JP2014059271A - Direction detection device - Google Patents

Direction detection device Download PDF

Info

Publication number
JP2014059271A
JP2014059271A JP2012205899A JP2012205899A JP2014059271A JP 2014059271 A JP2014059271 A JP 2014059271A JP 2012205899 A JP2012205899 A JP 2012205899A JP 2012205899 A JP2012205899 A JP 2012205899A JP 2014059271 A JP2014059271 A JP 2014059271A
Authority
JP
Japan
Prior art keywords
detection
receiving element
light receiving
time
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012205899A
Other languages
Japanese (ja)
Inventor
Masafumi Okada
全史 岡田
Hidekazu Furukubo
英一 古久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012205899A priority Critical patent/JP2014059271A/en
Publication of JP2014059271A publication Critical patent/JP2014059271A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a direction detection device capable of detecting a movement direction of a detection object at higher accuracy using a pyroelectric light receiving element.SOLUTION: A direction detection device 10 includes: an infrared detecting section 1 having a first pyroelectric light receiving element 11a and a second pyroelectric light receiving element 11b disposed in a row; and a signal processing section 2 that determines the movement direction of a detection object H based on detection signals Sa and Sb input from the infrared detecting section 1. Defining a time when the amplitude of the detection signals Sa and Sb is the maximum as peak time; and a time when a value exceeds a direction determination threshold value which is set between an input start threshold value and a saturation determination threshold value as threshold time, the signal processing section 2 determines the movement direction of the detection object H based on a first time and a second time by defining either one of the peak time and the threshold time as the first time and the second time in the earlier order.

Description

本発明は、被検知体の移動方向を検出する方向検出装置に関するものである。   The present invention relates to a direction detection device that detects a moving direction of a detection object.

従来から、被検知体の移動方向を検出する方向検出装置が種々の分野で利用されている。   2. Description of the Related Art Conventionally, direction detection devices that detect the moving direction of a detection target have been used in various fields.

この種の方向検出装置として、第1の受光部および第2の受光部からの各信号の経時変化に基づいて、移動体の方向を判定するものが知られている(たとえば、特許文献1を参照)。   As this type of direction detection device, a device that determines the direction of a moving body based on changes over time of each signal from a first light receiving unit and a second light receiving unit is known (for example, see Patent Document 1). reference).

特許文献1の方向検出装置は、2つの受光部の出力の組み合わせに基づいて、被検知体たる移動体の進行方向がどちらの方向かを判定する。なお、特許文献1の方向検出装置は、第1の受光部および第2の受光部が移動体の有無を検出するため、移動体が進行する検出領域に向けて投光する投光部を備えている。   The direction detection device of Patent Literature 1 determines which direction the traveling direction of the moving body that is the detection target is based on the combination of the outputs of the two light receiving units. Note that the direction detection device of Patent Document 1 includes a light projecting unit that projects light toward a detection region where the moving body travels in order for the first light receiving unit and the second light receiving unit to detect the presence or absence of the moving body. ing.

特開2011−214925号公報JP 2011-214925 A

ところで、方向検出装置では、受光部に被検知体からの赤外線を検出する焦電型の受光素子を用いて、投光部を省略した構造とすることが考えられる。   By the way, in a direction detection apparatus, it can be considered that a light projecting unit is omitted by using a pyroelectric light receiving element that detects infrared rays from a detection object as a light receiving unit.

しかしながら、焦電型の受光素子を用いた方向検出装置では、たとえば、被検知体の温度が背景に対して高過ぎる場合や被検知体の温度が背景に対して低過ぎる場合、受光素子の出力が飽和し被検知体の移動方向を精度よく検出できない恐れがある。   However, in a direction detection device using a pyroelectric light receiving element, for example, when the temperature of the detected object is too high with respect to the background or when the temperature of the detected object is too low with respect to the background, the output of the light receiving element May become saturated and the moving direction of the detected object may not be detected accurately.

本発明は、上記事由に鑑みてなされたものであり、その目的は、焦電型の受光素子を用いて、より高い精度で被検知体の移動方向を検出することが可能な方向検出装置を提供することにある。   The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a direction detection device capable of detecting the moving direction of a detection object with higher accuracy using a pyroelectric light receiving element. It is to provide.

本発明の方向検出装置は、焦電型の第1の受光素子と焦電型の第2の受光素子とを並んで配置させ、上記第1の受光素子と上記第2の受光素子とが被検知体から受光した赤外線による温度変化に応じた波形の検知信号を各別に出力する赤外線検出部と、該赤外線検出部から所定時間内に入力された上記検知信号に基づいて、上記被検知体の移動方向が上記第1の受光素子側から上記第2の受光素子側へ移動する第1の方向であるか上記第2の受光素子側から上記第1の受光素子側へ移動する第2の方向であるかを判別する信号処理部とを有し上記被検知体の移動方向を検出する方向検出装置であって、上記信号処理部は、上記検知信号の振幅が予め設定した入力開始閾値を超えた上記検知信号を記憶しており、記憶させた上記検知信号の振幅が予め設定した飽和判定閾値以下の場合、上記検知信号の振幅が最大となる時刻をピーク時刻として記憶し、記憶させた上記検知信号の振幅が上記飽和判定閾値を超える場合、上記入力開始閾値と上記飽和判定閾値との間に予め設定した方向判断閾値を超える時刻を閾値時刻として記憶し、上記第1の受光素子および上記第2の受光素子それぞれの上記ピーク時刻または上記第1の受光素子および上記第2の受光素子それぞれの上記閾値時刻のいずれかを、時間の早い順に第1の時刻、第2の時刻とし、上記第1の受光素子が検知する上記検知信号に基づいて上記第1の時刻が特定され上記第2の受光素子が検知する上記検知信号に基づいて上記第2の時刻が特定される場合、上記被検知体の移動方向が上記第1の方向であり、上記第1の受光素子が検知する上記検知信号に基づいて上記第2の時刻が特定され上記第2の受光素子が検知する上記検知信号に基づいて上記第1の時刻が特定される場合、上記被検知体の移動方向が上記第2の方向であると判別することを特徴とする。   In the direction detecting device of the present invention, a pyroelectric first light receiving element and a pyroelectric second light receiving element are arranged side by side, and the first light receiving element and the second light receiving element are covered. An infrared detection unit that outputs a detection signal having a waveform corresponding to a temperature change due to infrared rays received from the detection body, and the detection signal input from the infrared detection unit within a predetermined time, based on the detection signal The moving direction is a first direction moving from the first light receiving element side to the second light receiving element side or a second direction moving from the second light receiving element side to the first light receiving element side. A direction detection device that detects a moving direction of the detected object, wherein the signal processing unit has an amplitude of the detection signal that exceeds a preset input start threshold value. The detection signal is stored, and the amplitude of the stored detection signal If it is less than or equal to a preset saturation determination threshold, the time when the amplitude of the detection signal is maximum is stored as a peak time, and if the stored amplitude of the detection signal exceeds the saturation determination threshold, the input start threshold and the input A time exceeding a preset direction determination threshold value between the saturation determination threshold value is stored as a threshold time, and the peak time of each of the first light receiving element and the second light receiving element or the first light receiving element and the above One of the threshold times of each of the second light receiving elements is set as a first time and a second time in order from the earliest time, and the first time is based on the detection signal detected by the first light receiving element. Is specified and the second time is specified based on the detection signal detected by the second light receiving element, the moving direction of the detected object is the first direction, and the first receiving When the second time is specified based on the detection signal detected by the element and the first time is specified based on the detection signal detected by the second light receiving element, the movement of the detected object The direction is determined to be the second direction.

この方向検出装置において、上記信号処理部は、記憶させた上記検知信号の振幅が上記方向判断閾値を超える前後の時刻における、上記検知信号の振幅が上記方向判断閾値よりも小さい第1振幅値と、上記方向判断閾値よりも大きい第2振幅値との間を線形補完することによりデータ補完した値が、上記方向判断閾値となる時刻を上記閾値時刻とすることが好ましい。   In this direction detection device, the signal processing unit may include a first amplitude value in which the amplitude of the detection signal is smaller than the direction determination threshold at times before and after the amplitude of the stored detection signal exceeds the direction determination threshold. It is preferable that the threshold time is a time at which a value complemented with data by linearly complementing a second amplitude value larger than the direction determination threshold becomes the direction determination threshold.

本発明の方向検出装置は、検知信号の振幅が最大となるピーク時刻または入力開始閾値と飽和判定閾値との間に設定した方向判断閾値を超える閾値時刻に基づいて、被検知体の移動方向を判別することにより、焦電型の受光素子を用いて、より高い精度で被検知体の移動方向を検出することが可能になる、という効果がある。   The direction detection device of the present invention determines the moving direction of the detected object based on a peak time when the amplitude of the detection signal is maximum or a threshold time exceeding a direction determination threshold set between the input start threshold and the saturation determination threshold. By determining, it is possible to detect the moving direction of the detection object with higher accuracy by using the pyroelectric light receiving element.

実施形態1の方向検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the direction detection apparatus of Embodiment 1. 実施形態1の方向検出装置における被検知体の移動方向を検出する信号処理の説明図である。It is explanatory drawing of the signal processing which detects the moving direction of the to-be-detected body in the direction detection apparatus of Embodiment 1. 実施形態1の方向検出装置における被検知体の移動方向を検出する信号処理の別の説明図である。It is another explanatory drawing of the signal processing which detects the moving direction of the to-be-detected body in the direction detection apparatus of Embodiment 1. 実施形態1の方向検出装置の赤外線検出部で検出される検知信号の要部を示す波形図である。It is a wave form diagram which shows the principal part of the detection signal detected by the infrared detection part of the direction detection apparatus of Embodiment 1. 実施形態1の方向検出装置で使用される平均検知信号を示す波形図である。It is a wave form diagram which shows the average detection signal used with the direction detection apparatus of Embodiment 1. 実施形態2の方向検出装置における被検知体の移動方向を検出する信号処理の説明図である。It is explanatory drawing of the signal processing which detects the moving direction of the to-be-detected body in the direction detection apparatus of Embodiment 2.

(実施形態1)
以下、本実施形態の方向検出装置10を図1ないし図3に基づいて説明する。
(Embodiment 1)
Hereinafter, the direction detection apparatus 10 of this embodiment is demonstrated based on FIG. 1 thru | or FIG.

本実施形態の方向検出装置10は、図1に示すように、焦電型の第1の受光素子11aと焦電型の第2の受光素子11bとを並んで配置させた赤外線検出部1を有している。赤外線検出部1は、第1の受光素子11aと第2の受光素子11bとが被検知体Hから受光した赤外線による温度変化に応じた波形の検知信号Sa,Sbを各別に出力する。方向検出装置10は、赤外線検出部1から所定時間内に入力された検知信号Sa,Sbに基づき、被検知体Hの移動方向を判別する信号処理部2を有している。   As shown in FIG. 1, the direction detection device 10 of the present embodiment includes an infrared detection unit 1 in which a pyroelectric first light receiving element 11a and a pyroelectric second light receiving element 11b are arranged side by side. Have. The infrared detection unit 1 outputs detection signals Sa and Sb having waveforms corresponding to temperature changes caused by infrared rays received by the first light receiving element 11a and the second light receiving element 11b from the detection target H, respectively. The direction detection device 10 includes a signal processing unit 2 that determines the moving direction of the detection target H based on the detection signals Sa and Sb input from the infrared detection unit 1 within a predetermined time.

方向検出装置10は、被検知体Hの移動方向が第1の受光素子11a側から第2の受光素子11b側へ移動する第1の方向D12か第2の受光素子11b側から第1の受光素子11a側へ移動する第2の方向D21かを判別し被検知体Hの移動方向を検出する。   The direction detecting device 10 receives the first light reception from the first light receiving element 11b side or the first direction D12 in which the moving direction of the detection object H moves from the first light receiving element 11a side to the second light receiving element 11b side. It is determined whether the second direction D21 moves to the element 11a side, and the moving direction of the detection target H is detected.

信号処理部2は、検知信号Sa,Sbの振幅が予め設定した入力開始閾値ITを超えた検知信号Sa,Sbを記憶する(図2および図3を参照)。信号処理部2は、記憶させた検知信号Sa,Sbの振幅が予め設定した飽和判定閾値ST以下の場合、検知信号Sa,Sbの振幅が最大となる時刻をピーク時刻Ta1,Tb1として記憶する(図2を参照)。また、信号処理部2は、記憶させた検知信号Sa,Sbの振幅が飽和判定閾値STを超える場合、入力開始閾値ITと飽和判定閾値STとの間に予め設定した方向判断閾値DTを超える時刻を閾値時刻Ta2,Tb2として記憶する(図3を参照)。信号処理部2は、第1の受光素子11aおよび第2の受光素子11bそれぞれのピーク時刻Ta1,Tb1のうち、時間の早い順に第1の時刻t1、第2の時刻t2とする。あるいは、信号処理部2は、第1の受光素子11aおよび第2の受光素子11bそれぞれの閾値時刻Ta2,Tb2のうち、時間の早い順に第1の時刻t1、第2の時刻t2とする。   The signal processing unit 2 stores the detection signals Sa and Sb in which the amplitudes of the detection signals Sa and Sb exceed a preset input start threshold IT (see FIGS. 2 and 3). When the amplitudes of the stored detection signals Sa and Sb are equal to or smaller than the preset saturation determination threshold ST, the signal processing unit 2 stores the times when the amplitudes of the detection signals Sa and Sb are maximum as peak times Ta1 and Tb1 ( (See FIG. 2). Further, when the amplitude of the stored detection signals Sa and Sb exceeds the saturation determination threshold ST, the signal processing unit 2 exceeds the direction determination threshold DT set in advance between the input start threshold IT and the saturation determination threshold ST. Are stored as threshold times Ta2 and Tb2 (see FIG. 3). The signal processing unit 2 sets the first time t1 and the second time t2 in order from the earliest time among the peak times Ta1 and Tb1 of the first light receiving element 11a and the second light receiving element 11b. Alternatively, the signal processing unit 2 sets the first time t1 and the second time t2 in order from the earlier of the threshold times Ta2 and Tb2 of the first light receiving element 11a and the second light receiving element 11b.

信号処理部2は、第1の受光素子11aが検知する検知信号Saに基づき第1の時刻t1が特定され第2の受光素子11bが検知する検知信号Sbに基づき第2の時刻t2が特定される場合、被検知体Hの移動方向を第1の方向D12と判別する。信号処理部2は、図示しないが、第1の受光素子11aが検知する検知信号Saに基づき第2の時刻t2が特定され第2の受光素子11bが検知する検知信号Sbに基づき第1の時刻t1が特定される場合、被検知体Hの移動方向を第2の方向D21と判別する。   The signal processing unit 2 specifies the first time t1 based on the detection signal Sa detected by the first light receiving element 11a, and specifies the second time t2 based on the detection signal Sb detected by the second light receiving element 11b. In this case, the moving direction of the detection object H is determined as the first direction D12. Although not shown, the signal processing unit 2 specifies the second time t2 based on the detection signal Sa detected by the first light receiving element 11a and the first time based on the detection signal Sb detected by the second light receiving element 11b. When t1 is specified, the moving direction of the detection target H is determined as the second direction D21.

これにより本実施形態の方向検出装置10は、焦電型の受光素子を用いて、より高い精度で被検知体Hの移動方向を検出することが可能となる。   Thereby, the direction detection device 10 of the present embodiment can detect the moving direction of the detection target H with higher accuracy by using the pyroelectric light receiving element.

より具体的には、本実施形態の方向検出装置10は、第1の受光素子11aおよび第2の受光素子11bに加え、被検知体Hが放射する赤外線を受光する焦電型の第3の受光素子11cと、被検知体Hが放射する赤外線を受光する焦電型の第4の受光素子11dとを備えている。赤外線検出部1は、第1の受光素子11aと、第1の受光素子11aと電気的に接続する第1の信号変換部12aとを備えている。赤外線検出部1は、第2の受光素子11bと、第2の受光素子11bと電気的に接続する第2の信号変換部12bとを備えている。また、赤外線検出部1は、第3の受光素子11cと、第3の受光素子11cと電気的に接続する第3の信号変換部12cとを備えている。さらに、赤外線検出部1は、第4の受光素子11dと、第4の受光素子11dと電気的に接続する第4の信号変換部12dとを備えている。また、信号処理部2は、所定のプログラムを記憶させた記憶部2aと、上記プログラムに基づいて、信号処理する判定部2bとを備えている。   More specifically, the direction detection device 10 of the present embodiment includes a pyroelectric third light receiving the infrared rays emitted from the detection target H in addition to the first light receiving element 11a and the second light receiving element 11b. A light receiving element 11c and a pyroelectric fourth light receiving element 11d that receives infrared rays emitted from the detection target H are provided. The infrared detection unit 1 includes a first light receiving element 11a and a first signal conversion unit 12a that is electrically connected to the first light receiving element 11a. The infrared detection unit 1 includes a second light receiving element 11b and a second signal conversion unit 12b that is electrically connected to the second light receiving element 11b. The infrared detection unit 1 includes a third light receiving element 11c and a third signal conversion unit 12c that is electrically connected to the third light receiving element 11c. Further, the infrared detection unit 1 includes a fourth light receiving element 11d and a fourth signal conversion unit 12d that is electrically connected to the fourth light receiving element 11d. The signal processing unit 2 includes a storage unit 2a that stores a predetermined program, and a determination unit 2b that performs signal processing based on the program.

本実施形態の方向検出装置10は、第1の受光素子11aと第3の受光素子11cとが配置される配置方向を、第1の受光素子11aと第2の受光素子11bとが配置される配置方向と直交するようにしている。同様に、本実施形態の方向検出装置10は、第2の受光素子11bと第4の受光素子11dとが配置される配置方向を、第1の受光素子11aと第2の受光素子11bとが配置される配置方向と直交するようにしている。すなわち、赤外線検出部1は、第1の受光素子11aないし第4の受光素子11dの4つの焦電型の受光素子を2×2の正方格子状に配置している。赤外線検出部1は、第1の受光素子11aないし第4の受光素子11dにおける各検知領域の各中心間の間隔を、たとえば、5〜30cmとすることができる。   In the direction detection device 10 of this embodiment, the first light receiving element 11a and the second light receiving element 11b are arranged in the arrangement direction in which the first light receiving element 11a and the third light receiving element 11c are arranged. It is made to be orthogonal to the arrangement direction. Similarly, in the direction detection device 10 of the present embodiment, the first light receiving element 11a and the second light receiving element 11b are arranged in the arrangement direction in which the second light receiving element 11b and the fourth light receiving element 11d are arranged. It is made to be orthogonal to the arrangement direction to be arranged. That is, the infrared detecting unit 1 has four pyroelectric light receiving elements of the first light receiving element 11a to the fourth light receiving element 11d arranged in a 2 × 2 square lattice shape. The infrared detection unit 1 can set the distance between the centers of the detection regions in the first light receiving element 11a to the fourth light receiving element 11d to, for example, 5 to 30 cm.

以下、本実施形態の方向検出装置10では、第1の受光素子11aと第2の受光素子11bとの配置方向や、第3の受光素子11cと第4の受光素子11dとの配置方向を左右方向と称して説明することがある。また、本実施形態の方向検出装置10では、第1の受光素子11aと第3の受光素子11cとの配置方向や、第2の受光素子11bと第4の受光素子11dとの配置方向を上下方向と称して説明することがある。なお、本実施形態の方向検出装置10では、第1の受光素子11a側から第2の受光素子11b側へ向かう方向を第1の方向D12と規定している。また、本実施形態の方向検出装置10では、第2の受光素子11b側から第1の受光素子11a側へ向かう方向を第2の方向D21と規定している。同様に、本実施形態の方向検出装置10では、第1の受光素子11a側から第3の受光素子11c側へ向かう方向を第3の方向D13と規定している。また、本実施形態の方向検出装置10では、第3の受光素子11c側から第1の受光素子11a側へ向かう方向を第4の方向D31と規定している。   Hereinafter, in the direction detection device 10 of the present embodiment, the arrangement direction of the first light receiving element 11a and the second light receiving element 11b and the arrangement direction of the third light receiving element 11c and the fourth light receiving element 11d are changed to the left and right. Sometimes referred to as a direction. In the direction detection device 10 of the present embodiment, the arrangement direction of the first light receiving element 11a and the third light receiving element 11c and the arrangement direction of the second light receiving element 11b and the fourth light receiving element 11d are moved up and down. Sometimes referred to as a direction. In the direction detection device 10 of the present embodiment, the direction from the first light receiving element 11a side to the second light receiving element 11b side is defined as a first direction D12. In the direction detection device 10 of the present embodiment, the direction from the second light receiving element 11b side to the first light receiving element 11a side is defined as a second direction D21. Similarly, in the direction detection device 10 of the present embodiment, the direction from the first light receiving element 11a side to the third light receiving element 11c side is defined as a third direction D13. In the direction detection device 10 of the present embodiment, the direction from the third light receiving element 11c side to the first light receiving element 11a side is defined as a fourth direction D31.

本実施形態の方向検出装置10では、人の手を被検知体Hとして、赤外線検出部1の第1の受光素子11aないし第4の受光素子11dが、被検知体Hから放射される赤外線を受光する。第1の受光素子11aないし第4の受光素子11dのそれぞれは、焦電効果によって赤外線を検知し、受光した赤外線による温度変化に応じた電流を出力するように構成している。なお、方向検出装置10は、人の手を被検知体Hとして検知するものだけに限らず、赤外線を放出するものであれば被検知体Hとして検知することができる。   In the direction detection device 10 of the present embodiment, the first light receiving element 11a to the fourth light receiving element 11d of the infrared detecting unit 1 emit infrared rays emitted from the detected object H with a human hand as the detected object H. Receive light. Each of the first light receiving element 11a to the fourth light receiving element 11d is configured to detect an infrared ray by a pyroelectric effect and output a current corresponding to a temperature change caused by the received infrared ray. In addition, the direction detection apparatus 10 can detect not only what detects a human hand as the to-be-detected body H but also the to-be-detected body H as long as it emits infrared rays.

第1の受光素子11aないし第4の受光素子11dは、図示していないが、たとえば、MEMS(Micro Electro Mechanical Systems)技術を利用して形成させた赤外線センサを用いることができる。赤外線センサは、ダイアフラム上に形成した下部電極と、下部電極におけるダイアフラムとは反対側に形成した焦電膜と、焦電膜における下部電極とは反対側に形成した上部電極とを備える構成とすることができる。赤外線センサは、たとえば、焦電膜の焦電効果により上部電極と下部電極との間に生じた電圧を、MOSトランジスタのゲート電圧として、MOSトランジスタのドレインとソースと間に流れる電流を制御して出力できるように構成すればよい。赤外線センサは、焦電膜の焦電材料として、たとえば、鉛系の酸化物強誘電体の一種であるチタン酸ジルコン酸鉛(PZT)やチタン酸ランタン酸鉛(PLT)などを利用することができる。また、赤外線センサは、下部電極の材料として、たとえば、Ptを採用し、上部電極の材料として、NiCrを用いることができる。赤外線センサは、下部電極の材料として、Ptだけに限られず、Au、AlやCuなどを用いてもよい。また、赤外線センサは、上部電極の材料として、NiCrだけに限られず、Niや金黒などを用いてもよい。   Although the first light receiving element 11a to the fourth light receiving element 11d are not shown, for example, an infrared sensor formed by using MEMS (Micro Electro Mechanical Systems) technology can be used. The infrared sensor includes a lower electrode formed on the diaphragm, a pyroelectric film formed on the opposite side of the lower electrode from the diaphragm, and an upper electrode formed on the opposite side of the pyroelectric film from the lower electrode. be able to. For example, the infrared sensor controls the current flowing between the drain and source of the MOS transistor using the voltage generated between the upper electrode and the lower electrode due to the pyroelectric effect of the pyroelectric film as the gate voltage of the MOS transistor. What is necessary is just to comprise so that it can output. Infrared sensors may use, for example, lead zirconate titanate (PZT) or lead lanthanum titanate (PLT), which are one of lead-based oxide ferroelectrics, as the pyroelectric material of the pyroelectric film. it can. The infrared sensor can employ, for example, Pt as the material of the lower electrode, and NiCr as the material of the upper electrode. The infrared sensor is not limited to Pt as a material for the lower electrode, and Au, Al, Cu, or the like may be used. The infrared sensor is not limited to NiCr as a material for the upper electrode, and Ni, gold black, or the like may be used.

赤外線検出部1では、第1の信号変換部12aが第1の受光素子11aから出力される出力電流を電圧信号に変換する。第1の信号変換部12aは、出力電流を変換した電圧信号を増幅し検知信号Saとして信号処理部2へ出力する。また、赤外線検出部1では、第2の信号変換部12bが第2の受光素子11bから出力される出力電流を電圧信号に変換する。第2の信号変換部12bは、出力電流を変換した電圧信号を増幅し検知信号Sbとして信号処理部2へ出力する。同様に、赤外線検出部1では、第3の信号変換部12cが第3の受光素子11cから出力される出力電流を電圧信号に変換する。第3の信号変換部12cは、出力電流を変換した電圧信号を増幅し検知信号Scとして信号処理部2へ出力する。また、赤外線検出部1では、第4の信号変換部12dが第4の受光素子11dから出力される出力電流を電圧信号に変換する。第4の信号変換部12cは、出力電流を変換した電圧信号を増幅し検知信号Sdとして信号処理部2へ出力する。信号処理部2は、記憶部2aに予め記憶させた上記プログラムに基づいて、所定時間内に入力された検知信号Sa〜Sdを信号処理して被検知体Hの移動方向を判別する。なお、信号処理部2は、信号処理部2の内部に設けた記憶部2aの上記プログラムに基づいて信号処理するものだけに限られず、信号処理部2の外部に設けた記憶装置に記憶させたプログラムに基づいて信号処理を行うものでもよい。   In the infrared detector 1, the first signal converter 12 a converts the output current output from the first light receiving element 11 a into a voltage signal. The first signal converter 12a amplifies the voltage signal obtained by converting the output current, and outputs the amplified signal to the signal processor 2 as the detection signal Sa. In the infrared detection unit 1, the second signal conversion unit 12b converts the output current output from the second light receiving element 11b into a voltage signal. The second signal converter 12b amplifies the voltage signal obtained by converting the output current and outputs the amplified signal to the signal processor 2 as the detection signal Sb. Similarly, in the infrared detection unit 1, the third signal converter 12c converts the output current output from the third light receiving element 11c into a voltage signal. The third signal converter 12c amplifies the voltage signal obtained by converting the output current, and outputs the amplified signal to the signal processor 2 as the detection signal Sc. In the infrared detection unit 1, the fourth signal conversion unit 12d converts the output current output from the fourth light receiving element 11d into a voltage signal. The fourth signal converter 12c amplifies the voltage signal obtained by converting the output current and outputs the amplified signal to the signal processor 2 as the detection signal Sd. Based on the program stored in advance in the storage unit 2a, the signal processing unit 2 performs signal processing on the detection signals Sa to Sd input within a predetermined time to determine the moving direction of the detection target H. The signal processing unit 2 is not limited to the one that performs signal processing based on the program of the storage unit 2a provided inside the signal processing unit 2, but is stored in a storage device provided outside the signal processing unit 2. Signal processing may be performed based on a program.

方向検出装置10は、信号処理部2により被検知体Hの移動方向を判別した結果の信号を、図示しないパーソナルコンピュータなどの外部機器へ出力することができる。外部機器では、入力された被検知体Hの移動方向を判別した結果の信号を、たとえば、キーボードの矢印キーで入力操作を行うのと同様に、外部機器への入力操作に利用することが可能となる。   The direction detection device 10 can output a signal obtained as a result of determining the moving direction of the detection target H by the signal processing unit 2 to an external device such as a personal computer (not shown). In the external device, the signal obtained as a result of determining the moving direction of the detected object H can be used for the input operation to the external device, for example, in the same manner as the input operation with the arrow keys of the keyboard. It becomes.

次に、本実施形態の方向検出装置10の信号処理部2が被検知体Hの移動方向を判別する信号処理について説明する。   Next, signal processing in which the signal processing unit 2 of the direction detection device 10 according to the present embodiment determines the moving direction of the detection target H will be described.

まず、本実施形態の方向検出装置10では、第1の受光素子11a、第2の受光素子11b、第3の受光素子11cおよび第4の受光素子11dそれぞれの各検知領域に、被検知体Hが進入した場合、赤外線検出部1から各別に検知信号Sa〜Sdが出力される。本実施形態の方向検出装置10では、第1の受光素子11aの検知領域(図示していない)に被検知体Hが進入した場合、赤外線検出部1から検知信号Saが出力される。方向検出装置10は、第2の受光素子11bの検知領域(図示していない)に被検知体Hが進入した場合、赤外線検出部1から検知信号Sbが出力される。方向検出装置10は、第3の受光素子11cの検知領域(図示していない)に被検知体Hが進入した場合、赤外線検出部1から検知信号Scが出力される。方向検出装置10は、第4の受光素子11dの検知領域(図示していない)に被検知体Hが進入した場合、赤外線検出部1から検知信号Sdが出力される。なお、赤外線検出部1の検知領域とは、第1の受光素子11aないし第4の受光素子11dそれぞれの検知領域を合わせた総検知領域を意味する。   First, in the direction detection device 10 of the present embodiment, the detection target H is provided in each detection region of each of the first light receiving element 11a, the second light receiving element 11b, the third light receiving element 11c, and the fourth light receiving element 11d. , The detection signals Sa to Sd are output from the infrared detection unit 1 individually. In the direction detection device 10 of the present embodiment, the detection signal Sa is output from the infrared detection unit 1 when the detection target H enters the detection region (not shown) of the first light receiving element 11a. The direction detection device 10 outputs a detection signal Sb from the infrared detection unit 1 when the detection target H enters the detection region (not shown) of the second light receiving element 11b. The direction detection device 10 outputs a detection signal Sc from the infrared detection unit 1 when the detection target H enters the detection region (not shown) of the third light receiving element 11c. The direction detection device 10 outputs a detection signal Sd from the infrared detection unit 1 when the detection target H enters the detection region (not shown) of the fourth light receiving element 11d. In addition, the detection area of the infrared detection unit 1 means a total detection area including the detection areas of the first light receiving element 11a to the fourth light receiving element 11d.

方向検出装置10は、たとえば、被検知体Hが赤外線検出部1を左側から右側に横切って移動する場合、図2に示す検知信号Saを出力する。検知信号Saは、被検知体Hが第1の受光素子11aに近づくにつれ、振幅が徐々に大きくなり検知信号Saの振幅が最大となる正のピーク値Pa1を超えて徐々に小さくなる。検知信号Saは、たとえば、被検知体Hが第1の受光素子11aの検知領域を完全に覆った状態で、検知信号Saの振幅が零となる。また、検知信号Saは、被検知体Hが第1の受光素子11aを完全に覆った状態から離れるにつれて、振幅が徐々に小さくなり検知信号Saの振幅が最小となる負のピーク値Pa2を超えて徐々に大きくなる。   The direction detection device 10 outputs, for example, a detection signal Sa shown in FIG. 2 when the detected object H moves across the infrared detection unit 1 from the left side to the right side. As the detection object H approaches the first light receiving element 11a, the detection signal Sa gradually increases in amplitude and exceeds the positive peak value Pa1 at which the amplitude of the detection signal Sa is maximized. In the detection signal Sa, for example, the amplitude of the detection signal Sa becomes zero in a state where the detection target H completely covers the detection region of the first light receiving element 11a. In addition, the detection signal Sa exceeds the negative peak value Pa2 at which the amplitude gradually decreases and the amplitude of the detection signal Sa is minimized as the detection target H moves away from the state where the detection target H completely covers the first light receiving element 11a. Gradually grows.

次に、本実施形態の方向検出装置10は、第1の受光素子11aと左右方向に並んで配置させた第2の受光素子11bが、第1の受光素子11aを通った被検知体Hを検知し、図2に示す検知信号Sbを出力する。検知信号Sbは、被検知体Hが第2の受光素子11bの左側から右側に横切って移動する場合、被検知体Hが第2の受光素子11bに近づくにつれ、振幅が徐々に大きくなり検知信号Sbの振幅が最大となる正のピーク値Pb1を超えて徐々に小さくなる。検知信号Sbは、たとえば、被検知体Hが第2の受光素子11bを完全に覆った状態で、検出信号Sbの振幅が零となる。また、検知信号Sbは、被検知体Hが第2の受光素子11bを覆った状態から離れるにつれて、振幅が徐々に小さくなり検知信号Sbの振幅が最小となる負のピーク値Pb2を超えて徐々に大きくなる。   Next, in the direction detection device 10 of the present embodiment, the second light receiving element 11b arranged side by side in the left-right direction with the first light receiving element 11a moves the detected object H that has passed through the first light receiving element 11a. It detects and outputs the detection signal Sb shown in FIG. When the detection target H moves from the left side to the right side of the second light receiving element 11b, the detection signal Sb has an amplitude that gradually increases as the detection target H approaches the second light reception element 11b. The positive peak value Pb1 at which the amplitude of Sb becomes maximum is gradually decreased. In the detection signal Sb, for example, the amplitude of the detection signal Sb becomes zero in a state where the detection target H completely covers the second light receiving element 11b. Further, the detection signal Sb gradually exceeds the negative peak value Pb2 at which the amplitude gradually decreases and the amplitude of the detection signal Sb is minimized as the detection target H moves away from the state of covering the second light receiving element 11b. Become bigger.

すなわち、方向検出装置10では、被検知体Hが赤外線検出部1を左側から右側へ一定の速度で移動する場合、第1の受光素子11aと第2の受光素子11bとが配置された間隔に比例する時間差をおいて略同一波形の検知信号Sa,Sbが出力される。また、方向検出装置10は、被検知体Hが赤外線検出部1を左側から右側へ移動する場合、第1の受光素子11aと第3の受光素子11cとは、ほぼ同時刻に略同一波形の検知信号Sa,Scを出力する。同様に、本実施形態の方向検出装置10では、被検知体Hが赤外線検出部1を左側から右側へ移動する場合、第2の受光素子11bと第4の受光素子11dとは、ほぼ同時刻に略同一波形の検知信号Sb,Sdを出力する。   That is, in the direction detection device 10, when the detection target H moves the infrared detection unit 1 from the left side to the right side at a constant speed, the distance between the first light receiving element 11 a and the second light receiving element 11 b is set. Detection signals Sa and Sb having substantially the same waveform are output with a proportional time difference. Further, when the detection object H moves the infrared detection unit 1 from the left side to the right side, the direction detection device 10 causes the first light receiving element 11a and the third light receiving element 11c to have substantially the same waveform at substantially the same time. Detection signals Sa and Sc are output. Similarly, in the direction detection device 10 of the present embodiment, when the detection object H moves the infrared detection unit 1 from the left side to the right side, the second light receiving element 11b and the fourth light receiving element 11d are substantially at the same time. Output detection signals Sb and Sd having substantially the same waveform.

ところで、本実施形態の方向検出装置10では、第1の受光素子11a、第2の受光素子11b、第3の受光素子11cおよび第4の受光素子11dは、焦電型の受光素子を用いている。焦電型の受光素子は、温度変化を検知する特性を有する。   By the way, in the direction detection apparatus 10 of this embodiment, the 1st light receiving element 11a, the 2nd light receiving element 11b, the 3rd light receiving element 11c, and the 4th light receiving element 11d use a pyroelectric light receiving element. Yes. The pyroelectric light-receiving element has a characteristic of detecting a temperature change.

方向検出装置10の赤外線検出部1では、第1の受光素子11aについてみると、被検知体Hが焦電型の第1の受光素子11aを横切った場合、被検知体Hが検知領域を覆うにつれ、たとえば、正のピーク値Pa1を有する波形の第1のピークSPa1を含んだ検知信号Saを出力する。また、焦電型の第1の受光素子11aは、被検知体Hが検知領域から離れることで、正のピーク値P1を有する第1のピークSPa1とは逆の極性のピーク値Pa2を有する波形の第2のピークSPa2を含んだ検知信号Saを出力する(図2を参照)。   In the infrared detection unit 1 of the direction detection device 10, regarding the first light receiving element 11 a, when the detected object H crosses the pyroelectric first light receiving element 11 a, the detected object H covers the detection region. Accordingly, for example, the detection signal Sa including the first peak SPa1 having a waveform having the positive peak value Pa1 is output. Further, the pyroelectric first light receiving element 11a has a waveform having a peak value Pa2 having a polarity opposite to that of the first peak SPa1 having a positive peak value P1 when the detection target H is separated from the detection region. The detection signal Sa including the second peak SPa2 is output (see FIG. 2).

本実施形態の方向検出装置10では、第1の受光素子11aは、背景に対して被検知体Hの温度が高ければ、赤外線検出部1が図2に示すS字形状の波形の検知信号Saを出力する。図2に示す検知信号Saでは、正のピーク値Pa1を有する第1のピークSPa1の波形は、背景に対して温度の高い被検知体Hが第1の受光素子11aの検知領域に侵入したことを示している。また、図2に示す検知信号Saでは、負のピーク値Pa2を有する第2のピークSPa2の波形は、被検知体Hが第1の受光素子11aの検知領域から離れることに伴い焦電型の受光素子において不可避的に生ずるアンダーシュートの成分が含まれている。   In the direction detection device 10 of the present embodiment, the first light receiving element 11a is detected by the infrared detection unit 1 having the S-shaped waveform shown in FIG. Is output. In the detection signal Sa shown in FIG. 2, the waveform of the first peak SPa1 having the positive peak value Pa1 indicates that the detection object H having a higher temperature than the background has entered the detection region of the first light receiving element 11a. Is shown. Further, in the detection signal Sa shown in FIG. 2, the waveform of the second peak SPa2 having the negative peak value Pa2 is a pyroelectric type as the detected object H moves away from the detection region of the first light receiving element 11a. An undershoot component inevitably generated in the light receiving element is included.

なお、方向検出装置10では、被検知体Hが背景に対して温度が低い冷体の場合、被検知体Hが背景に対して温度が高い温体の場合における検知信号Saの波形と正負が逆転した形状となる。背景に対して温度の低い冷体となる被検知体Hとしては、たとえば、冷やした手や手を洗った直後の水が付着している手などが挙げられる。   In the direction detection device 10, when the detected object H is a cold body whose temperature is lower than the background, the waveform and positive / negative of the detection signal Sa when the detected object H is a warm body whose temperature is higher than the background. The shape is reversed. Examples of the detection target H that is a cold body having a low temperature with respect to the background include a cold hand and a hand to which water immediately after washing the hand is attached.

信号処理部2は、時刻を計時する計時部(図示していない)を備えている。計時部は、赤外線検出部1から出力される検知信号Sa〜Sdと対応させて、時刻を計時している。信号処理部2は、記憶部2aに予め記憶させた上記プログラムを用いて、検知信号Saの振幅が入力開始閾値ITを超えて、最大となる時刻をピーク時刻Ta1として特定する。信号処理部2は、記憶部2aに予め記憶させた上記プログラムを用いて、検知信号Sbの振幅が入力開始閾値ITを超えて、最大となる時刻をピーク時刻Tb1として特定する。信号処理部2は、記憶部2aに予め記憶させた上記プログラムを用いて、検知信号Scの振幅が入力開始閾値ITを超えて、最大となる時刻をピーク時刻Tc1として特定する。信号処理部2は、記憶部2aに予め記憶させた上記プログラムを用いて、検知信号Sdの振幅が入力開始閾値ITを超えて、最大となる時刻をピーク時刻Td1として特定する。信号処理部2は、ピーク時刻Ta1、ピーク時刻Tb1、ピーク時刻Tc1およびピーク時刻Td1を記憶部2aする。   The signal processing unit 2 includes a time measuring unit (not shown) that measures time. The timer unit measures the time in association with the detection signals Sa to Sd output from the infrared detector 1. The signal processing unit 2 specifies, as the peak time Ta1, the time when the amplitude of the detection signal Sa exceeds the input start threshold IT and becomes the maximum by using the program stored in advance in the storage unit 2a. The signal processing unit 2 specifies, as the peak time Tb1, the time when the amplitude of the detection signal Sb exceeds the input start threshold IT and becomes the maximum, using the program stored in advance in the storage unit 2a. The signal processing unit 2 specifies, as the peak time Tc1, the time when the amplitude of the detection signal Sc exceeds the input start threshold IT and becomes the maximum, using the program stored in advance in the storage unit 2a. The signal processing unit 2 specifies, as the peak time Td1, the time when the amplitude of the detection signal Sd exceeds the input start threshold value IT and becomes the maximum, using the program stored in the storage unit 2a in advance. The signal processing unit 2 stores the peak time Ta1, the peak time Tb1, the peak time Tc1, and the peak time Td1 in the storage unit 2a.

本実施形態の方向検出装置10では、判別部2bは、たとえば、第1の受光素子11aと第2の受光素子11bとにおいて、被検知体Hが左右方向に移動する場合、特定したピーク時刻Ta1、Tb1を、時間の早い順に第1の時刻t1、第2の時刻t2とする(図2を参照)。信号処理部2は、第1の受光素子11aが検知する検知信号Saに基づいて第1の時刻t1が特定され第2の受光素子11bが検知する検知信号Sbに基づいて第2の時刻t2が特定される場合、被検知体Hの移動方向が第1の方向D12とする。信号処理部2は、第1の受光素子11aが検知する検知信号Saに基づいて第2の時刻t2が特定され第2の受光素子11bが検知する検知信号Sbに基づいて第1の時刻t1が特定される場合、被検知体Hの移動方向が第2の方向D21であると判別する。   In the direction detection device 10 of the present embodiment, the determination unit 2b determines the specified peak time Ta1 when, for example, the detected object H moves in the left-right direction in the first light receiving element 11a and the second light receiving element 11b. , Tb1 are set to a first time t1 and a second time t2 in order of increasing time (see FIG. 2). The signal processing unit 2 specifies the first time t1 based on the detection signal Sa detected by the first light receiving element 11a and determines the second time t2 based on the detection signal Sb detected by the second light receiving element 11b. When specified, the moving direction of the detection target H is the first direction D12. The signal processing unit 2 determines the second time t2 based on the detection signal Sa detected by the first light receiving element 11a, and determines the first time t1 based on the detection signal Sb detected by the second light receiving element 11b. When specified, it is determined that the moving direction of the detection target H is the second direction D21.

したがって、信号処理部2は、赤外線検出部1からの検知信号Sa,Sbに基づいて、被検知体Hの移動方向が、第1の受光素子11aおよび第2の受光素子11bの配置方向に沿った第1の方向D12か第2の方向D21かを判別することが可能となる。   Therefore, in the signal processing unit 2, the moving direction of the detection target H is along the arrangement direction of the first light receiving element 11 a and the second light receiving element 11 b based on the detection signals Sa and Sb from the infrared detection unit 1. It is possible to determine whether the first direction D12 or the second direction D21.

なお、信号処理部2は、第3の受光素子11cおよび第4の受光素子11dからの検知信号Sc,Sdを用いて、被検知体Hの移動方向を判別してもよい。また、信号処理部2は、検知信号Sa,Sbに加え、検知信号Sc,Sdを用いて、被検知体Hの移動方向を判別してもよい。また、信号処理部2は、第1の受光素子11aおよび第3の受光素子11cからの検知信号Sa,Scを用いて、被検知体Hの移動方向が、第1の受光素子11aと第3の受光素子11cとの配置方向に沿った上下方向のいずれかであるかを判別することができる。同様に、信号処理部2は、第2の受光素子11bおよび第4の受光素子11dからの検知信号Sb,Sdを用いて、被検知体Hの移動方向が、第2の受光素子11bと第4の受光素子11dとの配置方向に沿った上下方向のいずれかであるかを判別することができる。   Note that the signal processing unit 2 may determine the moving direction of the detection target H by using the detection signals Sc and Sd from the third light receiving element 11c and the fourth light receiving element 11d. Further, the signal processing unit 2 may determine the moving direction of the detection target H using the detection signals Sc and Sd in addition to the detection signals Sa and Sb. The signal processing unit 2 uses the detection signals Sa and Sc from the first light receiving element 11a and the third light receiving element 11c so that the moving direction of the detection target H is the first light receiving element 11a and the third light receiving element 11c. It is possible to discriminate between the vertical direction along the arrangement direction of the light receiving element 11c. Similarly, the signal processing unit 2 uses the detection signals Sb and Sd from the second light receiving element 11b and the fourth light receiving element 11d so that the moving direction of the detection target H is the second light receiving element 11b and the second light receiving element 11b. It is possible to determine whether it is in the vertical direction along the arrangement direction with the four light receiving elements 11d.

本実施形態の方向検出装置10は、たとえば、被検知体Hが赤外線検出部1の検知領域内を左から右へ移動した場合、検知信号Sa,Scがほぼ同時刻に発生した後、検知信号Sb,Sdがほぼ同時刻に発生する。本実施形態の方向検出装置10は、たとえば、被検知体Hが赤外線検出部1の検知領域内を右から左へ移動した場合、検知信号Sb,Sdがほぼ同時刻に発生した後、検知信号Sa,Scがほぼ同時刻に発生する。また、本実施形態の方向検出装置10は、たとえば、被検知体Hが赤外線検出部1の検知領域内を上から下へ移動した場合、検知信号Sa,Sbがほぼ同時刻に発生した後、検知信号Sc,Sdがほぼ同時刻に発生する。本実施形態の方向検出装置10は、たとえば、被検知体Hが赤外線検出部1の検知領域内を下から上へ移動した場合、検知信号Sc,Sdがほぼ同時刻に発生した後、検知信号Sa,Sbがほぼ同時刻に発生する。   The direction detection device 10 of the present embodiment, for example, when the detection object H moves from the left to the right in the detection region of the infrared detection unit 1, the detection signals Sa and Sc are generated at substantially the same time, and then the detection signal Sb and Sd occur at approximately the same time. The direction detection device 10 according to the present embodiment detects, for example, the detection signal Sb and Sd generated at approximately the same time when the detection object H moves from the right to the left within the detection region of the infrared detection unit 1. Sa and Sc occur at approximately the same time. Further, the direction detection device 10 of the present embodiment, for example, when the detection object H moves from the top to the bottom within the detection region of the infrared detection unit 1, after the detection signals Sa and Sb are generated at substantially the same time, The detection signals Sc and Sd are generated at approximately the same time. The direction detection device 10 according to the present embodiment detects the detection signal Sc after the detection signals Sc and Sd are generated at substantially the same time, for example, when the detection target H moves from the bottom to the top in the detection region of the infrared detection unit 1. Sa and Sb occur at approximately the same time.

信号処理部2は、たとえば、検知信号Sa〜Sdのうち検知信号Saのピーク時刻Ta1と検知信号Sbのピーク時刻Tb1のいずれが時間的に早いかの順に基づいて、被検知体Hの移動方向が第1の方向D12であるか第2の方向D21であるかを判別する。信号処理部2は、たとえば、検知信号Sa〜Sdのうち検知信号Saのピーク時刻Ta1と検知信号Sdのピーク時刻Td1のいずれが時間的に早いかの順に基づいて、被検知体Hの移動方向が第3の方向D13であるか第4の方向D31であるかを判別する。   For example, the signal processing unit 2 determines the moving direction of the detection target H based on which of the detection signals Sa to Sd the peak time Ta1 of the detection signal Sa and the peak time Tb1 of the detection signal Sb are earlier in time. Is the first direction D12 or the second direction D21. For example, the signal processing unit 2 determines the moving direction of the detection target H based on which of the detection signals Sa to Sd the peak time Ta1 of the detection signal Sa and the peak time Td1 of the detection signal Sd are earlier in time. Is the third direction D13 or the fourth direction D31.

ところで、焦電型の受光素子は、被検知体Hの温度が背景に対して高すぎるなど、被検知体Hと背景との温度差が大きすぎる場合、受光素子の出力が飽和し検知信号Sa〜Sdからピーク時刻Ta1〜Td1を検出することが難しい場合がある。   By the way, in the pyroelectric light-receiving element, when the temperature difference between the detected object H and the background is too large, such as the temperature of the detected object H is too high, the output of the light-receiving element is saturated and the detection signal Sa. It may be difficult to detect peak times Ta1 to Td1 from ~ Sd.

本実施形態の方向検出装置10では、記憶させた検知信号Saの振幅が飽和判定閾値STを超える場合、入力開始閾値ITと飽和判定閾値STとの間に予め設定した方向判断閾値DTを超える時刻を閾値時刻Ta2として記憶させている。また、方向検出装置10では、記憶させた検知信号Sbの振幅が飽和判定閾値STを超える場合、入力開始閾値ITと飽和判定閾値STとの間に予め設定した方向判断閾値DTを検知信号Sbの振幅が超える時刻を閾値時刻Tb2として記憶させている。方向検出装置10は、検知信号Sa,Sbのいずれかが飽和判定閾値STを超える場合、閾値時刻Ta1,Tb1を記憶する。   In the direction detection device 10 of the present embodiment, when the amplitude of the stored detection signal Sa exceeds the saturation determination threshold ST, the time when the direction determination threshold DT preset between the input start threshold IT and the saturation determination threshold ST is exceeded. Is stored as the threshold time Ta2. Further, in the direction detection device 10, when the amplitude of the stored detection signal Sb exceeds the saturation determination threshold ST, the direction determination threshold DT set in advance between the input start threshold IT and the saturation determination threshold ST is set in the detection signal Sb. The time when the amplitude exceeds is stored as the threshold time Tb2. The direction detection device 10 stores threshold times Ta1 and Tb1 when any of the detection signals Sa and Sb exceeds the saturation determination threshold ST.

本実施形態の方向検出装置10では、判別部2bは、たとえば、第1の受光素子11aと第2の受光素子11bとにおいて、被検知体Hが左右方向に移動する場合、特定した閾値時刻Ta2、Tb2を、時間の早い順に第1の時刻t1、第2の時刻t2とする(図3を参照)。   In the direction detection device 10 of the present embodiment, the determination unit 2b determines, for example, the specified threshold time Ta2 when the detected object H moves in the left-right direction in the first light receiving element 11a and the second light receiving element 11b. , Tb2 are set to a first time t1 and a second time t2 in order of increasing time (see FIG. 3).

信号処理部2は、第1の受光素子11aが検知する検知信号Saに基づいて第1の時刻t1が特定され第2の受光素子11bが検知する検知信号Sbに基づいて第2の時刻t2が特定される場合、被検知体Hの移動方向が第1の方向D12であると判別する。信号処理部2は、第1の受光素子11aが検知する検知信号Saに基づいて第2の時刻t2が特定され第2の受光素子11bが検知する検知信号Sbに基づいて第1の時刻t1が特定される場合、被検知体Hの移動方向が第2の方向D21であると判別する。   The signal processing unit 2 specifies the first time t1 based on the detection signal Sa detected by the first light receiving element 11a and determines the second time t2 based on the detection signal Sb detected by the second light receiving element 11b. When specified, it is determined that the moving direction of the detection target H is the first direction D12. The signal processing unit 2 determines the second time t2 based on the detection signal Sa detected by the first light receiving element 11a, and determines the first time t1 based on the detection signal Sb detected by the second light receiving element 11b. When specified, it is determined that the moving direction of the detection target H is the second direction D21.

同様に、方向検出装置10は、記憶させた検知信号Scの振幅が飽和判定閾値STを超える場合、入力開始閾値ITと飽和判定閾値STとの間に予め設定した方向判断閾値DTを超える時刻を閾値時刻Tc2として記憶する。また、方向検出装置10は、記憶させた検知信号Sdの振幅が飽和判定閾値STを超える場合、入力開始閾値ITと飽和判定閾値STとの間に予め設定した方向判断閾値DTを超える時刻を閾値時刻Td2として記憶する。   Similarly, when the amplitude of the stored detection signal Sc exceeds the saturation determination threshold ST, the direction detection device 10 sets a time that exceeds a preset direction determination threshold DT between the input start threshold IT and the saturation determination threshold ST. Stored as threshold time Tc2. Further, when the amplitude of the stored detection signal Sd exceeds the saturation determination threshold ST, the direction detection device 10 sets a time that exceeds a predetermined direction determination threshold DT between the input start threshold IT and the saturation determination threshold ST as a threshold. Store as time Td2.

すなわち、本実施形態の方向検出装置10では、各検知信号Sa〜Sdの第1のピークに対して、飽和判定閾値STを設定し、検知信号Sa〜Sdの振幅が飽和判定閾値STを超えるか否かで焦電型の受光素子の出力の飽和の有無を判別している。信号処理部2は、記憶部2aに予め記憶させた上記プログラムに基づいて、第1のピークにおいて、検知信号Sa〜Sdの振幅が正のピーク値P1にまで増大した後、零点に達する時刻(以下、ゼロクロス時刻ともいう)を経過後にピーク時刻Ta1〜Td1や閾値時刻Ta2〜Td2を特定する。   That is, in the direction detection device 10 of the present embodiment, the saturation determination threshold value ST is set for the first peak of each of the detection signals Sa to Sd, and whether the amplitude of the detection signals Sa to Sd exceeds the saturation determination threshold value ST. The presence or absence of saturation of the output of the pyroelectric light-receiving element is determined based on whether or not. Based on the program stored in advance in the storage unit 2a, the signal processing unit 2 increases the amplitude of the detection signals Sa to Sd to the positive peak value P1 at the first peak and then reaches the zero point ( Hereinafter, the peak times Ta1 to Td1 and the threshold times Ta2 to Td2 are specified after elapse of time).

方向検出装置10は、各検知信号Sa〜Sdがゼロクロス時刻で、記憶している検知信号Sa〜Sdの振幅の最大値の時刻をピーク時刻Ta1〜Td1、あるいは閾値時刻Ta2〜Td2として記憶すればよい。   If the direction detection device 10 stores each of the detection signals Sa to Sd at the zero cross time and stores the time of the maximum amplitude of the stored detection signals Sa to Sd as the peak times Ta1 to Td1 or the threshold times Ta2 to Td2. Good.

ところで、方向検出装置10は、第1の受光素子11aや第2の受光素子11bが製造ばらつきなどに伴うセンサ特性の違いなどにより、零点を検出する振幅の基準値が各検知信号Sa〜Sdごとに異なる場合がある。方向検出装置10は、各検知信号Sa〜Sd同士の振幅の基準値がずれている場合、被検知体Hの移動方向を精度よく検出することが難しくなる。また、方向検出装置10では、零点がずれた検知信号Sa〜Sdでは、入力開始閾値IT、飽和判定閾値STや方向判断閾値DTを設定することが難しくなる。   By the way, in the direction detection device 10, the reference value of the amplitude for detecting the zero point is determined for each of the detection signals Sa to Sd due to differences in sensor characteristics caused by manufacturing variations of the first light receiving element 11a and the second light receiving element 11b. May be different. When the reference value of the amplitude between the detection signals Sa to Sd is deviated, it is difficult for the direction detection device 10 to accurately detect the moving direction of the detection target H. Further, in the direction detection device 10, it is difficult to set the input start threshold IT, the saturation determination threshold ST, and the direction determination threshold DT with the detection signals Sa to Sd whose zeros are shifted.

以下、検知信号Sa〜Sdの値を補正することを説明する。   Hereinafter, correcting the values of the detection signals Sa to Sd will be described.

本実施形態の方向検出装置10では、信号処理部2が所定の時間間隔ごとに各検知信号Sa〜Sdの振幅値をそれぞれ抽出するサンプリングを行う。方向検出装置10は、検知信号Sa〜Sdの振幅値の測定を開始する測定開始時刻Sから所定のオフセット計測期間OMの間、検知信号Saの振幅値をサンプリングしている。方向検出装置10は、抽出した検知信号Saの振幅値が所定の回数N(たとえば、10回)連続して、予め設定したオフセット閾値OTの範囲内において検出した場合、所定の回数Nの振幅値の平均値をオフセット量として設定して補正している。   In the direction detection device 10 of the present embodiment, the signal processing unit 2 performs sampling for extracting the amplitude values of the detection signals Sa to Sd at predetermined time intervals. The direction detection device 10 samples the amplitude value of the detection signal Sa during a predetermined offset measurement period OM from the measurement start time S at which the measurement of the amplitude values of the detection signals Sa to Sd is started. When the direction detection device 10 detects the amplitude value of the extracted detection signal Sa for a predetermined number N (for example, 10 times) continuously within the preset offset threshold value OT, the direction detection device 10 determines the amplitude value for the predetermined number N. The average value is set as the offset amount and corrected.

方向検出装置10は、検知信号Saから設定したオフセット量の値を除去することで、オフセット補正を行うことが可能となる。方向検出装置10は、逐次自動的にオフセット補正を行うよう構成すればよい。本実施形態の方向検出装置10は、オフセット量が補正された検知信号Saを用いて被検知体Hの移動方向の検出を行うことで、より高い精度で被検知体Hの移動方向を検出することが可能となる。   The direction detection device 10 can perform offset correction by removing the set offset amount value from the detection signal Sa. The direction detection device 10 may be configured to automatically and sequentially perform offset correction. The direction detection device 10 of the present embodiment detects the moving direction of the detected object H with higher accuracy by detecting the moving direction of the detected object H using the detection signal Sa with the offset amount corrected. It becomes possible.

なお、本実施形態の方向検出装置10は、ゆっくりと手を動かすなど被検知体Hがゆっくりと移動する場合、検知した検知信号Saにおける振幅の変化量も小さく、検知信号Sa〜Sdのオフセット補正を行うことが難しい場合がある。   Note that the direction detection device 10 of the present embodiment has a small amplitude change amount in the detected detection signal Sa when the detected object H moves slowly, such as slowly moving the hand, and offset correction of the detection signals Sa to Sd. It may be difficult to do.

方向検出装置10は、予め設定したオフセット閾値OTの範囲以下において、被検知体Hから検知信号Saの振幅が緩やかに変化する場合、第1の受光素子11aが赤外線を受光しているにも関わらず、オフセット補正が行われる恐れがある。方向検出装置10は、検知信号Saの振幅が緩やかに変化する場合であっても、誤ってオフセット補正が行われることを抑制するため、所定の時間間隔ごとに各検知信号Sa〜Sdの振幅を抽出するサンプリングの回数を適宜に間引いてもよい。方向検出装置10は、たとえば、サンプリングの抽出回数を5回に1回間引けばよい。   In the direction detection device 10, when the amplitude of the detection signal Sa gradually changes from the detection target H within the range of the preset offset threshold value OT, the first light receiving element 11 a receives infrared rays. In some cases, offset correction may be performed. The direction detection device 10 sets the amplitudes of the detection signals Sa to Sd at predetermined time intervals in order to suppress erroneous offset correction even when the amplitude of the detection signal Sa changes slowly. The number of samplings to be extracted may be thinned out as appropriate. For example, the direction detection device 10 may thin out the number of sampling extractions once in five.

また、方向検出装置10は、たとえば、図4に示すように、検知信号Saの測定開始時刻Sからオフセット計測期間OMの間における検知信号Saの振幅の最大値と最小値との幅を比較してオフセット補正を行ってもよい。方向検出装置10は、所定の回数N(たとえば、10回)内における検知信号Saの振幅の最大値と最小値とが予め設定したオフセット閾値OTの範囲内の場合、所定の回数Nの振幅値の平均値をオフセット量として設定して補正することができる。方向検出装置10は、検知信号Saから設定したオフセット量の値を除去することで、オフセット補正を行うことが可能となる(図4のAで示す破線の矢印を参照)。   Further, for example, as illustrated in FIG. 4, the direction detection device 10 compares the width between the maximum value and the minimum value of the amplitude of the detection signal Sa between the measurement start time S of the detection signal Sa and the offset measurement period OM. Offset correction may be performed. The direction detection device 10 determines the amplitude value of the predetermined number N when the maximum value and the minimum value of the amplitude of the detection signal Sa within the predetermined number N (for example, 10 times) are within the preset offset threshold value OT. Can be corrected by setting the average value as an offset amount. The direction detection device 10 can perform offset correction by removing the value of the offset amount set from the detection signal Sa (see the broken line arrow indicated by A in FIG. 4).

本実施形態の方向検出装置10は、方向検出装置10が被検知体Hの移動方向を検出中において、逐次繰り返して各検知信号Sa〜Sdに対しオフセット補正を行っている。言い換えれば、本実施形態の方向検出装置10は、赤外線検出部1から出力される各検知信号Sa〜Sdの振幅方向のずれが小さくなるようにオフセット補正を行っている。方向検出装置10は、逐次繰返してオフセット補正を行うことにより、方向検出装置10に経時変化が生じても、より高い精度で被検知体の移動方向を検出することができる。   The direction detection device 10 according to the present embodiment performs offset correction on the detection signals Sa to Sd repeatedly and repeatedly while the direction detection device 10 is detecting the moving direction of the detection target H. In other words, the direction detection device 10 of the present embodiment performs offset correction so that deviations in the amplitude direction of the detection signals Sa to Sd output from the infrared detection unit 1 are reduced. The direction detection device 10 can detect the moving direction of the detected object with higher accuracy even if the direction detection device 10 changes with time by performing offset correction repeatedly and sequentially.

ところで、本実施形態の方向検知装置10では、被検知体Hが赤外線検出部1の4つ全ての受光素子11a〜11dの検知領域を停止することなく横切る第1の動作と、被検知体Hが検知領域に進入して検知領域に停止した後、検知領域から離れる第2の動作とを検出することもできる。第1の動作は、たとえば、赤外線検出部1上を水平方向に横切る被検知体Hの移動方向の動作と見做すことができる。方向検知装置10は、被検知体Hが赤外線検出部1の検知領域を停止することなく横切る被検知体Hの移動によって、外部機器の操作内容における選択動作などに利用することができる。また、第2の動作は、たとえば、第1の受光素子11aから第4の受光素子11dが並んで配置された赤外線検出部1の水平面に対して垂直方向に近づいたり遠ざかったりする被検知体Hの移動方向の動作と見做すことができる。方向検知装置10は、被検知体Hが赤外線検出部1に対し垂直方向に近づき一旦停止した後に遠ざかる被検知体Hの移動によって、外部機器の操作内容における入力動作などに利用することができる。   By the way, in the direction detection apparatus 10 of this embodiment, the to-be-detected body H and 1st operation | movement which the to-be-detected body H crosses without stopping the detection area | region of all the four light receiving elements 11a-11d of the infrared rays detection part 1 After entering the detection area and stopping in the detection area, it is also possible to detect the second movement away from the detection area. The first operation can be regarded as, for example, an operation in the moving direction of the detection target H that crosses the infrared detection unit 1 in the horizontal direction. The direction detection device 10 can be used for a selection operation in the operation content of an external device by the movement of the detection target H that the detection target H crosses without stopping the detection region of the infrared detection unit 1. Further, the second operation is performed by, for example, the detection target H that approaches or moves away from the horizontal plane of the infrared detection unit 1 in which the first light receiving element 11a to the fourth light receiving element 11d are arranged side by side. This can be considered as movement in the direction of movement. The direction detection device 10 can be used for an input operation or the like in the operation content of the external device by the movement of the detection target H that is moved away from the detection target H after approaching the infrared detection unit 1 in the vertical direction and once stopped.

本実施形態の方向検知装置10では、信号処理部2が被検知体Hの第1の動作で生ずる被検知体Hの移動方向を判別するに先立って、信号処理部2が被検知体Hの第2の動作で生ずる被検知体Hの移動方向を判別することができる。   In the direction detection device 10 of the present embodiment, the signal processing unit 2 detects the moving direction of the detected object H that occurs in the first operation of the detected object H before the signal processing unit 2 detects the moving direction of the detected object H. The moving direction of the detection target H generated by the second operation can be determined.

以下、本実施形態の方向検出装置10における第2の動作について、より詳細に説明する。   Hereinafter, the second operation in the direction detection device 10 of the present embodiment will be described in more detail.

信号処理部2は、所定時間内に入力された4つの検知信号Sa〜Sdの平均をとった平均検知信号ASにおける波形に基づいて、被検知体Hの移動方向を検出する信号処理を行う。   The signal processing unit 2 performs signal processing for detecting the moving direction of the detection target H based on the waveform of the average detection signal AS obtained by averaging the four detection signals Sa to Sd input within a predetermined time.

まず、本実施形態の方向検出装置10は、信号処理部2が赤外線検出部1から出力される各検知信号Sa〜Sdの平均をとった平均検知信号ASを生成する(図5を参照)。信号処理部2は、平均検知信号ASの波形が4つの検知信号Sa〜Sdの発生時刻を時間軸上において略一致させた状態で、各検知信号Sa〜Sdの振幅の平均値をとって平均検知信号ASを生成している。   First, in the direction detection device 10 of the present embodiment, the signal processing unit 2 generates an average detection signal AS that is an average of the detection signals Sa to Sd output from the infrared detection unit 1 (see FIG. 5). The signal processing unit 2 takes the average value of the amplitudes of the detection signals Sa to Sd in the state where the waveform of the average detection signal AS substantially matches the generation time of the four detection signals Sa to Sd on the time axis. A detection signal AS is generated.

平均検知信号ASは、被検知体Hが赤外線検出部1の検知領域に進入した場合、平均検知信号ASの振幅が正のピーク値P1を有する波形の第1のピークSP1が形成された後、負のピーク値P2を有する波形の第2のピークSP2が形成される。平均検知信号ASは、第1のピークSP1と第2のピークSP2の波形を備えた略S字形状となっている。   When the detected object H enters the detection region of the infrared detection unit 1, the average detection signal AS is formed after the first peak SP1 having a waveform in which the amplitude of the average detection signal AS has a positive peak value P1 is formed. A second peak SP2 having a waveform having a negative peak value P2 is formed. The average detection signal AS has a substantially S shape with waveforms of the first peak SP1 and the second peak SP2.

なお、本実施形態の方向検出装置10では、第1のピークSP1において、平均検知信号ASの振幅が入力開始閾値ITを超えて、再び入力開始閾値ITに戻ってくるまでの時間を平均検知信号ASにおける第1のピーク幅Xと規定している。また、本実施形態の方向検出装置10では、平均検知信号ASの第1のピークSP1のピーク値P1と第2のピークSP2のピーク値P2と比率を波形比Yと規定している。   In the direction detection device 10 of the present embodiment, the average detection signal is the time until the amplitude of the average detection signal AS exceeds the input start threshold IT and returns to the input start threshold IT again at the first peak SP1. This is defined as the first peak width X in AS. In the direction detection device 10 of the present embodiment, the ratio of the peak value P1 of the first peak SP1 to the peak value P2 of the second peak SP2 of the average detection signal AS is defined as the waveform ratio Y.

本実施形態の方向検出装置10では、被検知体Hの移動方向における第1の動作と第2の動作とを、平均検知信号ASにおける第1のピーク幅Xの値と波形比Yの値との相関関係から次の関係式により判別することが可能となる。   In the direction detection device 10 of the present embodiment, the first operation and the second operation in the moving direction of the detection target H are performed by using the value of the first peak width X and the value of the waveform ratio Y in the average detection signal AS. It is possible to discriminate by the following relational expression from the correlation.

Figure 2014059271
すなわち、式(1)は、波形比Yの値と第1のピーク幅Xの値とが反比例の関係となっている。
Figure 2014059271
That is, in the equation (1), the value of the waveform ratio Y and the value of the first peak width X are in an inversely proportional relationship.

本実施形態の方向検出装置10では、波形比Yの値よりもa/X+bの値が小さい領域に第1の動作となる値が収まる。また、本実施形態の方向検出装置10では、波形比Yの値がa/X+bの値以上の領域に第2の動作となる値が収まる。すなわち、本実施形態の方向検出装置10では、信号処理部2は、波形比Yの値と第1のピーク幅Xの値との相関関係から第1の動作と第2の動作とを判別することができる。   In the direction detection device 10 according to the present embodiment, the value for the first operation is within a region where the value of a / X + b is smaller than the value of the waveform ratio Y. Further, in the direction detection device 10 of the present embodiment, the value for the second operation falls within the region where the value of the waveform ratio Y is greater than or equal to the value of a / X + b. That is, in the direction detection device 10 of the present embodiment, the signal processing unit 2 determines the first operation and the second operation from the correlation between the value of the waveform ratio Y and the value of the first peak width X. be able to.

なお、本実施形態の方向検出装置10は、平均検知信号ASに基づいて、赤外線検出部1の検知領域を停止することなく被検知体Hが横切る第1の動作と、被検知体Hが赤外線検出部1の検知領域に進入して検知領域に停止した後、検知領域から離れる第2の動作とを判別する。方向検出装置10は、第1の動作であると判定した後に、各検知信号Sa〜Sdに基づいて被検知体Hの移動方向を判別している。   In addition, the direction detection apparatus 10 of this embodiment is based on the average detection signal AS, the 1st operation | movement which the to-be-detected body H crosses without stopping the detection area | region of the infrared detection part 1, and the to-be-detected body H is infrared rays. After entering the detection area of the detection unit 1 and stopping in the detection area, the second operation of moving away from the detection area is discriminated. The direction detection device 10 determines the moving direction of the detection target H based on the detection signals Sa to Sd after determining the first operation.

被検知体Hが第1の動作を行った場合の平均検知信号ASと、被検知体Hが第2の動作を行った場合の平均検知信号ASとは、図示していないが、非検知体Hの移動に伴う時間的な差があるため、第1のピークSP1の波形と第2のピークSP2の波形の形状が異なる。被検知体Hが第1の動作を行った場合に生成される平均検知信号ASは、被検知体Hが第2の動作を行った場合に生成される平均検知信号ASと比較して、第1のピーク幅Xの時間間隔が短い傾向にある。また、被検知体Hが第1の動作を行った場合に生成される平均検知信号ASは、被検知体Hが第2の動作を行った場合に生成される平均検知信号ASと比較して、正のピーク値P1と負のピーク値P2との波形比Yが小さい傾向にある。   The average detection signal AS when the detection target H performs the first operation and the average detection signal AS when the detection target H performs the second operation are not shown, but are not detected. Since there is a temporal difference associated with the movement of H, the waveform of the first peak SP1 and the waveform of the second peak SP2 are different. The average detection signal AS generated when the detection target H performs the first operation is compared with the average detection signal AS generated when the detection target H performs the second operation. The time interval of the peak width X of 1 tends to be short. The average detection signal AS generated when the detection target H performs the first operation is compared with the average detection signal AS generated when the detection target H performs the second operation. The waveform ratio Y between the positive peak value P1 and the negative peak value P2 tends to be small.

本実施形態の方向検出装置10は、より具体的には、焦電型の第1の受光素子11aと焦電型の第2の受光素子11bと焦電型の第3の受光素子11cと焦電型の第4の受光素子11dとを正方格子状に配置させた赤外線検出部1を有している。赤外線検出部1は、第1の受光素子11a、第2の受光素子11b、第3の受光素子11cおよび第4の受光素子11dが被検知体Hから受光した赤外線による温度変化に応じた波形の検知信号Sa〜Sdを各別に出力する。方向検出装置10は、赤外線検出部1から入力された検知信号Sa〜Sdに基づき、被検知体Hの移動方向が、上記正方格子の各辺に沿った上下方向または左右方向であることを判別し、被検知体Hの移動方向を検出する信号処理部2を有している。   More specifically, the direction detection device 10 of the present embodiment includes a pyroelectric first light receiving element 11a, a pyroelectric second light receiving element 11b, a pyroelectric third light receiving element 11c, and a pyroelectric type light receiving element 11c. It has the infrared detection part 1 which has arrange | positioned the electric type 4th light receiving element 11d in the square-lattice form. The infrared detection unit 1 has a waveform corresponding to a temperature change due to infrared rays received from the detection target H by the first light receiving element 11a, the second light receiving element 11b, the third light receiving element 11c, and the fourth light receiving element 11d. The detection signals Sa to Sd are output separately. The direction detection device 10 determines based on the detection signals Sa to Sd input from the infrared detection unit 1 that the moving direction of the detection target H is the vertical direction or the horizontal direction along each side of the square lattice. The signal processing unit 2 detects the moving direction of the detection target H.

信号処理部2は、被検知体Hの移動方向が、上記正方格子のいずれかの辺に沿った方向であることを判別するのに先立って、被検知体Hの動きが、第1の動作であるか判別する。信号処理部2は、被検知体Hの移動方向が、上記正方格子のいずれかの辺に沿った方向であることを判別するのに先立って、被検知体Hの動きが、第2の動作であるかを判別する。   Prior to determining that the moving direction of the detection target H is a direction along any side of the square lattice, the signal processing unit 2 determines that the movement of the detection target H is the first operation. Is determined. Prior to determining that the moving direction of the detection target H is a direction along any side of the square lattice, the signal processing unit 2 determines that the movement of the detection target H is the second operation. Is determined.

また、信号処理部2は、第1の動作あるいは第2の動作を判別するため、各検知信号Sa〜Sdの平均をとった平均検知信号ASを生成する。平均検知信号ASは、被検知体Hが赤外線検出部1の検知領域に進入した後に一旦停止する場合、第1のピーク値P1を有する第1のピークSP1と、第1のピークSP1に連続し第1のピークSP1と正負の極性が反対で第2のピーク値P2を有する第2のピークSP2とを含む波形をしている。平均検知信号ASは、平均検知信号ASの振幅が予め設定した入力開始閾値ITを超えて、再び入力開始閾値ITに戻ってくるまでの第1のピークSP1の時間間隔である第1のピーク幅Xの値と、第1のピーク値P1と第2のピーク値P2との比率である波形比Yの値とで式(1)の反比例の関係にある。   In addition, the signal processing unit 2 generates an average detection signal AS that is an average of the detection signals Sa to Sd in order to determine the first operation or the second operation. The average detection signal AS is continuous to the first peak SP1 having the first peak value P1 and the first peak SP1 when the detected object H temporarily stops after entering the detection region of the infrared detection unit 1. The waveform includes a first peak SP1 and a second peak SP2 having opposite polarity and having a second peak value P2. The average detection signal AS is a first peak width that is a time interval of the first peak SP1 until the amplitude of the average detection signal AS exceeds the preset input start threshold IT and returns to the input start threshold IT again. The value of X and the value of the waveform ratio Y, which is the ratio of the first peak value P1 and the second peak value P2, are in an inversely proportional relationship of equation (1).

信号処理部2は、平均検知信号ASが式(1)で表される反比例曲線よりも小さい領域にある場合、被検知体Hの動きが、赤外線検出部1の検知領域を停止することなく横切る第1の動作であると判別する。信号処理部2は、平均検知信号ASが式(1)の反比例曲線以上の領域にある場合、被検知体Hの動きが、赤外線検出部1の検知領域に進入して検知領域に一旦停止する第2の動作であると判別する。   When the average detection signal AS is in a region smaller than the inverse proportional curve represented by the expression (1), the signal processing unit 2 crosses the movement of the detection target H without stopping the detection region of the infrared detection unit 1. It is determined that the operation is the first operation. When the average detection signal AS is in a region that is equal to or greater than the inverse proportional curve of the expression (1), the signal processing unit 2 enters the detection region of the infrared detection unit 1 and temporarily stops in the detection region. It is determined that the operation is the second operation.

これにより、本実施形態の方向検出装置10では、たとえば、赤外線検出部1と水平方向に沿った被検知体Hの移動方向を検出することに加え、赤外線検出部1と垂直方向に沿った被検知体Hの移動方向を検出することが可能となる。   Thereby, in the direction detection device 10 of the present embodiment, for example, in addition to detecting the moving direction of the detection target H along the infrared detection unit 1 and the horizontal direction, the detection target along the infrared detection unit 1 and the vertical direction. It becomes possible to detect the moving direction of the detection body H.

さらに、本実施形態の方向検出装置10は、第2の動作の後、次の処理を行うこともできる。   Furthermore, the direction detection apparatus 10 of the present embodiment can also perform the following process after the second operation.

本実施形態の方向検出装置10は、第2の動作を行う被検知体Hを検出した場合、被検知体Hが赤外検出部1の検知領域に進入して一旦停止した後、被検知体Hが離れることに伴い検知領域から離れる際に、被検知体Hが赤外線検出部1の検知領域に進入する際の信号と正負が逆の極性を備え被検知体Hの進入時と同じ波形形状の信号(以下、逆温度特性信号ともいう)が検出されることがある。方向検出装置10では、逆特性信号を検出することにより、第2の動作後の被検知体Hの移動方向の検出に誤検出を生ずる恐れがある。   When the direction detection apparatus 10 of the present embodiment detects the detection target H that performs the second operation, the detection target H enters the detection region of the infrared detection unit 1 and stops temporarily, and then the detection target H When H moves away from the detection area, the signal when the detected object H enters the detection area of the infrared detection unit 1 has a polarity opposite to that of the signal when the detected object H enters, and the same waveform shape as when the detected object H enters. May be detected (hereinafter also referred to as an inverse temperature characteristic signal). In the direction detection device 10, by detecting the reverse characteristic signal, there is a risk of erroneous detection in the detection of the moving direction of the detection target H after the second operation.

本実施形態の方向検出装置10では、被検知体Hが第2の動作を行う場合、第2の動作に伴って入力される平均検知信号ASに続いて入力される逆温度特性信号を一度だけ無視する。   In the direction detection device 10 of the present embodiment, when the detection target H performs the second operation, the reverse temperature characteristic signal input after the average detection signal AS input along with the second operation is only once. ignore.

また、本実施形態の方向検出装置10は、赤外線検出部1が検出する被検出体Hの温度特性によっては逆温度特性信号が検出されない場合もある。そのため、本実施形態の方向検出装置10では、信号処理部2が第2の動作を判別した後、第1の動作を検出する場合は、検出された平均検知信号ASを無視することなく利用すればよい。   Moreover, the direction detection apparatus 10 of this embodiment may not detect a reverse temperature characteristic signal depending on the temperature characteristic of the detection target H detected by the infrared detection unit 1. Therefore, in the direction detection device 10 of the present embodiment, when the signal processing unit 2 determines the second operation and then detects the first operation, the detected average detection signal AS is used without being ignored. That's fine.

なお、本実施形態の方向検出装置10では、第1の動作と第2の動作とを判別した後、引き続いて、新たに被検知体Hの移動方向を検出する場合がある。   In the direction detection device 10 of the present embodiment, after the first operation and the second operation are discriminated, there is a case where the movement direction of the detection target H is newly detected subsequently.

本実施形態の方向検出装置10では、第2の動作の後、新たに被検知体Hの移動方向を検出する場合、次の処理を行うこともできる。   In the direction detection device 10 of the present embodiment, when the movement direction of the detection target H is newly detected after the second operation, the following processing can be performed.

本実施形態の方向検出装置10では、信号処理部2は、第2の動作の平均検知信号ASを検出した後、逆温度特性信号が入力開始閾値ITを超えてから新たに被検知体Hの移動に伴う平均検知信号ASが入力されると、被検知体Hの移動方向を正常に検出することができる。   In the direction detection device 10 of the present embodiment, the signal processing unit 2 detects the average detection signal AS of the second operation and then newly detects the detected object H after the reverse temperature characteristic signal exceeds the input start threshold IT. When the average detection signal AS accompanying the movement is input, the moving direction of the detection target H can be normally detected.

しかしながら、方向検出装置10の信号処理部2は、第2の動作の平均検知信号ASを検出した後、逆温度特性信号が入力開始閾値ITを超える前に次の新たな被検知体Hの移動にともなう平均検知信号ASが入力されると、被検知体Hの移動方向を正常に検出することができない恐れがある。   However, after detecting the average detection signal AS of the second operation, the signal processing unit 2 of the direction detection device 10 moves the next new detection target H before the reverse temperature characteristic signal exceeds the input start threshold IT. When the average detection signal AS is input, there is a possibility that the moving direction of the detection target H cannot be detected normally.

そのため、本実施形態の方向検出装置10では、信号処理部2は、次に入力される被検知体Hの平均検知信号ASの変化率(傾き)が一定値以上になったら、新たな平均検知信号ASの入力が開始されたと見做し、被検知体Hの移動方向の検出を行う。   Therefore, in the direction detection device 10 of the present embodiment, the signal processing unit 2 performs a new average detection when the rate of change (slope) of the average detection signal AS of the next detection target H that is input next becomes a certain value or more. Assuming that the input of the signal AS is started, the moving direction of the detection target H is detected.

方向検出装置10の信号処理部2は、たとえば、第2の動作の平均検知信号ASを検出した後、入力開始閾値ITを超える逆温度特性信号の波形の傾きが、所定の傾き以上になる場合、被検知体Hの移動方向を新たに検出する。   For example, when the signal processing unit 2 of the direction detection device 10 detects the average detection signal AS of the second operation, the slope of the waveform of the inverse temperature characteristic signal exceeding the input start threshold IT becomes a predetermined slope or more. Then, the moving direction of the detection object H is newly detected.

これにより本実施形態の方向検出装置10は、平均検知信号ASの値の絶対値によらず新たな平均検知信号ASの入力を検知することが可能となる。   Thereby, the direction detection device 10 of the present embodiment can detect the input of a new average detection signal AS regardless of the absolute value of the average detection signal AS.

なお、信号処理部2は、入力開始閾値ITを超える平均検知信号ASの傾きが、所定の傾き未満の場合、平均検知信号ASの次の波形が入力開始閾値ITを超えるまで待機状態とすればよい。   Note that if the slope of the average detection signal AS exceeding the input start threshold IT is less than a predetermined slope, the signal processing unit 2 is in a standby state until the next waveform of the average detection signal AS exceeds the input start threshold IT. Good.

また、本実施形態の方向検出装置10の信号処理部2は、第2の動作の後、平均検知信号ASを検出した後、所定の一定時間の間、新たな平均検知信号ASを無視するものでもよい。これにより方向検出装置10は、逆温度特性信号を検知することにともなう、被検知体Hの移動方向を検出する際の誤検知を抑制することが可能となる。   In addition, the signal processing unit 2 of the direction detection device 10 of the present embodiment ignores the new average detection signal AS for a predetermined time after detecting the average detection signal AS after the second operation. But you can. As a result, the direction detection device 10 can suppress erroneous detection when detecting the moving direction of the detection target H that accompanies detection of the reverse temperature characteristic signal.

(実施形態2)
本実施形態の方向検出装置10は、実施形態1の方向判断閾値DTを超える時刻を閾値時刻Ta2,Tb2とする代わりに、線形補完することによりデータ補完した値を閾値時刻Ta2,Tb2とする点が相違する。なお、実施形態1と同様の構成には、同一の符号を付して説明は省略する。
(Embodiment 2)
The direction detection device 10 of the present embodiment uses the values complemented by linear interpolation as threshold times Ta2 and Tb2 instead of threshold times Ta2 and Tb2 when the time exceeding the direction determination threshold DT of the first embodiment is used. Is different. In addition, the same code | symbol is attached | subjected to the structure similar to Embodiment 1, and description is abbreviate | omitted.

本実施形態の方向検出装置10では、図6に示すように、信号処理部2は、記憶させた検知信号Saの振幅が方向判断閾値DTを超える前の時刻t21における、検知信号Saの振幅が方向判断閾値DTよりも小さい第1振幅値d21を検出する。信号処理部2は、記憶させた検知信号Saの振幅が方向判断閾値DTを超えた後の時刻t22における、検知信号Saの振幅が方向判断閾値DTよりも大きい第2振幅値d22を検出する。信号処理部2は、第1振幅値d21と、第2振幅値d22との間を線形補完することによりデータ補完した値が、方向判断閾値DTとなる時刻を閾値時刻Ta2としている。なお、図6では、説明を分かり易くするため検知信号Saの一部だけを抜粋して図示している。   In the direction detection device 10 according to the present embodiment, as illustrated in FIG. 6, the signal processing unit 2 determines that the amplitude of the detection signal Sa at time t21 before the stored amplitude of the detection signal Sa exceeds the direction determination threshold value DT. A first amplitude value d21 smaller than the direction determination threshold value DT is detected. The signal processing unit 2 detects a second amplitude value d22 in which the amplitude of the detection signal Sa is larger than the direction determination threshold value DT at time t22 after the stored amplitude of the detection signal Sa exceeds the direction determination threshold value DT. The signal processing unit 2 sets a time at which a value obtained by data complementation by linearly complementing between the first amplitude value d21 and the second amplitude value d22 becomes the direction determination threshold value DT as a threshold time Ta2. In FIG. 6, only a part of the detection signal Sa is extracted and illustrated for easy understanding.

実施形態1の方向検出装置10では、赤外線検出部1が所定の時間間隔ごとに検知信号Saの振幅を抽出する場合、抽出するサンプリングの時間間隔の大きさによって、被検知体Hの移動方向を判断する時刻が他の検知信号Sb〜Sdが検出されている時刻と重なる恐れがある。方向検出装置10は、各検知信号Sa〜Sdにおけるサンプリングの時刻が重なれば、精度よく被検知体Hの移動方向を検出することが難しくなる恐れがある。   In the direction detection device 10 according to the first embodiment, when the infrared detection unit 1 extracts the amplitude of the detection signal Sa at every predetermined time interval, the moving direction of the detection target H is determined depending on the size of the sampling time interval to be extracted. There is a possibility that the time to judge overlaps with the time when the other detection signals Sb to Sd are detected. The direction detection device 10 may have difficulty in accurately detecting the moving direction of the detection target H if the sampling times in the detection signals Sa to Sd overlap.

本実施形態の方向検出装置10は、たとえば、検知信号Sa〜Sdの振幅が方向判断閾値DTを超える前後の時刻における2点間でデータ補完処理を行うことにより、より高い精度で被検知体Hの移動方向を検出することが可能となる。   The direction detection device 10 according to the present embodiment performs, for example, data complement processing between two points before and after the amplitudes of the detection signals Sa to Sd exceed the direction determination threshold value DT, so that the detection target H is detected with higher accuracy. Can be detected.

H 被検知体
IT 入力開始閾値
D12 第1の方向
D21 第2の方向
DT 方向判断閾値
d21 第1振幅値
d22 第2振幅値
Sa,Sb 検知信号
ST 飽和判定閾値
Ta1,Tb1 ピーク時刻
Ta2,Tb2 閾値時刻
t1 第1の時刻
t2 第2の時刻
1 赤外線検出部
2 信号処理部
10 方向検出装置
11a 第1の受光素子
11b 第2の受光素子
H detected object IT input start threshold D12 first direction D21 second direction DT direction determination threshold d21 first amplitude value d22 second amplitude value Sa, Sb detection signal ST saturation determination threshold Ta1, Tb1 peak time Ta2, Tb2 threshold Time t1 First time t2 Second time 1 Infrared detector 2 Signal processor 10 Direction detector 11a First light receiving element 11b Second light receiving element

Claims (2)

焦電型の第1の受光素子と焦電型の第2の受光素子とを並んで配置させ、前記第1の受光素子と前記第2の受光素子とが被検知体から受光した赤外線による温度変化に応じた波形の検知信号を各別に出力する赤外線検出部と、該赤外線検出部から所定時間内に入力された前記検知信号に基づいて、前記被検知体の移動方向が前記第1の受光素子側から前記第2の受光素子側へ移動する第1の方向であるか前記第2の受光素子側から前記第1の受光素子側へ移動する第2の方向であるかを判別する信号処理部とを有し前記被検知体の移動方向を検出する方向検出装置であって、
前記信号処理部は、前記検知信号の振幅が予め設定した入力開始閾値を超えた前記検知信号を記憶しており、記憶させた前記検知信号の振幅が予め設定した飽和判定閾値以下の場合、前記検知信号の振幅が最大となる時刻をピーク時刻として記憶し、
記憶させた前記検知信号の振幅が前記飽和判定閾値を超える場合、前記入力開始閾値と前記飽和判定閾値との間に予め設定した方向判断閾値を超える時刻を閾値時刻として記憶し、
前記第1の受光素子および前記第2の受光素子それぞれの前記ピーク時刻または前記第1の受光素子および前記第2の受光素子それぞれの前記閾値時刻のいずれかを、時間の早い順に第1の時刻、第2の時刻とし、
前記第1の受光素子が検知する前記検知信号に基づいて前記第1の時刻が特定され前記第2の受光素子が検知する前記検知信号に基づいて前記第2の時刻が特定される場合、前記被検知体の移動方向が前記第1の方向であり、
前記第1の受光素子が検知する前記検知信号に基づいて前記第2の時刻が特定され前記第2の受光素子が検知する前記検知信号に基づいて前記第1の時刻が特定される場合、前記被検知体の移動方向が前記第2の方向であると判別することを特徴とする方向検出装置。
A pyroelectric-type first light-receiving element and a pyroelectric-type second light-receiving element are arranged side by side, and the temperature by infrared rays received by the first light-receiving element and the second light-receiving element from the detection object An infrared detection unit that outputs a detection signal having a waveform corresponding to a change, and a moving direction of the detected object is determined based on the detection signal input from the infrared detection unit within a predetermined time. Signal processing for determining whether the first direction moves from the element side to the second light receiving element side or the second direction moves from the second light receiving element side to the first light receiving element side A direction detecting device for detecting a moving direction of the detected object,
The signal processing unit stores the detection signal in which the amplitude of the detection signal exceeds a preset input start threshold, and when the amplitude of the stored detection signal is equal to or less than a preset saturation determination threshold, The time when the amplitude of the detection signal is maximum is stored as the peak time,
When the amplitude of the stored detection signal exceeds the saturation determination threshold, a time exceeding a preset direction determination threshold between the input start threshold and the saturation determination threshold is stored as a threshold time.
Either the peak time of each of the first light receiving element and the second light receiving element or the threshold time of each of the first light receiving element and the second light receiving element is set to the first time in order of time. , The second time,
When the first time is specified based on the detection signal detected by the first light receiving element and the second time is specified based on the detection signal detected by the second light receiving element, The moving direction of the detected object is the first direction,
When the second time is specified based on the detection signal detected by the first light receiving element and the first time is specified based on the detection signal detected by the second light receiving element, A direction detection device that determines that the moving direction of the detection target is the second direction.
前記信号処理部は、記憶させた前記検知信号の振幅が前記方向判断閾値を超える前後の時刻における、前記検知信号の振幅が前記方向判断閾値よりも小さい第1振幅値と、前記方向判断閾値よりも大きい第2振幅値との間を線形補完することによりデータ補完した値が、前記方向判断閾値となる時刻を前記閾値時刻とすることを特徴とする請求項1に記載の方向検出装置。   The signal processing unit includes a first amplitude value in which the amplitude of the detection signal is smaller than the direction determination threshold at times before and after the stored amplitude of the detection signal exceeds the direction determination threshold, and the direction determination threshold. The direction detection device according to claim 1, wherein a time at which a value obtained by performing data interpolation by linearly interpolating with a larger second amplitude value becomes the direction determination threshold is set as the threshold time.
JP2012205899A 2012-09-19 2012-09-19 Direction detection device Pending JP2014059271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012205899A JP2014059271A (en) 2012-09-19 2012-09-19 Direction detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205899A JP2014059271A (en) 2012-09-19 2012-09-19 Direction detection device

Publications (1)

Publication Number Publication Date
JP2014059271A true JP2014059271A (en) 2014-04-03

Family

ID=50615851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205899A Pending JP2014059271A (en) 2012-09-19 2012-09-19 Direction detection device

Country Status (1)

Country Link
JP (1) JP2014059271A (en)

Similar Documents

Publication Publication Date Title
KR101210473B1 (en) Capacitive Fingerprint Sensor
JP2019532432A5 (en)
EP2680563A3 (en) Image forming apparatus and control method therefor
WO2016069216A3 (en) Methods and apparatus for error detection in a magnetic field sensor
US9726544B2 (en) Method and system for passive tracking of moving objects
RU2017140024A (en) METHOD AND DEVICE FOR GEST RECOGNITION
JP5634404B2 (en) Ultrasonic detector
JP2010056692A5 (en)
US10331140B2 (en) Moving body
JP2014207645A5 (en)
WO2010083007A3 (en) Direction detection sensor
US8547170B1 (en) Multimode integration circuit for sensor readout
JP2018143338A5 (en)
JP2011013115A5 (en)
WO2019033845A1 (en) Active interaction method and system of robot
EP2789988A3 (en) Position detection apparatus
EP2423144A3 (en) Yarn travelling information acquiring device and yarn winding machine
PH12021551120A1 (en) Volume measurement apparatus, system, method, and program
WO2016138444A3 (en) Monitoring of pacing capture using acceleration
JP2015068748A (en) Dynamic elevation measuring apparatus, dynamic elevation measuring method, and dynamic elevation measuring program
JP2020042662A5 (en)
JP6029521B2 (en) Photoacoustic wave measuring apparatus, method, program, and recording medium
JP2014059271A (en) Direction detection device
JP2019500143A5 (en)
WO2018192393A1 (en) Calibration method and device for proximity sensor