JP2014059258A - Multi yoke magnetizer - Google Patents

Multi yoke magnetizer Download PDF

Info

Publication number
JP2014059258A
JP2014059258A JP2012205512A JP2012205512A JP2014059258A JP 2014059258 A JP2014059258 A JP 2014059258A JP 2012205512 A JP2012205512 A JP 2012205512A JP 2012205512 A JP2012205512 A JP 2012205512A JP 2014059258 A JP2014059258 A JP 2014059258A
Authority
JP
Japan
Prior art keywords
winding
magnetic pole
coil
magnetization
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012205512A
Other languages
Japanese (ja)
Inventor
Katsuhiro Fukuoka
克弘 福岡
Yoshiro Oikawa
芳朗 及川
Masahiko Kumeta
昌彦 粂田
Shigehiro Iwata
成弘 岩田
Tomohiro Ozaki
智裕 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denshijiki Industry Co Ltd
Original Assignee
Denshijiki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denshijiki Industry Co Ltd filed Critical Denshijiki Industry Co Ltd
Priority to JP2012205512A priority Critical patent/JP2014059258A/en
Publication of JP2014059258A publication Critical patent/JP2014059258A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetizer capable of forming a rotating magnetic field in a wide range with a high uniformity with a small unevenness in rotating magnetic flux density on the surface of an object to be inspected.SOLUTION: The multi yoke magnetizer includes first-sixth magnetic poles 11-16 each including a yoke wound with winding, which are disposed being separated having a phase difference of 60 degrees from each other. The first magnetic pole 11, the third magnetic pole 13 and the fifth magnetic pole 15 have winding ends connected to each other at a neutral point with a Y connection. The second magnetic pole 12, the fourth magnetic pole 14 and the sixth magnetic pole 16 have winding starts connected to each other at neutral point with a Y connection. The winding start of a coil L11 of the first magnetic pole 11 is connected to the winding end of a coil L14 of the fourth magnetic pole 14. The winding start of a coil L13 of the third magnetic pole 13 is connected to the winding end of a coil L16 of the sixth magnetic pole 16. The winding start of a coil L15 of the fifth magnetic pole 15 is connected to the winding end of a coil L12 of the second magnetic pole 12.

Description

本発明は、磁粉探傷等に用いられる磁化器に関する。   The present invention relates to a magnetizer used for magnetic particle flaw detection and the like.

非破壊検査方法の一例として、磁化装置で被検査体を磁化し、磁化した被検査体に磁粉を散布し、その被検査体に付着した磁粉の分布状態から、その被検査体の傷や割れを検出する磁粉探傷方法が公知である。このような磁粉探傷方法において磁化装置で被検査体を磁化する際には、被検査体に生じている傷や割れの方向と磁界の磁力線方向との角度によって、その傷や割れの検出精度が異なってくる。具体的には、傷や割れに対して磁力線が直交する状態において、傷や割れで生ずる漏洩磁束が最も大きくなるため、傷や割れに付着した磁粉により形成される磁粉模様を最も明瞭に識別することができる。   As an example of a non-destructive inspection method, a test object is magnetized with a magnetizing device, magnetic powder is dispersed on the magnetized test object, and the damage or cracking of the test object is determined from the distribution state of the magnetic powder adhered to the test object. There are known magnetic particle flaw detection methods for detecting. When magnetizing an object to be inspected with a magnetizing apparatus in such a magnetic particle flaw detection method, the accuracy of detection of the scratch or crack is determined by the angle between the direction of the scratch or crack generated in the object to be inspected and the direction of the magnetic field lines of the magnetic field. Come different. Specifically, in the state where the lines of magnetic force are orthogonal to the scratches and cracks, the leakage magnetic flux generated by the scratches and cracks is the largest, so the magnetic powder pattern formed by the magnetic particles attached to the scratches and cracks is most clearly identified. be able to.

しかし被検査体に生じている傷や割れの方向を予測することは、通常困難な場合が多い。そのため、多方向の磁界を発生させる磁化装置を用いて被検査体を磁化することによって、傷や割れの方向にかかわらず傷や割れに磁力線が直交する状態で被検査体を磁化し、被検査体の傷や割れの検出精度を向上させることが従来から行われている。   However, it is usually difficult to predict the direction of scratches and cracks occurring in the object to be inspected. Therefore, by magnetizing the object to be inspected using a magnetizing device that generates a multi-directional magnetic field, the object to be inspected is magnetized in a state in which the magnetic lines of force are perpendicular to the scratches and cracks regardless of the direction of the scratches or cracks. It has been conventionally performed to improve the detection accuracy of body scratches and cracks.

多方向の磁界を発生させる磁化装置の一例として、相互に120度の位相差をもって3つの磁化要素が配置された三極ヨーク型磁化器が公知である。さらにこの三極ヨーク型磁化器の3つの磁化要素をそれぞれ2つに分割した構造を採用し、均一性の高い回転磁界を広範囲に形成することを可能にした分割ヨーク型磁化器を出願人らは開発した。この三極ヨーク型磁化器及び分割ヨーク型磁化器は、第1〜第3磁化要素に三相交流電圧を印加することによって、磁界の方向が360度変化する回転磁界を形成することができる(例えば特許文献1、非特許文献1を参照)。   As an example of a magnetizing apparatus that generates a multidirectional magnetic field, a three-pole yoke magnetizer in which three magnetizing elements are arranged with a phase difference of 120 degrees from each other is known. Further, applicants have proposed a split yoke magnetizer that employs a structure in which the three magnetizing elements of this three-pole yoke magnetizer are divided into two parts, and that can form a highly uniform rotating magnetic field over a wide range. Developed. The three-pole yoke-type magnetizer and the split yoke-type magnetizer can form a rotating magnetic field whose magnetic field direction changes by 360 degrees by applying a three-phase AC voltage to the first to third magnetizing elements ( For example, see Patent Document 1 and Non-Patent Document 1).

特公昭61−25312号公報Japanese Examined Patent Publication No. 61-25312

福岡克弘、他5名、「回転磁界型磁粉探傷磁化器におけるヨーク分割の検討」、一般社団法人 日本非破壊検査協会、2012年6月29日、NDI資料30344Katsuhiro Fukuoka and five others, “Examination of yoke separation in rotating magnetic field type magnetic particle flaw detection magnetizer”, Japan Association for Nondestructive Inspection, June 29, 2012, NDI material 30344

出願人らが開発した分割ヨーク型磁化器は、均一性の高い回転磁界を広範囲に形成することを可能にすべく従来の三極ヨーク型磁化器を改良したものである。しかしながら近年、被検査体の傷や割れの検出精度のさらなる向上が望まれている中で、より均一性の高い回転磁界をさらに広範囲に形成可能な磁化器が求められるようになりつつある。   The split yoke type magnetizer developed by the applicants is an improvement over the conventional three-pole yoke type magnetizer in order to form a highly uniform rotating magnetic field over a wide range. However, in recent years, there has been a demand for a magnetizer capable of forming a rotating magnetic field with higher uniformity in a wider range, while further improvement in the accuracy of detection of scratches and cracks on the object to be inspected is desired.

このような状況に鑑み本発明はなされたものであり、その目的は、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成可能な磁化器を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a magnetizer capable of forming a rotating magnetic field with high uniformity with a small deviation of rotating magnetic flux density on the surface of the object to be inspected. is there.

<本発明の第1の態様>
本発明の第1の態様は、相互に60度の位相差をもって順に配置され、継鉄に電線が巻かれてなる第1〜第6磁化要素を備え、前記第1磁化要素、前記第3磁化要素及び前記第5磁化要素は、電線の巻き終わりが中性点に接続されてY結線で接続されており、前記第2磁化要素、前記第4磁化要素及び前記第6磁化要素は、電線の巻き始めが中性点に接続されてY結線で接続されており、前記第1磁化要素の電線の巻き始めと前記第4磁化要素の電線の巻き終わりとが接続され、前記第3磁化要素の電線の巻き始めと前記第6磁化要素の電線の巻き終わりとが接続され、前記第5磁化要素の電線の巻き始めと前記第2磁化要素の電線の巻き終わりとが接続されている、ことを特徴とするマルチヨーク型磁化器である。
<First Aspect of the Present Invention>
A first aspect of the present invention includes first to sixth magnetization elements that are sequentially arranged with a phase difference of 60 degrees from each other, and an electric wire is wound around a yoke, and the first magnetization element and the third magnetization element The element and the fifth magnetizing element are connected by a Y connection with the winding end of the electric wire connected to the neutral point, and the second magnetizing element, the fourth magnetizing element, and the sixth magnetizing element are The winding start is connected to the neutral point and connected by Y connection, the winding start of the wire of the first magnetization element and the winding end of the wire of the fourth magnetization element are connected, and the winding of the third magnetization element The winding start of the electric wire and the winding end of the electric wire of the sixth magnetization element are connected, and the winding start of the electric wire of the fifth magnetization element and the winding end of the electric wire of the second magnetization element are connected. It is a featured multi-yoke type magnetizer.

第1〜第6磁化要素は、時計回り又は反時計回りに、第1磁化要素→第2磁化要素→第3磁化要素→第4磁化要素→第5磁化要素→第6磁化要素の並び順で60度ずつ位相がずれた位置に配置される。そして例えば、第1磁化要素の電線の巻き始めと第4磁化要素の電線の巻き終わりとの接続点を三相交流電源のU相に接続し、第3磁化要素の電線の巻き始めと第6磁化要素の電線の巻き終わりとの接続点を三相交流電源のV相に接続し、第5磁化要素の電線の巻き始めと第2磁化要素の電線の巻き終わりとの接続点を三相交流電源のW相に接続して三相交流電圧を印加する。   The first to sixth magnetization elements are arranged in the order of the first magnetization element → the second magnetization element → the third magnetization element → the fourth magnetization element → the fifth magnetization element → the sixth magnetization element in the clockwise or counterclockwise direction. They are arranged at positions that are out of phase by 60 degrees. Then, for example, the connection point between the start of winding of the first magnetizing element and the end of winding of the fourth magnetizing element is connected to the U phase of the three-phase AC power source, and the start of winding of the third magnetizing element and the sixth The connection point between the winding end of the magnetic element and the winding end of the wire is connected to the V phase of the three-phase AC power source, and the connection point between the winding start of the fifth magnetization element and the winding end of the second magnetization element is connected to the three-phase alternating current. Connect to the W phase of the power supply and apply a three-phase AC voltage.

ここで第1磁化要素に印加される交流電圧(U相)の位相を基準とすると、第3磁化要素には位相が120度ずれた交流電圧(V相)が印加され、第5磁化要素には位相が240度ずれた交流電圧(W相)が印加されることになる。また第2磁化要素、第4磁化要素及び第6磁化要素は、第1磁化要素、第3磁化要素及び第5磁化要素に対して、電線の巻方向が逆になっている。そのため第4磁化要素には、U相の交流電圧から位相が180度ずれた交流電圧が印加されることになる。同様に第6磁化要素には、V相の交流電圧から位相が180度ずれた交流電圧が印加され、第2磁化要素には、W相の交流電圧から位相が180度ずれた交流電圧が印加されることになる。したがって第1磁化要素に印加される交流電圧(U相)の位相を基準にすると、第4磁化要素には位相が180度ずれた交流電圧が印加され、第6磁化要素には位相が300度ずれた交流電圧が印加され、第2磁化要素には位相が60度ずれた交流電圧が印加されることになる。   Here, based on the phase of the AC voltage (U phase) applied to the first magnetization element, an AC voltage (V phase) whose phase is shifted by 120 degrees is applied to the third magnetization element, and the fifth magnetization element is applied to the fifth magnetization element. The AC voltage (W phase) having a phase shift of 240 degrees is applied. The second magnetization element, the fourth magnetization element, and the sixth magnetization element have the winding direction of the wire opposite to the first magnetization element, the third magnetization element, and the fifth magnetization element. Therefore, an AC voltage whose phase is shifted by 180 degrees from the U-phase AC voltage is applied to the fourth magnetization element. Similarly, an AC voltage whose phase is shifted 180 degrees from the V-phase AC voltage is applied to the sixth magnetization element, and an AC voltage whose phase is shifted 180 degrees from the W-phase AC voltage is applied to the second magnetization element. Will be. Therefore, based on the phase of the AC voltage (U phase) applied to the first magnetization element, an AC voltage having a phase shift of 180 degrees is applied to the fourth magnetization element, and the phase is 300 degrees to the sixth magnetization element. A shifted AC voltage is applied, and an AC voltage whose phase is shifted by 60 degrees is applied to the second magnetization element.

つまり本発明の第1の態様におけるマルチヨーク型磁化器は、三相交流電圧を印加することによって、第1磁化要素に印加される交流電圧に対し、位相が60度ずれた交流電圧が第2磁化要素に印加され、位相が120度ずれた交流電圧が第3磁化要素に印加され、位相が180度ずれた交流電圧が第4磁化要素に印加され、位相が240度ずれた交流電圧が第5磁化要素に印加され、位相が300度ずれた交流電圧が第6磁化要素に印加される。   In other words, the multi-yoke magnetizer according to the first aspect of the present invention applies a three-phase AC voltage, so that an AC voltage whose phase is shifted by 60 degrees with respect to the AC voltage applied to the first magnetization element is second. An AC voltage that is applied to the magnetizing element and is 120 degrees out of phase is applied to the third magnetizing element, an AC voltage that is 180 degrees out of phase is applied to the fourth magnetizing element, and an AC voltage that is 240 degrees out of phase is An AC voltage having a phase shift of 300 degrees is applied to the sixth magnetizing element.

すなわち本発明の第1の態様におけるマルチヨーク型磁化器は、三相交流電圧を印加することによって、位相が60度ずつずれた交流電圧が第1〜第6磁化要素に印加されることになる。それによって本発明の第1の態様におけるマルチヨーク型磁化器は、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成することができる。   That is, in the multi-yoke magnetizer according to the first aspect of the present invention, an AC voltage whose phase is shifted by 60 degrees is applied to the first to sixth magnetization elements by applying a three-phase AC voltage. . As a result, the multi-yoke type magnetizer according to the first aspect of the present invention can form a rotating magnetic field with high uniformity with a small deviation in rotating magnetic flux density on the surface of the object to be inspected.

これにより本発明の第1の態様によれば、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成可能な磁化器を提供することができるという作用効果が得られる。   As a result, according to the first aspect of the present invention, there is obtained an effect that it is possible to provide a magnetizer capable of forming a rotating magnetic field with high uniformity with a small deviation of rotating magnetic flux density on the surface of the object to be inspected. It is done.

<本発明の第2の態様>
本発明の第2の態様は、相互に60度の位相差をもって順に配置され、継鉄に電線が巻かれてなる第1〜第6磁化要素を備え、前記第1磁化要素、前記第3磁化要素及び前記第5磁化要素は、電線の巻き終わりが中性点に接続されてY結線で接続されており、前記第1磁化要素の電線の巻き始めと前記第4磁化要素の電線の巻き始めとが接続され、前記第3磁化要素の電線の巻き始めと前記第6磁化要素の電線の巻き始めとが接続され、前記第5磁化要素の電線の巻き始めと前記第2磁化要素の電線の巻き始めとが接続されている、ことを特徴とするマルチヨーク型磁化器である。
<Second Aspect of the Present Invention>
A second aspect of the present invention includes first to sixth magnetization elements, which are sequentially arranged with a phase difference of 60 degrees from each other, and an electric wire is wound around a yoke, and the first magnetization element and the third magnetization element The element and the fifth magnetizing element are connected by a Y connection with the end of winding of the electric wire connected to a neutral point, and the winding start of the electric wire of the first magnetizing element and the electric wire start of the fourth magnetizing element Are connected, and the winding start of the third magnetization element and the winding start of the sixth magnetization element are connected, and the winding start of the fifth magnetization element and the winding of the second magnetization element The multi-yoke type magnetizer is characterized in that a winding start is connected.

第1〜第6磁化要素は、時計回り又は反時計回りに、第1磁化要素→第2磁化要素→第3磁化要素→第4磁化要素→第5磁化要素→第6磁化要素の並び順で60度ずつ位相がずれた位置に配置される。そして例えば、第4磁化要素の電線の巻き終わりを三相交流電源のU相に接続し、第6磁化要素の電線の巻き終わりを三相交流電源のV相に接続し、第2磁化要素の電線の巻き終わりを三相交流電源のW相に接続して三相交流電圧を印加する。   The first to sixth magnetization elements are arranged in the order of the first magnetization element → the second magnetization element → the third magnetization element → the fourth magnetization element → the fifth magnetization element → the sixth magnetization element in the clockwise or counterclockwise direction. They are arranged at positions that are out of phase by 60 degrees. And, for example, the end of winding of the wire of the fourth magnetizing element is connected to the U phase of the three-phase AC power source, the end of winding of the wire of the sixth magnetizing element is connected to the V phase of the three-phase AC power source, and A three-phase AC voltage is applied by connecting the end of winding of the wire to the W-phase of a three-phase AC power source.

それによって本発明の第2の態様におけるマルチヨーク型磁化器は、前述した本発明の第1の態様と同様に、位相が60度ずつずれた交流電圧が第1〜第6磁化要素に印加されることになる。つまり前述した本発明の第1の態様と同様に、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成することができる。   As a result, in the multi-yoke magnetizer according to the second aspect of the present invention, as in the first aspect of the present invention described above, an alternating voltage whose phase is shifted by 60 degrees is applied to the first to sixth magnetization elements. Will be. That is, similarly to the first aspect of the present invention described above, a highly uniform rotating magnetic field with a small deviation of the rotating magnetic flux density on the surface of the object to be inspected can be formed over a wide range.

これにより本発明の第2の態様によれば、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成可能な磁化器を提供することができるという作用効果が得られる。   As a result, according to the second aspect of the present invention, there is obtained an effect that it is possible to provide a magnetizer capable of forming a rotating magnetic field having a high uniformity with a small deviation of the rotating magnetic flux density on the surface of the object to be inspected. It is done.

<本発明の第3の態様>
本発明の第3の態様は、相互に60度の位相差をもって順に配置され、継鉄に電線が巻かれてなる第1〜第6磁化要素を備え、前記第1磁化要素、前記第3磁化要素及び前記第5磁化要素は、Δ結線で接続されており、前記第2磁化要素、前記第4磁化要素及び前記第6磁化要素は、Δ結線で接続されており、前記第1磁化要素及び前記第6磁化要素の電線の巻き始めと前記第3磁化要素及び前記第4磁化要素の電線の巻き終わりとが接続され、前記第2磁化要素及び前記第3磁化要素の電線の巻き始めと前記第5磁化要素及び前記第6磁化要素の電線の巻き終わりとが接続され、前記第4磁化要素及び前記第5磁化要素の電線の巻き始めと前記第1磁化要素及び前記第2磁化要素の電線の巻き終わりとが接続されている、ことを特徴とするマルチヨーク型磁化器である。
<Third Aspect of the Present Invention>
A third aspect of the present invention includes first to sixth magnetization elements, which are sequentially arranged with a phase difference of 60 degrees from each other, and an electric wire is wound around a yoke, and the first magnetization element and the third magnetization element The element and the fifth magnetization element are connected by Δ connection, and the second magnetization element, the fourth magnetization element, and the sixth magnetization element are connected by Δ connection, and the first magnetization element and The winding start of the electric wire of the sixth magnetization element and the winding end of the electric wire of the third magnetization element and the fourth magnetization element are connected, and the winding start of the electric wire of the second magnetization element and the third magnetization element The fifth magnetizing element and the end of winding of the electric wire of the sixth magnetizing element are connected, and the starting of winding of the electric wire of the fourth magnetizing element and the fifth magnetizing element and the electric wire of the first magnetizing element and the second magnetizing element Is connected to the winding end of This is a Lucy-Yoke type magnetizer.

第1〜第6磁化要素は、時計回り又は反時計回りに、第1磁化要素→第2磁化要素→第3磁化要素→第4磁化要素→第5磁化要素→第6磁化要素の並び順で60度ずつ位相がずれた位置に配置される。そして例えば、第1磁化要素及び第6磁化要素の電線の巻き始めと第3磁化要素及び第4磁化要素の電線の巻き終わりとの接続点を三相交流電源のU相に接続し、第2磁化要素及び第3磁化要素の電線の巻き始めと第5磁化要素及び第6磁化要素の電線の巻き終わりとの接続点を三相交流電源のV相に接続し、第4磁化要素及び第5磁化要素の電線の巻き始めと第1磁化要素及び第2磁化要素の電線の巻き終わりとの接続点を三相交流電源のW相に接続して三相交流電圧を印加する。   The first to sixth magnetization elements are arranged in the order of the first magnetization element → the second magnetization element → the third magnetization element → the fourth magnetization element → the fifth magnetization element → the sixth magnetization element in the clockwise or counterclockwise direction. They are arranged at positions that are out of phase by 60 degrees. And, for example, the connection point between the winding start of the first and sixth magnetization elements and the winding end of the third and fourth magnetization elements is connected to the U-phase of the three-phase AC power source, The connection point between the winding start of the magnetic elements and the third magnetic element and the winding ends of the fifth and sixth magnetic elements is connected to the V phase of the three-phase AC power source, and the fourth and fifth magnetic elements A connection point between the winding start of the electric wire of the magnetizing element and the winding end of the electric wire of the first magnetizing element and the second magnetizing element is connected to the W phase of the three-phase AC power source and a three-phase AC voltage is applied.

それによって本発明の第3の態様におけるマルチヨーク型磁化器は、前述した本発明の第1の態様と同様に、位相が60度ずつずれた交流電圧が第1〜第6磁化要素に印加されることになる。つまり前述した本発明の第1の態様と同様に、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成することができる。   As a result, in the multi-yoke magnetizer according to the third aspect of the present invention, as in the first aspect of the present invention described above, an alternating voltage whose phase is shifted by 60 degrees is applied to the first to sixth magnetization elements. Will be. That is, similarly to the first aspect of the present invention described above, a highly uniform rotating magnetic field with a small deviation of the rotating magnetic flux density on the surface of the object to be inspected can be formed over a wide range.

これにより本発明の第3の態様によれば、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成可能な磁化器を提供することができるという作用効果が得られる。   As a result, according to the third aspect of the present invention, there is obtained an effect that it is possible to provide a magnetizer capable of forming a rotating magnetic field having a high uniformity with a small deviation of the rotating magnetic flux density on the surface of the object to be inspected. It is done.

<本発明の第4の態様>
本発明の第4の態様は、相互に60度の位相差をもって順に配置され、継鉄に電線が巻かれてなる第1〜第6磁化要素を備え、前記第1磁化要素の電線の巻き終わりと前記第4磁化要素の電線の巻き終わりとが接続され、前記第3磁化要素の電線の巻き終わりと前記第6磁化要素の電線の巻き終わりとが接続され、前記第5磁化要素の電線の巻き終わりと前記第2磁化要素の電線の巻き終わりとが接続され、前記第1磁化要素の電線の巻き始めと前記第6磁化要素の電線の巻き始めとが接続され、前記第2磁化要素の電線の巻き始めと前記第3磁化要素の電線の巻き始めとが接続され、前記第4磁化要素の電線の巻き始めと前記第5磁化要素の電線の巻き始めとが接続されている、ことを特徴とするマルチヨーク型磁化器である。
<Fourth aspect of the present invention>
4th aspect of this invention is arrange | positioned in order with a 60 degree phase difference mutually, is equipped with the 1st-6th magnetization element by which an electric wire is wound around a yoke, The winding end of the electric wire of the said 1st magnetization element And the winding end of the electric wire of the fourth magnetization element are connected, and the winding end of the electric wire of the third magnetization element and the winding end of the electric wire of the sixth magnetization element are connected, and An end of winding and an end of winding of the electric wire of the second magnetization element are connected, and an initial winding of the electric wire of the first magnetization element and an initial winding of the electric wire of the sixth magnetization element are connected. The winding start of the electric wire and the winding start of the electric wire of the third magnetization element are connected, and the winding start of the electric wire of the fourth magnetization element and the winding start of the electric wire of the fifth magnetization element are connected. It is a featured multi-yoke type magnetizer.

第1〜第6磁化要素は、時計回り又は反時計回りに、第1磁化要素→第2磁化要素→第3磁化要素→第4磁化要素→第5磁化要素→第6磁化要素の並び順で60度ずつ位相がずれた位置に配置される。そして例えば、第1磁化要素の電線の巻き始めと第6磁化要素の電線の巻き始めとの接続点を三相交流電源のU相に接続し、第2磁化要素の電線の巻き始めと第3磁化要素の電線の巻き始めとの接続点を三相交流電源のV相に接続し、第4磁化要素の電線の巻き始めと第5磁化要素の電線の巻き始めとの接続点を三相交流電源のW相に接続して三相交流電圧を印加する。   The first to sixth magnetization elements are arranged in the order of the first magnetization element → the second magnetization element → the third magnetization element → the fourth magnetization element → the fifth magnetization element → the sixth magnetization element in the clockwise or counterclockwise direction. They are arranged at positions that are out of phase by 60 degrees. And, for example, the connection point between the start of winding of the first magnetizing element and the start of winding of the sixth magnetizing element is connected to the U phase of the three-phase AC power source, and the start of winding of the second magnetizing element and the third The connection point between the winding start of the magnetic element and the wire winding of the three-phase AC power source is connected to the V phase of the three-phase AC power supply, and the connection point between the winding start of the fourth magnetization element and the winding start of the fifth magnetization element is the three-phase AC. Connect to the W phase of the power supply and apply a three-phase AC voltage.

それによって本発明の第4の態様におけるマルチヨーク型磁化器は、前述した本発明の第1の態様と同様に、位相が60度ずつずれた交流電圧が第1〜第6磁化要素に印加されることになる。つまり前述した本発明の第1の態様と同様に、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成することができる。   As a result, in the multi-yoke magnetizer according to the fourth aspect of the present invention, as in the first aspect of the present invention described above, an alternating voltage whose phase is shifted by 60 degrees is applied to the first to sixth magnetization elements. Will be. That is, similarly to the first aspect of the present invention described above, a highly uniform rotating magnetic field with a small deviation of the rotating magnetic flux density on the surface of the object to be inspected can be formed over a wide range.

これにより本発明の第4の態様によれば、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成可能な磁化器を提供することができるという作用効果が得られる。   As a result, according to the fourth aspect of the present invention, there is obtained an effect that it is possible to provide a magnetizer capable of forming a highly uniform rotating magnetic field with a small deviation in rotating magnetic flux density on the surface of the object to be inspected. It is done.

<本発明の第5の態様>
本発明の第5の態様は、前述した本発明の第1〜第4の態様のいずれかにおいて、前記第1〜第6磁化要素が同心円上に配置されている、ことを特徴とするマルチヨーク型磁化器である。
このような特徴によれば、回転磁界の各方向に対する磁界の強さをより均一にすることができるので、被検査体表面の回転磁束密度の偏りをさらに小さくすることができる。
<Fifth aspect of the present invention>
A fifth aspect of the present invention is the multi-yoke according to any one of the first to fourth aspects of the present invention described above, wherein the first to sixth magnetization elements are arranged concentrically. Type magnetizer.
According to such a feature, since the strength of the magnetic field in each direction of the rotating magnetic field can be made more uniform, the deviation of the rotating magnetic flux density on the surface of the object to be inspected can be further reduced.

本発明によれば、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成可能な磁化器を提供することができる。   According to the present invention, it is possible to provide a magnetizer capable of forming a rotating magnetic field with high uniformity with a small deviation in rotating magnetic flux density on the surface of an object to be inspected over a wide range.

第1実施例のマルチヨーク型磁化器の平面図。The top view of the multi yoke type magnetizer of the 1st example. 第1実施例のマルチヨーク型磁化器の正面図。The front view of the multi yoke type magnetizer of the 1st example. 第1実施例におけるマルチヨーク型磁化器の内部磁気回路の模式図。The schematic diagram of the internal magnetic circuit of the multi yoke type magnetizer in the 1st example. 第1実施例のマルチヨーク型磁化器の結線図。The connection diagram of the multi yoke type | mold magnetizer of 1st Example. 三相交流電源の出力電圧波形を図示したタイミングチャート。The timing chart which illustrated the output voltage waveform of a three-phase alternating current power supply. マルチヨーク型磁化器の各磁極の電圧波形を図示したタイミングチャート。The timing chart which illustrated the voltage waveform of each magnetic pole of a multi yoke type magnetizer. 被検査体の表面の測定点P1における回転磁束密度のリサージュ波形図。The Lissajous waveform diagram of the rotating magnetic flux density at the measurement point P1 on the surface of the inspection object. 被検査体の表面の測定点P2における回転磁束密度のリサージュ波形図。The Lissajous waveform diagram of the rotating magnetic flux density at the measurement point P2 on the surface of the inspection object. 被検査体の表面の測定点P3における回転磁束密度のリサージュ波形図。The Lissajous waveform diagram of the rotating magnetic flux density at the measurement point P3 on the surface of the object to be inspected. 第2実施例のマルチヨーク型磁化器を図示した結線図。The connection diagram which illustrated the multi-yoke type | mold magnetizer of 2nd Example. 第3実施例のマルチヨーク型磁化器を図示した結線図。The connection diagram which illustrated the multi yoke type | mold magnetizer of 3rd Example. 第4実施例のマルチヨーク型磁化器を図示した結線図。The connection diagram which illustrated the multi yoke type | mold magnetizer of 4th Example.

以下、本発明の実施の形態について図面を参照しながら説明する。
尚、本発明は、以下説明する実施例に特に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変形が可能であることは言うまでもない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In addition, this invention is not specifically limited to the Example demonstrated below, It cannot be overemphasized that a various deformation | transformation is possible within the range of the invention described in the claim.

<マルチヨーク型磁化器の構成の第1実施例>
本発明に係るマルチヨーク型磁化器10の構成の第1実施例について、図1〜図4を参照しながら説明する。
図1は、第1実施例のマルチヨーク型磁化器10の平面図である。図2は、第1実施例のマルチヨーク型磁化器10の正面図である。図3は、第1実施例におけるマルチヨーク型磁化器10の内部磁気回路の模式図である。図4は、第1実施例のマルチヨーク型磁化器10の結線図である。
<First Example of Multi-Yoke Magnetizer Configuration>
A first embodiment of the configuration of the multi-yoke magnetizer 10 according to the present invention will be described with reference to FIGS.
FIG. 1 is a plan view of a multi-yoke magnetizer 10 of the first embodiment. FIG. 2 is a front view of the multi-yoke magnetizer 10 of the first embodiment. FIG. 3 is a schematic diagram of the internal magnetic circuit of the multi-yoke magnetizer 10 in the first embodiment. FIG. 4 is a connection diagram of the multi-yoke magnetizer 10 of the first embodiment.

第1実施例のマルチヨーク型磁化器10は、第1〜第6磁極11〜16、マルチヨーク17及び3つの接続端子T1〜T3を備える。   The multi-yoke type magnetizer 10 of the first embodiment includes first to sixth magnetic poles 11 to 16, a multi-yoke 17, and three connection terminals T1 to T3.

「磁化要素」としての第1〜第6磁極11〜16は、相互に60度の位相差をもって順に配置されている。つまり第1〜第6磁極11〜16は、平面視で時計回り方向に、第1磁極11→第2磁極12→第3磁極13→第4磁極14→第5磁極15→第6磁極16の並び順で60度ずつ位相がずれた位置に配置されている。   The first to sixth magnetic poles 11 to 16 as “magnetization elements” are sequentially arranged with a phase difference of 60 degrees from each other. That is, the first to sixth magnetic poles 11 to 16 are arranged in the clockwise direction in a plan view in the order of the first magnetic pole 11 → the second magnetic pole 12 → the third magnetic pole 13 → the fourth magnetic pole 14 → the fifth magnetic pole 15 → the sixth magnetic pole 16. They are arranged at positions that are out of phase by 60 degrees in the arrangement order.

より具体的には第1〜第6磁極11〜16は、第1磁極11に対して120度の位相差をもって第3磁極13が配置され、第1磁極11及び第3磁極13に対して120度の位相差をもって第5磁極15が配置されている。第2磁極12は、第1磁極11と第3磁極13との間に、第1磁極11及び第3磁極13に対して60度の位相差をもって配置されている。第4磁極14は、第3磁極13と第5磁極15との間に、第3磁極13及び第5磁極15に対して60度の位相差をもって配置されている。第6磁極16は、第1磁極11と第5磁極15との間に、第1磁極11及び第5磁極15に対して60度の位相差をもって配置されている。
尚、第1〜第6磁極11〜16は、上記の並び順で、反時計回り方向に60度ずつ位相がずれた位置に配置してもよい。
More specifically, in the first to sixth magnetic poles 11 to 16, the third magnetic pole 13 is arranged with a phase difference of 120 degrees with respect to the first magnetic pole 11, and 120 to the first magnetic pole 11 and the third magnetic pole 13. The fifth magnetic pole 15 is arranged with a phase difference of degrees. The second magnetic pole 12 is disposed between the first magnetic pole 11 and the third magnetic pole 13 with a phase difference of 60 degrees with respect to the first magnetic pole 11 and the third magnetic pole 13. The fourth magnetic pole 14 is disposed between the third magnetic pole 13 and the fifth magnetic pole 15 with a phase difference of 60 degrees with respect to the third magnetic pole 13 and the fifth magnetic pole 15. The sixth magnetic pole 16 is disposed between the first magnetic pole 11 and the fifth magnetic pole 15 with a phase difference of 60 degrees with respect to the first magnetic pole 11 and the fifth magnetic pole 15.
Note that the first to sixth magnetic poles 11 to 16 may be arranged at positions shifted in phase by 60 degrees in the counterclockwise direction in the above-described arrangement order.

マルチヨーク17は、ケイ素鋼板を積層して形成した継鉄であり、第1〜第6ヨーク171〜176及びバックヨーク177を有している。第1〜第6ヨーク171〜176は、円形の平板形状のバックヨーク177に対して直交するように形成されている。第1ヨーク171には電線が巻かれてコイルL11が構成されており、この第1ヨーク171とコイルL11とで第1磁極11が構成されている。第2ヨーク172には電線が巻かれてコイルL12が構成されており、この第2ヨーク172とコイルL12とで第2磁極12が構成されている。第3ヨーク173には電線が巻かれてコイルL13が構成されており、この第3ヨーク173とコイルL13とで第3磁極13が構成されている。第4ヨーク174には電線が巻かれてコイルL14が構成されており、この第4ヨーク174とコイルL14とで第4磁極14が構成されている。第5ヨーク175には電線が巻かれてコイルL15が構成されており、この第5ヨーク175とコイルL15とで第5磁極15が構成されている。第6ヨーク176には電線が巻かれてコイルL16が構成されており、この第6ヨーク176とコイルL16とで第6磁極16が構成されている。バックヨーク177は、マルチヨーク型磁化器10の基部となる。   The multi-yoke 17 is a yoke formed by laminating silicon steel plates, and has first to sixth yokes 171 to 176 and a back yoke 177. The first to sixth yokes 171 to 176 are formed to be orthogonal to the circular flat plate-shaped back yoke 177. An electric wire is wound around the first yoke 171 to constitute a coil L11, and the first magnetic pole 11 is constituted by the first yoke 171 and the coil L11. An electric wire is wound around the second yoke 172 to constitute a coil L12, and the second magnetic pole 12 is constituted by the second yoke 172 and the coil L12. An electric wire is wound around the third yoke 173 to constitute a coil L13, and the third magnetic pole 13 is constituted by the third yoke 173 and the coil L13. An electric wire is wound around the fourth yoke 174 to constitute a coil L14, and the fourth magnetic pole 14 is constituted by the fourth yoke 174 and the coil L14. An electric wire is wound around the fifth yoke 175 to constitute a coil L15, and the fifth magnetic pole 15 is constituted by the fifth yoke 175 and the coil L15. An electric wire is wound around the sixth yoke 176 to constitute a coil L16. The sixth yoke 176 and the coil L16 constitute the sixth magnetic pole 16. The back yoke 177 is a base portion of the multi-yoke type magnetizer 10.

第1磁極11のコイルL11、第3磁極13のコイルL13及び第5磁極15のコイルL15は、電線の巻き終わりが中性点に接続されてY結線で接続されている。第2磁極12のコイルL12、第4磁極14のコイルL14及び第6磁極16のコイルL16は、電線の巻き始めが中性点に接続されてY結線で接続されている。接続端子T1には、第1磁極11のコイルL11の巻き始めと第4磁極14のコイルL14の巻き終わりとが接続されている。接続端子T2には、第3磁極13のコイルL13の巻き始めと第6磁極16のコイルL16の巻き終わりとが接続されている。接続端子T3には、第5磁極15のコイルL15の巻き始めと第2磁極12のコイルL12の巻き終わりとが接続されている。
尚、第1磁極11のコイルL11、第3磁極13のコイルL13及び第5磁極15のコイルL15で形成されるY結線と、第2磁極12のコイルL12、第4磁極14のコイルL14及び第6磁極16のコイルL16で形成されるY結線は、中性点同士を接続してもよいし、中性点同士を接続しなくてもよい。
The coil L11 of the first magnetic pole 11, the coil L13 of the third magnetic pole 13, and the coil L15 of the fifth magnetic pole 15 are connected by a Y connection with the end of winding of the electric wire connected to the neutral point. The coil L12 of the second magnetic pole 12, the coil L14 of the fourth magnetic pole 14, and the coil L16 of the sixth magnetic pole 16 are connected by a Y connection with the winding start of the wire connected to the neutral point. The connection terminal T1 is connected to the start of winding of the coil L11 of the first magnetic pole 11 and the end of winding of the coil L14 of the fourth magnetic pole 14. The connection terminal T2 is connected to the start of winding of the coil L13 of the third magnetic pole 13 and the end of winding of the coil L16 of the sixth magnetic pole 16. The connection terminal T3 is connected to the start of winding of the coil L15 of the fifth magnetic pole 15 and the end of winding of the coil L12 of the second magnetic pole 12.
The Y connection formed by the coil L11 of the first magnetic pole 11, the coil L13 of the third magnetic pole 13, and the coil L15 of the fifth magnetic pole 15, the coil L12 of the second magnetic pole 12, the coil L14 of the fourth magnetic pole 14, and the The Y connection formed by the coil L16 of the six magnetic poles 16 may connect the neutral points or may not connect the neutral points.

<マルチヨーク型磁化器による回転磁界の形成>
マルチヨーク型磁化器10により形成される被検査体表面におけるX−Y平面の回転磁束密度について、図5〜図9を参照しながら説明する。
<Formation of rotating magnetic field by multi-yoke magnetizer>
The rotational magnetic flux density in the XY plane on the surface of the object to be inspected formed by the multi-yoke magnetizer 10 will be described with reference to FIGS.

図5は、三相交流電源の出力電圧波形を図示したタイミングチャートである。図6は、マルチヨーク型磁化器10のコイルL11〜L16の電圧波形VL1〜VL6を図示したタイミングチャートである。   FIG. 5 is a timing chart illustrating the output voltage waveform of the three-phase AC power supply. FIG. 6 is a timing chart illustrating voltage waveforms VL <b> 1 to VL <b> 6 of the coils L <b> 11 to L <b> 16 of the multi-yoke type magnetizer 10.

マルチヨーク型磁化器10の接続端子T1〜T3に三相交流電圧を印加する。より具体的には、例えば第1磁極11のコイルL11の巻き始めと第4磁極のコイルL14の巻き終わりとが接続されている接続端子T1に三相交流電源のU相を接続する。第3磁極のコイルL13の巻き始めと第6磁極のコイルL16の巻き終わりとが接続されている接続端子T2に三相交流電源のV相を接続する。第5磁極のコイルL15の巻き始めと第2磁極のコイルL12の巻き終わりとが接続されている接続端子T3に三相交流電源のW相を接続する。   A three-phase AC voltage is applied to the connection terminals T1 to T3 of the multi-yoke magnetizer 10. More specifically, for example, the U phase of the three-phase AC power supply is connected to the connection terminal T1 to which the winding start of the coil L11 of the first magnetic pole 11 and the winding end of the coil L14 of the fourth magnetic pole 11 are connected. The V phase of the three-phase AC power supply is connected to the connection terminal T2 to which the winding start of the third magnetic pole coil L13 and the winding end of the sixth magnetic pole coil L16 are connected. The W phase of the three-phase AC power source is connected to the connection terminal T3 to which the winding start of the fifth magnetic pole coil L15 and the winding end of the second magnetic pole coil L12 are connected.

ここで第1磁極11のコイルL11に印加される交流電圧VL1(U相)の位相を基準とすると、第3磁極13のコイルL13には位相が120度ずれた交流電圧VL3が印加され、第5磁極15のコイルL15には位相が240度ずれた交流電圧VL5が印加されることになる。また第2磁極12のコイルL12、第4磁極14のコイルL14及び第6磁極16のコイルL16は、第1磁極11のコイルL11、第3磁極13のコイルL13及び第5磁極15のコイルL15に対して巻方向が逆になっている。そのため第4磁極14のコイルL14には、U相の交流電圧から位相が180度ずれた交流電圧が印加されることになる。同様に第6磁極16のコイルL16には、V相の交流電圧から位相が180度ずれた交流電圧が印加され、第2磁極12のコイルL12には、W相の交流電圧から位相が180度ずれた交流電圧が印加されることになる。   Here, based on the phase of the AC voltage VL1 (U phase) applied to the coil L11 of the first magnetic pole 11, the AC voltage VL3 whose phase is shifted by 120 degrees is applied to the coil L13 of the third magnetic pole 13, The AC voltage VL5 whose phase is shifted by 240 degrees is applied to the coil L15 of the five magnetic poles 15. The coil L12 of the second magnetic pole 12, the coil L14 of the fourth magnetic pole 14, and the coil L16 of the sixth magnetic pole 16 are replaced with the coil L11 of the first magnetic pole 11, the coil L13 of the third magnetic pole 13, and the coil L15 of the fifth magnetic pole 15. On the other hand, the winding direction is reversed. Therefore, an AC voltage whose phase is shifted by 180 degrees from the U-phase AC voltage is applied to the coil L14 of the fourth magnetic pole 14. Similarly, an AC voltage that is 180 degrees out of phase from the V-phase AC voltage is applied to the coil L16 of the sixth magnetic pole 16, and a phase that is 180 degrees from the W-phase AC voltage is applied to the coil L12 of the second magnetic pole 12. A shifted AC voltage is applied.

したがって第2磁極12のコイルL12には、第1磁極11のコイルL11に印加される交流電圧VL1に対して位相が60度ずれた交流電圧VL2が印加されることになる。第4磁極14のコイルL14には、第1磁極11のコイルL11に印加される交流電圧VL1(U相)に対して位相が180度ずれた交流電圧VL4が印加されることになる。第6磁極16のコイルL16には、第1磁極11のコイルL11に印加される交流電圧VL1に対して位相が300度ずれた交流電圧VL6が印加されることになる。   Therefore, the AC voltage VL2 whose phase is shifted by 60 degrees with respect to the AC voltage VL1 applied to the coil L11 of the first magnetic pole 11 is applied to the coil L12 of the second magnetic pole 12. The AC voltage VL4 having a phase shifted by 180 degrees with respect to the AC voltage VL1 (U phase) applied to the coil L11 of the first magnetic pole 11 is applied to the coil L14 of the fourth magnetic pole 14. The AC voltage VL6 having a phase shifted by 300 degrees with respect to the AC voltage VL1 applied to the coil L11 of the first magnetic pole 11 is applied to the coil L16 of the sixth magnetic pole 16.

つまりマルチヨーク型磁化器10は、三相交流電圧を印加することによって、第1磁極11のコイルL11に印加される交流電圧に対し、位相が60度ずれた交流電圧が第2磁極12のコイルL12に印加され、位相が120度ずれた交流電圧が第3磁極13のコイルL13に印加され、位相が180度ずれた交流電圧が第4磁極14のコイルL14に印加され、位相が240度ずれた交流電圧が第5磁極15のコイルL15に印加され、位相が300度ずれた交流電圧が第6磁極16のコイルL16に印加される。すなわち本発明に係るマルチヨーク型磁化器10は、三相交流電圧を印加することによって、位相が60度ずつずれた交流電圧が第1〜第6磁極11〜16に印加されることになる。それによって本発明に係るマルチヨーク型磁化器10は、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成することができる。   That is, the multi-yoke type magnetizer 10 applies a three-phase AC voltage so that an AC voltage whose phase is shifted by 60 degrees with respect to the AC voltage applied to the coil L11 of the first magnetic pole 11 is a coil of the second magnetic pole 12. An AC voltage that is applied to L12 and is 120 degrees out of phase is applied to the coil L13 of the third magnetic pole 13, and an AC voltage that is 180 degrees out of phase is applied to the coil L14 of the fourth magnetic pole 14 and is 240 degrees out of phase. The AC voltage applied to the coil L15 of the fifth magnetic pole 15 is applied to the coil L16 of the sixth magnetic pole 16 with an AC voltage whose phase is shifted by 300 degrees. That is, in the multi-yoke magnetizer 10 according to the present invention, an AC voltage whose phase is shifted by 60 degrees is applied to the first to sixth magnetic poles 11 to 16 by applying a three-phase AC voltage. Thereby, the multi-yoke magnetizer 10 according to the present invention can form a rotating magnetic field with high uniformity with a small deviation of the rotating magnetic flux density on the surface of the object to be inspected.

このようにして本発明によれば、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成可能な磁化器を提供することができる。また本発明に係るマルチヨーク型磁化器10は、第1〜第6磁極11〜16が同心円B(図1)の上に配置されているのが好ましい。これは本発明に必須の構成要素ではないが、それによって回転磁界の各方向に対する磁界の強さをより均一にすることができるので、被検査体表面の回転磁束密度の偏りをさらに小さくすることができる。   As described above, according to the present invention, it is possible to provide a magnetizer capable of forming a rotating magnetic field with high uniformity with a small deviation of rotating magnetic flux density on the surface of an object to be inspected over a wide range. In the multi-yoke magnetizer 10 according to the present invention, the first to sixth magnetic poles 11 to 16 are preferably disposed on the concentric circle B (FIG. 1). Although this is not an essential component of the present invention, the magnetic field strength in each direction of the rotating magnetic field can be made more uniform, thereby further reducing the bias of the rotating magnetic flux density on the surface of the object to be inspected. Can do.

図7〜図9は、マルチヨーク型磁化器10及び従来技術の分割ヨーク型磁化器により磁化した被検査体の表面における回転磁束密度のリサージュ波形図である。   7 to 9 are Lissajous waveform diagrams of the rotating magnetic flux density on the surface of the test object magnetized by the multi-yoke type magnetizer 10 and the conventional split yoke type magnetizer.

出願人は、本発明の効果をさらに検証すべく、本発明に係るマルチヨーク型磁化器10と従来技術の分割ヨーク型磁化器、それぞれの回転磁束密度のリサージュ波形をコンピュータシミュレーションにより解析して対比した。具体的には、磁極の配置の中心点Aを原点とするX−Y座標(単位:mm)における測定点P1〜P3(図1)で回転磁束密度のリサージュ波形をコンピュータシミュレーションにより解析した。リサージュ波形の解析条件として、各磁極のコイル巻数は270ターン、励磁電流の最大値は9.56Aとした。ヨーク材は、ケイ素鋼板で占有率95%の積層鋼板とし、被検査体は、13クロム鋼(SUS410)の強磁性体鋼板を用いた。従来技術の分割ヨーク型磁化器は、120度の分割角度で対向する2つの磁極を1つの磁化要素とし、その磁化要素を120度の位相差で同心円上に3つ配置して構成した。   In order to further verify the effect of the present invention, the applicant analyzed the Lissajous waveforms of the multi-yoke magnetizer 10 according to the present invention and the split yoke magnetizer of the prior art and the respective rotational magnetic flux densities by computer simulation and compared them. did. Specifically, the Lissajous waveform of the rotating magnetic flux density was analyzed by computer simulation at measurement points P1 to P3 (FIG. 1) at XY coordinates (unit: mm) with the center point A of the magnetic pole arrangement as the origin. As analysis conditions for the Lissajous waveform, the number of coil turns of each magnetic pole was 270 turns, and the maximum value of the excitation current was 9.56A. The yoke material was a silicon steel plate and a laminated steel plate with an occupation ratio of 95%, and the test object was a 13 chromium steel (SUS410) ferromagnetic steel plate. The prior art split yoke type magnetizer has two magnetic poles facing each other at a split angle of 120 degrees as one magnetizing element, and three such magnetizing elements are arranged concentrically with a phase difference of 120 degrees.

図7は、測定点P1(X−Y座標0,0)におけるX−Y平面のリサージュ波形である。
測定点P1(X−Y座標0,0)、すなわち磁極配置の中心点Aにおけるリサージュ波形は、本発明に係るマルチヨーク型磁化器10、従来技術の分割ヨーク型磁化器、いずれも円形であった。これは被検査体表面におけるX−Y平面の各方向の回転磁束密度が均一であることを意味する。
FIG. 7 is a Lissajous waveform on the XY plane at the measurement point P1 (XY coordinates 0, 0).
The Lissajous waveform at the measurement point P1 (XY coordinates 0, 0), that is, the center point A of the magnetic pole arrangement, is a circular shape of the multi-yoke magnetizer 10 according to the present invention and the conventional split yoke magnetizer. It was. This means that the rotating magnetic flux density in each direction of the XY plane on the surface of the object to be inspected is uniform.

図8は、測定点P2(X−Y座標50,0)におけるX−Y平面のリサージュ波形、図9は、測定点P3(X−Y座標50,40)におけるX−Y平面のリサージュ波形である。
測定点P2(X−Y座標50,0)、測定点P3(X−Y座標50,40)のリサージュ波形から、従来技術の分割ヨーク型磁化器は、磁極配置の中心点Aから離れた位置では、被検査体の表面におけるX−Y平面の各方向の回転磁束密度に偏りが生じていることが分かる。それに対して本発明に係るマルチヨーク型磁化器10のリサージュ波形は、従来技術の分割ヨーク型磁化器のリサージュ波形と比較してより円形に近い。これは本発明に係るマルチヨーク型磁化器10は、被検査体の表面における回転磁束密度の偏りが従来技術の分割ヨーク型磁化器よりも小さく、X−Y平面の各方向における回転磁束密度の均一性が従来技術の分割ヨーク型磁化器よりも高いことを意味する。
尚、第1実施例のマルチヨーク型磁化器10は、コイルL11〜L16の巻き始めと巻き終わりの接続関係を全て逆にすることもできる。
8 shows a Lissajous waveform on the XY plane at the measurement point P2 (XY coordinates 50, 0), and FIG. 9 shows a Lissajous waveform on the XY plane at the measurement point P3 (XY coordinates 50, 40). is there.
From the Lissajous waveform at the measurement point P2 (XY coordinates 50, 0) and the measurement point P3 (XY coordinates 50, 40), the prior art split yoke magnetizer is positioned away from the center point A of the magnetic pole arrangement. Then, it turns out that the deviation has arisen in the rotational magnetic flux density of each direction of the XY plane in the surface of a to-be-inspected object. On the other hand, the Lissajous waveform of the multi-yoke magnetizer 10 according to the present invention is closer to a circle than the Lissajous waveform of the conventional split yoke magnetizer. This is because the multi-yoke magnetizer 10 according to the present invention has a smaller rotational magnetic flux density bias on the surface of the object to be inspected than the conventional split yoke magnetizer, and the rotational magnetic flux density in each direction on the XY plane is smaller. It means that the uniformity is higher than that of the prior art split yoke magnetizer.
In the multi-yoke magnetizer 10 of the first embodiment, the connection relationship between the winding start and the winding end of the coils L11 to L16 can be reversed.

<マルチヨーク型磁化器の構成の第2実施例>
本発明に係るマルチヨーク型磁化器10の構成の第2実施例について、図10を参照しながら説明する。
図10は、第2実施例のマルチヨーク型磁化器10の結線図である。
<Second Example of Multi-Yoke Magnetizer Configuration>
A second embodiment of the configuration of the multi-yoke magnetizer 10 according to the present invention will be described with reference to FIG.
FIG. 10 is a connection diagram of the multi-yoke magnetizer 10 of the second embodiment.

第2実施例のマルチヨーク型磁化器10は、コイルL11〜L16の接続が異なる以外は、第1実施例のマルチヨーク型磁化器10と同じ構成であり、同一の構成要素については同一の符合を付して詳細な説明を省略する。   The multi-yoke magnetizer 10 of the second embodiment has the same configuration as that of the multi-yoke magnetizer 10 of the first embodiment except that the connections of the coils L11 to L16 are different. The detailed description is omitted.

第2実施例のマルチヨーク型磁化器10において、第1磁極11のコイルL11、第3磁極13のコイルL13及び第5磁極15のコイルL15は、電線の巻き終わりが中性点に接続されてY結線で接続されている。また第2実施例のマルチヨーク型磁化器10は、第1磁極11のコイルL11の巻き始めと第4磁極14のコイルL14の巻き始めとが接続され、第3磁極13のコイルL13の巻き始めと第6磁極のコイルL16の巻き始めとが接続され、第5磁極15のコイルL15の巻き始めと第2磁極のコイルL12の巻き始めとが接続されている。接続端子T1には、第4磁極14のコイルL14の巻き終わりが接続されている。接続端子T2には、第6磁極16のコイルL16の巻き終わりが接続されている。接続端子T3には、第2磁極12のコイルL12の巻き終わりが接続されている。   In the multi-yoke magnetizer 10 of the second embodiment, the coil L11 of the first magnetic pole 11, the coil L13 of the third magnetic pole 13, and the coil L15 of the fifth magnetic pole 15 are connected to the neutral point at the winding end of the wire. Connected with Y connection. In the multi-yoke magnetizer 10 of the second embodiment, the winding start of the coil L11 of the first magnetic pole 11 and the winding start of the coil L14 of the fourth magnetic pole 14 are connected, and the winding start of the coil L13 of the third magnetic pole 13 is started. Is connected to the start of winding of the coil L16 of the sixth magnetic pole, and the start of winding of the coil L15 of the fifth magnetic pole 15 is connected to the start of winding of the coil L12 of the second magnetic pole. The end of winding of the coil L14 of the fourth magnetic pole 14 is connected to the connection terminal T1. The end of winding of the coil L16 of the sixth magnetic pole 16 is connected to the connection terminal T2. The end of winding of the coil L12 of the second magnetic pole 12 is connected to the connection terminal T3.

接続端子T1に三相交流電源のU相を接続し、接続端子T2に三相交流電源のV相を接続し、接続端子T3に三相交流電源のW相を接続して、マルチヨーク型磁化器10に三相交流電圧を印加する。それによって第2実施例のマルチヨーク型磁化器10は、第1実施例と同様に、位相が60度ずつずれた交流電圧が第1〜第6磁極11〜16に印加されることになるので、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成することができる。
尚、第2実施例のマルチヨーク型磁化器10は、コイルL11〜L16の巻き始めと巻き終わりの接続関係を全て逆にすることもできる。
Connect the U phase of the three-phase AC power supply to the connection terminal T1, connect the V phase of the three-phase AC power supply to the connection terminal T2, connect the W phase of the three-phase AC power supply to the connection terminal T3, A three-phase AC voltage is applied to the vessel 10. As a result, in the multi-yoke magnetizer 10 of the second embodiment, an AC voltage whose phase is shifted by 60 degrees is applied to the first to sixth magnetic poles 11 to 16 as in the first embodiment. Thus, a highly uniform rotating magnetic field with a small deviation in rotating magnetic flux density on the surface of the object to be inspected can be formed over a wide range.
In the multi-yoke magnetizer 10 of the second embodiment, the connection relationship between the winding start and the winding end of the coils L11 to L16 can be reversed.

<マルチヨーク型磁化器の構成の第3実施例>
本発明に係るマルチヨーク型磁化器10の構成の第3実施例について、図11を参照しながら説明する。
図11は、第3実施例のマルチヨーク型磁化器10の結線図である。
<Third Embodiment of Multi-Yoke Magnetizer Configuration>
A third embodiment of the configuration of the multi-yoke magnetizer 10 according to the present invention will be described with reference to FIG.
FIG. 11 is a connection diagram of the multi-yoke magnetizer 10 of the third embodiment.

第3実施例のマルチヨーク型磁化器10は、コイルL11〜L16の接続が異なる以外は、第1実施例のマルチヨーク型磁化器10と同じ構成であり、同一の構成要素については同一の符合を付して詳細な説明を省略する。   The multi-yoke magnetizer 10 of the third embodiment has the same configuration as the multi-yoke magnetizer 10 of the first embodiment except that the connections of the coils L11 to L16 are different. The detailed description is omitted.

第3実施例のマルチヨーク型磁化器10において、第1磁極11のコイルL11、第3磁極13のコイルL13及び第5磁極15のコイルL15は、Δ結線で接続されている。同様に第2磁極12のコイルL12、第4磁極14のコイルL14及び第6磁極16のコイルL16は、Δ結線で接続されている。より具体的には接続端子T1には、第1磁極11のコイルL11及び第6磁極16のコイルL16の巻き始めと、第3磁極13のコイルL13及び第4磁極14のコイルL14の巻き終わりとが接続されている。接続端子T2には、第2磁極12のコイルL12及び第3磁極13のコイルL13の巻き始めと、第5磁極15のコイルL15及び第6磁極16のコイルL16の巻き終わりとが接続されている。接続端子T3には、第4磁極14のコイルL14及び第5磁極15のコイルL15の巻き始めと、第1磁極11のコイルL11及び第2磁極12のコイルL12の巻き終わりとが接続されている。   In the multi-yoke magnetizer 10 of the third embodiment, the coil L11 of the first magnetic pole 11, the coil L13 of the third magnetic pole 13, and the coil L15 of the fifth magnetic pole 15 are connected by Δ connection. Similarly, the coil L12 of the second magnetic pole 12, the coil L14 of the fourth magnetic pole 14, and the coil L16 of the sixth magnetic pole 16 are connected by Δ connection. More specifically, the connection terminal T1 includes the start of winding of the coil L11 of the first magnetic pole 11 and the coil L16 of the sixth magnetic pole 16, and the end of winding of the coil L13 of the third magnetic pole 13 and the coil L14 of the fourth magnetic pole 14. Is connected. The connection terminal T2 is connected to the start of winding of the coil L12 of the second magnetic pole 12 and the coil L13 of the third magnetic pole 13, and the end of winding of the coil L15 of the fifth magnetic pole 15 and the coil L16 of the sixth magnetic pole 16. . The connection terminal T3 is connected to the start of winding of the coil L14 of the fourth magnetic pole 14 and the coil L15 of the fifth magnetic pole 15 and the end of winding of the coil L11 of the first magnetic pole 11 and the coil L12 of the second magnetic pole 12. .

接続端子T1に三相交流電源のU相を接続し、接続端子T2に三相交流電源のV相を接続し、接続端子T3に三相交流電源のW相を接続して、マルチヨーク型磁化器10に三相交流電圧を印加する。それによって第3実施例のマルチヨーク型磁化器10は、第1実施例と同様に、位相が60度ずつずれた交流電圧が第1〜第6磁極11〜16に印加されることになるので、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成することができる。
尚、第3実施例のマルチヨーク型磁化器10は、コイルL11〜L16の巻き始めと巻き終わりの接続関係を全て逆にすることもできる。
Connect the U phase of the three-phase AC power supply to the connection terminal T1, connect the V phase of the three-phase AC power supply to the connection terminal T2, connect the W phase of the three-phase AC power supply to the connection terminal T3, A three-phase AC voltage is applied to the vessel 10. As a result, in the multi-yoke magnetizer 10 of the third embodiment, an AC voltage whose phase is shifted by 60 degrees is applied to the first to sixth magnetic poles 11 to 16 as in the first embodiment. Thus, a highly uniform rotating magnetic field with a small deviation in rotating magnetic flux density on the surface of the object to be inspected can be formed over a wide range.
In the multi-yoke type magnetizer 10 of the third embodiment, the connection relationship between the winding start and winding end of the coils L11 to L16 can be reversed.

<マルチヨーク型磁化器の構成の第4実施例>
本発明に係るマルチヨーク型磁化器10の構成の第4実施例について、図12を参照しながら説明する。
図12は、第4実施例のマルチヨーク型磁化器10の結線図である。
<Fourth Example of Configuration of Multi-Yoke Magnetizer>
A fourth embodiment of the configuration of the multi-yoke magnetizer 10 according to the present invention will be described with reference to FIG.
FIG. 12 is a connection diagram of the multi-yoke type magnetizer 10 of the fourth embodiment.

第4実施例のマルチヨーク型磁化器10は、コイルL11〜L16の接続が異なる以外は、第1実施例のマルチヨーク型磁化器10と同じ構成であり、同一の構成要素については同一の符合を付して詳細な説明を省略する。   The multi-yoke magnetizer 10 of the fourth embodiment has the same configuration as that of the multi-yoke magnetizer 10 of the first embodiment except that the connections of the coils L11 to L16 are different. The detailed description is omitted.

第4実施例のマルチヨーク型磁化器10は、第1磁極11のコイルL11の巻き終わりと第4磁極14のコイルL14の巻き終わりとが接続され、第3磁極13のコイルL13の巻き終わりと第6磁極16のコイルL16の巻き終わりとが接続され、第5磁極15のコイルL15の巻き終わりと第2磁極のコイルL12の巻き終わりとが接続されている。また第4実施例のマルチヨーク型磁化器10は、第1磁極11のコイルL11の巻き始めと第6磁極16のコイルL16の巻き始めとが接続され、第2磁極12のコイルL12の巻き始めと第3磁極13のコイルL13の巻き始めとが接続され、第4磁極14のコイルL14の巻き始めと第5磁極15のコイルL15の巻き始めとが接続されている。   In the multi-yoke magnetizer 10 of the fourth embodiment, the winding end of the coil L11 of the first magnetic pole 11 and the winding end of the coil L14 of the fourth magnetic pole 14 are connected, and the winding end of the coil L13 of the third magnetic pole 13 is connected. The winding end of the coil L16 of the sixth magnetic pole 16 is connected, and the winding end of the coil L15 of the fifth magnetic pole 15 and the winding end of the coil L12 of the second magnetic pole 15 are connected. In the multi-yoke magnetizer 10 of the fourth embodiment, the winding start of the coil L11 of the first magnetic pole 11 and the winding start of the coil L16 of the sixth magnetic pole 16 are connected, and the winding start of the coil L12 of the second magnetic pole 12 is started. And the start of winding of the coil L13 of the fourth magnetic pole 14 and the start of winding of the coil L15 of the fifth magnetic pole 15 are connected.

接続端子T1には、第1磁極11のコイルL11の巻き始めと第6磁極16のコイルL16の巻き始めとの接続点が接続されている。接続端子T2には、第2磁極12のコイルL12の巻き始めと第3磁極13のコイルL13の巻き始めとの接続点が接続されている。接続端子T3には、第4磁極14のコイルL14の巻き始めと第5磁極15のコイルL15の巻き始めとの接続点が接続されている。   A connection point between the start of winding of the coil L11 of the first magnetic pole 11 and the start of winding of the coil L16 of the sixth magnetic pole 16 is connected to the connection terminal T1. A connection point between the start of winding of the coil L12 of the second magnetic pole 12 and the start of winding of the coil L13 of the third magnetic pole 13 is connected to the connection terminal T2. A connection point between the start of winding of the coil L14 of the fourth magnetic pole 14 and the start of winding of the coil L15 of the fifth magnetic pole 15 is connected to the connection terminal T3.

接続端子T1に三相交流電源のU相を接続し、接続端子T2に三相交流電源のV相を接続し、接続端子T3に三相交流電源のW相を接続して、マルチヨーク型磁化器10に三相交流電圧を印加する。それによって第4実施例のマルチヨーク型磁化器10は、第1実施例と同様に、位相が60度ずつずれた交流電圧が第1〜第6磁極11〜16に印加されることになるので、被検査体表面の回転磁束密度の偏りが小さい均一性の高い回転磁界を広範囲に形成することができる。
尚、第4実施例のマルチヨーク型磁化器10は、コイルL11〜L16の巻き始めと巻き終わりの接続関係を全て逆にすることもできる。
Connect the U phase of the three-phase AC power supply to the connection terminal T1, connect the V phase of the three-phase AC power supply to the connection terminal T2, connect the W phase of the three-phase AC power supply to the connection terminal T3, A three-phase AC voltage is applied to the vessel 10. As a result, in the multi-yoke type magnetizer 10 of the fourth embodiment, an AC voltage whose phase is shifted by 60 degrees is applied to the first to sixth magnetic poles 11 to 16 as in the first embodiment. Thus, a highly uniform rotating magnetic field with a small deviation in rotating magnetic flux density on the surface of the object to be inspected can be formed over a wide range.
In the multi-yoke magnetizer 10 of the fourth embodiment, the connection relationship between the winding start and the winding end of the coils L11 to L16 can be reversed.

10 マルチヨーク型磁化器
11〜16 第1〜第6磁極
17 マルチヨーク
171 第1〜第6ヨーク
177 バックヨーク
L11〜L16 コイル
T1〜T3 接続端子
DESCRIPTION OF SYMBOLS 10 Multi-yoke type magnetizers 11-16 First to sixth magnetic poles 17 Multi-yoke 171 First to sixth yokes 177 Back yokes L11 to L16 Coils T1 to T3 Connection terminals

Claims (5)

相互に60度の位相差をもって順に配置され、継鉄に電線が巻かれてなる第1〜第6磁化要素を備え、
前記第1磁化要素、前記第3磁化要素及び前記第5磁化要素は、電線の巻き終わりが中性点に接続されてY結線で接続されており、
前記第2磁化要素、前記第4磁化要素及び前記第6磁化要素は、電線の巻き始めが中性点に接続されてY結線で接続されており、
前記第1磁化要素の電線の巻き始めと前記第4磁化要素の電線の巻き終わりとが接続され、前記第3磁化要素の電線の巻き始めと前記第6磁化要素の電線の巻き終わりとが接続され、前記第5磁化要素の電線の巻き始めと前記第2磁化要素の電線の巻き終わりとが接続されている、ことを特徴とするマルチヨーク型磁化器。
The first to sixth magnetization elements are arranged in order with a phase difference of 60 degrees from each other, and an electric wire is wound around a yoke,
The first magnetizing element, the third magnetizing element, and the fifth magnetizing element are connected by a Y connection with the winding end of the wire connected to a neutral point,
The second magnetizing element, the fourth magnetizing element, and the sixth magnetizing element are connected by a Y connection with the winding start of the electric wire connected to the neutral point,
The winding start of the first magnetization element and the winding end of the fourth magnetization element are connected, and the winding start of the third magnetization element and the winding end of the sixth magnetization element are connected. The multi-yoke magnetizer is characterized in that the winding start of the electric wire of the fifth magnetization element and the winding end of the electric wire of the second magnetization element are connected.
相互に60度の位相差をもって順に配置され、継鉄に電線が巻かれてなる第1〜第6磁化要素を備え、
前記第1磁化要素、前記第3磁化要素及び前記第5磁化要素は、電線の巻き終わりが中性点に接続されてY結線で接続されており、
前記第1磁化要素の電線の巻き始めと前記第4磁化要素の電線の巻き始めとが接続され、前記第3磁化要素の電線の巻き始めと前記第6磁化要素の電線の巻き始めとが接続され、前記第5磁化要素の電線の巻き始めと前記第2磁化要素の電線の巻き始めとが接続されている、ことを特徴とするマルチヨーク型磁化器。
The first to sixth magnetization elements are arranged in order with a phase difference of 60 degrees from each other, and an electric wire is wound around a yoke,
The first magnetizing element, the third magnetizing element, and the fifth magnetizing element are connected by a Y connection with the winding end of the wire connected to a neutral point,
The winding start of the first magnetization element and the winding start of the fourth magnetization element are connected, and the winding start of the third magnetization element and the winding start of the sixth magnetization element are connected. A multi-yoke magnetizer, wherein the start of winding of the electric wire of the fifth magnetizing element and the start of winding of the electric wire of the second magnetizing element are connected.
相互に60度の位相差をもって順に配置され、継鉄に電線が巻かれてなる第1〜第6磁化要素を備え、
前記第1磁化要素、前記第3磁化要素及び前記第5磁化要素は、Δ結線で接続されており、
前記第2磁化要素、前記第4磁化要素及び前記第6磁化要素は、Δ結線で接続されており、
前記第1磁化要素及び前記第6磁化要素の電線の巻き始めと前記第3磁化要素及び前記第4磁化要素の電線の巻き終わりとが接続され、
前記第2磁化要素及び前記第3磁化要素の電線の巻き始めと前記第5磁化要素及び前記第6磁化要素の電線の巻き終わりとが接続され、
前記第4磁化要素及び前記第5磁化要素の電線の巻き始めと前記第1磁化要素及び前記第2磁化要素の電線の巻き終わりとが接続されている、ことを特徴とするマルチヨーク型磁化器。
The first to sixth magnetization elements are arranged in order with a phase difference of 60 degrees from each other, and an electric wire is wound around a yoke,
The first magnetization element, the third magnetization element, and the fifth magnetization element are connected by a Δ connection,
The second magnetization element, the fourth magnetization element, and the sixth magnetization element are connected by a Δ connection,
The winding start of the electric wires of the first magnetization element and the sixth magnetization element and the winding end of the electric wires of the third magnetization element and the fourth magnetization element are connected,
The winding start of the electric wires of the second magnetization element and the third magnetization element and the winding end of the electric wires of the fifth magnetization element and the sixth magnetization element are connected,
A multi-yoke magnetizer, characterized in that the winding start of the electric wires of the fourth and fifth magnetization elements and the winding end of the electric wires of the first and second magnetization elements are connected. .
相互に60度の位相差をもって順に配置され、継鉄に電線が巻かれてなる第1〜第6磁化要素を備え、
前記第1磁化要素の電線の巻き終わりと前記第4磁化要素の電線の巻き終わりとが接続され、前記第3磁化要素の電線の巻き終わりと前記第6磁化要素の電線の巻き終わりとが接続され、前記第5磁化要素の電線の巻き終わりと前記第2磁化要素の電線の巻き終わりとが接続され、
前記第1磁化要素の電線の巻き始めと前記第6磁化要素の電線の巻き始めとが接続され、前記第2磁化要素の電線の巻き始めと前記第3磁化要素の電線の巻き始めとが接続され、前記第4磁化要素の電線の巻き始めと前記第5磁化要素の電線の巻き始めとが接続されている、ことを特徴とするマルチヨーク型磁化器。
The first to sixth magnetization elements are arranged in order with a phase difference of 60 degrees from each other, and an electric wire is wound around a yoke,
The winding end of the first magnetization element and the winding end of the fourth magnetization element are connected, and the winding end of the third magnetization element and the winding end of the sixth magnetization element are connected. The end of winding of the wire of the fifth magnetizing element and the end of winding of the wire of the second magnetizing element are connected,
The winding start of the first magnetization element and the winding start of the sixth magnetization element are connected, and the winding start of the second magnetization element and the winding start of the third magnetization element are connected. The multi-yoke magnetizer is characterized in that the start of winding of the electric wire of the fourth magnetizing element and the start of winding of the electric wire of the fifth magnetizing element are connected.
請求項1〜4のいずれかに記載のマルチヨーク型磁化器において、前記第1〜第6磁化要素が同心円上に配置されている、ことを特徴とするマルチヨーク型磁化器。   5. The multi-yoke magnetizer according to claim 1, wherein the first to sixth magnetizing elements are arranged concentrically. 6.
JP2012205512A 2012-09-19 2012-09-19 Multi yoke magnetizer Pending JP2014059258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012205512A JP2014059258A (en) 2012-09-19 2012-09-19 Multi yoke magnetizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205512A JP2014059258A (en) 2012-09-19 2012-09-19 Multi yoke magnetizer

Publications (1)

Publication Number Publication Date
JP2014059258A true JP2014059258A (en) 2014-04-03

Family

ID=50615841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205512A Pending JP2014059258A (en) 2012-09-19 2012-09-19 Multi yoke magnetizer

Country Status (1)

Country Link
JP (1) JP2014059258A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503136A (en) * 2015-02-17 2018-02-01 イー インク コーポレイション Electromagnetic writing device for electro-optic display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420786A (en) * 1977-07-15 1979-02-16 Nippon Steel Corp Magnetizing device for magnetic inspecter
JP2002199636A (en) * 2000-12-27 2002-07-12 Asmo Co Ltd Winding structure for rotating field motor
JP2003134716A (en) * 2001-10-25 2003-05-09 Odawara Engineering Co Ltd Parallel connection method for stator coil and its stator
JP2005110380A (en) * 2003-09-30 2005-04-21 Zexel Valeo Climate Control Corp Electromagnetic motor
JP2008125215A (en) * 2006-11-10 2008-05-29 Daikin Ind Ltd Method of manufacturing axial gap type motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420786A (en) * 1977-07-15 1979-02-16 Nippon Steel Corp Magnetizing device for magnetic inspecter
JP2002199636A (en) * 2000-12-27 2002-07-12 Asmo Co Ltd Winding structure for rotating field motor
JP2003134716A (en) * 2001-10-25 2003-05-09 Odawara Engineering Co Ltd Parallel connection method for stator coil and its stator
JP2005110380A (en) * 2003-09-30 2005-04-21 Zexel Valeo Climate Control Corp Electromagnetic motor
JP2008125215A (en) * 2006-11-10 2008-05-29 Daikin Ind Ltd Method of manufacturing axial gap type motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503136A (en) * 2015-02-17 2018-02-01 イー インク コーポレイション Electromagnetic writing device for electro-optic display

Similar Documents

Publication Publication Date Title
JP5129566B2 (en) Flexible electromagnetic acoustic transducer sensor
JP5922633B2 (en) Eddy current flaw detection probe and eddy current flaw detection method
CN103399037A (en) Active infrared tube defect detection method based on electromagnetic induction heating
CN110174466A (en) A kind of electromagnetic acoustic incentive probe and its construction method
CN102103194A (en) Device and method for measuring two-dimensional magnetic properties of electric steel sheet with adjustable magnetic circuit
Fukuoka et al. Consideration of multi-coil type magnetizer for detection of omnidirectional crack in magnetic particle testing
JP2013072667A (en) Probe for eddy current flaw detection
JP2014059258A (en) Multi yoke magnetizer
CN111879849B (en) Symmetrical non-directional eddy current detection sensor and detection method
JP2007298336A (en) Apparatus for measuring magnetic characteristics
JP6170081B2 (en) Magnetizer for steel pipe, magnetic particle flaw detector
JP5401528B2 (en) Split yoke magnetizer
JP2012122859A (en) Eddy current probe for flaw detection, eddy current device for flaw detection, and eddy current method for flaw detection
JP2014066654A (en) Electromagnetic acoustic transducer and electromagnetic acoustic flaw detector
JP5403828B2 (en) Magnetizing device for inspection object, magnetic particle flaw detector
JP5465803B2 (en) Method for adjusting magnetizing device of object to be inspected
Seo et al. Numerical and experimental characterization of thread-type magnetic core with low eddy current loss
US9349516B2 (en) Multidirectional magnetic particle inspection system
JP2016133459A (en) Eddy current flaw detection probe, and eddy current flaw detection device
CN203758961U (en) U-shaped detection probe based on detection of alternating current electromagnetic field
JP6289857B2 (en) Magnetizing method for test object, magnetizing device for test object, magnetic particle flaw detector
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2004177177A (en) Magnetic field generator for defect detection of magnetic powder
CN103743812B (en) A kind of method for designing using multiple frequency excitation simultaneously to improve magnetic powder inspection capacity
CN210834762U (en) Signal receiving element for nondestructive testing sensor and sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150107