JP2014063843A - Photovoltaic power generation device - Google Patents

Photovoltaic power generation device Download PDF

Info

Publication number
JP2014063843A
JP2014063843A JP2012207417A JP2012207417A JP2014063843A JP 2014063843 A JP2014063843 A JP 2014063843A JP 2012207417 A JP2012207417 A JP 2012207417A JP 2012207417 A JP2012207417 A JP 2012207417A JP 2014063843 A JP2014063843 A JP 2014063843A
Authority
JP
Japan
Prior art keywords
light
reflection
region
solar
sunlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012207417A
Other languages
Japanese (ja)
Inventor
Takashi Sato
孝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012207417A priority Critical patent/JP2014063843A/en
Publication of JP2014063843A publication Critical patent/JP2014063843A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PROBLEM TO BE SOLVED: To enhance the condensing rate and homogenization of sunlight impinging on solar cells, without using a homogenizer.SOLUTION: The light reflection surface of a condensing reflector 2 is sectioned into a plurality of reflection regions 15, i.e., m×n(one of m, n is an integer of 1 or more, the other is an integer of 2 or more) reflection regions, so that the amount of incident sunlight is equal to each other. A solar cell 3 is sectioned into m×n square light-receiving regions 22 of equal area which are in one and one correspondence with respective reflection regions of the condensing reflector 2. Orientation of each reflection region 15 for each light-receiving region 22 is set individually, so that the reflection light 12 converges on the light-receiving region 22 corresponding to the reflection region 15.

Description

本発明は、太陽光を太陽電池セルに集めて発電する太陽光発電装置に関する。   The present invention relates to a solar power generation apparatus that collects sunlight into solar cells and generates power.

太陽光を集光リフレクタにより太陽電池セルに集めて発電する太陽光発電装置が知られている。太陽は円形であるので、太陽光を集光リフレクタにより反射させて、太陽電池セルに集光する場合、太陽電池セルに生成される太陽光は円形のスポットとなる。   2. Description of the Related Art A solar power generation device that collects sunlight into solar cells by a condensing reflector and generates electric power is known. Since the sun is circular, when the sunlight is reflected by the condensing reflector and concentrated on the solar cells, the sunlight generated in the solar cells becomes a circular spot.

従来の太陽光発電装置では、集光リフレクタは、太陽電池セルの中心と同心の円形の太陽光スポットを形成するだけである。したがって、太陽光スポットが正方形の太陽電池セルの内接円であると、太陽電池セルの四隅に太陽光が当らない領域が生じ、その領域では発電が行われず、これは発電効率の低下につながる。また、円形スポットが正方形の太陽電池セルの外接円であると、太陽電池セルから外にはみ出て太陽電池セルに照射されない太陽光部分が生じ、これは集光率の低下につながる。   In the conventional photovoltaic power generation apparatus, the concentrating reflector only forms a circular sunlight spot concentric with the center of the solar battery cell. Therefore, if the solar spot is an inscribed circle of a square solar cell, a region where sunlight does not hit is generated at the four corners of the solar cell, and no power is generated in this region, which leads to a decrease in power generation efficiency. . In addition, when the circular spot is a circumscribed circle of a square solar battery cell, a sunlight portion that protrudes outside the solar battery cell and is not irradiated to the solar battery cell is generated, which leads to a decrease in light collection rate.

これに対処するため、特許文献1の太陽光発電装置では、太陽電池セルの受光面と同一の形状及び寸法に設定された出射面を有するホモジナイザが、太陽電池の受光面側に配設され、集光リフレクタで反射された太陽光が、ホモジナイザにより光量を均一化されてから、太陽電池に入射するようになっている(特許文献1/図1)。   In order to cope with this, in the solar power generation device of Patent Document 1, a homogenizer having an emission surface set to the same shape and size as the light receiving surface of the solar battery cell is disposed on the light receiving surface side of the solar cell, The sunlight reflected by the condensing reflector is made uniform by the homogenizer and then enters the solar cell (Patent Document 1 / FIG. 1).

特開2011−243927号公報JP 2011-243927 A

しかしながら、上記のようなホモジナイザを使用する太陽光発電装置には、次の問題点がある。
(a)太陽光は、ホモジナイザに入射する際に、一部が入射面で反射してしまい、入射光量の減少分が発電損失になる。この対策としては、ホモジナイザの入射面に反射防止被膜を形成することが考えられるが、これは太陽電池セルのコストを増大させる。
(b)ホモジナイザを太陽光発電装置に装備するために、取付作業及び取付具が必要となり、その分が、太陽光発電装置のコスト増大につながってしまう。
However, the photovoltaic power generation apparatus using the above homogenizer has the following problems.
(A) When sunlight is incident on the homogenizer, part of the sunlight is reflected by the incident surface, and a decrease in the amount of incident light becomes a power generation loss. As a countermeasure, it is conceivable to form an antireflection coating on the entrance surface of the homogenizer, but this increases the cost of the solar battery cell.
(B) In order to equip a solar power generation device with a homogenizer, an installation operation and a fixture are required, which leads to an increase in cost of the solar power generation device.

本発明の目的は、コスト高につながるホモジナイザを使用することなく、太陽電池セルに照射する太陽光の集光率を高めると共に均一化を図ることができる太陽光発電装置を提供することである。   The objective of this invention is providing the solar power generation device which can aim at equalizing while raising the condensing rate of the sunlight irradiated to a photovoltaic cell, without using the homogenizer leading to high cost.

第1発明は、矩形の太陽電池セルと、入射された太陽光を前記太陽電池セルへ向けて反射する集光リフレクタとを備える太陽光発電装置であって、前記集光リフレクタの光反射面は、太陽光の入射光量が等しくなるようにm×n(ただしm,nの一方は1以上、他方は2以上の整数)個の複数の反射領域に区分され、前記太陽電池セルは、前記集光リフレクタの各反射領域と1:1に対応付けられるm×n個の等面積かつ正方形の受光領域に区分され、各反射領域で反射された光が、該反射領域に対応した前記受光領域に集まるように、該受光領域に対する各反射領域の向きが個々に設定されていることを特徴とする。   1st invention is a solar power generation device provided with a rectangular photovoltaic cell and the condensing reflector which reflects incident sunlight toward the said photovoltaic cell, Comprising: The light reflection surface of the said condensing reflector is The solar cells are divided into a plurality of m × n (where one of m and n is an integer of 1 or more and the other is an integer of 2 or more) reflective areas so that the amount of incident sunlight is equal. Each of the reflection areas of the optical reflector is divided into m × n equal-area and square light-receiving areas corresponding to 1: 1, and the light reflected by each reflection area enters the light-receiving area corresponding to the reflection area. The direction of each reflection area with respect to the light receiving area is individually set so as to gather.

第1発明によれば、集光リフレクタは、全体に入射した太陽光をそのまま太陽電池セルの全体に集光するように反射するのではなく、太陽光の入射光量が等しくなるように区分されたm×n個の反射領域について、個々に対応する受光領域に対する向きが設定され、各反射領域ごとに、入射した太陽光を該反射領域に対応する太陽電池セルの受光領域に集光させるように反射する。これにより、太陽電池セル外への太陽光の漏れ量を抑制して、集光率の増大を図るとともに、太陽電池において太陽光が照射されない領域面積を減少させて、太陽電池に入射する太陽光の均一化を図ることができる。   According to the first aspect of the present invention, the condensing reflector is divided so that the incident light quantity of the sunlight is equal, instead of reflecting the sunlight incident on the whole as it is on the whole solar cell. With respect to the m × n reflective areas, the direction with respect to the corresponding light receiving areas is set individually, and for each reflective area, incident sunlight is condensed on the light receiving areas of the solar cells corresponding to the reflective areas. reflect. As a result, the amount of sunlight leaked outside the solar battery cell is suppressed, the light collection rate is increased, and the area of the solar battery that is not irradiated with sunlight is reduced, so that the sunlight that enters the solar battery. Can be made uniform.

したがって、第1発明によれば、ホモジナイザを使用することなく、太陽光エネルギーの損失やコスト増大を回避した太陽光発電装置が提供される。   Therefore, according to 1st invention, the solar power generation device which avoided the loss of solar energy and the increase in cost is provided, without using a homogenizer.

第2発明は、第1発明において、前記集光リフレクタの各反射領域は、前記正方形の受光領域において、該正方形の内接円と外接円との間の範囲に収まる円形の太陽光スポットを生成するように形成されていることを特徴とする。   According to a second invention, in the first invention, each reflection region of the light collecting reflector generates a circular sunlight spot that fits in a range between the inscribed circle and the circumscribed circle of the square in the square light receiving region. It is formed so that it may do.

第2発明によれば、太陽電池セルの正方形の各受光領域に生成される太陽光の円形スポットは、正方形の受光領域の内接円と外接円との間の範囲に収まるものとなるので、太陽電池セル外への太陽光の漏れ量と太陽電池セルの四隅における太陽光の非照射面積とを最小限に抑えつつ、太陽電池セル上の太陽光の光量の均一化と集光率の向上を図ることができる。   According to the second invention, the circular spot of sunlight generated in each square light receiving region of the solar battery cell falls within the range between the inscribed circle and the circumscribed circle of the square light receiving region, Minimizing the amount of sunlight leaking out of the solar cells and the non-irradiated area of sunlight at the four corners of the solar cells, and making the amount of sunlight on the solar cells uniform and improving the light collection rate Can be achieved.

太陽光発電装置の主要部の構成図。The block diagram of the principal part of a solar power generation device. 集光リフレクタの光反射面を入射光の方向から見た図。The figure which looked at the light reflective surface of the condensing reflector from the direction of incident light. 集光リフレクタの拡大側面図。The enlarged side view of a condensing reflector. 太陽電池セルをその受光面の正対方向から見た図。The figure which looked at the photovoltaic cell from the facing direction of the light-receiving surface. 太陽電池セルの各受光領域において生成される太陽光スポットの径についての説明図。Explanatory drawing about the diameter of the sunlight spot produced | generated in each light reception area | region of a photovoltaic cell. 集光リフレクタの反射領域と太陽電池セルの受光領域との種々の対応関係についての説明図。Explanatory drawing about the various correspondence of the reflective area | region of a condensing reflector, and the light reception area | region of a photovoltaic cell.

図1を参照して、太陽光発電装置1の主要部の構成について説明する。太陽光発電装置1は、ケース4内に配設される集光リフレクタ2及び太陽電池セル3を備えている。ケース4の太陽7へ向けられる側は透明壁5となっており、太陽7からの入射光11は、透明壁5を通過して、ケース4内へ進入する。   With reference to FIG. 1, the structure of the principal part of the solar power generation device 1 is demonstrated. The solar power generation device 1 includes a condensing reflector 2 and a solar battery cell 3 disposed in a case 4. The side of the case 4 facing the sun 7 is a transparent wall 5, and incident light 11 from the sun 7 passes through the transparent wall 5 and enters the case 4.

集光リフレクタ2は、ステー6を介してケース4の内面に支持、固定される。太陽電池セル3は、所定の出力端子付きパッケージに収納され、該パッケージは、太陽電池セル3の受光面を集光リフレクタ2の方へ向けて、ケース4の所定位置に固定される。これにより、集光リフレクタ2と太陽電池セル3とは、相対位置関係を固定されつつ、ケース4と一体的に変位する。   The condensing reflector 2 is supported and fixed to the inner surface of the case 4 via the stay 6. The solar cell 3 is housed in a predetermined package with output terminals, and the package is fixed at a predetermined position of the case 4 with the light receiving surface of the solar cell 3 directed toward the condensing reflector 2. Thereby, the condensing reflector 2 and the photovoltaic cell 3 are displaced integrally with the case 4 while the relative positional relationship is fixed.

図1では、太陽光発電装置1の構成を分かり易くするために、太陽電池セル3は、集光リフレクタ2に対する実際の寸法比率よりも大きい寸法比率で示している。実際の寸法は、太陽電池セル3は、例えば、その受光面が0.7cmの正方形となっている。そして、太陽電池セル3を収納するパッケージは例えば約1cmである。これに対し、集光リフレクタ2は、太陽電池セル3の方へ向けられる光反射面側が外側に向かって凹のほぼ湾曲面に形成されているとともに、周輪郭が矩形であり、この矩形周輪郭の実際の大きさは、例えば縦横が共に約20cm程度である。   In FIG. 1, for easy understanding of the configuration of the solar power generation device 1, the solar battery cell 3 is shown with a larger dimensional ratio than the actual dimensional ratio with respect to the concentrating reflector 2. The actual dimensions of the solar battery cell 3 are, for example, a square having a light receiving surface of 0.7 cm. And the package which accommodates the photovoltaic cell 3 is about 1 cm, for example. On the other hand, the condensing reflector 2 is formed in a substantially curved surface having a light reflecting surface directed toward the solar battery cell 3 that is concave outward, and has a rectangular peripheral contour. The actual size is about 20 cm both vertically and horizontally, for example.

ケース4は直方体の形状であり、透明壁5は入射光11の方向から見て、長方形又は正方形となっている。太陽光発電装置1は、所定数(例:8個)を一列に並べて結合したものが1セットとされ、セットを単位に所定の各場所に配設される。太陽光発電装置1のセットは、日照期間では、所定の追尾装置により透明壁5を太陽7の方へ常時向けられて、入射光11が透明壁5に対して直角方向からケース4内に入射する。   The case 4 has a rectangular parallelepiped shape, and the transparent wall 5 is rectangular or square when viewed from the direction of the incident light 11. The solar power generation device 1 is a set in which a predetermined number (e.g., 8) is arranged in a line and combined, and is arranged in each predetermined place with the set as a unit. In the sunshine period, the set of the photovoltaic power generator 1 is always directed toward the sun 7 by the predetermined tracking device, and the incident light 11 enters the case 4 from a direction perpendicular to the transparent wall 5. To do.

入射光11は、透明壁5を通過して、集光リフレクタ2を照射する。集光リフレクタ2は、入射光11を反射して、反射光12を生成する。反射光12は、太陽電池セル3に入射して、太陽電池セル3において電力に変換される。   Incident light 11 passes through the transparent wall 5 and irradiates the condensing reflector 2. The condensing reflector 2 reflects incident light 11 and generates reflected light 12. The reflected light 12 enters the solar battery cell 3 and is converted into electric power in the solar battery cell 3.

図2を参照して、集光リフレクタ2の光反射面について説明する。図2は、ケース4の透明壁5を入射光11に対して直角方向にしたときに、集光リフレクタ2を図1の入射光11の方向から見た図となっている。   With reference to FIG. 2, the light reflection surface of the condensing reflector 2 is demonstrated. FIG. 2 is a view of the condensing reflector 2 as viewed from the direction of the incident light 11 in FIG. 1 when the transparent wall 5 of the case 4 is set in a direction perpendicular to the incident light 11.

説明の便宜上、図2の上下方向及び左右方向を集光リフレクタ2の縦方向及び横方向と定義する。集光リフレクタ2は、その横辺が水平方向に揃うように、ケース4内に配設される。実施形態の集光リフレクタ2は、入射光11の方向から見ると、正方形となっている。ただし、集光リフレクタ2は、入射光11の方向から見て、長方形であってもよい。   For convenience of explanation, the vertical direction and the horizontal direction in FIG. 2 are defined as the vertical direction and the horizontal direction of the condensing reflector 2. The condensing reflector 2 is disposed in the case 4 so that the lateral sides thereof are aligned in the horizontal direction. The condensing reflector 2 of the embodiment is square when viewed from the direction of the incident light 11. However, the condensing reflector 2 may be rectangular when viewed from the direction of the incident light 11.

集光リフレクタ2の光反射面は、入射光11の方向から見て、5×5の同一寸法の正方形の区画に区分される。集光リフレクタ2は、各区画ごとに設定された向きで配備された縦横5×5個の反射領域15を有する。各反射領域15は、集光リフレクタ2を入射光11の方向から見て同寸法の正方形となっているので、各反射領域15へ入射する入射光11の光量(又は強さ)は等しくなり、また、この結果、各反射領域15からの反射光12の光量も等しくなる。   The light reflecting surface of the condensing reflector 2 is divided into square sections having the same dimensions of 5 × 5 when viewed from the direction of the incident light 11. The condensing reflector 2 has 5 × 5 vertical and horizontal reflection regions 15 arranged in the orientation set for each section. Since each reflecting region 15 is a square having the same size when the condensing reflector 2 is viewed from the direction of the incident light 11, the amount of light (or intensity) of the incident light 11 incident on each reflecting region 15 is equal. As a result, the amount of reflected light 12 from each reflecting region 15 is also equal.

各反射領域15は、各反射領域15ごとに別々の焦点を設定される。各反射領域15は、各焦点に向かう反射光12を生成するために、各反射領域15ごとに、反射光12の光軸の角度及び焦点が相違する1つの湾曲面となる。この結果、縦横に隣接する反射領域15の境界線は、滑らかな曲面とならず、湾曲面間の境界線として稜線となる。各反射領域15の湾曲面の具体的形状は、放物線を回転させることにより生成される回転体の側面部分の形状となる。   Each reflection area 15 has a different focal point for each reflection area 15. In order to generate the reflected light 12 toward each focal point, each reflective region 15 becomes one curved surface having a different optical axis angle and focal point for each reflective region 15. As a result, the boundary line between the reflection regions 15 adjacent in the vertical and horizontal directions is not a smooth curved surface, but becomes a ridge line as a boundary line between curved surfaces. The specific shape of the curved surface of each reflection region 15 is the shape of the side surface portion of the rotating body generated by rotating the parabola.

各反射領域15ごとに異なる光軸及び焦点をもつ集光リフレクタ2は、例えば自動車用ヘッドランプの反射鏡の製作の金型技術を使って容易かつ円滑に製作することができる。自動車用ヘッドランプの反射鏡は、所望の配光を得るために、縦長の短冊状の区画に横方向に区分され、各区画ごとに向きの異なる反射領域となっている。   The condensing reflector 2 having a different optical axis and focal point for each reflection region 15 can be easily and smoothly manufactured by using, for example, a mold technique for manufacturing a reflector for an automobile headlamp. In order to obtain a desired light distribution, the reflector of an automobile headlamp is divided into vertically long strip-like sections in the horizontal direction, and is a reflection area having a different direction for each section.

図2の実施形態では、集光リフレクタ2は縦横5×5の反射領域15に区分されるが、縦横5×5以外の縦横m×nの反射領域15に区分されてもよい。ただし、m,nの一方は1以上、他方は2以上の整数とされる。この結果、集光リフレクタ2は、最小でも、2(=2×1又は1×2)以上の反射領域15に区画される。   In the embodiment of FIG. 2, the condensing reflector 2 is divided into 5 × 5 reflective areas 15 in the vertical and horizontal directions, but may be divided into vertical and horizontal reflective areas 15 other than 5 × 5 in the vertical and horizontal directions. However, one of m and n is 1 or more, and the other is an integer of 2 or more. As a result, the condensing reflector 2 is partitioned into at least 2 (= 2 × 1 or 1 × 2) or more reflection regions 15.

なお、図示の実施形態では、図の簡略化上、縦横5×5となっているが、典型的には、縦横9×9から16×16までの範囲となる。   In the illustrated embodiment, the vertical and horizontal dimensions are 5 × 5 for simplification of the figure, but typically the vertical and horizontal ranges are 9 × 9 to 16 × 16.

図2の実施形態では、集光リフレクタ2は、入射光11の方向から見て正方形となっているが、長方形であってもよい。また、反射領域15は、入射光11の方向から見た形状が正方形でなく、長方形とされてもよい。ただし、入射光11の方向から見た反射領域15の形状が正方形及び長方形のいずれであっても、入射光11の方向から見た反射領域15は、相互に等径、等大とされる。これにより、各反射領域15における入射光11の入射光量は相互に等しくされる。   In the embodiment of FIG. 2, the condensing reflector 2 is square when viewed from the direction of the incident light 11, but may be rectangular. Further, the shape of the reflection region 15 viewed from the direction of the incident light 11 may be a rectangle instead of a square. However, regardless of whether the shape of the reflection region 15 viewed from the direction of the incident light 11 is square or rectangular, the reflection regions 15 viewed from the direction of the incident light 11 are equal in diameter and equal to each other. Thereby, the incident light quantity of the incident light 11 in each reflective area | region 15 is made mutually equal.

図3を参照して、集光リフレクタ2の構成についてさらに説明する。図3では、説明の便宜上、反射領域15について、透明壁5(図1)に近い方から遠い方へ、すなわち縦方向に順番に反射領域15−1,15−2,・・・,15−5と符号を付ける。また、投影面17は、説明の便宜上の仮想面であり、反射領域15の背面側において入射光11に対して直角に配置されている。   With reference to FIG. 3, the structure of the condensing reflector 2 is further demonstrated. In FIG. 3, for convenience of explanation, the reflection area 15 is arranged in the order of reflection areas 15-1, 15-2,. 5 is attached. The projection surface 17 is a virtual surface for convenience of explanation, and is disposed at a right angle to the incident light 11 on the back side of the reflection region 15.

投影面17上の反射領域15−1〜15−5の投影長さは、すべてLに等しくなっている。これにより、反射領域15−1〜15−5へ照射される入射光11の光量は相互に等しくなる。反射領域15−1〜15−5は、別々の湾曲面を形成しているので、縦方向へ隣り関係の2つの反射領域15の境界点は、図3に示すように、凸になる。   The projection lengths of the reflection regions 15-1 to 15-5 on the projection surface 17 are all equal to L. Thereby, the light quantity of the incident light 11 irradiated to the reflective areas 15-1 to 15-5 becomes equal to each other. Since the reflective areas 15-1 to 15-5 form separate curved surfaces, the boundary points between the two reflective areas 15 adjacent in the vertical direction are convex as shown in FIG.

図4を参照して、太陽電池セル3について説明する。図4は、太陽電池セル3をその受光面の正対方向から見た図である。   The solar battery cell 3 will be described with reference to FIG. FIG. 4 is a view of the solar battery cell 3 as seen from the front direction of its light receiving surface.

説明の便宜上、図4の上下方向及び左右方向を太陽電池セル3の縦方向及び横方向と定義する。通常は、太陽電池セル3の横辺は、集光リフレクタ2の横辺に対して平行になっている。しかしながら、集光リフレクタ2の各反射領域15からの反射光12の光軸が、集光リフレクタ2の中心の反射光12の光軸の回りに所定の回転角度となるように設定すれば、太陽電池セル3の横辺は、集光リフレクタ2の横辺に対して平行とならず、該光軸の回りに該所定の回転角度に対応する傾斜角度になる。   For convenience of explanation, the vertical direction and the horizontal direction in FIG. 4 are defined as the vertical direction and the horizontal direction of the solar battery cell 3. Usually, the lateral side of the solar battery cell 3 is parallel to the lateral side of the condensing reflector 2. However, if the optical axis of the reflected light 12 from each reflecting region 15 of the condensing reflector 2 is set to have a predetermined rotation angle around the optical axis of the reflected light 12 at the center of the condensing reflector 2, the sun The lateral side of the battery cell 3 is not parallel to the lateral side of the condensing reflector 2 but has an inclination angle corresponding to the predetermined rotation angle around the optical axis.

実施形態の太陽電池セル3は、正方形となっている。太陽電池セル3は、長方形であってもよい。ただし、後述の受光領域22は、太陽電池セル3が正方形及び長方形のどちらであっても、該受光領域22に適切な円形の太陽光スポット23を生成するために、正方形に規定される。   The solar battery cell 3 of the embodiment has a square shape. The solar battery cell 3 may be rectangular. However, a light receiving area 22 described later is defined as a square in order to generate a suitable circular sunlight spot 23 in the light receiving area 22 regardless of whether the solar battery cell 3 is square or rectangular.

区切り線21は、それ自体、太陽電池セル3上に存在せず、太陽電池セル3上の受光領域22を説明するために、図4に示した便宜上の仮想線である。   The demarcation line 21 does not exist on the solar cell 3 itself, and is a virtual line for convenience shown in FIG. 4 in order to describe the light receiving region 22 on the solar cell 3.

太陽電池セル3の受光面は、集光リフレクタ2の反射領域15の個数に合わせて、区切り線21により縦横5等分された5×5の等面積の正方形の受光領域22に区分されている。集光リフレクタ2の反射領域15と太陽電池セル3の受光領域22とは1:1に対応付けられる。集光リフレクタ2がm×nの反射領域15に区分されているときは、太陽電池セル3もm×nの受光領域22に区分される。   The light receiving surface of the solar battery cell 3 is divided into square light receiving regions 22 having an equal area of 5 × 5 divided into five equal parts in the vertical and horizontal directions by the dividing line 21 in accordance with the number of the reflective regions 15 of the condensing reflector 2. . The reflection region 15 of the condensing reflector 2 and the light receiving region 22 of the solar battery cell 3 are associated with 1: 1. When the condensing reflector 2 is divided into the m × n reflection region 15, the solar battery cell 3 is also divided into the m × n light receiving region 22.

太陽電池セル3の各受光領域22には、集光リフレクタ2の対応する反射領域15からの反射光12により円形の太陽光スポット23が生成される。もし、集光リフレクタ2からの反射光12の太陽光スポットが、太陽電池セル3全体に1つしか形成されないならば、太陽電池セル3の四隅は、太陽光スポットの光が当らずに、太陽電池セル3の発電効率が低下する。また、これを回避するために、太陽光スポットの直径を増大して、太陽光スポットが太陽電池セル3全体に当るようにすると、太陽光スポットの一部が太陽電池セル3からはみ出てしまい、太陽電池セル3における太陽光の光量(エネルギー)が低下してしまう。   In each light receiving region 22 of the solar battery cell 3, a circular sunlight spot 23 is generated by the reflected light 12 from the corresponding reflecting region 15 of the condensing reflector 2. If only one solar spot of the reflected light 12 from the condensing reflector 2 is formed in the entire solar cell 3, the four corners of the solar cell 3 are not exposed to the light of the solar spot, The power generation efficiency of the battery cell 3 decreases. Further, in order to avoid this, when the diameter of the solar spot is increased so that the solar spot hits the entire solar battery cell 3, a part of the solar spot protrudes from the solar battery cell 3, The light quantity (energy) of sunlight in the solar battery cell 3 is reduced.

これに対し、太陽光発電装置1では、太陽電池セル3の隅部にも、該隅部に属する各受光領域22に太陽光スポット23が生成される。したがって、太陽光が太陽電池セル3の外に漏れるのが抑制されつつ、太陽電池セル3において太陽光が当らない面積が減少する。この結果、太陽電池セル3における太陽光が均一化されつつ、太陽電池セル3への集光率が増大して、太陽光発電装置1の発電効率を上げることができる。   On the other hand, in the solar power generation device 1, a sunlight spot 23 is generated at each corner of the solar battery cell 3 in each light receiving region 22 belonging to the corner. Therefore, it is suppressed that sunlight leaks out of the solar battery cell 3, and the area which does not receive sunlight in the solar battery cell 3 decreases. As a result, the sunlight in the solar battery cell 3 is made uniform, the light collection rate to the solar battery cell 3 is increased, and the power generation efficiency of the solar power generation device 1 can be increased.

図5を参照して、受光領域22と該受光領域22に生成される太陽光スポット23との関係について説明する。内接円23a及び外接円23bは、それぞれ正方形の受光領域22の内接円及び外接円となっている。太陽電池セル3の各受光領域22には、集光リフレクタ2の対応する反射領域15からの反射光12により太陽光スポット23が生成される。生成される太陽光スポット23は、内接円23a及び外接円23bと同心で、円周が内接円23aと外接円23bとの間の範囲に収まるものとなっている。すなわち、太陽光スポット23は、それが最小のときは内接円23aになり、最大のときは外接円23bになる。   With reference to FIG. 5, the relationship between the light receiving region 22 and the sunlight spot 23 generated in the light receiving region 22 will be described. The inscribed circle 23a and the circumscribed circle 23b are an inscribed circle and a circumscribed circle of the square light receiving region 22, respectively. In each light receiving region 22 of the solar battery cell 3, a sunlight spot 23 is generated by the reflected light 12 from the corresponding reflecting region 15 of the condensing reflector 2. The generated sunlight spot 23 is concentric with the inscribed circle 23a and the circumscribed circle 23b, and the circumference falls within the range between the inscribed circle 23a and the circumscribed circle 23b. That is, the sunlight spot 23 becomes an inscribed circle 23a when it is minimum, and becomes a circumscribed circle 23b when it is maximum.

なお、太陽光スポット23が内接円23aから外接円23bまでの間の範囲となることは、集光リフレクタ2の反射領域15が入射光11の方向から見て正方形及び長方形のいずれの場合であっても、可能であり、かつそのように各反射領域15からの反射光12の光軸及び焦点が設定される。集光リフレクタ2の反射領域15が入射光11の方向から見て長方形であっても、反射領域15からの反射光12の光軸が、太陽電池セル3の受光領域22の中心を通るように設定し、焦点を調整することにより、受光領域22に内接円23aから外接円23bまでの寸法範囲の太陽光スポット23を生成することができる。   Note that the sunlight spot 23 is in the range between the inscribed circle 23a and the circumscribed circle 23b when the reflection region 15 of the condensing reflector 2 is square or rectangular when viewed from the direction of the incident light 11. Even so, the optical axis and focus of the reflected light 12 from each reflective region 15 are set as such. Even if the reflection region 15 of the condensing reflector 2 is rectangular when viewed from the direction of the incident light 11, the optical axis of the reflected light 12 from the reflection region 15 passes through the center of the light receiving region 22 of the solar battery cell 3. By setting and adjusting the focal point, it is possible to generate a sunlight spot 23 having a size range from the inscribed circle 23a to the circumscribed circle 23b in the light receiving region 22.

内接円23aの太陽光スポット23は、受光領域22の四隅に太陽光スポット23が当らない領域が生じる。太陽光スポット23を内接円23aから外接円23bの方へ拡大していくに連れて、太陽光スポット23が照射されない四隅の面積が減少するとともに、隣りの受光領域22へはみ出す太陽光スポット23の部分の面積が増大する。そして、太陽光スポット23が外接円23bになったとき、受光領域22全体に太陽光スポット23が照射されるが、受光領域22からはみ出る太陽光スポット23の部分の面積が最大になる。   In the sunlight spot 23 of the inscribed circle 23 a, areas where the sunlight spot 23 does not hit the four corners of the light receiving area 22 are generated. As the sunlight spot 23 expands from the inscribed circle 23a toward the circumscribed circle 23b, the areas of the four corners where the sunlight spot 23 is not irradiated are reduced and the sunlight spot 23 that protrudes to the adjacent light receiving region 22 is reduced. The area of the portion increases. And when the sunlight spot 23 turns into the circumscribed circle 23b, the sunlight spot 23 is irradiated to the entire light receiving area 22, but the area of the portion of the sunlight spot 23 that protrudes from the light receiving area 22 is maximized.

各受光領域22に生成される太陽光スポット23が等径に設定されるときは、縦横隣り合うの受光領域22同士が、隣りの受光領域22からの太陽光スポット23のはみ出し部分に照射され、この部分が、太陽光スポット23の重複照射部分になって、光度が増大する。しかしながら、重複照射部分の面積は、太陽電池セル3の面積全体から見て制限されているので、太陽電池セル3における太陽光の光量の均一性は確保される。   When the sunlight spots 23 generated in the respective light receiving areas 22 are set to have the same diameter, the light receiving areas 22 adjacent to each other in the vertical and horizontal directions are irradiated to the protruding portions of the sunlight spots 23 from the adjacent light receiving areas 22, This portion becomes an overlapping irradiation portion of the sunlight spot 23, and the luminous intensity increases. However, since the area of the overlapping irradiation portion is limited as viewed from the entire area of the solar battery cell 3, the uniformity of the amount of sunlight in the solar battery cell 3 is ensured.

図6を参照して、反射光12の反射元の集光リフレクタ2の反射領域15と反射光12の反射先の太陽電池セル3の受光領域22との代表的な対応関係について説明する。該対応関係は、1つだけでなく、種々存在する。   With reference to FIG. 6, a typical correspondence relationship between the reflection region 15 of the condensing reflector 2 that is the reflection source of the reflected light 12 and the light receiving region 22 of the solar cell 3 that is the reflection destination of the reflection light 12 will be described. The correspondence relationship is not limited to one but various.

反射光12の反射元及び反射先の対応関係を説明するために、集光リフレクタ2の反射領域15及び太陽電池セル3の受光領域22の縦横の各位置を、行列の要素位置の定義に倣い、(行番号,列番号)で表すことにする。この表記方式によると、集光リフレクタ2及び太陽電池セル3において、左上隅の反射領域15及び受光領域22の位置は、(1,1)となり、右上隅の反射領域15及び受光領域22の位置は、(1,5)となり、左下隅の反射領域15及び受光領域22の位置は、(5,1)となり、右下隅の反射領域15及び受光領域22の位置は(5,5)となる。   In order to explain the correspondence between the reflection source and the reflection destination of the reflected light 12, the vertical and horizontal positions of the reflection region 15 of the condensing reflector 2 and the light receiving region 22 of the solar battery cell 3 are copied in accordance with the definition of the element position of the matrix. , (Row number, column number). According to this notation, in the condensing reflector 2 and the solar battery cell 3, the positions of the reflection area 15 and the light receiving area 22 in the upper left corner are (1, 1), and the positions of the reflection area 15 and the light receiving area 22 in the upper right corner. Is (1, 5), the positions of the reflection area 15 and the light receiving area 22 in the lower left corner are (5, 1), and the positions of the reflection area 15 and the light receiving area 22 in the lower right corner are (5, 5). .

図6(a)は、反射光12の反射元及び反射先の関係にある反射領域15の縦横位置と受光領域22の縦横位置とが同一となっている例である。集光リフレクタ2の(1,1),(1,2),・・・,(5,4),(5,5)の反射領域15からの反射光12の反射先は、(行番号,列番号)が同一である太陽電池セル3の(1,1),(1,2),・・・,(5,4),(5,5)の受光領域22となっている。すなわち、集光リフレクタ2の(u,v)の反射領域15と、太陽電池セル3の(u,v)の受光領域22とが1:1に対応している。   FIG. 6A is an example in which the vertical and horizontal positions of the reflection region 15 and the light reception region 22 are the same in the relationship between the reflection source and the reflection destination of the reflected light 12. The reflection destination of the reflected light 12 from the reflection region 15 of (1, 1), (1, 2),..., (5, 4), (5, 5) of the condenser reflector 2 is (row number, The light receiving regions 22 of (1, 1), (1, 2),..., (5, 4), (5, 5) of the solar cells 3 having the same column number). That is, the (u, v) reflection region 15 of the condensing reflector 2 and the (u, v) light receiving region 22 of the solar battery cell 3 correspond to 1: 1.

図6(b)は、反射光12の反射元及び反射先の関係にある反射領域15の縦横位置と受光領域22の縦横位置とが、行番号と列番号とを相互に入れ替えたものになっている例である。集光リフレクタ2の(1,1),(1,2),・・・,(5,4),(5,5)の反射領域15からの反射光12の反射先は、(1,1),(2,1),・・・,(4,5),(5,5)の受光領域22となっている。すなわち、集光リフレクタ2の(u,v)の反射領域15と、太陽電池セル3の(v,u)の受光領域22とが1:1に対応している。   In FIG. 6B, the vertical and horizontal positions of the reflection area 15 and the vertical and horizontal positions of the light receiving area 22 in the relationship between the reflection source and the reflection destination of the reflected light 12 are obtained by exchanging the row numbers and the column numbers with each other. This is an example. The reflection destination of the reflected light 12 from the reflection region 15 of (1, 1), (1, 2),..., (5, 4), (5, 5) of the condensing reflector 2 is (1, 1 ), (2, 1),..., (4, 5), (5, 5). That is, the (u, v) reflection region 15 of the condensing reflector 2 and the (v, u) light receiving region 22 of the solar battery cell 3 correspond to 1: 1.

図6(c)は、反射光12の反射元及び反射先の関係にある反射領域15の縦横位置と受光領域22の縦横位置とが、点対称の関係になっている例である。集光リフレクタ2の(1,1),(1,2),・・・,(5,4),(5,5)の反射領域15からの反射光12の反射先は、(3,3)に対して点対称関係にある太陽電池セル3の(5,5),(5,4),・・・,(1,2),(1,1)の受光領域22となっている。すなわち、集光リフレクタ2の(u,v)の反射領域15と、太陽電池セル3の(6−u,6−v)の受光領域22とが1:1に対応している。   FIG. 6C is an example in which the vertical and horizontal positions of the reflection region 15 and the vertical and horizontal positions of the light receiving region 22 in the relationship between the reflection source and the reflection destination of the reflected light 12 have a point-symmetric relationship. The reflection destination of the reflected light 12 from the reflection region 15 of (1, 1), (1, 2),..., (5, 4), (5, 5) of the condensing reflector 2 is (3, 3 ) (5, 5), (5, 4),..., (1, 2), (1, 1) of the photovoltaic cells 3 that are in a point-symmetrical relationship with respect to (). That is, the (u, v) reflection region 15 of the condensing reflector 2 and the (6-u, 6-v) light receiving region 22 of the solar battery cell 3 correspond to 1: 1.

太陽光発電装置1では、集光リフレクタ2のm×n個の反射領域15と太陽電池セル3のm×n個の受光領域22とを1:1に対応付けて、各受光領域22に太陽光スポット23を形成するようになっている。したがって、太陽光発電装置1はホモジナイザを装備しないにもかかわらず、太陽電池セル3は、正方形に制限されることなく、長方形であっても、太陽電池セル3の受光面における太陽光の光量(エネルギー量)を均一化することができる。   In the solar power generation device 1, the m × n reflection areas 15 of the condensing reflector 2 and the m × n light reception areas 22 of the solar battery cells 3 are associated with each other in a 1: 1 ratio, and each of the light reception areas 22 has a sun. A light spot 23 is formed. Therefore, although the solar power generation device 1 is not equipped with a homogenizer, the solar cell 3 is not limited to a square, and even if the solar cell 3 is rectangular, the amount of sunlight on the light receiving surface of the solar cell 3 ( Energy amount) can be made uniform.

本発明を実施形態について説明したが、本発明は実施形態に限定されることなく、要旨の範囲内で種々に変形して実施することができる。   Although the present invention has been described with respect to the embodiments, the present invention is not limited to the embodiments, and various modifications can be made within the scope of the invention.

例えば、図5では、太陽電池セル3の各受光領域22に等しい径の太陽光スポット23が形成されることになっているが、受光領域22ごとに、太陽光スポット23の寸法を相違させてもよい。例えば、太陽電池セル3の周辺の受光領域22の太陽光スポット23は、最小の内接円23aとし、それより内側の受光領域22の太陽光スポット23は最小の内接円23aより大きい円とすることもできる。これにより、太陽電池セル3の外へはみ出す太陽光スポット23の面積を0にしつつ、太陽電池セル3上の太陽光の均一化を図ることができる。   For example, in FIG. 5, a sunlight spot 23 having the same diameter is formed in each light receiving region 22 of the solar battery cell 3, but the size of the sunlight spot 23 is different for each light receiving region 22. Also good. For example, the sunlight spot 23 in the light receiving region 22 around the solar battery cell 3 is the smallest inscribed circle 23a, and the sunlight spot 23 in the light receiving region 22 inside is larger than the smallest inscribed circle 23a. You can also Thereby, it is possible to make the sunlight on the solar battery cell 3 uniform while setting the area of the solar light spot 23 protruding outside the solar battery cell 3 to zero.

反射光12の反射元の集光リフレクタ2の反射領域15と反射光12の反射先の太陽電池セル3の受光領域22との種々の対応関係は、図6(a)、(b)及び(c)に示した3つの例のほか、集光リフレクタ2の周辺部の反射領域15を反射元とする反射光12の反射先を太陽電池セル3の中央部の受光領域22とし、集光リフレクタ2の中央部の反射領域15を反射元とする反射光12の反射先を太陽電池セル3の周辺部の受光領域22とするようにしてもよい。   Various correspondences between the reflection region 15 of the condensing reflector 2 that is the reflection source of the reflected light 12 and the light receiving region 22 of the solar cell 3 that is the reflection destination of the reflection light 12 are shown in FIGS. In addition to the three examples shown in c), the reflection destination of the reflected light 12 having the reflection region 15 in the peripheral portion of the condensing reflector 2 as a reflection source is the light receiving region 22 in the central portion of the solar battery cell 3, and the condensing reflector The reflection destination of the reflected light 12 having the reflection area 15 at the center of 2 as the reflection source may be the light receiving area 22 in the peripheral portion of the solar battery cell 3.

1・・・太陽光発電装置、2・・・集光リフレクタ、3・・・太陽電池セル、7・・・太陽、11・・・入射光、12・・・反射光、15・・・反射領域、22・・・受光領域、23・・・太陽光スポット、23a・・・内接円、23b・・・外接円。 DESCRIPTION OF SYMBOLS 1 ... Solar power generation device, 2 ... Condensing reflector, 3 ... Solar cell, 7 ... Sun, 11 ... Incident light, 12 ... Reflected light, 15 ... Reflection Area, 22 ... light receiving area, 23 ... sunlight spot, 23a ... inscribed circle, 23b ... circumscribed circle.

Claims (2)

矩形の太陽電池セルと、
入射された太陽光を前記太陽電池セルへ向けて反射する集光リフレクタとを備える太陽光発電装置であって、
前記集光リフレクタの光反射面は、太陽光の入射光量が等しくなるようにm×n(ただしm,nの一方は1以上、他方は2以上の整数)個の複数の反射領域に区分され、
前記太陽電池セルは、前記集光リフレクタの各反射領域と1:1に対応付けられるm×n個の等面積かつ正方形の受光領域に区分され、
各反射領域で反射された光が、該反射領域に対応した前記受光領域に集まるように、該受光領域に対する各反射領域の向きが個々に設定されている
ことを特徴とする太陽光発電装置。
A rectangular solar cell;
A solar power generation apparatus comprising a condensing reflector that reflects incident sunlight toward the solar cell,
The light reflecting surface of the condensing reflector is divided into a plurality of m × n reflecting areas (one of m and n is an integer of 1 or more and the other is an integer of 2 or more) so that the amount of incident sunlight is equal. ,
The solar battery cell is divided into m × n equal-area and square light-receiving areas corresponding to the respective reflecting areas of the condensing reflector in a 1: 1 ratio.
The photovoltaic power generation apparatus, wherein the direction of each reflection region with respect to the light receiving region is individually set so that the light reflected by each reflection region gathers in the light receiving region corresponding to the reflection region.
請求項1記載の太陽光発電装置において、
前記集光リフレクタの各反射領域は、前記正方形の受光領域において、該正方形の内接円と外接円との間の範囲に収まる円形の太陽光スポットを生成するように形成されていることを特徴とする太陽光発電装置。
In the solar power generation device according to claim 1,
Each reflection region of the condensing reflector is formed so as to generate a circular sunlight spot that falls within a range between the inscribed circle and the circumscribed circle of the square in the square light receiving region. A solar power generation device.
JP2012207417A 2012-09-20 2012-09-20 Photovoltaic power generation device Pending JP2014063843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207417A JP2014063843A (en) 2012-09-20 2012-09-20 Photovoltaic power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207417A JP2014063843A (en) 2012-09-20 2012-09-20 Photovoltaic power generation device

Publications (1)

Publication Number Publication Date
JP2014063843A true JP2014063843A (en) 2014-04-10

Family

ID=50618827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207417A Pending JP2014063843A (en) 2012-09-20 2012-09-20 Photovoltaic power generation device

Country Status (1)

Country Link
JP (1) JP2014063843A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030140960A1 (en) * 2002-01-29 2003-07-31 Avi Baum System and method for converting solar energy to electricity
US20110079269A1 (en) * 2009-10-06 2011-04-07 Brightleaf Technologies, Inc. Non-parabolic solar concentration to an area of controlled flux density conversion system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030140960A1 (en) * 2002-01-29 2003-07-31 Avi Baum System and method for converting solar energy to electricity
US20110079269A1 (en) * 2009-10-06 2011-04-07 Brightleaf Technologies, Inc. Non-parabolic solar concentration to an area of controlled flux density conversion system and method

Similar Documents

Publication Publication Date Title
CN203747745U (en) High light-concentrated solar lighting module group
US20100307586A1 (en) Reflective free-form kohler concentrator
JP2017524892A (en) Space-efficient multi-unit condenser lens assembly
JP2006332113A (en) Concentrating solar power generation module and solar power generator
US4146408A (en) Aspherical solar cell concentrator
US20140048117A1 (en) Solar energy systems using external reflectors
JP2013211487A (en) Secondary lens, solar battery mounting body, condensing type photovoltaic power generation unit, and condensing type photovoltaic power generation module
JP2013079787A (en) Solar light collecting system and solar power generation system
CN211209653U (en) Multi-focus free-form surface solar light condensing system
CN101388625A (en) Solar concentration electricity generating apparatus
JP2014175645A (en) Photovoltaic power generation apparatus
CN204392161U (en) Solar concentrating device
CN102721194B (en) Large-capacity high-concentrating ratio composite Fresnel line concentration reflection device
KR200419531Y1 (en) Sunbeams concentration lens and apparatus for solar photovoltaic generator using concept of superposition
KR20130085132A (en) Fresnel lens - light pipe combined lens system for solar power generation
CN102638199B (en) Solar energy point condensation photovoltaic power generation device
JP2014063843A (en) Photovoltaic power generation device
CN104639025A (en) Dense array type concentration photovoltaic system
TWM502813U (en) Solar light-gathering device
CN101345496A (en) Spherical mirror combination type concentration power generation apparatus
CN112187166B (en) High-efficiency concentrating solar cell panel
CN103208950B (en) A kind of based on the concentrating photovoltaic power generation device from axle Fresnel reflection condenser
CN103809227A (en) Thin Fresnel lens with a short focal length
CN102768400B (en) Reflective solar concentrator without optical equalizing rod
CN202929224U (en) Thin type Fresnel Lens with short focal length

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108