 部分的に異なる磁性材料からなるリアクトル用コア1の磁束密度の分布状態を示す分布図である。6 is a distribution diagram showing a distribution state of magnetic flux density of the reactor core 1 made of partially different magnetic materials. FIG. 一様な磁性材料からなるギャップレス構造の比較コア110の磁束密度の分布状態を示す分布図である。6 is a distribution diagram showing a distribution state of magnetic flux density of a comparative core 110 having a gapless structure made of a uniform magnetic material. FIG. 一様な磁性材料からなり、ギャップを有する比較コア100の磁束密度の分布状態を示す分布図である。It is a distribution diagram showing a distribution state of magnetic flux density of the comparative core 100 made of a uniform magnetic material and having a gap. 一様な磁性材料からなるギャップレス構造の環状コアにおいて、磁束が通過する状態を模式的に示す説明図である。It is explanatory drawing which shows typically the state through which magnetic flux passes in the annular core of the gapless structure which consists of a uniform magnetic material. 一様な磁性材料からなり、ギャップを有する環状コアを模式的に示す概略構成図である。It is a schematic block diagram which shows typically the cyclic | annular core which consists of a uniform magnetic material and has a gap.

以下、本発明の実施の形態を図に基づいて説明する。
(実施例1)
図1は、環状のリアクトル用コアの一例を示す概略構成図である。このコア1は、磁性材料から構成され、コア1の外周の一部にコイルCが配置されてリアクトルに利用される。具体的には、コイルCで覆われる一対のコイル配置部11と、コイルCで覆われない一対の露出部12とから構成される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Example 1)
FIG. 1 is a schematic configuration diagram showing an example of an annular reactor core. The core 1 is made of a magnetic material, and a coil C is disposed on a part of the outer periphery of the core 1 and used for a reactor. Specifically, it is composed of a pair of coil placement portions 11 covered with the coil C and a pair of exposed portions 12 not covered with the coil C.

コイル配置部11は、コイルCの内側に配されてコイルCで覆われる部分であり、露出部12は、コイルCが配されず露出される部分である。各コイル配置部11a,11b、及び各露出部12a,12bはそれぞれ、分割可能な分割片である。各分割片は、圧粉成形体から構成される柱状体である。コア1は、これら分割片同士を接着剤により接合して一体にしてなり、分割片間にギャップを有していないギャップレス構造である。具体的には、コイル配置部11a,11bの各端面にそれぞれ露出部12a,12bを接合して環状に構成される。   The coil placement portion 11 is a portion that is disposed inside the coil C and is covered with the coil C, and the exposure portion 12 is a portion that is exposed without the coil C being disposed. Each coil arrangement | positioning part 11a, 11b and each exposed part 12a, 12b are respectively the division | segmentation pieces which can be divided | segmented. Each divided piece is a columnar body formed of a green compact. The core 1 has a gapless structure in which these divided pieces are joined together by an adhesive and integrated, and no gap is formed between the divided pieces. Specifically, the exposed portions 12a and 12b are joined to the end faces of the coil placement portions 11a and 11b, respectively, and are configured in an annular shape.

そして、コア1は、露出部12がコイル配置部11よりも比透磁率が高いことを最大の特徴とする。比透磁率を高くするために露出部12は、磁性材料粉末に対するバインダ樹脂の割合を、コイル配置部11における同割合よりも小さくして、即ち、磁性材料粉末が多くなるようにして作製している。そのため、露出部12は、コイル配置部11よりも比透磁率が高くなっており、結果として飽和磁束密度も高い。   The core 1 is characterized in that the exposed portion 12 has a higher relative magnetic permeability than the coil placement portion 11. In order to increase the relative magnetic permeability, the exposed portion 12 is manufactured by making the ratio of the binder resin to the magnetic material powder smaller than the same ratio in the coil placement portion 11, that is, increasing the magnetic material powder. Yes. Therefore, the exposed portion 12 has a higher relative magnetic permeability than the coil placement portion 11, and as a result, the saturation magnetic flux density is also higher.

このような分割片からなるコア1を用いてリアクトルを組み立てるには、巻線を巻回してなるコイルCを予め用意しておき、コイルCをコイル配置部11に挿通させる。コイル配置部11は、コイルCよりも若干長く、両端がコイルCから突出する。なお、図1に示すコイルCは、断面矩形状の平角金属の巻線をいわゆるエッジワイズ巻きにして形成させたものであり、柱状のコイル配置部11に対応させて中空筒状としている。   In order to assemble a reactor using the core 1 composed of such divided pieces, a coil C formed by winding a winding is prepared in advance, and the coil C is inserted through the coil placement portion 11. The coil placement portion 11 is slightly longer than the coil C, and both ends protrude from the coil C. The coil C shown in FIG. 1 is formed by winding so-called edgewise winding of a rectangular metal with a rectangular cross section, and has a hollow cylindrical shape corresponding to the columnar coil placement portion 11.

次に、コイルCを配置した二つのコイル配置部11を並行するように配置し、各端面と露出部12とを接合して、コア1を形成する。このようにして環状のコア1を具えるリアクトルが得られ、コイル配置部11a→露出部12a→コイル配置部11b→露出部12bを順に通ってコイル配置部11aに戻る閉磁路が形成される。この閉磁路は、途中にギャップが形成されていない。   Next, the two coil placement portions 11 on which the coils C are placed are placed in parallel, and each end face and the exposed portion 12 are joined to form the core 1. In this way, a reactor including the annular core 1 is obtained, and a closed magnetic path that returns to the coil placement portion 11a through the coil placement portion 11a → the exposed portion 12a → the coil placement portion 11b → the exposed portion 12b is formed. This closed magnetic circuit has no gap formed in the middle.

<試験例>
部分的に比透磁率が異なる上記コア1、及び比透磁率が一様である二つのコア(以下、比較コア100,110と呼ぶ、図5,6参照)を作製し、各コア及びその近傍の磁束密度の分布状態を調べた。コア1及び比較コア110は、ギャップレス構造、比較コア100は、ギャップを有する構造とし、コア1,100,110のインダクタンスが等しくなるように比透磁率及びギャップを調整した。
<Test example>
The core 1 having a partially different relative permeability and two cores having a uniform relative permeability (hereinafter referred to as comparative cores 100 and 110, see FIGS. 5 and 6) are prepared, and each core and the magnetic flux in the vicinity thereof. The density distribution state was investigated. The core 1 and the comparative core 110 have a gapless structure, the comparative core 100 has a structure having a gap, and the relative permeability and the gap are adjusted so that the inductances of the cores 1, 100, 110 are equal.

[コア1]
軟磁性粉末として水アトマイズ純鉄粉(平均粒径100μm程度)を、バインダ樹脂としてポリエチレン(粉末)を用意する。この鉄粉とポリエチレンとを、樹脂量比(樹脂の質量/樹脂と鉄粉との合計質量)が3.8%となるように混合する。この混合粉末を所定の成形型に充填し、成形圧力980MPaで成形する。そして、成形体を250℃×60分で熱処理して、圧粉成形体からなる一対のコイル配置部を得る。
[Core 1]
Water atomized pure iron powder (average particle size of about 100 μm) is prepared as soft magnetic powder, and polyethylene (powder) is prepared as binder resin. The iron powder and polyethylene are mixed so that the resin amount ratio (the mass of the resin / the total mass of the resin and the iron powder) is 3.8%. This mixed powder is filled in a predetermined mold and molded at a molding pressure of 980 MPa. And a molded object is heat-processed at 250 degreeC x 60 minutes, and a pair of coil arrangement | positioning part which consists of a compacting body is obtained.

一方、樹脂量比が0.8%となるように鉄粉とポリエチレンとを混合した混合粉末を用いて、上記と同様の条件で成形、熱処理を行って圧粉成形体からなる一対の露出部を得る。   On the other hand, using a mixed powder in which iron powder and polyethylene are mixed so that the resin amount ratio is 0.8%, molding and heat treatment are performed under the same conditions as above to obtain a pair of exposed parts made of a compacted body. .

得られたコイル配置部及び露出部の比透磁率を測定したところ、コイル配置部は、比透磁率:19.73、露出部は、比透磁率:200であった。また、コア1全体の平均透磁率は、比透磁率で31.07であった。なお、比透磁率の測定は、理研電子株式会社製のBHトレーサを用いて行った。   When the relative magnetic permeability of the obtained coil placement portion and the exposed portion was measured, the coil placement portion had a relative magnetic permeability: 19.73, and the exposed portion had a relative magnetic permeability: 200. The average permeability of the entire core 1 was 31.07 in terms of relative permeability. The relative permeability was measured using a BH tracer manufactured by Riken Denshi Co., Ltd.

得られたコイル配置部と露出部とを、ギャップを介することなく接合することで、図1に示すコア1が得られる。   The core 1 shown in FIG. 1 is obtained by joining the obtained coil placement portion and the exposed portion without a gap.

[比較コア100]
樹脂量比が0.8%となるように鉄粉とポリエチレンとを混合した混合粉末を用いて、上記と同様の条件で成形、熱処理を行って圧粉成形体からなる一対のコイル配置部及び一対の露出部を得る。即ち、これらの分割片はいずれも樹脂量比が等しい材料からなる圧粉成形体で構成されている。この比較コア100について、コア1と同様にして比透磁率を測定したところ、比透磁率:200であった。
[Comparison core 100]
Using a mixed powder in which iron powder and polyethylene are mixed so that the resin content ratio is 0.8%, molding and heat treatment are performed under the same conditions as described above, and a pair of coil arrangement parts and a pair of powder compacts are formed. Get the exposed part. That is, each of these divided pieces is formed of a compacted body made of a material having the same resin amount ratio. With respect to this comparative core 100, the relative permeability was measured in the same manner as for the core 1. As a result, the relative permeability was 200.

得られたコイル配置部と露出部とを、ギャップ材(比透磁率:1)を介して接合することで、図6に示す比較コア100が得られる。   The obtained coil arrangement part and the exposed part are joined via a gap material (relative magnetic permeability: 1), whereby the comparative core 100 shown in FIG. 6 is obtained.

[比較コア110]
樹脂量比が2.9%となるように鉄粉とポリエチレンとを混合した混合粉末を用いて、上記と同様の条件で成形、熱処理を行って圧粉成形体からなる一対のコイル配置部及び一対の露出部を得る。これらの分割片も、比較コア100と同様に、いずれも樹脂量比が等しい材料からなる圧粉成形体で構成されている。この比較コア110について、コア1と同様にして比透磁率を測定したところ、比透磁率:31.07であった。
[Comparison core 110]
Using a mixed powder in which iron powder and polyethylene are mixed so that the resin amount ratio is 2.9%, molding and heat treatment are performed under the same conditions as described above, and a pair of coil arrangement portions and a pair of powder compacts are formed. Get the exposed part. Similar to the comparative core 100, these divided pieces are each formed of a compacted body made of a material having the same resin amount ratio. With respect to the comparative core 110, the relative permeability was measured in the same manner as the core 1. As a result, the relative permeability was 31.07.

得られたコイル配置部と露出部とを、ギャップを介することなく接合することで、図5に示すような比較コア110が得られる。   The obtained coil arrangement part and the exposed part are joined without a gap therebetween, whereby a comparative core 110 as shown in FIG. 5 is obtained.

得られた各コア1,100,110について、コイルCに通電した際のコア及びその近傍の磁束密度の分布状態を調べた。コア1の分布状態を図2に、比較コア110の分布状態を図3に、比較コア100の分布状態を図4に示す。磁束密度の分布は、磁束密度の大きさを色別(磁束密度が大きい順に赤,橙,黄,緑,水色,青)で表わすことが可能な公知のシミュレーションソフトを用いて求めた。図2〜4は、グレースケールで示すが、実際には上記色別がある。また、図4のコア内の実線は、磁束を示す。   For each of the obtained cores 1, 100, 110, the distribution state of the magnetic flux density in the core and its vicinity when the coil C was energized was examined. The distribution state of the core 1 is shown in FIG. 2, the distribution state of the comparison core 110 is shown in FIG. 3, and the distribution state of the comparison core 100 is shown in FIG. The distribution of the magnetic flux density was determined using known simulation software capable of expressing the magnitude of the magnetic flux density by color (red, orange, yellow, green, light blue, blue) in order of increasing magnetic flux density. 2 to 4 are shown in gray scale, there are actually the above colors. Moreover, the solid line in the core of FIG. 4 shows magnetic flux.

図4に示すようにギャップを有する比較コア100は、ギャップ部分近傍が赤色〜橙色となっており、磁束密度が高く、漏れ磁束が多いと考えられる。また、比較コア100の周囲も橙色〜黄色〜緑色であり、磁束密度が比較的高く、漏れ磁束が多いと考えられる。特に、比較コア100で囲まれる内側空間にも磁束密度が高い部分が存在し、コイルへの影響があると考えられる。   As shown in FIG. 4, in the comparative core 100 having a gap, the vicinity of the gap is red to orange, and it is considered that the magnetic flux density is high and the leakage magnetic flux is large. Further, the periphery of the comparative core 100 is also orange to yellow to green, and it is considered that the magnetic flux density is relatively high and the leakage magnetic flux is large. In particular, it is considered that there is a portion having a high magnetic flux density in the inner space surrounded by the comparative core 100, which affects the coil.

これに対し、図3に示すようにギャップレス構造の比較コア110は、コア110外部において、赤色部分が実質的に無視できる程度に少ない。また、比較コア110は、内側空間及び周囲において緑色部分が多く、ギャップを有する比較コア100と比較して漏れ磁束が低減されていると考えられる。   In contrast, as shown in FIG. 3, the comparative core 110 having the gapless structure has few red portions outside the core 110 so as to be substantially negligible. Further, the comparative core 110 has many green portions in the inner space and the periphery, and it is considered that the leakage magnetic flux is reduced as compared with the comparative core 100 having a gap.

但し、比較コア110の内側空間においてコイル配置部と露出部との境界近傍では、コイル配置部間が緑色であり、比較コア100と比較して磁束密度(漏れ磁束量)が低いものの、漏れ磁束があると考えられる。従って、磁束の一部が露出部を通過せず、内側空間を介してコイル配置部間を通過していると推測される。   However, in the inner space of the comparison core 110, in the vicinity of the boundary between the coil placement portion and the exposed portion, the space between the coil placement portions is green, and although the magnetic flux density (leakage magnetic flux amount) is lower than that of the comparison core 100, the leakage flux It is thought that there is. Therefore, it is presumed that a part of the magnetic flux does not pass through the exposed portion but passes between the coil placement portions via the inner space.

これに対し、図2に示すように比透磁率が部分的に異なるコア1は、内側空間に青色部分が多く、緑色が少なくなっている。従って、コア1は、上記比較コア110と比較して、内側空間を介してコイル配置部間を通過する磁束が低減されていると考えられる。また、コア1は、周囲が概ね青色であり、周囲への漏れ磁束が効果的に低減されていると考えられる。   On the other hand, as shown in FIG. 2, the core 1 having partially different relative magnetic permeability has many blue portions and less green in the inner space. Therefore, in the core 1, it is considered that the magnetic flux passing between the coil placement portions via the inner space is reduced as compared with the comparative core 110. In addition, it is considered that the core 1 has a substantially blue periphery, and the leakage magnetic flux to the periphery is effectively reduced.

以上のことから、コイル配置部よりも比透磁率(飽和磁束密度)が高い露出部を具えるコア1は、コア1外部への漏れ磁束の低減効果が大きく、コア1を具えるリアクトルは、漏れ磁束がコイルCに侵入することによる損失を効果的に低減することができると期待される。また、コア1は、漏れ磁束を低減できることから、コア1全体を有効に利用することができると考えられる。更に、コア1を具えるリアクトルは、ギャップレス構造であることから、ギャップの存在に伴う騒音や漏れ磁束の問題が実質的に生じない。   From the above, the core 1 having an exposed portion having a higher relative permeability (saturation magnetic flux density) than the coil placement portion has a large effect of reducing leakage magnetic flux to the outside of the core 1, and the reactor having the core 1 is It is expected that the loss caused by the leakage magnetic flux entering the coil C can be effectively reduced. Further, since the core 1 can reduce the magnetic flux leakage, it is considered that the entire core 1 can be used effectively. Furthermore, since the reactor including the core 1 has a gapless structure, problems of noise and leakage magnetic flux due to the presence of the gap do not substantially occur.

加えて、コア1は、内側空間における漏れ磁束を低減できるため、ギャップを有する比較コア100と比較して、コイルCをコア1により近づけて配置することができる。ここで、漏れ磁束がコイルに侵入すると、損失が生じ易いため、漏れ磁束の影響が及ばない程度にコイルをコアから離して配置することが望まれる。図4の比較コア100は、磁束密度が高い領域にコイルCの端部が配置されており、漏れ磁束の影響がコイルCに及ぶと考えられる。しかし、コイルCを比較コア100から離して配置すると、コイルCとコア100間の間隔が広くなるため、リアクトルの外寸が大きくなる。これに対し、コア1は、コイルとコア間の間隔を小さくしてもコイルCに漏れ磁束の影響が及び難く、リアクトルの外寸を小さくできる。従って、例えば、コア1を具えるリアクトルを昇圧コンバータに利用する場合、コンバータの構成部材中リアクトルはかなり大きな体積を占めることから、コンバータの設置スペースの削減に大いに寄与すると期待される。   In addition, since the core 1 can reduce the leakage magnetic flux in the inner space, the coil C can be disposed closer to the core 1 than the comparative core 100 having a gap. Here, if leakage magnetic flux enters the coil, loss is likely to occur. Therefore, it is desirable to dispose the coil away from the core to the extent that the influence of leakage magnetic flux does not reach. In the comparative core 100 of FIG. 4, the end of the coil C is arranged in a region where the magnetic flux density is high, and it is considered that the influence of the leakage magnetic flux reaches the coil C. However, if the coil C is arranged away from the comparative core 100, the distance between the coil C and the core 100 is widened, so that the outer dimension of the reactor is increased. On the other hand, in the core 1, even if the distance between the coil and the core is reduced, the leakage flux is hardly affected by the coil C, and the outer dimension of the reactor can be reduced. Therefore, for example, when a reactor including the core 1 is used for a boost converter, the reactor among the constituent members of the converter occupies a considerably large volume, so that it is expected to greatly contribute to a reduction in converter installation space.

(実施例2)
上記実施例1では、コイル配置部及び露出部の全てが圧粉成形体からなる構成を説明した。別の実施形態として、露出部が圧粉成形体からなり、コイル配置部が焼結体からなる構成が挙げられる。このとき、露出部の比透磁率がコイル配置部よりも高くなるように、焼結体の材料や製造条件を調整する。
(Example 2)
In the first embodiment, the configuration in which all of the coil placement portion and the exposed portion are formed of a green compact is described. As another embodiment, there is a configuration in which the exposed portion is made of a green compact and the coil placement portion is made of a sintered body. At this time, the material and manufacturing conditions of the sintered body are adjusted so that the relative permeability of the exposed portion is higher than that of the coil placement portion.

(実施例3)
更に、別の実施形態として、露出部が圧粉成形体からなり、コイル配置部が樹脂の硬化成形体からなる構成が挙げられる。このとき、露出部の比透磁率がコイル配置部よりも高くなるように、硬化成形体の材料や製造条件を調整する。
(Example 3)
Furthermore, as another embodiment, there may be mentioned a configuration in which the exposed part is made of a compacted molded body and the coil placement part is made of a cured resin molded body. At this time, the material and manufacturing conditions of the cured molded body are adjusted so that the relative permeability of the exposed portion is higher than that of the coil placement portion.

(実施例4)
更に、別の実施形態として、露出部が電磁鋼板を積層した積層体からなり、コイル配置部が圧粉成形体、焼結体、及び樹脂の硬化成形体のいずれかからなる構成が挙げられる。電磁鋼板は、一般に、圧粉成形体、焼結体、及び樹脂の硬化成形体のいずれよりも、比透磁率が高い傾向にある。従って、コイル配置部は、圧粉成形体、焼結体、及び樹脂の硬化成形体のいずれかを適宜選択することができる。
(Example 4)
Furthermore, as another embodiment, there is a configuration in which the exposed portion is made of a laminated body in which electromagnetic steel sheets are laminated, and the coil placement portion is made of any one of a green compact, a sintered body, and a cured resin molded body. In general, electrical steel sheets tend to have higher relative magnetic permeability than any of green compacts, sintered bodies, and cured resin molded bodies. Therefore, the coil placement portion can appropriately select any one of a green compact, a sintered body, and a cured resin molding.

なお、上述した実施例は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、実施例1において樹脂量比を変更することができる。   The above-described embodiments can be appropriately changed without departing from the gist of the present invention, and are not limited to the above-described configuration. For example, the resin amount ratio in Example 1 can be changed.

本発明リアクトル用コアは、ハイブリッド自動車や電気自動車などに搭載される昇圧コンバータに具えるリアクトルの磁性部材として好適に利用することができる。   The reactor core according to the present invention can be suitably used as a magnetic member of a reactor provided in a boost converter mounted on a hybrid vehicle or an electric vehicle.

1 リアクトル用コア 11,11a,11b コイル配置部 12,12a,12b 露出部
C,C1,C2 コイル
100,110 リアクトル用コア 101a,101b,101c,101d 分割片
102 ギャップ材 111a,111b コイル配置部 111c,111d 露出部
1 Reactor core 11,11a, 11b Coil placement part 12,12a, 12b Exposed part
C, C 1 , C 2 coil
100,110 Reactor core 101a, 101b, 101c, 101d
102 Gap material 111a, 111b Coil placement part 111c, 111d Exposed part

Claims (5)

コアと、コイルとを具えるリアクトルであって、
前記コアは、前記コイル内に挿入されるコイル配置部と、前記コイルで覆われない露出部とを具え、
このコアは、前記コイル配置部と前記露出部とがギャップを介することなく一体化されてなり、
前記コイル配置部は、鉄族金属粉末又はFe基合金粉末である磁性粉末と、樹脂とを含む硬化成形体であり、
前記露出部は、鉄族金属粉末又はFe基合金粉末を用いた圧粉成形体であり、
前記コイル配置部の比透磁率は、3以上50以下であり、
前記露出部の比透磁率は、前記コイル配置部の比透磁率よりも高いリアクトル。
A reactor comprising a core and a coil,
The core includes a coil placement portion that is inserted into the coil, and an exposed portion that is not covered by the coil,
In this core, the coil placement portion and the exposed portion are integrated without a gap,
The coil arrangement portion is a cured molded body including a magnetic powder that is an iron group metal powder or an Fe-based alloy powder, and a resin,
The exposed portion is a green compact using an iron group metal powder or an Fe-based alloy powder,
The relative magnetic permeability of the coil placement portion is 3 or more and 50 or less,
The relative permeability of the exposed portion is a reactor higher than the relative permeability of the coil arrangement portion.
前記硬化成形体は、さらに非磁性粉末を含む請求項1に記載のリアクトル。   The reactor according to claim 1, wherein the cured molded body further includes a nonmagnetic powder. 前記非磁性粉末は、Cu,Al,Si,Al,SiOのいずれかである請求項2に記載のリアクトル。 The reactor according to claim 2, wherein the nonmagnetic powder is any one of Cu, Al, Si, Al 2 O 3 , and SiO 2 . 前記コイルを形成する巻線は、断面形状が四角形の金属線である請求項1〜請求項3のいずれか1項に記載のリアクトル。   The reactor according to any one of claims 1 to 3, wherein the winding forming the coil is a metal wire having a square cross-sectional shape. 請求項1〜請求項4のいずれか1項に記載のリアクトルを具えるコンバータ。   The converter which provides the reactor of any one of Claims 1-4.
JP2013225065A 2013-10-30 2013-10-30 Reactor and converter Pending JP2014064013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013225065A JP2014064013A (en) 2013-10-30 2013-10-30 Reactor and converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013225065A JP2014064013A (en) 2013-10-30 2013-10-30 Reactor and converter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012024917A Division JP5408272B2 (en) 2012-02-08 2012-02-08 Reactor core, reactor, and converter

Publications (1)

Publication Number Publication Date
JP2014064013A true JP2014064013A (en) 2014-04-10

Family

ID=50618916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013225065A Pending JP2014064013A (en) 2013-10-30 2013-10-30 Reactor and converter

Country Status (1)

Country Link
JP (1) JP2014064013A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066721A (en) * 2014-09-25 2016-04-28 本田技研工業株式会社 Reactor
JP2019149431A (en) * 2018-02-26 2019-09-05 株式会社オートネットワーク技術研究所 Reactor
US20210350968A1 (en) * 2018-10-19 2021-11-11 Autonetworks Technologies, Ltd. Reactor
JP2022096721A (en) * 2020-12-18 2022-06-30 三菱電機株式会社 Power conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974719U (en) * 1982-11-10 1984-05-21 北芝電機株式会社 Iron core for high frequency reactor
JP2002057039A (en) * 2000-08-11 2002-02-22 Hitachi Ferrite Electronics Ltd Composite magnetic core
JP2006344868A (en) * 2005-06-10 2006-12-21 Sumitomo Electric Ind Ltd Reactor and transformer
JP2007012647A (en) * 2005-06-28 2007-01-18 Hitachi Metals Ltd Complex magnetic core and reactor employing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974719U (en) * 1982-11-10 1984-05-21 北芝電機株式会社 Iron core for high frequency reactor
JP2002057039A (en) * 2000-08-11 2002-02-22 Hitachi Ferrite Electronics Ltd Composite magnetic core
JP2006344868A (en) * 2005-06-10 2006-12-21 Sumitomo Electric Ind Ltd Reactor and transformer
JP2007012647A (en) * 2005-06-28 2007-01-18 Hitachi Metals Ltd Complex magnetic core and reactor employing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066721A (en) * 2014-09-25 2016-04-28 本田技研工業株式会社 Reactor
JP2019149431A (en) * 2018-02-26 2019-09-05 株式会社オートネットワーク技術研究所 Reactor
US20210350968A1 (en) * 2018-10-19 2021-11-11 Autonetworks Technologies, Ltd. Reactor
JP2022096721A (en) * 2020-12-18 2022-06-30 三菱電機株式会社 Power conversion device

Similar Documents

Publication Publication Date Title
JP5120690B2 (en) Reactor core
JP5341306B2 (en) Reactor
JP2009033051A (en) Core for reactor
CN104620335B (en) Composite material, reactor, converter and power conversion apparatus
JP5413680B2 (en) Reactor manufacturing method
JP5991460B2 (en) Composite material, reactor core, and reactor
JP4924986B2 (en) Reactor core
JP5561536B2 (en) Reactor and converter
JP6544537B2 (en) Composite materials, magnetic parts, and reactors
JP5995181B2 (en) Composite material, reactor core, and reactor
JP6048652B2 (en) Reactor, converter, and power converter
JP2014064013A (en) Reactor and converter
JP2006352021A (en) Coil-sealed iron powder immixed resin-molded reactor
JP5408272B2 (en) Reactor core, reactor, and converter
JP2011129593A (en) Reactor
WO2013168538A1 (en) Reactor, converter, electric power conversion device, and manufacturing method for resin core piece
JP6226047B2 (en) Composite material, reactor core, and reactor
JP2017017326A (en) Composite material, reactor-use core, and reactor
JP5305118B2 (en) Reactor and boost converter
JP2012142601A (en) Reactor and converter
JP2015050298A (en) Reactor, converter, and power converter
JP5195891B2 (en) Reactor core, reactor, and reactor manufacturing method
JP6120022B2 (en) Reactor
JP2013254970A (en) Reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150108