JP2014062478A - Steam turbine equipment - Google Patents

Steam turbine equipment Download PDF

Info

Publication number
JP2014062478A
JP2014062478A JP2012207134A JP2012207134A JP2014062478A JP 2014062478 A JP2014062478 A JP 2014062478A JP 2012207134 A JP2012207134 A JP 2012207134A JP 2012207134 A JP2012207134 A JP 2012207134A JP 2014062478 A JP2014062478 A JP 2014062478A
Authority
JP
Japan
Prior art keywords
steam
pressure turbine
turbine
ring groove
stationary blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207134A
Other languages
Japanese (ja)
Other versions
JP5968176B2 (en
Inventor
Yusuke Takahashi
佑介 高橋
Kenju Nakamura
建樹 中村
Nozomi Ogasawara
望 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012207134A priority Critical patent/JP5968176B2/en
Publication of JP2014062478A publication Critical patent/JP2014062478A/en
Application granted granted Critical
Publication of JP5968176B2 publication Critical patent/JP5968176B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Control Of Turbines (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide steam turbine equipment capable of permanently supplying steam of a required pressure to a carbon dioxide separation and recovery apparatus.SOLUTION: Steam turbine equipment includes: a boiler 1; a high-pressure turbine 3 driven by steam generated by the boiler 1; a low-pressure turbine 9 driven by steam having driven the high-pressure turbine 3; and a carbon oxide separation and recovery apparatus 50 for separating and recovering carbon dioxide of exhaust gas discharged from the boiler 1 with part of steam supplied to the low-pressure turbine 9 as a heat source. The low-pressure turbine 9 includes a stationary blade angle change mechanism for changing the angle of elevation of at least one step of a stationary blade 31 including an initial step.

Description

本発明は、二酸化炭素分離装置を備えた蒸気タービン設備に関する。   The present invention relates to a steam turbine facility equipped with a carbon dioxide separator.

ボイラ等の蒸気発生源の排気ガス中の二酸化炭素を分離回収するために、化学吸収法を利用した二酸化炭素回収装置を備えた蒸気タービン設備がある(特許文献1等参照)。   In order to separate and recover carbon dioxide in the exhaust gas of a steam generation source such as a boiler, there is a steam turbine facility equipped with a carbon dioxide recovery device using a chemical absorption method (see Patent Document 1, etc.).

特願2009−293717号公報Japanese Patent Application No. 2009-293717

化学吸収法では、蒸気タービンから抽気した大量の蒸気を二酸化炭素分離用の熱源として要する。そのため、化学吸収法を利用した二酸化炭素分離回収装置を設けた蒸気タービン設備の場合、低圧タービンに供給する蒸気の一部を二酸化炭素分離回収装置の熱源として使用するため、通常の蒸気タービン設備と比べても系内を流れる蒸気の流量や圧力の変動を抑えることは重要である。   In the chemical absorption method, a large amount of steam extracted from a steam turbine is required as a heat source for carbon dioxide separation. Therefore, in the case of a steam turbine facility provided with a carbon dioxide separation and recovery device using a chemical absorption method, a part of the steam supplied to the low-pressure turbine is used as a heat source for the carbon dioxide separation and recovery device. Even in comparison, it is important to suppress fluctuations in the flow rate and pressure of the steam flowing in the system.

しかし、低圧タービンの経年劣化により低圧タービンにおける蒸気の降下圧力が減少すると、その分だけ低圧タービンに流入する蒸気圧力、ひいては二酸化炭素分離回収装置に供給する蒸気圧力が低下してしまう。   However, when the pressure drop of the steam in the low-pressure turbine decreases due to the aging of the low-pressure turbine, the steam pressure flowing into the low-pressure turbine, and hence the steam pressure supplied to the carbon dioxide separation and recovery device, decreases accordingly.

本発明はこのような事情に鑑みてなされたもので、二酸化炭素分離回収装置に所要圧力の蒸気を永続的に供給することができる蒸気タービン設備を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the steam turbine equipment which can supply the steam of a required pressure permanently to a carbon dioxide separation-and-recovery apparatus.

上記目的を達成するために、本発明は、蒸気発生源と、この蒸気発生源で発生した蒸気で駆動する高圧タービンと、この高圧タービンを駆動した蒸気で駆動する低圧タービンと、前記蒸気発生源から排出される排気ガスの二酸化炭素を前記低圧タービンに供給される蒸気の一部を熱源として分離回収する二酸化炭素分離回収装置とを備え、前記低圧タービンが、初段を含む少なくとも1つの段落の静翼の迎角を変更する静翼角度変更機構を備えていることを特徴とする。   To achieve the above object, the present invention provides a steam generation source, a high-pressure turbine driven by steam generated from the steam generation source, a low-pressure turbine driven by steam driving the high-pressure turbine, and the steam generation source. And a carbon dioxide separation and recovery device for separating and recovering carbon dioxide of exhaust gas discharged from the low-pressure turbine using a part of steam supplied to the low-pressure turbine as a heat source, wherein the low-pressure turbine includes at least one static stage including a first stage. A stationary blade angle changing mechanism for changing the angle of attack of the blade is provided.

本発明によれば、二酸化炭素分離回収装置に所要圧力の蒸気を永続的に供給することができる。   According to the present invention, steam at a required pressure can be permanently supplied to the carbon dioxide separation and recovery device.

本発明の第1の実施の形態に係る蒸気タービン設備の全体構成を表す概略図である。It is the schematic showing the whole structure of the steam turbine equipment which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る蒸気タービン設備の低圧タービンの初段静翼ダイヤフラムの構成例を表す概略図である。It is the schematic showing the structural example of the first stage stationary blade diaphragm of the low pressure turbine of the steam turbine equipment which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る蒸気タービン設備の低圧タービンの初段静翼ダイヤフラムにおけるダイヤフラム内輪側の植え込み部及びスペーサをタービン径方向外側から見た図である。It is the figure which looked at the implantation part and spacer on the diaphragm inner ring | wheel side in the first stage stationary blade diaphragm of the low pressure turbine of the steam turbine equipment which concerns on the 1st Embodiment of this invention from the turbine radial direction outer side. 本発明の第2の実施の形態に係る蒸気タービン設備の低圧タービンの初段静翼ダイヤフラムの構成例を表す概略図である。It is the schematic showing the structural example of the first stage stationary blade diaphragm of the low pressure turbine of the steam turbine equipment which concerns on the 2nd Embodiment of this invention.

以下に図面を用いて本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
図1は本発明の第1の実施の形態に係る蒸気タービン設備の全体構成を表す概略図である。
(First embodiment)
FIG. 1 is a schematic diagram showing the overall configuration of the steam turbine equipment according to the first embodiment of the present invention.

図1に示した蒸気タービン設備は、ボイラ1、高圧タービン3、中圧タービン6、低圧タービン9、復水器11、及び二酸化炭素分離回収装置50を備えている。   The steam turbine equipment shown in FIG. 1 includes a boiler 1, a high pressure turbine 3, an intermediate pressure turbine 6, a low pressure turbine 9, a condenser 11, and a carbon dioxide separation and recovery device 50.

ボイラ1は化石燃料焚きボイラであって蒸気発生源の一例である。このボイラ1で化石燃料を燃焼し復水器11から供給された復水を加熱し、高温高圧の蒸気を発生させる。このボイラ1で発生した蒸気は主蒸気管2を介して高圧タービン3に導かれ、高圧タービン3を駆動する。高圧タービン3を駆動して減圧した蒸気は、高圧タービン排気管4を流下してボイラ1に導かれ、再度加熱されて再熱蒸気となる。   The boiler 1 is a fossil fuel-fired boiler and is an example of a steam generation source. The boiler 1 burns fossil fuel and heats the condensate supplied from the condenser 11 to generate high-temperature and high-pressure steam. The steam generated in the boiler 1 is guided to the high-pressure turbine 3 through the main steam pipe 2 to drive the high-pressure turbine 3. The steam depressurized by driving the high-pressure turbine 3 flows down the high-pressure turbine exhaust pipe 4 and is guided to the boiler 1, where it is heated again to become reheated steam.

ボイラ1で加熱された再熱蒸気は、高温再熱蒸気管5を介して中圧タービン6に導かれて中圧タービン6を駆動する。中圧タービン6を駆動して減圧した蒸気は、中圧タービン排気管7を介して低圧タービン9に導かれ、低圧タービン9を駆動する。低圧タービン9を駆動して減圧した蒸気は、低圧タービン排気管10を介して復水器11に導かれる。復水器11は冷却水配管(不図示)を備えており、復水器11に導かれた蒸気と冷却水配管内を流れる冷却水とを熱交換させて蒸気を復水する。復水器11で復水された復水は再びボイラ1に送られる。   The reheat steam heated by the boiler 1 is guided to the intermediate pressure turbine 6 through the high temperature reheat steam pipe 5 to drive the intermediate pressure turbine 6. The steam depressurized by driving the intermediate pressure turbine 6 is guided to the low pressure turbine 9 through the intermediate pressure turbine exhaust pipe 7 to drive the low pressure turbine 9. The steam decompressed by driving the low-pressure turbine 9 is guided to the condenser 11 via the low-pressure turbine exhaust pipe 10. The condenser 11 is provided with a cooling water pipe (not shown), and condenses the steam by exchanging heat between the steam guided to the condenser 11 and the cooling water flowing in the cooling water pipe. Condensate that has been condensed in the condenser 11 is sent to the boiler 1 again.

高圧タービン3、中圧タービン6及び低圧タービン9は、タービンロータ12によって同軸上に連結されている。また、タービンロータ12には発電機13が連結されていて、高圧タービン3、中圧タービン6及び低圧タービン9の回転動力によって発電機13が駆動し、高圧タービン3、中圧タービン6及び低圧タービン9の出力が電力として取り出される。   The high-pressure turbine 3, the intermediate-pressure turbine 6, and the low-pressure turbine 9 are coaxially connected by a turbine rotor 12. Further, a generator 13 is connected to the turbine rotor 12, and the generator 13 is driven by the rotational power of the high pressure turbine 3, the intermediate pressure turbine 6, and the low pressure turbine 9, and the high pressure turbine 3, the intermediate pressure turbine 6, and the low pressure turbine are driven. Nine outputs are taken as power.

二酸化炭素回収分離装置50は、低圧タービン9に供給される蒸気の一部を熱源として、ボイラ1から排出される排気ガスの二酸化炭素を分離回収する装置である。この二酸化炭素分離回収装置50は、リボイラ21、吸収塔16、再熱塔18及び吸収液熱交換器20を備えている。   The carbon dioxide recovery / separation device 50 is a device that separates and recovers carbon dioxide in the exhaust gas discharged from the boiler 1 using a part of the steam supplied to the low-pressure turbine 9 as a heat source. The carbon dioxide separation and recovery device 50 includes a reboiler 21, an absorption tower 16, a reheat tower 18, and an absorption liquid heat exchanger 20.

リボイラ21は、中圧タービン6と低圧タービン9とを繋ぐ中圧タービン排気管7から分岐した抽気管25の途中に設けた熱交換器であり、低圧タービン9の供給する蒸気の一部を熱源として再熱塔23のリッチ吸収液(後述)を加熱する。リッチ吸収液と熱交換して冷却された蒸気はタービン復水系に供給され、ドレンとして回収されてボイラ1に再度供給される。   The reboiler 21 is a heat exchanger provided in the middle of the extraction pipe 25 branched from the intermediate pressure turbine exhaust pipe 7 connecting the intermediate pressure turbine 6 and the low pressure turbine 9, and a part of the steam supplied from the low pressure turbine 9 is used as a heat source. As described above, the rich absorption liquid (described later) of the reheating tower 23 is heated. The steam cooled by exchanging heat with the rich absorbent is supplied to the turbine condensate system, recovered as drain, and supplied again to the boiler 1.

二酸化炭素分離回収装置50では、二酸化炭素を含んだボイラ1の排気ガス(ボイラ排ガス)は、ボイラ排ガス系統14を介して流下し、当該ボイラ排ガス管14に設けたボイラ排ガス昇圧ファン15によって昇圧され、ボイラ排ガス冷却器(不図示)で冷却されて吸収塔16に供給される。ボイラ排ガスに含まれた二酸化炭素ガスは吸収塔16において吸収液に吸収され、二酸化炭素が除去されたボイラ排ガス(処理ガス)が排出される。吸収塔16から排出された処理ガスは、吸収塔出口ボイラ排ガス管17を介して煙突(不図示)に供給され、この煙突(不図示)から大気に排出される。一方、ボイラ排ガスの二酸化炭素ガスを吸収した吸収液(リッチ吸収液)は吸収塔16から排出され、リッチ吸収液移送ポンプ19によって昇圧されて吸収液熱交換器20に供給され、吸収液熱交換器20で加熱されて再生塔18に供給される。   In the carbon dioxide separation and recovery device 50, the exhaust gas (boiler exhaust gas) of the boiler 1 containing carbon dioxide flows down through the boiler exhaust gas system 14 and is boosted by a boiler exhaust gas booster fan 15 provided in the boiler exhaust gas pipe 14. Then, it is cooled by a boiler exhaust gas cooler (not shown) and supplied to the absorption tower 16. The carbon dioxide gas contained in the boiler exhaust gas is absorbed by the absorption liquid in the absorption tower 16, and the boiler exhaust gas (process gas) from which carbon dioxide has been removed is discharged. The processing gas discharged from the absorption tower 16 is supplied to the chimney (not shown) via the absorption tower outlet boiler exhaust gas pipe 17 and is discharged from the chimney (not shown) to the atmosphere. On the other hand, the absorption liquid (rich absorption liquid) that has absorbed the carbon dioxide gas of the boiler exhaust gas is discharged from the absorption tower 16, boosted by the rich absorption liquid transfer pump 19, supplied to the absorption liquid heat exchanger 20, and absorption liquid heat exchange. It is heated by the vessel 20 and supplied to the regeneration tower 18.

吸収塔16から再生塔18に供給されたリッチ吸収液は、再生塔内吸収液抜き出し管23を介してリボイラ21に供給され、タービンサイクルから抽気した蒸気と熱交換し、加熱されて再生塔18の内部に戻って二酸化炭素ガスと分離される。リッチ吸収液から分離した二酸化炭素は二酸化炭素ガス排気管22を介して再生塔18から排出され、リフラックスドラム(不図示)で水分と分離されて二酸化炭素の液化貯留設備(図示せず)に供給され貯留される。一方、リフラックスドラム(不図示)で二酸化炭素と分離された水分はリフラックスドラムポンプ(不図示)で昇圧されて再生塔18に戻される。   The rich absorption liquid supplied from the absorption tower 16 to the regeneration tower 18 is supplied to the reboiler 21 via the absorption liquid extraction pipe 23 in the regeneration tower, exchanges heat with steam extracted from the turbine cycle, and is heated and regenerated. It returns to the inside and is separated from carbon dioxide gas. The carbon dioxide separated from the rich absorbent is discharged from the regeneration tower 18 via the carbon dioxide gas exhaust pipe 22, separated from moisture by a reflux drum (not shown), and supplied to a carbon dioxide liquefaction storage facility (not shown). Supplied and stored. On the other hand, the water separated from carbon dioxide by the reflux drum (not shown) is pressurized by the reflux drum pump (not shown) and returned to the regeneration tower 18.

再生塔18で二酸化炭素と分離した吸収液は再生塔18から排出され、吸収塔16から再生塔18に供給されるリッチ吸収液と吸収液熱交換器20で熱交換する。リッチ吸収液と熱交換して冷却された吸収液は、リーン吸収液移送ポンプ24によって昇圧され、リーン吸収液冷却器(不図示)で冷却されて吸収塔16に戻される。   The absorption liquid separated from the carbon dioxide in the regeneration tower 18 is discharged from the regeneration tower 18 and heat-exchanged with the rich absorption liquid supplied from the absorption tower 16 to the regeneration tower 18 by the absorption liquid heat exchanger 20. The absorption liquid cooled by exchanging heat with the rich absorption liquid is boosted by the lean absorption liquid transfer pump 24, cooled by a lean absorption liquid cooler (not shown), and returned to the absorption tower 16.

上記構成の本実施の形態に係る蒸気タービン設備の大きな特徴は、低圧タービン9が静翼角度変更機構を備えていることにある。静翼角度変更機構とは、作動流体であるタービン中心線に対する静翼の角度、すなわち迎角を変更する機構をいう。   A major feature of the steam turbine equipment according to the present embodiment having the above-described configuration is that the low-pressure turbine 9 includes a stationary blade angle changing mechanism. The stationary blade angle changing mechanism refers to a mechanism that changes the angle of the stationary blade with respect to the turbine center line that is the working fluid, that is, the angle of attack.

図2は低圧タービン9の初段静翼ダイヤフラムの構成例を表す概略図である。同図は一部の初段静翼ダイヤフラムを蒸気流通方向の下流側から見た斜視図である。   FIG. 2 is a schematic diagram illustrating a configuration example of the first stage stationary blade diaphragm of the low-pressure turbine 9. This figure is a perspective view of some of the first stage stationary blade diaphragms as viewed from the downstream side in the steam flow direction.

同図に示した低圧タービン9の初段静翼ダイヤフラムは全体として静翼角度変更機構を構成していて、静翼31、ダイヤフラム外輪33、ダイヤフラム内輪35、及びスペーサ37を備えている。   The first stage stationary blade diaphragm of the low-pressure turbine 9 shown in FIG. 1 constitutes a stationary blade angle changing mechanism as a whole, and includes a stationary blade 31, a diaphragm outer ring 33, a diaphragm inner ring 35, and a spacer 37.

静翼31の根本(タービン径方向の外側部分)及び先端(タービン径方向の内側部分)には、ダイヤフラム外輪33及びダイヤフラム内輪35とそれぞれ連結するための植え込み部32が設けられている。植え込み部32は、同図ではダイヤフラム内輪35側のもののみが見えているが、ダイヤフラム外輪33側にも存在する。タービン中心軸に直交する面で切断した植え込み部32の断面は、特に図示していないが、スペーサ37の端面にあるくびれ部分37aと同様のくびれ部分を有している。ダイヤフラム外輪33の内周部及びダイヤフラム内輪35の外周部には、それぞれ外輪溝34及び内輪溝36が設けられている。タービン中心軸に直交する面で切断したダイヤフラム外輪33及びダイヤフラム内輪35の断面で見ると、外輪溝34及び内輪溝36の外形線は植え込み部32やスペーサ37の断面に対応した形状をしている。したがって、植え込み部32は、外輪溝34及び内輪溝36に対して蒸気流通方向に挿入されて外輪溝34及び内輪溝36の延在方向にスライド可能であり、こうして植え込み部32がダイヤフラム外輪33及びダイヤフラム内輪35に支持されることで、ダイヤフラム外輪33及びダイヤフラム内輪35に対して静翼31が連結されている。   At the root (outer portion in the turbine radial direction) and the tip (inner portion in the turbine radial direction) of the stationary blade 31, an implantation portion 32 is provided for connection to the diaphragm outer ring 33 and the diaphragm inner ring 35. Although only the planting portion 32 on the diaphragm inner ring 35 side is visible in the drawing, it is also present on the diaphragm outer ring 33 side. Although the cross section of the implantation part 32 cut | disconnected by the surface orthogonal to a turbine center axis | shaft has not shown in particular in figure, it has the constriction part similar to the constriction part 37a in the end surface of the spacer 37. FIG. An outer ring groove 34 and an inner ring groove 36 are provided on the inner peripheral part of the diaphragm outer ring 33 and the outer peripheral part of the diaphragm inner ring 35, respectively. When viewed in a cross section of the diaphragm outer ring 33 and the diaphragm inner ring 35 cut along a plane orthogonal to the turbine central axis, the outer lines of the outer ring groove 34 and the inner ring groove 36 have shapes corresponding to the cross sections of the implantation portion 32 and the spacer 37. . Therefore, the planting part 32 is inserted in the steam flow direction with respect to the outer ring groove 34 and the inner ring groove 36 and is slidable in the extending direction of the outer ring groove 34 and the inner ring groove 36. By being supported by the diaphragm inner ring 35, the stationary blade 31 is connected to the diaphragm outer ring 33 and the diaphragm inner ring 35.

ここで、外輪溝34は、蒸気流通方向の上流側から下流側に向かって弧状に形成されている。一方の内輪溝36も外輪溝34に対応して蒸気流通方向の上流側から下流側に向かって弧状に形成されている。本実施の形態では、外輪溝34及び内輪溝36とも静翼31の負圧面側(背側)に凸となる弧を描くように形成されている。   Here, the outer ring groove 34 is formed in an arc shape from the upstream side to the downstream side in the steam flow direction. One inner ring groove 36 is also formed in an arc shape corresponding to the outer ring groove 34 from the upstream side to the downstream side in the steam flow direction. In the present embodiment, both the outer ring groove 34 and the inner ring groove 36 are formed so as to draw a convex arc on the suction surface side (back side) of the stationary blade 31.

図3はダイヤフラム内輪35側の植え込み部32及びスペーサ37をタービン径方向外側から見た図である。   FIG. 3 is a view of the implanted portion 32 and the spacer 37 on the diaphragm inner ring 35 side as seen from the outside in the turbine radial direction.

前述したように植え込み部32は外輪溝34及び内輪溝36に沿ってスライド可能である。したがって、例えば同図に示したように、実線で示した植え込み部32を外輪溝34及び内輪溝36に沿って移動させ、二点鎖線で示した位置に移動させるといったことができる。同図の場合、植え込み部32が実線で示した位置にあるときに比べ、植え込み部32が二点鎖線で示した位置にあるときは、静翼31が後縁側(蒸気流通方向の下流側)に移動して、静翼31の迎角が大きくなり(θ<θ')、周方向に隣接する静翼31の間の最小間隙が減少する(S>S’)。なお、植え込み部32を外輪溝34及び内輪溝36に沿って移動させるに当たって、周方向に隣接する植え込み部32同士が干渉して移動を阻害するような場合には隣接する植え込み部32同士の間に若干の間隙を適宜設けることもできる。   As described above, the implantation portion 32 can slide along the outer ring groove 34 and the inner ring groove 36. Therefore, for example, as shown in the figure, the planting portion 32 indicated by the solid line can be moved along the outer ring groove 34 and the inner ring groove 36 and moved to the position indicated by the two-dot chain line. In the case of the figure, when the planting part 32 exists in the position shown with the dashed-two dotted line compared with when the planting part 32 exists in the position shown with the continuous line, the stationary blade 31 is the trailing edge side (downstream side of a steam distribution direction). , The angle of attack of the stationary blade 31 is increased (θ <θ ′), and the minimum gap between the circumferentially adjacent stationary blades 31 is decreased (S> S ′). In addition, when moving the implantation part 32 along the outer ring groove 34 and the inner ring groove 36, when the implantation parts 32 adjacent to each other in the circumferential direction interfere with each other, the movement between the adjacent implantation parts 32 is inhibited. A slight gap may be provided as appropriate.

また、外輪溝34及び内輪溝36の空きスペースにはスペーサ37が挿入され、スペーサ37によって外輪溝34及び内輪溝36において植え込み部32が拘束され固定されている。ここで言う空きスペースとは、植え込み部32が占めるスペースを除く外輪溝34及び内輪溝36内のスペースであり、本実施の形態においては、植え込み部32の位置によらず、静翼31の前縁側及び後縁側に存在する。したがって、本実施の形態の場合、植え込み部32に接触して空きスペースを埋める形状に構成した前後のスペーサ37が、外輪溝34及び内輪溝36内の植え込み部32の位置に応じて複数組用意されている。例えば植え込み部32を同図のように移動させる場合には、スペーサ37(実線)を外輪溝34及び内輪溝36から抜き取り、外輪溝34及び内輪溝36の内部で植え込み部32を実線の位置から二点鎖線の位置までスライドさせた後、スペーサ37’(二点鎖線)を外輪溝34及び内輪溝36に挿入して植え込み部32を固定する。   In addition, a spacer 37 is inserted into the empty space of the outer ring groove 34 and the inner ring groove 36, and the implanted portion 32 is restrained and fixed in the outer ring groove 34 and the inner ring groove 36 by the spacer 37. The empty space referred to here is a space in the outer ring groove 34 and the inner ring groove 36 excluding the space occupied by the planting portion 32, and in the present embodiment, the front of the stationary blade 31 regardless of the position of the planting portion 32. Present on the edge side and the trailing edge side. Therefore, in the case of the present embodiment, a plurality of sets of front and rear spacers 37 configured to fill the empty space by contacting the planting portion 32 are prepared according to the positions of the planting portion 32 in the outer ring groove 34 and the inner ring groove 36. Has been. For example, when the planting part 32 is moved as shown in the figure, the spacer 37 (solid line) is extracted from the outer ring groove 34 and the inner ring groove 36, and the planting part 32 is moved from the position of the solid line inside the outer ring groove 34 and the inner ring groove 36. After sliding to the position of the two-dot chain line, the spacer 37 ′ (two-dot chain line) is inserted into the outer ring groove 34 and the inner ring groove 36 to fix the implantation portion 32.

次に本実施の形態の動作を説明する。   Next, the operation of the present embodiment will be described.

本実施の形態においては、ボイラ1で発生した蒸気を作動流体として高圧タービン3、中圧タービン6及び低圧タービン9を駆動し、高圧タービン3、中圧タービン6及び低圧タービン9で得た回転動力を発電機13で電気エネルギーに変換する。低圧タービン9を駆動した蒸気は、復水器11で復水してボイラ1に再び供給される。また、ボイラ1で発生したボイラ排気ガスは吸収塔16に供給され、含有する二酸化炭素が吸収液に吸収される。二酸化炭素を吸収されたボイラ排ガスは処理ガスとして大気に放出される。一方、二酸化炭素を吸収したリッチ吸収液は再生塔18に送られ、中圧タービン6から低圧タービン9に供給される蒸気の一部とリボイラ21で熱交換して二酸化炭素と分離される。二酸化炭素と分離した吸収液は吸収塔16に戻される。吸収液から分離された二酸化炭素は再生塔18から排出され、二酸化炭素の液化貯留設備に貯留される。   In the present embodiment, the high-pressure turbine 3, the intermediate-pressure turbine 6, and the low-pressure turbine 9 are driven using steam generated in the boiler 1 as a working fluid, and the rotational power obtained by the high-pressure turbine 3, the intermediate-pressure turbine 6, and the low-pressure turbine 9. Is converted into electrical energy by the generator 13. The steam that has driven the low-pressure turbine 9 is condensed by the condenser 11 and supplied to the boiler 1 again. Moreover, the boiler exhaust gas generated in the boiler 1 is supplied to the absorption tower 16 and the contained carbon dioxide is absorbed by the absorption liquid. Boiler exhaust gas that has absorbed carbon dioxide is released into the atmosphere as a process gas. On the other hand, the rich absorbing liquid that has absorbed carbon dioxide is sent to the regeneration tower 18, and heat is exchanged with a part of the steam supplied from the intermediate pressure turbine 6 to the low pressure turbine 9 by the reboiler 21 to be separated from carbon dioxide. The absorption liquid separated from the carbon dioxide is returned to the absorption tower 16. The carbon dioxide separated from the absorption liquid is discharged from the regeneration tower 18 and stored in the carbon dioxide liquefaction storage facility.

続いて作用効果を説明する。   Then, an effect is demonstrated.

(1)経年劣化への対策
蒸気タービン設備の低圧タービン9は高圧タービン3等の他のタービンを駆動した蒸気を作動媒体とするため、蒸気に含まれる液滴が他のタービンに比べて多くなる。そのため、低圧タービン9は、他のタービンに比べて経年劣化の進行が早く降下圧力も低下し易い。低圧タービン9の降下圧力が低下すると、それだけ低圧タービン9に供給される蒸気(本実施の形態では中圧タービン6から排出された蒸気)の圧力が下がり、二酸化炭素分離回収装置50に供給する蒸気圧力が低下してしまい、二酸化炭素分離回収装置50の熱源に不足が生じ二酸化炭素の分離回収性能を低下させてしまう。
(1) Countermeasures against aging deterioration The low-pressure turbine 9 of the steam turbine equipment uses steam that has driven other turbines such as the high-pressure turbine 3 as a working medium, so that the amount of droplets contained in the steam is larger than that of other turbines. . For this reason, the low-pressure turbine 9 is more rapidly deteriorated over time than other turbines, and the pressure drop is likely to decrease. When the pressure drop of the low-pressure turbine 9 decreases, the pressure of the steam supplied to the low-pressure turbine 9 (steam discharged from the intermediate-pressure turbine 6 in this embodiment) decreases accordingly, and the steam supplied to the carbon dioxide separation and recovery device 50 The pressure decreases, the heat source of the carbon dioxide separation and recovery device 50 becomes insufficient, and the carbon dioxide separation and recovery performance is reduced.

それに対し、本実施の形態によれば、低圧タービン9の降下圧力が低下した場合でも、外輪溝34及び内輪溝36内で植え込み部32をスライドさせ、周方向に隣接する静翼31の間の間隙を狭めて低圧タービン9の初段静翼ダイヤフラムの流路面積を狭めることによって、初段ダイヤフラムでの圧力降下を増大させ、低圧タービン9の降下圧力を回復させることができる。したがって、二酸化炭素分離回収装置50に所要圧力の蒸気を永続的に供給し、二酸化炭素分離回収装置50の熱源の不足の発生、ひいては二酸化炭素の分離回収性能の低下を抑制することができる。   On the other hand, according to the present embodiment, even when the pressure drop of the low-pressure turbine 9 is reduced, the implantation portion 32 is slid in the outer ring groove 34 and the inner ring groove 36, and between the stationary blades 31 adjacent in the circumferential direction. By narrowing the gap and reducing the flow area of the first stage stationary blade diaphragm of the low pressure turbine 9, the pressure drop in the first stage diaphragm can be increased and the lowered pressure of the low pressure turbine 9 can be recovered. Therefore, it is possible to permanently supply steam at a required pressure to the carbon dioxide separation / recovery device 50 to suppress the occurrence of a shortage of the heat source of the carbon dioxide separation / recovery device 50 and, consequently, the deterioration of the carbon dioxide separation / recovery performance.

(2)作業負担の抑制
静翼31、ダイヤフラム外輪33及びダイヤフラム内輪35を交換する必要がなく、静翼31を移動させてスペーサ37を交換すれば静翼31の迎角を変更することができるため、作業の負担を比較的抑えられることもメリットである。
(2) Suppression of work load There is no need to replace the stationary blade 31, the diaphragm outer ring 33 and the diaphragm inner ring 35, and the angle of attack of the stationary blade 31 can be changed by moving the stationary blade 31 and replacing the spacer 37. Therefore, it is also an advantage that the work load can be relatively suppressed.

(3)高剛性
植え込み部32はダイヤフラムの前後端面間に延びる外輪溝34及び内輪溝36に係合していて、静翼31の中心線(静翼31の翼型を通ってタービン径方向に延びる線とする)を中心とした回転方向への動き、及びタービン回転方向への動きが拘束されている。また、植え込み部32と同じく外輪溝34及び内輪溝36に挿入したスペーサ37によって、植え込み部32のタービン軸方向への動作も拘束されている。しかも、植え込み部32は、隣接する植え込み部32やスペーサ37と接触し合って拘束されている。したがって、タービン軸方向、タービン回転方向、及び自己の回転方向の動きが強固に拘束されていて高剛性である。
(3) High rigidity The implanted portion 32 is engaged with the outer ring groove 34 and the inner ring groove 36 extending between the front and rear end faces of the diaphragm, and the center line of the stationary blade 31 (through the blade shape of the stationary blade 31 in the turbine radial direction). The movement in the rotational direction centering on the extending line) and the movement in the turbine rotational direction are constrained. The operation of the planting part 32 in the turbine axial direction is also restrained by the spacers 37 inserted into the outer ring groove 34 and the inner ring groove 36 in the same manner as the planting part 32. In addition, the implanted portion 32 is constrained by coming into contact with the adjacent implanted portion 32 and the spacer 37. Accordingly, the movement in the turbine shaft direction, the turbine rotation direction, and the self rotation direction is firmly restrained and high rigidity is achieved.

(4)簡素
ダイヤフラム外輪及びダイヤフラム内輪に対して植え込み部を軸方向に組み入れる方式のものを基礎にして、外輪溝34及び内輪溝36を弧状に形成し、同溝内における植え込み部32の位置に応じた複数のスペーサ37を用意するだけで構成できるので、大掛かりな装置を追加する必要がなく、構成が簡素であることも大きなメリットである。
(4) Simple On the basis of the method of incorporating the planting portion in the axial direction with respect to the outer ring of the diaphragm and the inner ring of the diaphragm, the outer ring groove 34 and the inner ring groove 36 are formed in an arc shape, and at the position of the implantation portion 32 in the groove. Since it can be configured only by preparing a plurality of corresponding spacers 37, it is not necessary to add a large-scale device, and it is a great merit that the configuration is simple.

(5)低廉
大掛かりな装置を追加する必要がなく構成が簡素であるので、コスト増大を抑えることができる。
(5) Low cost Since it is not necessary to add a large-scale device and the configuration is simple, an increase in cost can be suppressed.

(6)蒸気タービンへの適正
単に静翼の迎角を変更できれば良いだけであれば、例えば圧縮機の入口案内羽根(Inlet Guide Vane)のようにアクチュエータを使って運転中でも静翼の迎角が変更できるような構成とすることも考えられる。対する本実施の形態の場合、静翼31の迎角を変更するのに、低圧タービン9を停止させてスペーサ37を交換する等の作業者による作業を要する。しかし、蒸気タービンにあって静翼の迎角の変更作業が想定される機会は基本的に低圧タービン9が劣化したときであって頻度は極めて低い。したがって、静翼の迎角の変更作業の容易性を重視してアクチュエータで静翼を駆動する構成とするよりは、剛性に優れ構成が簡素で低廉である本実施の形態は蒸気タービンに好適に適用することができる。
(6) Appropriateness to the steam turbine If it is only necessary to change the angle of attack of the stationary blade, the angle of attack of the stationary blade can be increased even during operation using an actuator such as the inlet guide vane of a compressor. A configuration that can be changed is also conceivable. On the other hand, in the case of the present embodiment, in order to change the angle of attack of the stationary blade 31, an operation by an operator such as stopping the low-pressure turbine 9 and replacing the spacer 37 is required. However, the opportunity for changing the angle of attack of the stationary blade in the steam turbine is basically when the low-pressure turbine 9 is deteriorated, and the frequency is extremely low. Therefore, the present embodiment, which is excellent in rigidity and simple and inexpensive, is suitable for a steam turbine, rather than adopting a configuration in which the stator blade is driven by an actuator with emphasis on ease of changing the angle of attack of the stationary blade. Can be applied.

(7)
本実施の形態の場合、静翼31の迎角を変更する(低圧タービン9の降下圧力を回復する)のに静翼31が移動して同一段落の動翼(不図示)に近付く。したがって、初段静翼ダイヤフラム内における静翼31及び動翼間の圧力損失を抑制することができ、この特徴による低圧タービン9の降下圧力の回復効果への貢献も期待できる。
(7)
In the case of the present embodiment, the stationary blade 31 moves to approach the moving blade (not shown) in the same stage in order to change the angle of attack of the stationary blade 31 (recover the pressure drop of the low-pressure turbine 9). Therefore, the pressure loss between the stationary blade 31 and the moving blade in the first stage stationary blade diaphragm can be suppressed, and this feature can also be expected to contribute to the recovery effect of the drop pressure of the low-pressure turbine 9.

(第2の実施の形態)
図4は本発明の第2の実施の形態に係る蒸気タービン設備の低圧タービンの初段静翼ダイヤフラムの構成例を表す概略図である。同図ではダイヤフラム外輪とダイヤフラム内輪とをタービン中心軸を含む面で切断した断面で表してある。
(Second Embodiment)
FIG. 4 is a schematic diagram illustrating a configuration example of a first stage stationary blade diaphragm of a low pressure turbine of a steam turbine facility according to a second embodiment of the present invention. In the figure, the outer ring of the diaphragm and the inner ring of the diaphragm are represented by a cross section cut along a plane including the turbine central axis.

本実施の形態が第1の実施の形態と相違する点は静翼角度変更機構の構成にある。本実施の形態の静翼角度変更機構は、静翼に回転軸を設けて回転軸を中心にして静翼を回転させて静翼の迎角を変更するものであり、ダイヤフラム外輪133、ダイヤフラム内輪135、及びダイヤフラム外輪133及びダイヤフラム内輪135に軸支された回転軸134,136を有する静翼131を備えている。   This embodiment differs from the first embodiment in the configuration of the stationary blade angle changing mechanism. The stationary blade angle changing mechanism of the present embodiment is a mechanism in which a rotating shaft is provided on the stationary blade and the stationary blade is rotated around the rotating shaft to change the angle of attack of the stationary blade, and the diaphragm outer ring 133 and the diaphragm inner ring 135, and a stationary blade 131 having rotating shafts 134 and 136 supported by the diaphragm outer ring 133 and the diaphragm inner ring 135.

回転軸134は、静翼131のタービン径方向外側の端部(根部側)に接続しており、ダイヤフラム外輪133を貫通して他の静翼131の回転軸とともにリンク機構(図示せず)を介して静翼駆動装置(不図示)に接続している。静翼131の先端側の回転軸136はダイヤフラム内輪135に挿入されている。ダイヤフラム外輪133の内周部には凹部122が設けられており、静翼131のプラットフォーム部109は、この凹部122内に収容されていて凹部122内で回転軸134を中心に回転するようになっている。凹部122の形状は特に限定されないが、プラットフォーム部109の回動動作を許容するようにプラットフォーム部9の回動軌跡に干渉しない形状をしている。   The rotary shaft 134 is connected to the end (root side) of the stationary blade 131 on the turbine radial direction outer side, penetrates the diaphragm outer ring 133, and a link mechanism (not shown) together with the rotary shaft of the other stationary blade 131. To a stationary blade driving device (not shown). A rotating shaft 136 on the tip side of the stationary blade 131 is inserted into the diaphragm inner ring 135. A concave portion 122 is provided in the inner peripheral portion of the diaphragm outer ring 133, and the platform portion 109 of the stationary blade 131 is accommodated in the concave portion 122 and rotates around the rotation shaft 134 in the concave portion 122. ing. The shape of the recess 122 is not particularly limited, but has a shape that does not interfere with the turning locus of the platform portion 9 so as to allow the turning motion of the platform portion 109.

上記構成により、静翼駆動装置により駆動されると、静翼131が回転軸134を中心にして回動し、蒸気に対する静翼131の迎え角が変わる。このとき、低圧タービン9の初段の全ての静翼131はリンク機構を介して連結されていて一斉に同じように動作する。   With the above configuration, when driven by the stationary blade driving device, the stationary blade 131 rotates about the rotation shaft 134, and the angle of attack of the stationary blade 131 with respect to steam changes. At this time, all the stationary blades 131 in the first stage of the low-pressure turbine 9 are connected via the link mechanism and operate in the same manner at the same time.

本実施の形態のように回転軸134,136を中心に静翼131を回転させて静翼131の迎え角を変更することができるので、第1の実施の形態で説明した本発明の基本的効果(1)を得ることができる。また、静翼131の迎角の変更については第1の実施の形態よりも更に容易である。   Since the angle of attack of the stationary blade 131 can be changed by rotating the stationary blade 131 around the rotating shafts 134 and 136 as in the present embodiment, the basic of the present invention described in the first embodiment. Effect (1) can be obtained. Further, the angle of attack of the stationary blade 131 can be changed more easily than in the first embodiment.

(その他)
上記実施の形態では、低圧タービン9の初段に静翼角度変更機構を設けた場合を例に挙げて説明したが、初段のみならず、初段を含む複数段落に適用しても良い。また、高圧タービン3、中圧タービン6及び低圧タービン9を有する蒸気タービン設備に本発明を適用した場合を例に挙げて説明したが、例えば中圧タービンを備えずタービン部として高圧タービン及び低圧タービンのみしか備えない蒸気タービン設備にも本発明は適用可能である。また、蒸気発生源としてボイラ1を備えた場合を例に挙げて説明したが、例えばコンバインドサイクルに本発明を適用する場合には、ガスタービンからの排気ガスを熱源とする再熱器が蒸気発生源を構成する。
(Other)
In the above embodiment, the case where the stationary blade angle changing mechanism is provided in the first stage of the low-pressure turbine 9 has been described as an example, but the present invention may be applied not only to the first stage but also to a plurality of paragraphs including the first stage. Further, the case where the present invention is applied to the steam turbine equipment having the high-pressure turbine 3, the intermediate-pressure turbine 6, and the low-pressure turbine 9 has been described as an example. The present invention can also be applied to a steam turbine facility equipped only with the above. In addition, the case where the boiler 1 is provided as a steam generation source has been described as an example. However, for example, when the present invention is applied to a combined cycle, a reheater that uses exhaust gas from a gas turbine as a heat source generates steam. Configure the source.

1 ボイラ(蒸気発生源)
3 高圧タービン
6 中圧タービン
9 低圧タービン
31 静翼(静翼角度変更機構)
32 植え込み部(静翼角度変更機構)
33 ダイヤフラム外輪(静翼角度変更機構)
34 外輪溝(静翼角度変更機構)
35 ダイヤフラム内輪(静翼角度変更機構)
36 内輪溝(静翼角度変更機構)
37 スペーサ(静翼角度変更機構)
50 二酸化炭素分離回収装置
131 静翼(静翼角度変更機構)
133 ダイヤフラム外輪(静翼角度変更機構)
134 回転軸(静翼角度変更機構)
135 ダイヤフラム内輪(静翼角度変更機構)
θ,θ’ 迎角
1 Boiler (steam generation source)
3 High-pressure turbine 6 Medium-pressure turbine 9 Low-pressure turbine 31 Stator blade (stator blade angle changing mechanism)
32 Implanting part (Static blade angle changing mechanism)
33 Diaphragm outer ring (Static blade angle changing mechanism)
34 Outer ring groove (Static blade angle changing mechanism)
35 Diaphragm inner ring (Static blade angle changing mechanism)
36 Inner ring groove (stator blade angle changing mechanism)
37 Spacer (Static blade angle changing mechanism)
50 CO2 separation and recovery unit 131 Stator blade (Static blade angle changing mechanism)
133 Diaphragm outer ring (Static blade angle changing mechanism)
134 Rotating shaft (Static blade angle changing mechanism)
135 Diaphragm inner ring (Static blade angle changing mechanism)
θ, θ 'angle of attack

Claims (5)

蒸気発生源と、
この蒸気発生源で発生した蒸気で駆動する高圧タービンと、
この高圧タービンを駆動した蒸気で駆動する低圧タービンと、
前記蒸気発生源から排出される排気ガスの二酸化炭素を前記低圧タービンに供給される蒸気の一部を熱源として分離回収する二酸化炭素分離回収装置とを備え、
前記低圧タービンが、初段を含む少なくとも1つの段落の静翼の迎角を変更する静翼角度変更機構を備えていることを特徴とする蒸気タービン設備。
A steam source;
A high-pressure turbine driven by steam generated from the steam source;
A low-pressure turbine driven by the steam that has driven this high-pressure turbine;
A carbon dioxide separation and recovery device for separating and recovering a part of the steam supplied to the low-pressure turbine from the carbon dioxide of the exhaust gas discharged from the steam generation source,
The steam turbine equipment, wherein the low-pressure turbine includes a stationary blade angle changing mechanism that changes an angle of attack of a stationary blade of at least one stage including a first stage.
請求項1の蒸気タービン設備において、
前記静翼角度変更機構は、
蒸気流通方向の上流側から下流側に向かって弧状に形成された外輪溝を有するダイヤフラム外輪と、
前記外輪溝に対応して弧状に形成された内輪溝を有するダイヤフラム内輪と、
前記外輪溝及び前記内輪溝に挿入されて前記外輪溝及び前記内輪溝の延在方向にスライド可能に支持された植え込み部を有する静翼と、
前記外輪溝及び前記内輪溝の空きスペースに挿入されて前記植え込み部を固定するスペーサと
を備えていることを特徴とする蒸気タービン設備。
The steam turbine installation of claim 1,
The stationary blade angle changing mechanism is
A diaphragm outer ring having an outer ring groove formed in an arc shape from the upstream side to the downstream side in the steam flow direction;
A diaphragm inner ring having an inner ring groove formed in an arc shape corresponding to the outer ring groove;
A stationary blade having a planting portion inserted in the outer ring groove and the inner ring groove and supported so as to be slidable in the extending direction of the outer ring groove and the inner ring groove;
A steam turbine facility comprising: a spacer that is inserted into an empty space of the outer ring groove and the inner ring groove and fixes the implantation portion.
請求項1の蒸気タービン設備において、
前記静翼角度変更機構は、
ダイヤフラム外輪と、
ダイヤフラム内輪と、
前記ダイヤフラム外輪及び前記ダイヤフラム内輪に軸支された回転軸を有する静翼と
を備えていることを特徴とする蒸気タービン設備。
The steam turbine installation of claim 1,
The stationary blade angle changing mechanism is
A diaphragm outer ring,
The inner ring of the diaphragm,
A steam turbine facility comprising: a diaphragm outer ring and a stationary blade having a rotation shaft supported by the diaphragm inner ring.
請求項2又は3の蒸気タービン設備において、前記可静翼角度変更機構は、前記低圧タービンの初段静翼に設置されていることを特徴とする蒸気タービン設備。   4. The steam turbine equipment according to claim 2, wherein the stator blade angle changing mechanism is installed in a first stage stator blade of the low-pressure turbine. 5. 請求項4の蒸気タービン設備において、
前記高圧タービンを駆動した蒸気で駆動する中圧タービンを更に備え、
前記低圧タービンは、前記中圧タービンを駆動した蒸気で駆動する
ことを特徴とする蒸気タービン設備。
The steam turbine equipment of claim 4,
Further comprising an intermediate pressure turbine driven by steam driving the high pressure turbine;
The low-pressure turbine is driven by steam that has driven the intermediate-pressure turbine.
JP2012207134A 2012-09-20 2012-09-20 Steam turbine equipment Expired - Fee Related JP5968176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207134A JP5968176B2 (en) 2012-09-20 2012-09-20 Steam turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207134A JP5968176B2 (en) 2012-09-20 2012-09-20 Steam turbine equipment

Publications (2)

Publication Number Publication Date
JP2014062478A true JP2014062478A (en) 2014-04-10
JP5968176B2 JP5968176B2 (en) 2016-08-10

Family

ID=50617921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207134A Expired - Fee Related JP5968176B2 (en) 2012-09-20 2012-09-20 Steam turbine equipment

Country Status (1)

Country Link
JP (1) JP5968176B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117771922A (en) * 2024-02-26 2024-03-29 中国电力工程顾问集团华东电力设计院有限公司 Full flue gas carbon dioxide entrapment system
WO2024100987A1 (en) * 2022-11-11 2024-05-16 三菱重工業株式会社 Heat utilization system and heat utilization method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2513581A1 (en) * 1975-03-06 1976-09-09 Bbc Brown Boveri & Cie Turbine regulating bled steam system - has adjustable stator blades downstream of bleed point for maintaining efficiency
JPS5990705A (en) * 1982-09-30 1984-05-25 ゼネラル・エレクトリツク・カンパニイ Partition plate of steam turbine with detachable nozzle plate
JPS59229002A (en) * 1983-04-14 1984-12-22 ゼネラル・エレクトリツク・カンパニイ Rotary parts
JPH04358704A (en) * 1991-06-05 1992-12-11 Toshiba Corp Turbine
JP2003184504A (en) * 2001-11-22 2003-07-03 Siemens Ag Method of manufacturing steam turbine
JP2011136294A (en) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2513581A1 (en) * 1975-03-06 1976-09-09 Bbc Brown Boveri & Cie Turbine regulating bled steam system - has adjustable stator blades downstream of bleed point for maintaining efficiency
JPS5990705A (en) * 1982-09-30 1984-05-25 ゼネラル・エレクトリツク・カンパニイ Partition plate of steam turbine with detachable nozzle plate
JPS59229002A (en) * 1983-04-14 1984-12-22 ゼネラル・エレクトリツク・カンパニイ Rotary parts
JPH04358704A (en) * 1991-06-05 1992-12-11 Toshiba Corp Turbine
JP2003184504A (en) * 2001-11-22 2003-07-03 Siemens Ag Method of manufacturing steam turbine
JP2011136294A (en) * 2009-12-28 2011-07-14 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100987A1 (en) * 2022-11-11 2024-05-16 三菱重工業株式会社 Heat utilization system and heat utilization method
CN117771922A (en) * 2024-02-26 2024-03-29 中国电力工程顾问集团华东电力设计院有限公司 Full flue gas carbon dioxide entrapment system

Also Published As

Publication number Publication date
JP5968176B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
US8567196B2 (en) Steam turbine power plant and operating method thereof
EP2444598B1 (en) Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
JP4776729B2 (en) Steam turbine plant and method for cooling intermediate pressure turbine thereof
CN102325964A (en) Method and device for cooling steam turbine generating equipment
EP2444599B1 (en) Carbon dioxide recovery method and carbon- dioxide-recovery-type steam power generation system
EP2687703B1 (en) Turbine using CO2 as working fluid
JP2010038101A (en) Steam turbine and steam turbine plant system
JP2008248822A (en) Thermal power plant
KR20140116121A (en) Method and turbine for expanding an organic operating fluid in a rankine cycle
CA2868386A1 (en) Turbine system
JP5968176B2 (en) Steam turbine equipment
JP2006104951A (en) Steam turbine
JP5038532B2 (en) Steam power plant
JP2006207558A (en) Back pressure extraction steam turbine facility and its operating method
WO2016129451A1 (en) Heat exchanger, energy recovery device, and ship
CA2943477C (en) Turbine with centripetal and centrifugal expansion stages and related method
JP5784417B2 (en) Steam turbine
JP4488787B2 (en) Steam turbine plant and method for cooling intermediate pressure turbine thereof
JP5826089B2 (en) Thermal power generation system and steam turbine equipment
US8834114B2 (en) Turbine drum rotor retrofit
JP2014202092A (en) Steam turbine
JP6265536B2 (en) Exhaust heat recovery system, gas turbine plant equipped with the same, and exhaust heat recovery method
JP5554273B2 (en) Combined power plant
JP7059347B2 (en) Waste heat recovery plant and combined cycle plant
CN108204257B (en) High-parameter nuclear turbine without configuration steam-water separation reheater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R150 Certificate of patent or registration of utility model

Ref document number: 5968176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees